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ABSTRACT

Molecular dynamics (MD) simulations remain the gold standard for studying
protein dynamics, but their computational cost limits access to biologically rel-
evant timescales. Recent generative models have shown promise in accelerat-
ing simulations, yet they struggle with long-horizon generation due to architec-
tural constraints, error accumulation, and inadequate modeling of spatiotemporal
dynamics. We present STAR-MD (Spatio-Temporal Autoregressive Rollout for
Molecular Dynamics), a scalable SE(3)-equivariant diffusion model that gener-
ates physically plausible protein trajectories over microsecond timescales. Our
key innovation is a causal diffusion transformer with joint spatiotemporal atten-
tion that efficiently captures complex space-time dependencies while avoiding the
memory bottlenecks of existing methods. On the standard ATLAS benchmark,
STAR-MD achieves state-of-the-art performance across all metrics–substantially
improving conformational coverage, structural validity, and dynamic fidelity com-
pared to previous methods. STAR-MD successfully extrapolates to generate sta-
ble microsecond-scale trajectories where baseline methods fail catastrophically,
maintaining high structural quality throughout the extended rollout. Our compre-
hensive evaluation reveals severe limitations in current models for long-horizon
generation, while demonstrating that STAR-MD’s joint spatiotemporal modeling
enables robust dynamics simulation at biologically relevant timescales, paving the
way for accelerated exploration of protein function.

1 INTRODUCTION

Protein functions emerge from conformational dynamics – the continuous structural changes that
underlie important biological processes such as catalysis, binding, and allosteric regulations (Mc-
Cammon, 1984; Berendsen & Hayward, 2000). Classical molecular dynamics (MD) simulation
remains the gold standard and relies on physical models to integrate atomic motions over time us-
ing Newtonian mechanics. However, the need for small integration steps (∼ femtoseconds) severely
limits its practicality for exploring the microsecond–millisecond timescales often required to capture
biologically relevant events. Recent advances in protein structure prediction (Jumper et al., 2021;
Abramson et al., 2024; Lin et al., 2023) and generative modeling for conformational dynamics (Jing
et al., 2024b; Cheng et al., 2025; Shen et al., 2025; Costa et al., 2024) offer promising data-driven
approaches to accelerate simulations by learning the dynamics directly from data and generating
trajectories at coarser temporal resolutions. However, existing methods are still constrained by short
time horizons (typically up to nanoseconds) and struggle to scale to larger proteins. These limi-
tations highlight an urgent need for generative models capable of producing physically plausible
protein trajectories over extended timescales while remaining computationally efficient.

Scaling protein dynamics modeling to long timescales requires both an efficient structural repre-
sentation and an architecture capable of capturing complex spatiotemporal dependencies. Current
approaches often rely on pairwise residue representations or computationally expensive architectures
(e.g., AlphaFold2-style triangular attention), leading to quadratic memory growth and cubic com-
putational cost with respect to protein size. These challenges become even more pronounced when
accounting for spatiotemporal coupling across multiple conformations during trajectory modeling.
As a result, most existing models treat spatial and temporal components separately, employing inter-
leaved “spatial” and “temporal” modules (Jing et al., 2024b; Cheng et al., 2025; Shen et al., 2025),
which limits their expressiveness in capturing coupled dynamics. These limitations confine current
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models to small proteins and short simulation horizons, ultimately hindering their ability to learn
long-range temporal dependencies and generate high-quality conformations over extended rollouts.

We introduce Spatio-Temporal Autoregressive Rollout for Molecular Dynamics (STAR-MD), an
SE(3)-equivariant autoregressive diffusion model for generating physically plausible protein trajec-
tories over microsecond timescales, even for large protein systems. At its core, STAR-MD employs
a causal diffusion transformer with joint spatio-temporal attention, enabling improved autoregres-
sive generation by dynamically computing attention over historical context during diffusion and
capturing long-range dependencies through expressive yet memory-efficient spatiotemporal model-
ing.

Our main contributions are summarized as follows:

• We present STAR-MD, a novel autoregressive diffusion transformer that leverages efficient spa-
tiotemporal attention to model the complex dependencies underlying protein dynamics.

• Through several key technical improvements, including historical context noise addition dur-
ing training and inference, block-diffusion-style causal training, and architectural optimizations,
STAR-MD achieves efficient, scalable training and stable trajectory generation, significantly im-
proving over current state-of-the-art models.

• We perform an exhaustive evaluation across multiple different simulation timescales ranging from
100 ns to 1 µs, providing a comprehensive assessment of conformation quality, coverage, and dy-
namic fidelity. Our analyses yield new insights into the limitations of current state-of-the-art
models in long-horizon generation and offer valuable guidance for future model design.

2 RELATED WORK

Protein Conformation Generation. Several models (Jing et al., 2024a; Lewis et al., 2024; Wang
et al., 2024) build on advances in protein structure prediction (Jumper et al., 2021; Abramson et al.,
2024; Lin et al., 2023) and diffusion models (Ho et al., 2020) to directly generate time-independent
conformations. These methods provide an efficient alternative to MD by enabling parallel sampling.
However, they capture only the equilibrium distribution of conformations and cannot model the
temporal evolution of protein dynamics.

MD Trajectory Generation. To model the temporal evolution, operator-based methods Klein et al.
(2024); Costa et al. (2024) aim to learn transport operators that predict conformations at lagged
times. These methods approximate evolution as a Markovian process, and thus fail to capture the
non-Markovian properties often present in partially observed systems such as protein dynamics data.
In contrast, methods generating trajectories, akin to video generations, consider dependencies across
multiple time frames. AlphaFolding (Cheng et al., 2025) incorporates higher-order information
through additional “motion frames” and generates multiple future frames simultaneously. Similarly,
MDGen (Jing et al., 2024b) models the joint distribution of frames across 100-ns trajectories. How-
ever, both methods only capture the dependencies in a fixed context and prediction window. When
generating longer trajectories through extension, they discard memory of earlier windows, breaking
temporal consistency. To address this, ConfRover (Shen et al., 2025) adopts language model-style
autoregression that can generate trajectories of arbitrary lengths while maintaining full memory via
KV-caching. STAR-MD follows this approach to avoid the “memory break” in block-based models.

Scalable Structural and Temporal Modeling. Current structural models, including AlphaFolding
and ConfRover, represent protein structures using single and pairwise features and process them
with specialized architectures such as Pairformer and Invariant Point Attention (IPA) (Jumper et al.,
2021). While these modules are highly expressive and preserved the required roto-translational
symmetries, they are computationally and memory intensive. This limits model efficiency and scal-
ability, especially when extended to modeling trajectories across multiple time frames. MDGen
sidesteps this limitation by anchoring trajectories to key frames, encoding only single embeddings
with standard transformers. While this allows modeling of long trajectories (e.g., 250 frames for AT-
LAS), the reliance on key frames limited flexibility and model performance is suboptimal. Lastly,
all the above approaches model dynamics between frames using interleaved spatial and temporal
modules. While this decoupled design reduces computational cost, it limits the model’s expressive
power to capture complex spatiotemporal relationships. In contrast, STAR-MD proposes to em-
ploy joint spatiotemporal attentions on the single embeddings’ direct space-time processing while
keeping the memory footprint manageable.
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Figure 1: [Updated Figure] Overview of STAR-MD generation. Input contains protein sequence
and a starting conformation. In autoregressive diffusion generation, structural information of pre-
viously generated conformations and current noisy conformations are encoded into single and pair
representations. A joint spatiotemporal attention block is employed to capture context information
to update the single representation of the current frame. The main model block iterated to diffuse a
clean conformation for the current frame and added to history for generating next frames.

