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ABSTRACT

This contribution proposes adiabatic reinforcement learning (ARL), a new method
for continual reinforcement learning (CRL). In CRL, we assume a non-stationary
environment partitioned into tasks. To avoid catastrophic forgetting (CF), RL re-
quires the use of large replay buffers, which leads to very slow learning and high
memory requirements. To remedy this, we propose adiabatic reinforcement learn-
ing (ARL), a wake-sleep method that performs slow learning of internal represen-
tations from high-error transitions during sleep phases. Wake phases are used for
the fast learning of policies, i.e., mappings from representations to actions, and to
collect new high-error transitions. Representation learning is performed by adia-
batic replay (AR), a recent CL technique we adapted to the RL setting. AR uses
selective, internal replay of samples that are likely to be affected by forgetting.
Since this process is conditioned on incoming samples only, its has constant time-
complexity w.r.t. tasks. Other benefits include fast adaptation to new tasks, and a
very low memory footprint due to the complete absence of replay buffers.

1 INTRODUCTION

This article is in the context of continual reinforcement learning (CRL), a branch of reinforcement
learning (RL) where a non-stationary environment is assumed in addition to non-stationary observa-
tions due to ongoing exploration and model adaptation. Non-stationary data distributions cause the
well-known catastrophic forgetting (CF) effect McCloskey & Cohen| (1989) when employing DNN
learners. The study of machine learning from non-stationary data distribution is the objective of con-
tinual learning (CL), a particular goal being the mitigation or avoidance of catastrophic forgetting.
Both in CL and in CRL, a common simplification is to assume the existence of tasks, i.e., phases of
stationary data distribution or environment, with non-stationarities (or shifts) occurring only at task
onsets, see fig. [[| for a visualization.

1.1 MOTIVATION

Since CF is an issue in RL even when environments are stationary, the typical approach is to use
large replay buffers for storing past samples and replaying them for to the learner. This simulates a
stationary distribution, but comes at a significant memory overhead and slows down learning of new
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Figure 1: Exemplary CL (left) and CRL problems (right) subdivided into tasks of stationary data
distribution or environment. CL problems are usually taken to be supervised classification problems,
and non-stationarities can be modeled as shifts in the occurring sample classes (class-incremental
learning scenario, see|Van de Ven et al.| (2022); Bagus et al.| (2022))), shown here for MNIST. CRL
problems usually define tasks by shifts in environment properties or reward structure. Here, a robotic
agent needs to follow a black line, the shape of which changes for each new task.
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tasks in CRL since new-task samples need time to sufficiently populate the buffer before they can
have an impact. Techniques like prioritized experience replay (PER, [Schaul et al.| (2015))) attempt
to accelerate convergence by focusing on high-error samples, but this requires extensive parameter
tuning and can again lead to forgetting if the original data distribution is changed too much [Pan et al.
(2022).

A CL technique to replace replay buffers in CRL is generative replay (GR), for which new sam-
ples are immediately used for training, and which avoids forgetting by mixing them with generated
samples from past tasks. This improves learning speed for new tasks, but the replay of samples
conditioned on past tasks leads to an ever-increasing number of replayed samples as the number
of tasks grows (see Krawczyk & Gepperth| (2024b) for a discussion of why such balanced replay
is required). Furthermore, this strategy requires that task onsets be known with a high degree of
certainty, which is a highly artificial assumption, just as the assumption of distinct, crisply defined
RL tasks is in general.

1.2 CONTRIBUTION

The contribution of this article is the method of adiabatic reinforcement learning (ARL), which is
validated on task-based CRL benchmarks (see fig.[T) without being informed about task onsets at any
point. The core of ARL is a replay-based CL method termed adiabatic replay (AR, see Krawczyk
& Gepperth| (2024a))), which performs generative replay not conditioned on a task, but on incoming
samples themselves (selective replay) and therefore does not depend on the number of previously
encountered tasks. The internal representation of the learner employed here is a fully probabilistic
Gaussian Mixture Model (GMM) that supports selective updating exclusively with high-error sam-
ples. This decomposition of the learner into representation and (policy) readout blocks is typical of
state representation learning, see section|[I.3] A wake-sleep training algorithm is applied so that no
interference can occur between these blocks.

In particular, this article proposes the following contributions to the field of CRL:

* fast learning of new tasks

* extremely small replay buffers and low memory footprint

* generative replay approach focusing on high-error transitions without forgetting
* constant time complexity w.r.t. the number of CRL tasks