3 METHOD

To generate long and physically plausible protein trajectories, we propose Spatio-Temporal
Autoregressive Rollout for Molecular Dynamics (STAR-MD), a spatio-temporal SE(3)- diffusion
model that operates within an autoregressive framework. In the following sections, we first describe
the overall autoregressive diffusion framework, then detail the architecture of our diffusion model,
and finally explain the training and inference procedures.

3.1 AUTOREGRESSIVE SE(3)-DIFFUSION MODELS FOR PROTEIN TRAJECTORIES

Autoregressive Trajectory Generation. We aim to generate protein conformation trajectories x1:L

in an autoregressive fashion
∏L

ℓ=1 p(xℓ |x<ℓ,∆tℓ), where ∆tℓ represents the time interval between
frames. This formulation amortizes trajectory generation into a frame-level process conditioned on
the entire past history, enabling the model to generate future dynamics of arbitrary length while
maintaining a flexible memory representation learned from data. Causal transformers, widely used
in language models for efficient autoregressive sequence modeling (Touvron et al., 2023), provide a
natural architectural choice for this task.

SE(3) Diffusion Models. To model the generation process of each frame p(xℓ|x<ℓ,∆tℓ), we use a
(conditional) diffusion model on the Riemannian manifold SE(3), where x = [T,R] which captures
translation positions T = {T i}Ni=1 ∈ R3N and rotations R = {Ri}Ni=1 ∈ SO(3)N for each amino-
acid residue in a protein sequence of length N (Yim et al., 2023; Wang et al., 2024; Shen et al.,
2025). The forward diffusion process independently corrupts translations and rotations across the
diffusion time τ

Tτ =
√
ατT0 +

√
1− ατ ϵ, ϵ∼N (0, I3N ) (1)

Rτ ∼ IGSO3(R0, σ
2
τ ), (2)

where IGSO3 is the isotropic Gaussian on SO(3). Given a noisy structure xτ , diffusion time τ , and
condition c, a denoising score network

sθ (x
τ , τ, c) = [sTθ , s

R
θ ] (xτ , τ, c) (3)

is trained via denoising score matching to predict the noise added to both components. During
inference, the learned score function can be used to sample from the reverse diffusion process and
generate protein structures.

To capture temporal dependencies needed for autoregressive generation, the condition c for gener-
ating the current frame should incorporate all past history x<ℓ. Specifically, we design an efficient
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and expressive causal diffusion transformer network to compute c
(
x0
<ℓ,x

τ
ℓ , τ
)

from the preceding
clean frames and the current noisy frame xτ

ℓ . This design differs from prior works such as MDGen
(Jing et al., 2024b) & Alphafolding (Cheng et al., 2025) which do not include autoregressive con-
ditioning, and ConfRover (Shen et al., 2025) which compresses all preceding frames into a static
condition c (x<ℓ). In the following section, we detail the design of c

(
x0
<ℓ,x

τ
ℓ , τ
)

and how it effi-
ciently integrates spatiotemporal information from preceding frames.

3.2 ARCHITECTURE

In this section, we describe the architecture choices underlying STAR-MD. The main features of
this architecture lie in the diffusion decoder, which uses spatio-temporal attention for autoregressive
conditioning on previous frames and block diffusion allowing for efficient training and KV caching.

Input Module. We mirror the FrameEncoder module in Shen et al. (2025), starting with
a frozen OpenFold FoldingModule for sequence-level single-residue and pairwise features
s, z = {si, zij}Ni,j=1. We incorporate these time-independent features with amino-acid metadata
and pairwise Cβ distance within each frame to obtain time-dependent features sinit

ℓ , zinit
ℓ , which are

used as initial input to the diffusion blocks.

Diffusion Blocks. Our diffusion module contains submodules stacked into blocks:

1. Invariant Point Attention layers (Jumper et al., 2021) update single features sℓ using pair features
zℓ and noisy frames xτ

ℓ . This step is independent for each frame.
2. Joint Spatio-Temporal Attention layers update the single-residue features sℓ by attending to those

from previous frames s≤ℓ, which allows for exchange of temporal informaiton.
3. Pair features zℓ and noisy frames xτ

ℓ are updated using single features sℓ via the
EdgeTransition layer from Jumper et al. (2021).

After stacking the above blocks, the final update of the coordinates xτ
ℓ is used as the score function

prediction and fed to the denoising score matching loss.

Joint Spatio-Temporal Attention. Our joint spatio-temporal (S×T) attention mechanism integrates
information across the temporal dimensions, departing from previous models that employ factorized,
“space-then-time” attention which imposes a restrictive bias that spatial and temporal dependencies
are separable. Instead, our S×T attention operates on tokens representing residue-frame pairs (i, ℓ),
allowing it to directly model non-separable relationships, such as how motion at one residue is
coupled to past motion at a distant site. 2D Rotary Position Embedding (2D-RoPE) (Heo et al.,
2024) is used to embed residue and frame indices, which allows extrapolation past the training
number of frames.

This architectural choice is key to our model’s scalability. We analyze the per-layer computa-
tional complexity of our S×T attention (O(N2L2)) against general S+T (i.e., “space-then-time”)
architectural paradigms (see Appendix B for details). Most baseline architectures employ a Pair-
former (Jumper et al., 2021) backbone, incurring a cubic spatial complexity O(N3L) due to ex-
pensive triangular attention operations. We consider two representative baseline configurations: (1)
Pairformer + Pair Temporal Attention (e.g., ConfRover (Shen et al., 2025)): This configuration
scales as O(N3L + N2L2). Here, the pairwise temporal attention alone incurs O(N2L2) cost,
matching that of STAR-MD, but the additional cubic spatial overhead makes it significantly more
expensive. Furthermore, this approach incurs a quadratic memory cost O(N2L) for caching pair-
wise key-value states during autoregressive generation, which becomes a severe bottleneck for long
rollouts. In contrast, STAR-MD only requires O(NL) memory for caching single-residue features.
(2) Pairformer + Single Temporal Attention: This configuration scales asO(N3L+NL2). While
the temporal scaling is theoretically superior to STAR-MD’s O(N2L2) in the limit L≫ N , the cu-
bic spatial costO(N3L) dominates in practical regimes. STAR-MD thus offers a favorable trade-off,
enabling efficient modeling of long trajectories for large proteins without the cubic spatial overhead.

3.3 ADDITIONAL MODEL DETAILS

Block-causal Attention for Efficient Training. Traditional video diffusion models (Peebles &
Xie, 2023; Ma et al., 2024) denoise all frames simultaneously, using a fixed window size. For
autoregressive generation with variable context length, the model denoises one frame at a time,
attending to clean history contexts. This is straightforward during inference, where we cache clean
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frames for efficient autoregressive generation. However, given the sequential nature of this process,
extra work is needed for parallel training. To simultaneously denoise all tokens with clean history
context, we follow Arriola et al. (2025); Teng et al. (2025); Deng et al. (2024) to concatenate clean
and noisy frames as input sequence and employ a special block-wise attention pattern: all frames
only attend to clean history frames, preserving the causal structure during training. At the cost of
doubling the sequence length, the model can optimize the training loss for all frames in a single
forward pass, aligning parallel teacher-forcing training with sequential autoregressive inference.

Continuous-time Conditioning. To handle the vast range of timescales in protein motion, we draw
the physical stride ∆t∼ LogUniform[10−2, 101] ns independently for every training example. By
conditioning the network on ∆t through adaptive layernorm (AdaLN, Peebles & Xie (2023)), the
model learns to modulate its internal activations as a function of both diffusion progress and physical
timescale. This approach yields remarkable temporal extrapolation: at inference, the model stably
generates trajectories an order of magnitude longer than the training window without additional
fine-tuning.

Contextual Noise Perturbation for Robust Rollouts. To mitigate compounding errors during long
autoregressive rollouts, we apply a contextual noise perturbation technique inspired by Diffusion
Forcing (Chen et al., 2024; Song et al., 2025). During training, we perturb historical context frames
x<ℓ by applying the forward diffusion process (Eqs. 1-2) with a small, randomly sampled noise
level τ ∼ U [0, 0.1] to obtain noisy contexts xτ

<ℓ. The model then learns to predict frame ℓ condi-
tioned on this perturbed history. Critically, at inference time, we apply the same noise perturbation:
after generating frame ℓ, we add noise at level τ before using it as context for subsequent frames.
This training-inference consistency ensures that the model experiences similar input distributions
during deployment as during training, making it robust to its own prediction errors and preventing
compounding drift in long rollouts.

3.4 THEORETICAL JUSTIFICATION FOR STAR-MD ARCHITECTURE

In this subsection, we use the Mori-Zwanzig formalism (Mori, 1965; Zwanzig, 1961) (See Ap-
pendix A for more details) to provide theoretical justification for two key aspects of our architecture:
the necessity of temporal history in coarse-grained modeling, and the specific requirement for joint
spatio-temporal attention arising from the removal of explicit pairwise features.

Atomistic molecular dynamics simulations evolve according to Hamiltonian mechanics and are
Markovian in the full phase space of atomic positions and momenta. However, practical generative
models must operate on coarse-grained representations, such as per-residue coordinates sampled
at nanosecond intervals. The Mori-Zwanzig formalism shows that projecting Markovian dynamics
onto coarse-grained variables yields a Generalized Langevin Equation with three terms (Eq. (6)): a
Markovian component, a memory kernel encoding history dependence, and a stochastic force repre-
senting eliminated degrees of freedom. Consequently, accurate modeling of coarse-grained protein
dynamics requires non-Markovian models that incorporate temporal history to capture memory ef-
fects arising from eliminated degrees of freedom. Our work makes this connection explicit, provid-
ing the theoretical justification underlying recent temporal architectures in trajectory modeling (Jing
et al., 2024b; Cheng et al., 2025; Shen et al., 2025).

Existing models typically rely on explicit pairwise features to capture spatial structure, but this in-
curs prohibitive O(L2N2 + LN3) or O(LN3) costs. STAR-MD circumvents this by projecting
out pairwise features, a design choice we analyze through our Memory Inflation proposition (Propo-
sition 1, Appendix A). We show that removing explicit spatial correlations “inflates” the memory
kernel for the remaining residues, necessitating a significantly richer temporal history to compen-
sate. Crucially, this inflated kernel exhibits non-separable spatio-temporal coupling (Corollary 2),
meaning spatial and temporal modes cannot be factorized. This theoretical insight directly motivates
our architecture: instead of the interleaved spatial and temporal blocks used in prior work, STAR-
MD employs joint spatio-temporal attention to approximate this complex, non-separable memory
kernel, balancing physical fidelity with computational scalability.

4 EXPERIMENTS

We conduct a comprehensive set of experiments to evaluate STAR-MD’s ability to generate long-
horizon protein dynamics. First, we benchmark STAR-MD against state-of-the-art models on the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

standard 100 ns trajectory generation task (Section 4.2). Next, we assess its extrapolation capa-
bilities by generating trajectories over longer, microsecond-scale horizons not seen during training
(Section 4.3). Finally, we perform a series of analyses and ablations to investigate model stability,
scalability, and the contributions of our key design choices (Section 4.4).

4.1 EXPERIMENTAL SETUP

Dataset. ATLAS dataset (Vander Meersche et al., 2024) contains 100 ns MD trajectories for 1390
structurally diverse proteins. We use the standard train/val/test splits from prior works (Jing et al.,
2024b; Shen et al., 2025) to assess model performance in a transferable setting. To evaluate long-
horizon generation–a key focus of our work–we extend the benchmark by running new MD sim-
ulations to produce 250 ns and 1 µs trajectories for selected proteins, using the original ATLAS
simulation protocols for consistency. Further details are provided in Appendix C.1.

Implementations. We follow the training procedure described in Section 3.3 and generate trajec-
tories using the configurations listed in Table 4. We compare STAR-MD with three state-of-the-art
trajectory generative models trained on ATLAS: AlphaFolding (Cheng et al., 2025), MDGen (Jing
et al., 2024b), and ConfRover (Shen et al., 2025). All models parametrize proteins using SE(3)
backbone rigids (translations and rotations) with torsional angles for side-chain atoms. To stan-
dardize evaluation, trajectories from variable-stride models (STAR-MD, ConfRover) are generated
directly at the required intervals. Trajectories from fixed-stride models (AlphaFolding, MDGen) are
first generated at their native resolution and then subsampled. Finally, we include an oracle reference
based on MD simulations run independently to represent the target performance. All trajectories are
aligned to the starting frame of the reference ATLAS trajectory via Cα superposition prior to anal-
ysis (Appendix C.3). Specific parameters for each benchmark are detailed in the relevant sections
below, with full implementation details in Appendix C.2.

• Structural Quality: We assess the physical plausibility of generated conformations using a hi-
erarchy of geometric and stereochemical metrics. First, we perform coarse-grained checks for
Cα-Cα clashes (non-bonded atoms too close) and chain breaks (consecutive Cα atoms too far
apart). Second, we use the MolProbity suite (Chen et al., 2010) for fine-grained, all-atom analysis
of backbone Ramachandran and side-chain rotamer outliers. We report three distinct validity met-
rics based on different criteria: Cα-level Validity, passing only Cα checks; All-Atom Validity,
passing only MolProbity checks; and Combined Validity, passing all checks simultaneously. See
Appendix C.3 for details on the thresholds.

• Conformational Coverage: To evaluate how well generated trajectories explore the conforma-
tional space of the reference MD simulation, we follow the protocol of Shen et al. (2025). We
project all conformations into a low-dimensional space defined by the principal components of
the reference trajectory and compute the Jensen-Shannon Divergence (JSD) and conformation re-
call between the distributions. To ensure that coverage reflects physically plausible exploration,
we report these metrics computed exclusively on structurally valid conformations (“Cov Valid”).

• Dynamic Fidelity: We assess temporal coherence using four metrics. First, we use tICA lag-time
correlation to quantify the preservation of slow collective variables (Molgedey & Schuster, 1994;
Pérez-Hernández et al., 2013; Shen et al., 2025); crucially, this is computed only on valid transi-
tions to avoid artifacts from broken structures. Additionally, we evaluate RMSD to measure the
magnitude of structural change over varying intervals, autocorrelation to assess temporal mem-
ory, and VAMP-2 score to evaluate how well slow dynamical modes of the system are captured.
For last three metrics, we report the deviation from MD reference, with details in Appendix C.3.

4.2 STANDARD BENCHMARK: 100 NS TRAJECTORY GENERATION

We first evaluate STAR-MD on the standard 100 ns ATLAS benchmark. Following the protocol of
Shen et al. (2025), we generate trajectories of 80 frames at a 1.2 ns interval. Results are summarized
in Table 1. It is important to note that due to its high computational cost, AlphaFolding failed to
run on the four largest proteins in the test set, highlighting its scalability limitations even on this
standard benchmark. On the full test set, STAR-MD, achieves a superior balance of conformational
coverage, dynamic fidelity, and structural quality.