* plastic representation over time, arbitrary number of tasks

1.3 RELATED WORK

When data distributions are not stationary or samples are not i.i.d. [Lesort et al.| (2021) catastrophic
forgetting (CF, McCloskey & Cohen| (1989); Ratcliff| (1990)) will occur. Especially deep neural
networks (DNNs) are highly susceptible to that rapid performance degeneration |Pfiilb & Gepperth
(2019). Various approaches have been introduced for addressing CF, see [Shaheen et al.| (2021)); Qu
et al.| (2021); Wang et al.| (2023aZb) for extensive surveys. The “default” CL scenario for supervised
CL Bagus & Gepperth|(2022)), also known as class-incremental learning (CIL, van de Ven & Tolias
(2019); Masana et al.| (2022); [Zhou et al.| (2023)) is adopted in the majority of recent publications.
Essentially, it is posited that non-stationary data streams can be partitioned into a subset of non-
contradictory, non-overlapping tasks with stationary statistics, whose onset and duration are known.
However, not all CL methods are suitable for RL, as it differs considerably from the common CIL
setting [Lesort et al.| (2020); |[Khetarpal et al.| (2020); |Bagus & Gepperth| (2022). We will therefore
focus on rehearsal or experience replay (ER, see Rolnick et al.| (2019)) and pseudo-rehearsal or
generative replay (GR, see [Shin et al.| (2017); Kamra et al.| (2017); |Atkinson et al.| (2018a)), which
either store samples from previous tasks or use a generator to obtain them in unlimited quantities.
Such samples are then merged with current samples to avoid forgetting. ER and GR in particular
have become strong baselines Balaji et al|(2020); |Zhang et al.| (2022) in CL and work in a variety
of scenarios|Verwimp et al.|(2021); Hayes et al.| (2021).

Continual reinforcement learning (CRL) is studied for a variety of algorithms, of which the most
commonly used is deep Q-learning (DQN) with experience replay, see, e.g., [Mnih et al.| (2013).
However, more sophisticated variants like soft actor-critic (SAC) are studied as well [Wolczyk et al.
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(2022b)). An overview concerning the field of CRL is given in, e.g., Lesort et al.| (2020); Khetarpal
et al.|(2020); Shaheen et al.|(2021). There are several works on generalizing CL. methods to CRL: a
straightforward adaptation of pseudo-rehearsal is described in [Atkinson et al.|(2018b)), where stan-
dard double DQN with experience replay is employed for training an short-term memory (STM)
instance on the current task. The trained STM instance, together with the (large) replay buffer from
the current task, are then used to train a long-term memory (LTM) instance about the current and
past tasks. This is convincingly demonstrated for a sequence of three Atari games. A drawback of
this work is the need to know about task onsets, and of course that this will scale linearly with the
number of tasks, at least for a large number of tasks. A similar approach is adopted in the S-Trigger
model [Caselles-Dupré et al.|(2019), which, in addition, detects task onsets by using the VAE as an
outlier detector and thus no longer needs to be informed about task onsets. Linear scaling behavior
w.r.t. time will still be an issue, and new tasks may not be associated with a change in observa-
tions but in the optimal policy, thus limiting applicability to a subset of possible CRL problems.
S-trigger belongs to the class of state representation learning models (see |[Lesort et al.| (2018) for
an overview), which decompose RL into learning a representation for observations and for policies.
Similar in this respect is DARLA Higgins et al.|(2017), which uses VAEs for this purpose as well and
shows that such an approach can provide TL with invariance to unforeseen variations. DARLA is
not intended for CRL, although it is unclear how invariance can be controlled and restricted. Finally,
the DisCoRL model [Traoré et al.| (2019) employs a babbling phase (purely random exploration) for
learning a model encoding representational states with some degree of invariance. This is a very
significant contribution, albeit limited to cases where random exploration will reach all possible
observational states, which is unlikely to be the case in general settings.

Little consensus exists concerning the benchmarks on which to evaluate CRL. Commonly used
benchmarks are Atari gamesAtkinson et al.| (2018b), Continual World [Wotczyk et al.| (2021), but
mostly self-defined benchmarks [Traoré et al.|(2019); Daniels et al.| (2022)); Tomilin et al.[(2024).

2 METHODS

We implement three benchmarks using the Gazebo (Harmonic) simulator [1_-] and the gz-transport
package for controlling it from Python. All learning algorithms are self-implemented in Python3
using TensorFlow 2.14. The source code for the experiments is publicly availabl

2.1 BENCHMARKS

The simulated robot is modeled after the popular 37 robot from Pololu Robotics, see fig. [3] It is
controlled by a differential drive, with two wheels (radius: ~ 1.55 ¢m, separation: ~ 9 cm) driven
by independent motors. In addition, there is a passive caster wheel for balancing. Inputs to the
differential drive are wheel speeds vy, and vy measured in meters per second. Observations and
commands are exchanged at a fixed frequency of 15Hz (in simulation time). An RGB camera with
an aperture of 50 deg can be placed at the front of the robot. The action space consists of discrete
actions a; € N, each action being defined by a 2-tuple of wheel speeds (vz,vr).All friction
parameters and drive speed/acceleration limits are set such that wheel speed commands are realized
quasi-instantaneously without wheel slips or gliding.