The results demonstrate clear performance deficiencies in all baseline models. Baselines like MD-
Gen and ConfRover exhibit low conformational coverage (0.30 and 0.42 Recall, respectively) and
produce a substantial number of structurally invalid frames, with validity rates of only 64.9% and
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Table 1: Quantitative results on 100 ns trajectory generation (ATLAS test set). STAR-MD achieves
state-of-the-art performance across all metrics, with particularly significant improvements in con-
formational coverage (JSD, F1) and dynamic fidelity (tICA, average difference of RMSD, autocor-
relation and VAMP-2 score to MD reference).

Cov Valid Dynamic Fidelity Validity

Model JSD↓ Rec↑ tICA↑ RMSD↓ AutoCor↓ VAMP-2↓ CA%↑ AA%↑ CA+AA%↑
MD (Oracle) 0.31 0.67 0.17 0.00 0.00 0.02 98.37 98.07 96.43

MDGen 0.56±0.01 0.28±0.01 0.12±0.00 0.38 ± 0.01 0.05 ± 0.00 0.38 ± 0.01 71.83±1.90 95.03±0.59 68.31±2.20

AlphaFolding1 0.59±0.01 0.20±0.01 N/A 3.31 ± 0.06 0.12 ± 0.01 1.56 ± 0.01 10.58±0.09 0.82±0.10 0.47±0.04

ConfRover 0.52±0.01 0.36±0.01 0.15±0.01 0.20 ± 0.00 0.08 ± 0.00 0.47 ± 0.02 56.94±0.52 92.47±0.25 52.06±0.36

STAR-MD 0.43±0.01 0.54±0.01 0.17±0.00 0.07 ± 0.02 0.02 ± 0.00 0.10 ± 0.02 86.81±0.64 98.18±0.05 85.29±0.62

(a) (b)

Figure 2: [UPDATED FIGURE] Kinetic fidelity and conformational coverage on the ATLAS
100 ns benchmark. (a) Comparing Cα coordinate RMSD (top) and autocorrelation (bottom) at
varying lagtime for different models. STAR-MD better captures the overall trend and characteristic
magnitudes, similar to the MD reference runs (dashed lines). Shaded bands represent ±1 standard
deviation. The small size of the shaded bands demonstrate the robustness of this metric. (b) Con-
formational coverage comparison for 6XB3-H for all models and 3 MD simulations. Generated
trajectories are projected onto the first two principal components (PCs) of the reference MD simu-
lation (gray contours). Only structurally valid frames are considered for this plot. Baseline methods
(MDGen, ConfRover) exhibit limited diversity, becoming confined to a small region of the con-
formational landscape. AlphaFolding’s generated trajectories consist of all structurally implausible
frames, with a validity of 0%. In contrast, STAR-MD demonstrates significantly broader exploration
(with a recall value of 0.65), visiting two of the major modes observed in the MD reference, match-
ing the diversity seen in independent MD runs.

49.7%, respectively. AlphaFolding achieves a higher raw recall (0.51), but this metric is mislead-
ing as a negligible 0.11% of its generated frames are structurally valid; when controlled for valid
structures, this recall drops to 0.01, rendering AlphaFolding as a very unreliable model for this
task. In contrast, STAR-MD achieves the highest conformational coverage (0.58 recall) and struc-
tural validity (86.36%) of any generative model, significantly narrowing the performance gap to the
ground-truth MD simulation which serves as the oracle for this task.

In Figure 2(a) and 7, we compare the level of conformation changes at different lag times, as an
indicator how well the model captures the ground truth motion changes. STAR-MD shows im-
proved coherence with MD reference trajectories, while AlphaFolding significantly overestimates
the motion and MDGen and ConfRover tend to underestimate the dynamics level.

Finally, Figure 2(b) provides a qualitative assessment of conformational coverage using the principal
component projection for an example ATLAS 100 ns protein. STAR-MD exhibits better significantly
better exploration and diversity than comparison methods and is able to populate two distinct modes.

4.3 EXTRAPOLATING FOR LONG-HORIZON TRAJECTORIES

The ability to generate stable, physically realistic trajectories over extended time horizons is critical
for modeling functionally relevant protein dynamics. Most conformational transitions of biological

1AlphaFolding results are evaluated on 78/82 proteins due to out-of-memory error for 4 large proteins.
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Table 2: Results on molecular dynamics trajectory generation at 240 ns and 1 µs timescales. STAR-
MD demonstrates competitive performance across different temporal scales, with particularly strong
quality metrics at both timescales.

Cov Valid Dynamic Fidelity Validity

Model Time JSD↓ Rec↑ RMSD↓ AutoCor↓ CA%↑ AA%↑ CA+AA%↑
240 ns 0.26 0.75 0.01 0.00 99.53 96.83 96.36MD (Oracle) 1 µs 0.23 0.91 0.00 0.00 96.25 86.50 82.75

MDGen 240 ns 0.52±0.01 0.38±0.01 0.48 ± 0.01 0.25 ± 0.01 63.25±2.10 87.83±1.13 56.60±2.10

1 µs 0.56±0.01 0.36±0.03 0.37 ± 0.02 0.39 ± 0.01 36.11±7.34 56.99±4.52 24.81±4.30

Alphafolding 240 ns 0.57±0.03 0.20±0.03 1.76±0.05 0.14±0.01 8.96±0.25 0.94±0.12 0.63±0.16

1 µs 0.65±0.00 0.20±0.00 0.78±0.03 0.04±0.01 9.64±0.02 0.19±0.00 0.06±0.00

ConfRover-W 240 ns 0.51±0.01 0.42±0.02 0.35 ± 0.01 0.39 ± 0.01 44.71±1.55 73.13±0.84 36.51±1.22

1 µs 0.55±0.02 0.45±0.02 0.33 ± 0.02 0.38 ± 0.03 54.74±1.79 62.32±3.43 36.91±1.39

STAR-MD 240 ns 0.44±0.01 0.59±0.01 0.20 ± 0.02 0.03 ± 0.01 85.16±1.91 97.57±0.13 83.15±1.99

1 µs 0.46±0.01 0.61±0.02 0.13 ± 0.02 0.10 ± 0.02 88.47±1.09 89.81±0.65 79.93±1.04
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Figure 3: [Updated Figure] Long-horizon stability and error accumulation across different time
scales. We plot the structural validity percentage over time for trajectories generated by STAR-MD
and baseline models, evaluated at 100 ns (left), 240 ns (middle), and 1 µs (right) horizons. Shaded
bands represent ±1 standard deviation across 5 different repeats. While most models exhibit clear
error accumulation over simulation time, STAR-MD maintains high structural validity, regardless of
the simulation time scale.

interest occur beyond the 100 ns timescale, where existing generative models begin to fail. We assess
STAR-MD’s long-horizon capability through two increasingly challenging settings: 240 ns simula-
tion with 32 proteins and 1 µs simulation with 8 proteins, with all proteins unseen during training.
To rigorously evaluate temporal extrapolation, all models were trained exclusively on the 100 ns AT-
LAS trajectories and received no fine-tuning for longer horizons. This setup directly tests the ability
to generalize to dynamics far beyond the training data distribution. Since the ATLAS benchmark
only provides trajectories up to 100 ns, we generated our own molecular dynamics simulations for
longer timescales to create proper reference data for evaluation. These extended simulations follow
the same simulation protocols as ATLAS but continue the dynamics to longer timescales.