2.1.1 LINE-FOLLOWING (LF)

This benchmark is represented by four different racetracks consisting of a black circle drawn on
differently colored ground planes, see fig.[2] The goal for the robot (placed on the black line) is
to keep the left border of the black line as centered as possible in the camera image while moving
forward, and thus, to follow the line. We define four successive CRL tasks between which environ-
mental shifts occur: LF1(red ground plane), LF2 (green ground plane), LF3 (blue ground plane) and
LF4 (yellow ground plane). An environment shift corresponds to placing the robot on a designated
spawn point on a different racetrack. Observations 0; are formed by slicing the middle 4 rows of
each received 100 x 100 image and concatenating the 3 last 100 x 4 images along the row axis.
The first observation is duplicated during concatenation: twice for the first iteration, and once for

www.gazebosim.org
Zhttps://github.com/anon-scientist/iclr25-arl
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Figure 2: Benchmarks used in this study. Left: line-following(LF, only first task shown) where the
robot must follow a black line on differently colored ground planes. Middle: robot pursuit(RP, only
task 1 shown), where the robot must follow a moving block of varying color without transgressing
the boundaries of the arena indicated by black lines. Right: pushing-objects(PO, tasks 1 and 2 are
shown) where the robot must approach an inert block of varying color, and either push it, or stop in
front of it.

|Benchmark - action— | 0 | 1 | 2 | 3 | 4
’%v Line-Following 005 035 ] 015 025 |02 02 ] 025 015 | 035 0.05
Pushing-Objects 2 0.4 0.4 2 1.2 1.2 - -
Robotic Pursuit 2 0.4 0.4 2 1.2 1.2

Figure 3: Left: the simulated two-wheeled robot which can be equipped with a front camera. Right:
all benchmarks assume that the robot can perform 4 discrete actions, defined by the given left/right
wheel speed pairs per action.

the second iteration, so there is always a valid observation available. A terminal state occurs when
image processing is unable to detect the left edge of the line in the image, or when the maximum
sequence length of 25000 is reached. The actions space comprises 5 distinct actions: a; € [0,4]
corresponding to four different speeds for left and right, as well as a single action for pure forward
acceleration, see fig.|3| The dense reward signal r(¢) is calculated from the deviation d(t) (in pixels)
of the left edge of the line from the center of the image o; of width W = 100 and is normalized

between [0.0,1.0]: r, = 1 — ‘%‘ ,with d € [0, W]. However, terminal states (left edge of the

line no longer in image) are penafized by a value of —1.0. The reward function does not reward or
penalize different speeds.

2.1.2 PUSHING-OBJECTS (PO)

In this benchmark, the robot is placed in front of one out of several colored cubes (see fig. 2) and
ends with the robot losing visual contact, pushing the cube or reaching the maximum number of 30
actions. Pushing or stopping should depend on a cube’s mass (tied to color): massive cubes must
not be touched/pushed, whereas massless cubes should be pushed. The robot is initially tilted £15
degrees away from the cube it is facing, so a purely random walk will not bring it, on average,
near the cube. This benchmark consists of four tasks POl - PO4 separated by an environment
shift that modifies cube colors (red, blue, green, then yellow) and masses (20kg,0,0, then 20kg).
Observations 0 are 100 x 100 RGB images downsampled to 20 x 20 size obtained by the robot’s
forward-looking camera. The reward r, = A(d;,a:) + B(t) is composed of two terms, of which
A(0}, ay) is given continuously, and B(t) only for a terminal state. Terminal states are reached either
after 30 iterations, when the robot loses sight of the cube, or when the robot touches one. Approach
behavior is encouraged in all tasks by A(d;, a;) = 1 — |p, — 10|, where 1, is the x component of the
center-of-gravity of non-background cube pixels in ;. B(t) depends on a cube’s mass: B(t) = 10
when touching a massless cube, and B(t) = —10 when touching a massive one, and B(t) = 0 when
no cube is touched. When the robot loses sight of the object (only background pixels in the image),
a small punishment is given: B(t) = —1. The robot’s action space consists of four actions: forward,
stop, left and right, each with different speeds as shown in fig. [3] resulting in a total of 4 discrete
actions denoted as a; € [0, 3].



Under review as a conference paper at ICLR 2025

i onv wain o p 5™
: / X rain
SETU> eV e —>'¢> wake

"

\ | -
o~ - readout

\ﬁ 011,01, Ty, O, it phase

Figure 4: ARL during a wake phase. The readout layer of the learner S is updated with transitions
from the buffer, while the generator is frozen. At the same time, S is used to compute the TD error
of transitions that are stored in the buffer.