Due to its scaling issues, ConfRover could not be evaluated on either 240ns or 1 µs generation
tasks. This is because ConfRover performs temporal attention over pair features, requiring previ-
ous frames’ pair features to be stored in memory as KV cache (see Appendix B for more detailed
analysis). As such, even with CPU offloading of the KV cache, ConfRover’s memory requirements
exceeded our hardware limits (1869 GB CPU RAM, 8× H100 GPUs with 80GB VRAM each). As
a result and for fair comparison, we utilize a variant of ConfRover with windowed attention with
attention sink tokens (as described in Xiao et al. (2023b)) to reduce memory usage. We report results
for this windowed variant, labeled ConfRover-W, in Table 2.

Table 2 summarizes the results for these two extended timescales. Remarkably, STAR-MD main-
tains stable and competitive performance at both the 240 ns timescale and the challenging 1 µs
timescale, demonstrating the effectiveness of our joint spatio-temporal attention and contextual noise
techniques for long-horizon stability. Further, STAR-MD exhibits controlled error accumulation,
with low clash and break rates that remain consistent throughout the extended trajectory (Figure 3
(right), Section 4.4). Among the methods achieving reasonable structural quality, STAR-MD attains
the best balance of coverage and fidelity, nearing the oracle MD performance. In both the 240 ns and
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Figure 4: [Updated Figure] Stability of STAR-
MD across different temporal strides for 1 µs
generation. We plot the structural validity over
time for two 1 µs trajectories generated with dif-
ferent strides: 2.5 ns/frame (400 steps) and a
more challenging 1.2 ns/frame (∼833 steps).
Solid lines show mean validity, while shaded
bands represent ±1 standard deviation across
test proteins. Our models remain stable and
maintain high structural quality even when gen-
erating much longer sequences of frames than
seen in training.
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Figure 5: Memory footprint of KV caches
with varying protein sizes and trajectory
lengths. ConfRover is shown in solid lines and
STAR-MD is shown in dashed lines. Both mod-
els contain 8 attention layers with hidden di-
mension of 128 (ConfRover) or 256 (STAR-
MD). STAR-MD show much smaller memory
cost compared to ConfRover. Horizontal lines
marks the 256 GB and 2 TB memory caps.

1 µs case, AlphaFolding produces physically implausible, high-error structures despite good cover-
age metrics, while ConfRover-W and MDGen degrade significantly over the microsecond horizon.
We further report kinetic metrics for the long trajectory cases in Fig. 7, where STAR-MD shows
the best alignment with the RMSD and autocorrelation of the MD reference from among baseline
methods.

4.4 ADDITIONAL ANALYSIS

Error Accumulation. A key challenge in long-horizon generation is error accumulation, where mi-
nor inaccuracies compound over time, leading to trajectory degradation. Figure 3 plots the average
validity percentage over simulation time for the 100 ns, 240 ns, and 1 µs simulations. As the sim-
ulation horizon extends, baseline models exhibit rapidly deteriorating performance, with structural
validity declining sharply. In contrast, STAR-MD remains stable, maintaining high structural valid-
ity close to the MD oracle across all timescales. This demonstrates our model’s robustness against
error accumulation, a quality largely attributable to the historical-context noise mechanism, which
enables stable long-horizon autoregressive generation.

Varying temporal resolution for long-horizon generation. The 1 µs generation task above uses a
stride of 2.5 ns, resulting in 400 frames. Thanks to our continuous-time conditioning, we can gener-
ate at different temporal resolutions without retraining. We test this by generating a 1 µs trajectory
with a 1.2 ns stride, nearly doubling the number of frames to ∼850. Figure 4 shows that STAR-MD
remains stable even with this much longer sequence of frames, maintaining high structural qual-
ity. This further underscores our model’s robustness to different sampling intervals and trajectory
lengths, showing strong capability for stable, long-horizon autoregressive generation.

KV Cache Analysis. A critical limitation of ConfRover is the need to maintain the KV-cache of
single and pair embedding for temporal attentions. In contrast, STAR-MD only requires maintaining
the KV cache for singles. By only maintaining attentions among single representations, STAR-MD
has a magnitudes lower memory footprints (see Fig. 5 for a comparison). This advantage allows
our model to maintain a full KV caches in GPU memory without resorting to CPU offloading (e.g,
additional overhead) or sliding window style KV caches (compromises temporal history).

4.5 ABLATION STUDIES ON KEY COMPONENTS

To validate our key design choices, we conduct systematic ablations of the main components of
STAR-MD. Table 3 summarizes the quantitative results on the 100 ns benchmark. Appendix D
contains full ablation tables for the 100 ns, 240 ns, and 1 µs benchmarks.

S×T attention vs. separable attention. We compare our joint S×T attention with a separable al-
ternative that processes spatial and temporal dimensions sequentially. The separable model suffers

9
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Table 3: Ablation study on 100 ns simulation. The full STAR-MD model is compared against
variants with key components removed (no contextual noise, separate spatial and temporal attention,
and placing S×T attention outside the diffusion block). These modifications affect model coverage
and conformation quality. Metrics degraded in each ablation setting are highlighted in red. See
complete ablation results on longer trajectories in Appendix D.

Cov Valid Dynamic Fidelity Validity

Model JSD↓ Rec↑ tICA↑ RMSD↓ AutoCor↓ VAMP-2↓ CA%↑ AA%↑ CA+AA%↑
STAR-MD 0.42 0.57 0.17 0.09 0.02 0.12 86.62 98.28 85.18

w/o Noise 0.43 0.54 0.18 0.04 0.11 1.22 77.82 97.76 76.12
w/ Sep Attn 0.46 0.46 0.17 0.09 0.05 0.49 87.95 98.34 86.70
w/ Preproc Attn 0.47 0.48 0.17 0.09 0.05 0.54 84.55 97.81 82.56

a significant drop in conformational coverage and a modest drop in dynamic fidelity. This con-
firms that joint S×T attention is crucial for capturing the complex, non-separable spatio-temporal
dependencies inherent in protein dynamics, which directly impacts the model’s ability to explore the
correct conformational space.

S×T layer placement. We evaluated placing the spatio-temporal attention module outside the dif-
fusion decoder as a static conditioner which compresses the full trajectory history into a single
conditioning vector, mirroring Shen et al. (2025). This variant underperforms our full model in
both coverage and fidelity, confirming that integrating spatio-temporal attention directly within the
diffusion module is essential for effective context utilization.

Historical-context noise. Removing the contextual noise perturbation leads to a substantial drop
in structural quality. This highlights the importance of this technique for maintaining generation
stability, a finding that is further supported by our long-horizon experiments in Section 4.3. Figure 11
compares the CA+AA validity over time for models with and without contextual noise on the 240ns
and 1 µs benchmarks, showing that the noise helps maintain structural quality over long horizons.

These ablation studies demonstrate that each component of STAR-MD addresses a specific challenge
in protein dynamics modeling. The S×T attention provides the expressivity needed for complex
spatio-temporal dependencies. The historical-context noise ensures stable long-horizon generation
by preventing error accumulation.

5 CONCLUSION

We introduced STAR-MD, a novel causal diffusion transformer model for generating long-horizon
protein dynamics trajectories. STAR-MD addresses the challenges of long-horizon generation
through several key innovations: joint spatiotemporal attention that efficiently models complex
space-time couplings, continuous-time conditioning for generation at arbitrary timescales, and a
noisy-context training scheme that mitigates error accumulation. Our comprehensive evaluations
demonstrate that STAR-MD achieves new state-of-the-art performance on the standard 100 ns AT-
LAS benchmark, outperforming previous methods in conformational coverage, structural quality,
and kinetic fidelity. More importantly, our model successfully extrapolates to generate stable, high-
fidelity trajectories up to the microsecond regime, where prior models often fail due to computational
costs or compounding errors. By balancing expressiveness and scalability, STAR-MD establishes an
efficient and empirically strong foundation for modeling protein dynamics at biologically relevant
scales, paving the way for accelerated exploration of complex biological processes.