2.1.3 RoBOTIC PURSUIT(RP)

In this benchmark, the robot is supposed to follow a moving object whose color and shape varies
across tasks, see fig. [2] without transgressing the borders of the arena. The robots goal is to reach
and catch the moving object by touching it regardless of shape and color. The benchmark ends if
the robot looses track of the object, touches the object, reaches the maximum number of 80 actions
or leaves the arena. The robot is placed at one side of the arena tilted away from the center by £15
degrees, while the moving object is placed in the center. This benchmark consists of four tasks RP1 -
RP4 that differ in their objects to follow (red cube, green capsule, blue sphere then yellow cylinder).
Observations 0y are 100 x 100 RGB images downsampled to 20 x 20 size obtained by the robot’s
forward-looking camera. The reward structure is the same as for the PO benchmark, with the exact
same structure for A(0;, at), but with a slightly modified B(t). When touching the robot the reward
is always B(t) = 10. There is an additional terminal state of leaving the arena which results in a
reward B(t) = —1. This terminal state is triggered when the robot is touching the bounding box
of the arena. A reward of B(t) = —10 is given when the robot reaches the maximum number of
actions without touching the object. The robot’s action space is the same as in the PO benchmark as
shown in fig.[3] The moving object in the scene only ever moves forwards at a constant speed that is
slightly slower then the robot and gets redirected with a random angle when touching the bounding
box of the arena.

2.2 BASELINES

One set of evaluation baselines relies on vanilla deep Q-learning (DQN) and double deep Q-learning
(DDQN) with experience replay (ER) using a buffer of size M. We test several values for M for
each benchmark such that the buffer is either much larger than one task’s worth of samples, or
much smaller. If the buffer is large, then we should expect that it can mitigate CF, and the reverse
should be the case for a small buffer. Conversely, small buffer sizes should enable fast learning.
Sampling from the buffer is performed either uniformly |Vitter (1985) or via prioritized experience
replay (PER)(Schaul et al.|(2015). All DQN methods are realized by a three-hidden-layer DNN with
256 units in each layer. Exploration is performed in an e-greedy fashion, where € is decreased from
an initial value of ¢y by the equation ¢, = €,_7 — A.. We tune A, such that ¢ = 0.2 at the end
of each task, and set ¢y to 1.0 before the first task, and to 0.5 at the start of tasks n > 1 in order
to re-use existing knowledge where possible and feasible. For prioritized experience replay, we use
consensus parameter values « = 0.6 and § = 0.6 and perform linear annealing of 5 such that its
value reaches 1 at the end of each task. All DNNs are trained using the Adam optimizer with a
learning rate of 0.001 and a mini-batch size of 32. Update frequencies for DDQN are always 200
iterations. The discount factor for Q-learning is always set to v = 0.8.

For completeness, we also investigate sequential fine-tuning (SFT) to adapt to new tasks, using no
replay buffer but rather a DNN learning rate reduced by a factor of 10.

2.3 ADIABATIC REINFORCEMENT LEARNING (ARL)

ARL foundations ARL relies upon the adiabatic replay technique described in Krawczyk &
Gepperth| (2024a). An AR instance is composed of a GMM layer computing p(x;{0:}) =
Zszl 7N (x; 0y) termed generator connected to an affine readout layer r(x; W,b) = Wx + b
termed solver. The solver operates on the vector of posterior probabilities computed by the genera-
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Figure 5: ARL during a sleep phase. Initially, the learner S (see text) is copied to a frozen long-
term memory instance. The long-term memory selectively replays observations and pseudo-targets
during sleep phase learning, while the short-term memory (both generator and readout layer) is
updated on high-TD-error samples collected in previous wake phases.

tor for the current sample as v, (x) = %. The generator optimizes a log-likelihood-loss by
k 3

SGD from random initial conditions as described in|Gepperth & Pfiilb|(2021)), whereas the solver in-
dependently optimizes an MSE loss. Main AR parameters are the number of generator components
K, as well as the mini-batch size 8 for SGD training. Importantly, training GMMs by SGD requires
to define an “initial adaptation radius” (. This quantity controls how many adjacent GMM compo-
nents are adapted during a gradient descent step (none for oy = 0) and is reduced to 0 during SGD
training based on an automatic control scheme. For enabling CL, an AR instance performs selective
sampling, inputting a query g and producing a sample g that the generator considers similar to the
query in the sense that they are both, with high probability, generated from the same component:
argmax, v, (q) = argmax,7yx(q). Both generator and solver are then trained on generated and new
samples, which restricts forgetting.. The goal behind selective sampling is to limit replay to samples
from past tasks that are likely to be overwritten by new data, and thus require protection.

ARL architecture An ARL experiment is subdivided into tasks of length 7', at the onset of which
environment statistics change. Generally, an ARL agent is not informed about this. ARL learning
is conducted in alternating wake-sleep phases, which together form a learning cycle. An ARL agent
consists of an AR learner S which models the transitions of the current cycle ¢, D., while retaining
previous knowledge D;.._1 due to selective sampling. In wake phases of length C' < T, the
agent explores its environment according to the chosen exploration strategy and stores transitions
(0t, Ot—1, ag, r¢) in a buffer together with their TD error e; measured by S, which is measured by
the learner S. This is visualized in fig. 4] At the same time, the solver (not the generator) of the AR
learner S is updated with transitions from the buffer irrespectively of TD error. Before sleep phases,
the initial adaptation radius o is set to a pre-determined value, a percentage x of highest-error
transitions is selected from the buffer and the learner is copied to a long-term memory £ such that
the long-term memory represents past-cycle data: £ ~ Di.._1. Then, the generator of S is trained
with high-error transitions from the buffer until convergence, i.e., when the adaptation radius o (t)
(see |Gepperth & Pfiilb| (2021)) for details) reaches a predetermined value. Subsequently, the buffer
is cleared. This is visualized in fig. [5]

Reasoning behind ARL design choices A common assumption in CL literature, see section
is that data D,, for the current task n is immediately available , meaning that selective sampling
can be performed before adaptation takes place. For ARL, cycles take the place of tasks, and data
acquisition is sequential. If generator adaptation were performed in parallel to selective sampling, at
some point generated samples would no longer reflect the statistics of past cycles, but of the current
cycle c as well. Selective sampling using the generator of the frozen £ instead of the plastic S
ensures sampling from the right distribution: ¢ ~ Dj..—1. If £ is to generate samples that S will
likely confuse with incoming ones, these two instances should not diverge too much during a sleep
phase. Therefore, wake phases should not collect too many examples and therefore be rather short:
C<<T.

2.4 EVALUATION MEASURES

We use the performance measures for CRL defined in |Denker et al.| (2024}, most notably the final
accuracy measure P and the forgetting measure F'. For some experiments, we also tabulate the
performance measure P,,,, where task m is evaluated after having completed training on task n.
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2.5 EXPERIMENTS

Experiments are conducted on a cluster of 40 machines equipped with nVidia GTX3080 GPUs. One
experiment takes approximately 2 hours. All results are averaged over three identical runs. Tasks in
all benchmarks have a duration of 7" = 5000 iterations.

2.6 MAIN CRL EXPERIMENTS

In this set of experiments, we compare the performance of ARL to the baselines described in sec-
tion @], using the three benchmarks outlined in section @ As buffer size for the baselines, we
choose 1000, 5000, 15000 and 50000. Together with the choice of default or prioritized experience
replay, this gives us 8 baselines which we denote DDQN+ER/PER-M where M denotes the buffer.
The PER parameters were found using grid-search for 5 and the annealing rate for 3. We always
use double DQN for the baseline experiments. In addition, we test against sequential fine-tuning
(SFT) denoted as DDQN-SFT. ARL experiments contain a motor babbling phase of 10000 itera-
tions to initialize the generator, and use the best-practice parameters from Gepperth & Pfiilb|(2021),
or else the following parameters: K = 324, g = 1., C = 2500, x = 0.1. The ratio between
generated and observed transitions is 2. Evaluation measures are the ones described in section[2.4]

baseline task n eval. after task m
1 2 3 4 | 1 2 3 4 | 1 2 3 4 |1 2 3 4
Pushing-Objects (PO)
1 6.94 7.71 7.7 0.62 772 9.99 8.4 0.66 791 773 7.72 4.31 8.33 8.25 9.81 8.73
DDQN+ER 2 - 18.39 1851 11.46 - 18.71 18.07 18.21 - 18.38 1834 183 - 18.19 18.61 18.85
3 - 7.56 1.22 - - 593 6.34 - - 8.45 8.16 - - 9.13 9.62
4 - - - 18.44 - - - 18.16 - - - 7.94 - - - 9.27
1 7.26 9.61 955 -128 | 739 8.9 735 1.37 7.59 8.73 8.73 7.44 8.02 8.09 7.89 9.47
2 - 16.69 1523 13.87 - 18.49 18.56 14.77 - 16.68 18.45 18.56 - 14.88 1837 18.85
DDQN+PER 5 - 735 263 | - S35 96 | - S 933 214 | - - 668 633
4 - 12.22 - 14.54 - - - 13.66 - 8.28
Line-Following (LF)
1 1945 1253 553 83 23.68 22.07 958 14.14]22.02 2232 2211 22.17]21.71 2040 18.78 22.67
DDQN+ER 2 - 21.01 1287 11.83 - 2022 16.88 14.24 - 20.51 2049 22.08 - 18.16 183 22.3
3 - 2231 20.72 - 2247 21.16 - - 14.62  20.55 - 17.9 194
4 - - - 23.58 - - - 20.93 - - - 21.2 - - - 18.69
1 2242 1713 8.1 1335 [ 2058 2347 1268 13.59 | 21.12 21.17 2296 1723 | 2371 223 21.89 22.64
DDQN+PER 2 - 1799 19.26 6.42 - 20.15 19.09 19.54 - 18.01 21.58 19.93 - 18.0 21.58 19.93
3 - 21.96 1445 - 18.07 21.13 - - 21.05 2197 - 21.05 2197
4 - 21.61 - 22.83 - - - 21.64 - 21.64
Robot Pursuit (RP)
1 3926 58.12 3276 4331 | 39.72 4274 5549 43.65 ] 3859 4254 3379 4548|4996 50.77 4151 4474
DDQN+ER 2 - 58.67 4488 37.1 - 4796 5591 54.48 - 50.68 3479 3143 - 39.98 4323 55.26
3 - 4743 31.62 - 51.5  48.66 - 33.04 3146 - 45.13  54.24
4 - - - 36.62 - - - 44.72 - - - 40.18 - - - 44.07
1 4842 4359 59.08 37.54 | 49.12 4415 32.08 43.85|3856 50.88 4257 51.21 | 3749 4474 5256 53.95
DDQN+PER 2 - 53.17 4487 31.11 - 40.62 4029 56.69 - 46.73  36.52 58.66 - 39.58 56.17 573
3 - 4236 282 - - 41.26  49.61 - 2435 4933 - 48.63 529
4 - - 23.75 - - - 53.49 - - 49.64 - - 51.21
M = 1000 M = 5000 M = 15000 M = 50000