Limitations and future work. While STAR-MD represents a significant step forward, there are av-
enues for future improvement. The temporal consistency of the generated trajectories, while strong,
does not yet perfectly match that of oracle MD simulations. The model’s performance could be
further enhanced by training on larger and more diverse MD simulation datasets, such as MD-
CATH (Mirarchi et al., 2024). Additionally, a promising direction for future work is to extend the
model’s capabilities to simulate the dynamics of protein complexes or their interactions with small
molecules, which are crucial for understanding biological processes and drug design.
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tification of slow molecular order parameters for markov model construction. The Journal of
chemical physics, 139(1), 2013.

Yuning Shen, Lihao Wang, Huizhuo Yuan, Yan Wang, Bangji Yang, and Quanquan Gu. Simulta-
neous modeling of protein conformation and dynamics via autoregression. Advances in Neural
Information Processing Systems, 2025.

Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann.
History-guided video diffusion. arXiv preprint arXiv:2502.06764, 2025.

Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning
Zhang, WQ Zhang, Weifeng Luo, et al. Magi-1: Autoregressive video generation at scale. arXiv
preprint arXiv:2505.13211, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, and Tatiana Ga-
lochkina. Atlas: protein flexibility description from atomistic molecular dynamics simulations.
Nucleic acids research, 52(D1):D384–D392, 2024.

Yan Wang, Lihao Wang, Yuning Shen, Yiqun Wang, Huizhuo Yuan, Yue Wu, and Quanquan Gu.
Protein conformation generation via force-guided se (3) diffusion models. In Forty-first Interna-
tional Conference on Machine Learning, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026
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A THEORETICAL FOUNDATION

A.1 FORMAL JUSTIFICATION FOR JOINT SPATIO-TEMPORAL MODELING

Any practical generative model must therefore adopt a coarse-grained representation, such as per-
residue coordinates, to remain tractable. In this section, we analyze the formal consequences of this
coarse-graining. We first use the Mori-Zwanzig formalism (Mori, 1965; Zwanzig, 1961) to show
how moving to a coarser representation introduces complex temporal memory. We then special-
ize this result to protein representations and demonstrate that simplifying from a singles-and-pairs
representation to a singles-only one both “inflates” this memory and induces non-separable spatio-
temporal coupling, providing a rigorous justification for our architectural choices.

We formalize this with the Memory Inflation proposition. The proposition analyzes the effect of
simplifying a protein’s state representation from a detailed one containing both per-residue features
(“singles”) and inter-residue features (“pairs”), to a coarser one containing only singles. It shows
that the memory kernel for the simpler singles-only dynamics, K̃(s), is “inflated” compared to the
singles-part of the more detailed kernel, K̃(sp)

ss :
Proposition 1. [Memory Inflation] Under linearization, the memory kernel for the singles-only
representation relates to the singles-and-pairs memory kernel by:

K̃(s)(p) = K̃(sp)
ss (p) + (Ωsz + K̃(sp)

sz (p))[pI − Ωzz − K̃(sp)
zz (p)]−1(Ωzs + K̃(sp)

zs (p))︸ ︷︷ ︸
Inflation Term

, (4)

where K̃(p) is the Laplace transform of the memory kernel, p is the Laplace variable, I is the
identity matrix, Ω represents instantaneous (Markovian) dynamics, and the subscripts s and z refer
to singles and pairs features, respectively.

The inflation term in Eq. 4 quantifies how the dynamics of the eliminated pair features are folded into
the temporal evolution of the singles, forcing the system’s dynamics into a more complex memory
structure. Crucially, this term is non-separable; it cannot be factored into independent spatial and
temporal components, meaning the memory kernel itself couples spatial locations and temporal
frequencies in an intricate way. These insights lead to our core design principle: a scalable and
accurate protein dynamics model that avoids expensive pairwise representations must employ an
architecture capable of learning complex, non-separable spatio-temporal dependencies. This directly
motivates our departure from prior “space-then-time” factorized models and our adoption of a joint
spatio-temporal attention mechanism.

A.2 PROJECTION OPERATOR FORMALISM AND GENERALIZED LANGEVIN EQUATION

The Mori-Zwanzig formalism provides a rigorous mathematical framework for deriving reduced
dynamical models from high-dimensional systems. We begin with a high-dimensional system de-
scribed by variables Γ(t) evolving according to:

dΓ

dt
= LΓ(t) (5)

where L is the Liouville operator. When we project onto a lower-dimensional subspace of “slow”
variables A(t) using a linear projection operator P1, the Mori-Zwanzig theorem provides the exact
generalized Langevin equation (GLE) for their evolution:

dA(t)

dt
= PLA(t) +

∫ t

0

K(t− τ)A(τ)dτ + F (t) (6)

where:

• A(t) represents our chosen variables (the projection of Γ(t))

1In the context of the Mori-Zwanzig formalism, P is a linear operator that projects onto a chosen subspace
of the full phase space.
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• PLA(t) captures Markovian (instantaneous) dynamics

•
∫ t

0
K(t− τ)A(τ)dτ is the memory term encoding history dependence

• F (t) is the random force, a rapidly-fluctuating noise term arising from the orthogonal de-
grees of freedom (e.g., solvent molecules, fast internal motions) that were projected out.
By definition, it is orthogonal to the projected variables.

• Let Q = 1 − P be the projection operator onto the orthogonal subspace. Q isolates the
“fast” degrees of freedom that are not explicitly modeled in the reduced representation.

The memory kernel K(t) emerges as:

K(t) = PLe(1−P)Lt(1− P)L (7)

which involves the propagation of orthogonal dynamics through the operator e(1−P)Lt. This formula
reveals that the memory kernel encodes how information flows through degrees of freedom not
explicitly modeled.

A.3 ALTERNATIVE PROJECTIONS FOR PROTEIN DYNAMICS

For protein systems, we consider two specific projections:

A.3.1 SINGLES-AND-PAIRS REPRESENTATION

We project onto both per-residue features s(t) ∈ RN×ds and pairwise features z(t) ∈ RN×N×dz ,
yielding state A(1)(t) = (s(t), z(t)). The resulting dynamics can be written in block form:

(
ṡ(t)
ż(t)

)
=

(
Ωss Ωsz

Ωzs Ωzz

)(
s(t)
z(t)

)
+

∫ t

0

(
K

(1)
ss (t− τ) K

(1)
sz (t− τ)

K
(1)
zs (t− τ) K

(1)
zz (t− τ)

)(
s(τ)
z(τ)

)
dτ+

(
Fs(t)
Fz(t)

)
(8)

where the memory kernel K(1) has block structure corresponding to singles-singles (K(1)
ss ), singles-

pairs (K(1)
sz ), pairs-singles (K(1)

zs ), and pairs-pairs (K(1)
zz ) interactions.

A.3.2 SINGLES-ONLY REPRESENTATION

We project directly onto per-residue tifeatures s(t) alone, yielding the more compact stateA(2)(t) =
s(t). The dynamics become:

ṡ(t) = Ω(2)s(t) +

∫ t

0

K(2)(t− τ)s(τ)dτ + F (2)(t) (9)

A.4 COMPLETE PROOF OF THE MEMORY INFLATION PROPOSITION

Proposition 1. [Memory Inflation] Under linearization, the memory kernel for the singles-only
representation relates to the singles-and-pairs memory kernel by:

K̃(s)(p) = K̃(sp)
ss (p) + (Ωsz + K̃(sp)

sz (p))[pI − Ωzz − K̃(sp)
zz (p)]−1(Ωzs + K̃(sp)

zs (p))︸ ︷︷ ︸
Inflation Term

, (4)

where K̃(p) is the Laplace transform of the memory kernel, p is the Laplace variable, I is the
identity matrix, Ω represents instantaneous (Markovian) dynamics, and the subscripts s and z refer
to singles and pairs features, respectively.