Table 1: Tabulated values of P,,,, averaged over three identical runs, for the DQN baselines as a
function of replay buffer size. Shown is the performance, measured on task m < n after training on
task n. For following performance evolution for a given task (rows in boxes) over the course of a
given experiment (boxes), move along a row from left to right.

benchmark — Pushing-Objects | Line-Following | Robot Pursuit
J baseline P F P F P F

DQN+ER-1000 7.94 6.83 16.11 7.31 37.16 174
DQN+ER-5000 10.84 3.14 17.62  5.61 | 47.88 537
DQN+ER-15000 9.68 1.32 215 245 | 37.14 597
DQN+ER-50000 11.62 0.12 20.76  -2.14 | 49.58 -5.03
DQN+PER-1000 6.86 6.14 1396  9.81 | 30.15 19.25
DQN+PER-5000 | 10.07 3.02 19.27 248 | 5091 -6.38
DQN+PER-15000 | 10.45 2.79 2045 058 | 5221 -1241
DQN+PER-50000 | 10.73 -0.5 21.55 0.6 53.84 -2.26
SFT 4.85 12.3 5.71 152 | 1543 3486
ARL 1417 291 19.13  3.21 5354 055

Table 2: High-level performance measures for all benchmarks and baselines.
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Figure 6: Left to right: GMM centroids visualized at the end of the babbling phase, task 1, task 2
and task 3. Task 4 is omitted since very few new centroids are learned. At each task, we observe the
gradual embedding of new knowledge (blocks of new colors) into existing centroids. Best viewed
in color and under magnification.

Higher precision and less forgetting are observed in table2]for all benchmarks when using the largest
buffer size, underscoring that really large buffers are required for combating forgetting. The fine-
grained evaluation of table[I|then shows that, for the largest buffer size, this improvement is actually
composed of two contributions in DDQN+ER experiments: less forgetting but also less learning
of new tasks, to be observed in inferior P33 and P,y values for all benchmarks when comparing
the largest to the smallest buffer sizes. Prioritized experience replay (PER) seems to remedy this
problem and, indeed, improves results in general, but of course comes with its own set of tunable
parameters on which performance critically depends.

The corresponding fine-grained ARL results are found in the first column of table[3] High-level ARL
results show generally comparable or superior performance over the best DQN baselines with very
large buffers, see table 2] The same table shows that SFT is not a feasible strategy for CRL at all,
and the corresponding fine-grained performance values are not tabulated to save space. Generally,
we observe that DNN-based baselines with large buffers show less retention but, in many cases,
stronger backwards transfer expressed by negative forgetting measures. Backwards transfer, which
implies that later task contribute to improvement in previous tasks, is a phenomenon rarely observed
in supervised CL, seems to be a feature that is common in CRL. Since the results generally show
standard deviations around 2.0, we may state that ARL can egalize the performance of the best
baselines, however without resorting to replay buffers.

2.7 QUALITATIVE ANALYSIS OF REPRESENTATION LEARNING

In this set of experiments on ARL, we will visualize the samples with highest TD errors collected
during a wake phase, as well as the representations arising from updating with these samples. This
will be done for the pushing-objects benchmark only, since its samples (20x20x3 RGB images)
have the easiest visual interpretation. An useful property of the GMMs employed for representation
learning is that their component centroids "live" in the space of the data they model. This means
they can themselves be interpreted and visualized as images, thus allowing to understand what has
been learned. Indeed, this explainability property is an important advantage of GMMs over DNNs.
In fig.[6] we show the centroids for a ratio of generated to real samples of 1 (easier for visualization
since new samples have a stronger impact) and the usual AR parameters, at the end of the babbling
phase as well as the end of tasks 1-4. For all tasks, we observe a gradual integration of new-
task centroids into existing ones, in a way that shifts and redistributes existing centroids instead of
simply replacing them. This is due to the selective replay mechanism, see section[2.3] In particular,
we observe a shift towards larger blocks after processing task 1 w.r.t. the babbling phase, purely
random motor babbling will, in general, not lead the robot close to a red block. Consequently, when
large blocks are encountered, their associated TD error is high, leading to inclusion into the learning
set for the sleep phase.

The samples that were used for obtaining these representations are shown in fig. [/, sorted by their
associated TD error. We generally observe that observations close to a block have the highest TD-
errors, since pushing a massive block, as well a pushing a massless block, give rise to =10 reward
and thus to large errors if this is not anticipated. We observe that task 4 blocks have a color similar
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Figure 7: From left to right: the 60 highest TD-error samples collected during the first wake phase
of PO tasks 1-4.

to task 3 blocks, so task 3 representations are presumably re-used, leading to a minimal learning of
large task 4 blocks since not many of them have large TD errors.

2.8 ABLATION STUDY FOR ARL

In order to understand how the various ARL parameter contribute to the method’s performance,
we vary each relevant one individually while leaving the others constant. Obviously, we can do
this only for the most relevant parameters, which we identified to be (see also section 2.3): the
number of wake phases per task T'/C, the percentage x of highest-error transitions to be used for
representation learning in sleep phases, the ratio of generated to real samples in ARL, and the initial
adaptation radius oy for the generator. Similarly to the preceding section, we present the detailed
performance measure P,,,, for each benchmark and parameter setting. The observed picture is not
very clear. Some parameter variations universally result in inferior performance, e.g., the number
of sleep phases, for which the best value seems to be 1. Setting o too large also seems to be
problematic, as is too high a ratio of generated to observed transitions, This parameter governs,
among others, how important it is to preserve past knowledge w.r.t. acquiring new knowledge and
is always hard to tune, even for generative replay models in supervised CL.

Give the observed variability of experimental outcomes, we may therefore conclude that most pa-
rameter variations have impact on performance although these, in general, do not result in a catas-
trophic loss of acquired policies.

2.9 DISCUSSION

Choice of evaluation benchmarks The chosen benchmarks were chosen because they include a
potentially large number of tasks which have comparable difficulty, so the ordering of tasks does not
impact the results. Furthermore, they allow expressive visualizations of the learned representations
as shown in section[2.7] And lastly, their intrinsic difficulty is relatively low, so we can be sure that
negative results are not caused by insufficient model complexity. Inspirations for these benchmarks
were taken from other works on representation learning, see, e.g., Traoré et al.| (2019)). For establish-
ing the basic capacity for continuous RL, these benchmarks therefore seem more appropriate to us
than, e.g., Atari Games which, besides, contain a significant number of parameters on which results
may critically depend (initialization for example).

Choice of baselines We concentrated on variants of Q-learning here because we wished to demon-
strate a very basic effect, i.e, the strong reliance on large replay buffers with the associated affects
on learning speed. Since more advanced RL variants like soft actor-critic (Haarnoja et al.| (2018));
Wolczyk et al| (2022a))) contain additional functions to be approximated by neural networks like
the state-value function in SAC, the issue of catastrophic forgetting will be even more pronounced,
require large buffers again, with the demonstrated consequences.