Proof. We begin by taking the Laplace transform of the singles-and-pairs dynamics:

(
ps̃(p)− s(0)
pz̃(p)− z(0)

)
=

(
Ωss Ωsz

Ωzs Ωzz

)(
s̃(p)
z̃(p)

)
+

(
K̃

(1)
ss (p)s̃(p) K̃

(1)
sz (p)z̃(p)

K̃
(1)
zs (p)s̃(p) K̃

(1)
zz (p)z̃(p)

)
+

(
F̃s(p)

F̃z(p)

)
(10)
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From the second row, we can express z̃(p) in terms of s̃(p):

z̃(p) = [pI − Ωzz − K̃(1)
zz (p)]−1[z(0) + (Ωzs + K̃(1)

zs (p))s̃(p) + F̃z(p)] (11)

Substituting this into the first row equation:

ps̃(p)− s(0) = Ωsss̃(p) + K̃(1)
ss (p)s̃(p) + F̃s(p)+ (12)

(Ωsz + K̃(1)
sz (p))[pI − Ωzz − K̃(1)

zz (p)]−1[z(0) + (Ωzs + K̃(1)
zs (p))s̃(p) + F̃z(p)]

(13)

Collecting terms with s̃(p) and comparing with the Laplace transform of the singles-only represen-
tation:

ps̃(p)− s(0) = Ω(2)s̃(p) + K̃(2)(p)s̃(p) + F̃ (2)(p) (14)

We identify:

Ω(2) = Ωss (15)

K̃(2)(p) = K̃(1)
ss (p) + (Ωsz + K̃(1)

sz (p))[pI − Ωzz − K̃(1)
zz (p)]−1(Ωzs + K̃(1)

zs (p)) (16)

F̃ (2)(p) = F̃s(p) + (Ωsz + K̃(1)
sz (p))[pI − Ωzz − K̃(1)

zz (p)]−1[z(0) + F̃z(p)] (17)

This completes the proof, showing that the memory kernel in the singles-only representation incor-
porates additional terms that account for the eliminated pair dynamics.

A.5 IMPLICATIONS OF MEMORY INFLATION

From the Memory Inflation result in Proposition 1, we can derive two important corollaries that
guide our architectural design:

A.5.1 MEMORY ENRICHMENT

Corollary 1 (Memory Enrichment). When spatial detail is removed from a dynamical system, the
memory kernel must become more complex to preserve the system’s physical accuracy.

This follows directly from the inflation term in the Memory Inflation Proposition. By eliminating
the explicit representation of pairwise features z(t), we force the memory kernel K(2) to incorpo-
rate additional dynamics that were previously captured through the direct modeling of pairs. This
represents a fundamental trade-off between:

1. Spatial complexity: Using O(N2) variables to explicitly represent all pairwise relation-
ships

2. Temporal complexity: Using a richer memory structure that implicitly encodes these re-
lationships through time

The theorem quantifies exactly how much additional memory structure is required: it must include
all dynamical information that would have flowed through the pairs variables in the more complex
representation.

A.5.2 SPATIO-TEMPORAL COUPLING

Corollary 2 (Spatio-Temporal Coupling). The memory kernel in the singles-only representation
cannot be factorized as independent spatial and temporal components, requiring models that capture
non-separable coupling between spatial indices and temporal frequencies.
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The inflation term:

(Ωsz + K̃(1)
sz (p))[pI − Ωzz − K̃(1)

zz (p)]−1(Ωzs + K̃(1)
zs (p)) (18)

has a critical property: it cannot be factorized as a product of purely spatial and purely temporal
operators. To see this, consider its structure:

1. (Ωsz + K̃
(1)
sz (p)) couples spatial indices (i, j) with temporal frequency p

2. The matrix inverse [pI −Ωzz − K̃(1)
zz (p)]−1 mixes these couplings in a non-separable way

3. The final term (Ωzs + K̃
(1)
zs (p)) further couples the result with additional spatial indices

In the time domain, this corresponds to a memory kernel with structure:

K
(2)
ij (t− τ) ̸= uijv(t− τ) (19)

where i, j are residue indices. This non-separability means that the memory kernel cannot be decom-
posed into independent spatial and temporal components—spatial relationships evolve with time,
and temporal patterns differ across spatial relationships.

A.6 CONNECTION TO MACHINE LEARNING ARCHITECTURES

These theoretical results directly inform architectural design for protein dynamics models:

1. Factorized attention (spatial then temporal, or vice versa) cannot capture the non-
separable coupling revealed by Corollary 2.

2. Joint spatio-temporal attention with tokens indexing both residue and time provides ex-
actly the structure needed to learn the inflated memory kernel demanded by Corollary 1.

3. Expanded receptive field in the temporal dimension compensates for the missing explicit
pairwise information.

This explains why architectures that model protein dynamics without explicit pairwise features re-
quire sophisticated temporal modeling capabilities. The mathematical structure of the memory ker-
nel dictates the minimum expressivity requirements for any machine learning model that aims to
capture the underlying physics accurately.

B COMPLEXITY ANALYSIS OF SPATIOTEMPORAL ATTENTION

To understand the computational complexity and scaling behavior of different protein dynamics
models, we analyze the fundamental operations in both ConfRover (the previous state-of-the-art)
and our STAR-MD approach.

B.1 PROBLEM FORMULATION AND NOTATION

For a protein with N residues and a trajectory with L frames, we define:

• st ∈ RN×ds : Per-residue (singles) features at frame t

• zt ∈ RN×N×dz : Pairwise features at frame t

The full representation across all frames would be:

S = [s1, s2, . . . , sL] ∈ RL×N×ds (20)

Z = [z1, z2, . . . , zL] ∈ RL×N×N×dz (21)
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B.2 COMPUTATIONAL COMPLEXITY OF DIFFERENT ATTENTION MECHANISMS

B.2.1 FULL SPATIOTEMPORAL ATTENTION (THEORETICAL)

The most comprehensive approach would be to apply attention across all residues and all time frames
for both singles and pairs, which would have computational complexity:

O((L× (N +N2))2) = O(L2N4) (22)

This is computationally prohibitive for any realistic protein system.

B.2.2 CONFROVER’S APPROACH: TWO SOURCES OF COMPUTATIONAL COMPLEXITY

ConfRover faces computational challenges from two distinct sources:

1. Channel-factorized temporal attention. The primary limitation in ConfRover is its temporal
attention mechanism. It applies temporal attention independently to each single feature and each
pair feature:

• For singles: N separate L× L temporal attention operations, complexity O(N × L2)

• For pairs: N2 separate L× L temporal attention operations, complexity O(N2 × L2)

Total temporal attention complexity: O(N × L2 +N2 × L2) = O((N +N2)× L2)

While this factorization makes computation manageable, it assumes that temporal dynamics can be
modeled independently per channel (whether single or pair), which fundamentally limits the model’s
ability to capture complex spatio-temporal couplings that govern protein dynamics.

2. Pairformer operations for spatial modeling. In addition to the temporal attention, ConfRover
employs a Pairformer layer for spatial interactions at each time step, which has complexity:

• O(N3) per frame due to the interaction between all residues and all pairs
• O(N3 × L) for the entire trajectory

The combined time complexity is therefore O((N +N2)× L2 +N3 × L). For large proteins, the
N3 term dominates, making scaling to large systems prohibitive both in terms of computation time
and memory usage.