CL methods for CRL: adiabatic -vs- experience replay We experimentally verified that experi-
ence replay (ER) with large buffers is capable of dealing with the presented benchmarks. However,
this implies a replay buffer large enough to store all transitions seen so far. It follows that the buffer
size must scale linearly with the number of CRL tasks. While this might be acceptable when con-
sidering memory only, there is also time complexity to be considered: as shown in section [2.6] the
learning of new tasks is slowed down by large buffers. Thus, the time until a new task has been prop-
erly acquired increases linearly with the number of previous tasks (i.e., buffer size), which might be
considered unacceptable. In contrast, ARL just requires a single frozen model that is created on-
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: oval. after task m
baseline taskn | 2 3 4 ] 1 2 3 4 |1 2 3 4 |1 2 3 4
Pushing-Objects (PO)
oo =1 00 =05 =2 00 =3
ARL with varying o0 T [ 663 979 679 99 | 346 45 029 727 | 955 95 1004 087 | 098 33 278 213
2 - 1787 179 1791| - 1843 184 1844 | - 1168 1884 1868 | - 1872 1883 1852
3 153 1008 | - - 945 446 | - - 70 894 | - - 888 90l
4 - - 878 - - - 1677 - - 1849 - - -7
X=01 =02 =03 =05
ARL with varying T [ 663 979 679 99 | 341 087 254 204 [10.12 896 102 1053 | 1091 987 982 10.09
A 2 - 1787 179 1791| - 1857 1847 1756 | - 1696 1757 1834 | - 1731 123 1348
3 153 1008 | - - 27 15T - - 968 946 | - S 632 -109
4 - 1878 - - - 1878 | - - - 1805 | - - - 1888
T P 3 -
ARL with varying nr of sleep phases T [ 663 979 679 99 | 827 716 721 045 | 888 664 531 127
B oL 2 - 1787 179 1791| - 1698 1826 1224 | - 1696 17.57 153
3 153 1008 | - - 045 177 | - - 915 25
4 - 1878 - - - 1835 - - - 1899 - -
2 T 3 -
- — — T [ 663 979 679 99 |1143 1156 1056 804 | 695 772 661 799 | - E
ARL with varying ratio of real to generated transitions 2 - 1787 179 1791 N 1725 1734 1651 C 12.64 1538 14.61
3 153 1008 | - - 735 103 | - - 723 1004
4 - 1878 - - - 1857 - - - 1755
Line-Following (LF)
oo =1 00 =05 =2 =3
- - T [2208 2161 204 1549 | 2351 22.14 1223 1034 | 2281 2165 2238 1961 | 2345 1781 1943 2295
ARL with varying oo 2 S 1993 1240 132 | - 2173 1681 1574 | - 1696 1757 1834 | - 2317 162 212
3 1943 2024 | - - 232 746 | - -1905 25 | - - 212 1999
4 - - 349| - - - 2154 - - - 1899 - - - %4
=01 =02 X=03 =05
ARL with varying x T [2208 2061 204 1549 | 2351 2214 1223 1034 [ 2281 2165 2238 1061 | 2345 1781 1943 2295
2 S 1993 1240 132 | - 2173 1681 1574 | - 1696 1757 1834 | - 2317 162 212
3 1943 2024 | - - 23 746 | - - 1905 225 | - - 212 1999
4 - 2349 - - - o154 - - - 1899 - - - %4
T 7 3 =
ARL with varying nr of sleep phases T [2208 2161 204 1549 | 2351 22.14 1223 1034 | 2281 2165 2238 1961 | - B
2 - 1993 1240 132 | - 2173 1681 1574 | - 1696 1757 1834 -
3 1943 2024 | - - 232 746 | - - 1905 225 | -
4 - 2349 - - - o154 - - - 1899 - -
2 T 3 -
ARL with varying ratio of real 0 generated wransitions 1| 2208 2161 204 1549 | 2351 2014 1223 1034 | 2281 2165 2238 1961
e g 2 - 1993 1240 132 | - 2173 1681 1574 | - 1696 1757 1834
3 - - 1943 2024 | - - 232 746 | - - 1905 225
4 - - - 2349 - 20154 - - 1899 -
Robot Pursuit (RP)
oo =1 G0 =05 =y 70 =3
ARL with varying o0 T [ 5567 5558 531 5122|4811 4522 5123 4341 | 561 5127 504 511 | 571 5222 4717 5143
2 S 4812 49.10 5245 | - 5567 5244 4832 | - 4321 4957 5234 | - 5317 4922 5272
3 4513 5554 | - - 4332 4844 | - - 5115 559 | - - 4526 4351
4 - - 560 | - - - 5205 - - - 5602 - - - 5542
=01 =02 X=03 =05
ARL with varying x T [5567 5558 531 5122 4811 4522 5123 4341 | 561 5127 504 511 | 571 5222 4717 5143
A 2 S 4812 49.10 5245 | - 5567 5244 4832 | - 4321 4957 5234 | - 5317 4922 5272
3 4513 5554 | - o 4332 4844 | - - 4815 559 | - - 4526 4351
4 - 560 | - - - 05| - - - 5612 - - - 5542
T 7 3 =
ARL with varying nr of sleep phases T [ 5567 5538 331 5122|4811 4522 5123 4341 | 361 5127 504 511
g ool $ 2 S 4812 4910 5245 | - 5567 5244 4832 | - 4321 4957 5234
3 4513 5554 | - S 4332 4844 | - - 4915 559 | -
4 - 560 | - - - 5205 - - - 5612 - -
2 T 3 -
- - I T [5567 5538 331 5122|4811 4522 5123 4341 | 561 5127 504 511 | - E
ARL with varying ratio of real to generated transitions 2 N 1812 4910 5245 . 5567 S244 4832 - Bl 4957 5234
3 4513 5554 | - - 4332 4844 | - - 5115 559
4 560 | - - - 5205 - - - 5612

Table 3: ARL ablation study results. Tabulated values of P,,, for the ARL as a function of the
indicated parameters, see text. Shown is the performance, measured on task m < n after training
on task n. For following performance evolution for a given task (rows in boxes) over the course of
a given experiment (boxes), move along a row from left to right.

the-fly in sleep phases, taking up a few hundred samples’ worth of memory, plus a very small buffer
storing high-TD transitions for the current wake phase. In addition, ARL always replays the same
number of samples due to selective replay/updating, see section [2.3] so it has constant time com-
plexity, independently of previous tasks.

3 CONCLUSIONS, GENERALITY OF RESULTS

A principal conclusion from this article is that RL can be conducted completely without replay
buffers, and with high-TD-error samples only. This entails a fast reaction to changes in the envi-
ronment which we model by CRL tasks, see section[2.1] CF is mitigated by using adiabatic replay,
which, although requiring computational resources, can be performed at constant time complexity, a
significant improvement w.r.t. existing CL approaches like generative replay. All of these advantages
are obtained by replacing DNNs by adiabatic replay based on GMMs, i.e., by trading computational
power of the employed models for the ability to learn continuously. Foundation models [Verwimp
et al. (2023) may be used to increase the computational power, or else deep hierarchical variants of
AR based on |Gepperth| (2022). We believe that the ability to learn continuously is a very important
ingredient when it comes to large-scale and long-term learning for truly human-level performance
in future intelligent systems.
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