B.2.3 STAR-MD APPROACH: SINGLE-RESTRICTED SPATIOTEMPORAL ATTENTION

Our approach restricts spatiotemporal attention to only single-residue features:

• We apply one (N × L)× (N × L) attention operation on the flattened singles tensor
• Computational complexity: O((N × L)2) = O(N2L2)

Critically, we eliminate the Pairformer component and its O(N3) complexity. Instead, we rely
on the spatiotemporal attention mechanism to implicitly learn the necessary pairwise relationships
through the Memory Inflation mechanism described in Section A.1.

B.3 STAR-MD VS. FACTORIZED SPATIAL-TEMPORAL ARCHITECTURES.

STAR-MD employs a joint spatio-temporal attention mechanism with complexity O(N2L2). In
contrast, some architectures utilize spatial Pairformer layers (O(N3L)) and temporal attention lay-
ers on singles (O(NL2)), resulting in a total complexity of O(N3L+NL2).

To identify the regime where each model is more efficient, we equate their complexities:

N2L2 = N3L+NL2 (23)

Assuming N,L > 0, we can simplify this to find the crossover point:

L ≈ N (specifically L =
N2

N − 1
) (24)
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This reveals two distinct regimes:

• Regime 1 (L ≳ N ): When the context length exceeds the protein size (e.g., small peptides
with very long history), the O(NL2) temporal scaling of baselines is advantageous.

• Regime 2 (N ≫ L): For realistic protein modeling, where system size N is large (hun-
dreds to thousands of residues) and context history L is fixed (e.g., 50-100 frames), STAR-
MD is significantly more efficient. In this regime, the baselines’ cubic spatial scaling
(O(N3L)) becomes a prohibitive bottleneck.

As illustrated in Figure 6, for a standard context length of L = 80, STAR-MD’s computational
cost scales much more favorably with protein size than baseline methods, enabling the simulation
of large protein complexes that are computationally intractable for O(N3) methods.
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Figure 6: Computational complexity scaling. Comparison of computational cost (FLOPs proxy)
for STAR-MD (O(N2L2)), Pairformer + Temporal Attention on Pairs (O(N2L2 + N3L)), and
Pairformer + Temporal Attention on Singles (O(NL2 +N3L)). Left: Scaling with protein size N
for a fixed context length L = 80. STAR-MD scales significantly better for large proteins due to
the absence of cubic spatial terms. Middle: Scaling with context length L for a fixed protein size
N = 256. While baselines have lower temporal complexity, their high spatial cost dominates in
the realistic regime where N > L. Right: Heatmap showing the speedup factor of STAR-MD over
Pairformer + Temporal Attention on Singles as a function of protein size N and context length L.
STAR-MD achieves significant speedups in the realistic regime where N > L.

B.4 KV CACHE EFFICIENCY DURING INFERENCE

An important aspect to consider in autoregressive protein trajectory generation is the memory cost
during inference, particularly related to the key-value (KV) cache used for efficient generation. This
becomes especially important for long-horizon generation where hundreds or thousands of frames
must be maintained in context.

ConfRover KV cache requirements. During autoregressive generation, ConfRover must store in
its KV cache:

• Singles features: O(N × L× d) memory

• Pairs features: O(N2 × L× d) memory

Total KV cache memory: O((N +N2)× L× d)
For a medium-sized protein with N = 200 residues, a context window of L = 32 frames, and
embedding dimension d = 256, this results in approximately:

Memory for each layer = (200 + 2002)× 32× 256× 4 bytes (25)
= (200 + 40000)× 32× 256× 4 bytes (26)
≈ 1.3 GB (27)
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Simulation time Intervals (snapshots) Number of frames

100 ns 120 80
240 ns 120 200
1 µs 250 400

Table 4: Inference task configurations for ATLAS dataset.

STAR-MD KV cache requirements. In contrast, STAR-MD only needs to store keys and values
for the singles features:

Memory for each layer = N × L× d× 4 bytes (28)
= 200× 32× 256× 4 bytes (29)
≈ 6.6 MB (30)

This represents a 196× reduction in KV cache memory requirements compared to ConfRover,
which becomes increasingly significant as the protein size increases or when using longer context
windows.

Scaling to larger proteins and longer trajectories. Figure 5 shows the estimated KV cache mem-
ory requirements for different protein sizes and trajectory lengths.

B.5 PRACTICAL SCALING BEHAVIOR

While the asymptotic complexity of STAR-MD with respect to protein size N is still quadratic
(O(N2L2)), our approach offers significant practical advantages:

1. Elimination of cubic scaling terms: The most expensive O(N3) operations from the
Pairformer are eliminated.

2. Efficient attention implementations: Our attention pattern is amenable to highly opti-
mized implementations like FlashAttention Dao et al. (2022), which provides significant
practical speedups.

3. KV cache efficiency: As shown in Section B.4, our approach dramatically reduces memory
requirements during inference by avoiding the need to store pair features in the KV cache.

C EXPERIMENTAL DETAILS

C.1 ATLAS DATASET

The ATLAS (Vander Meersche et al., 2024) dataset contains triplicated 100 ns simulation for 1390
proteins with diverse structures and dynamics, representative for different ECOD X-class domains.
Following prior work (Jing et al., 2024a;b; Wang et al., 2024; Shen et al., 2025), we adopt a time-
based split for ATLAS. Specifically, the train/validation/test sets are divided based on the release
date of each protein, using cutoff dates of May 1, 2018 and May 1, 2019. Proteins released before
May 1, 2018 are used for training, and proteins released after May 1, 2019 are used for testing. The
diverse nature of ATLAS makes it a standard benchmark for evaluating protein conformation and
trajectory generation under transferrable settings.

For each 100 ns trajectories, snapshots of atom coordinates were saved at 10 ps intervals. We use
the coordinates for all heavy atoms in protein For model training and evaluation. Similar to Shen
et al. (2025), we exclude the training proteins longer than 384 amino acids, leading to 1080 training
proteins.

We include the inference task configurations for different simulation time in Table 4.

C.2 BASELINE IMPLEMENTATION

ATLAS MD oracles. In 100 ns simulation, we use one of the triplicated trajectories in the ATLAS
dataset as the oracle to estimate the expected performance from an independent simulation run. To
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simulate longer trajectories, we follow the setup described in Vander Meersche et al. (2024) using
provided equilibrated structures and Gromacs .tpr files to preproduce production runs at the de-
sired lengths. All simulations are conducted using Gromacs (version 2023.2) on NVIDIA V100
GPUs with 40 GB memories. Independent reference and oracle trajectories are generated by repeat-
ing simulations with different random seeds.

AlphaFolding (Cheng et al., 2025). We followed the official data preparation and in-
ference procedures provided by the authors 2, using the recommended model weights
(frame16 step 95000.pth). Trajectories were generated using the recommended ex-
trapolation script (run eval extrapolation.sh) with parameters sample step=1,
n motion=2, and n frames=16. This model employs a block-wise autoregressive scheme:
it generates a fixed-size block of 16 frames conditioned on the final frames of the preceding
block. This process is repeated to achieve the desired total simulation time by adjusting the
extrapolation time parameter.

A key characteristic of this baseline is its fixed, internal time step of 10 ps, which differs from our
model’s variable stride capability. Consequently, no time step normalization is performed at the
generation stage; instead, trajectories are sampled post-generation to match the frame rates required
for evaluation.

MDGen (Jing et al., 2024b). We followed the official data preparation and inference procedures
provided by the authors 3, using the provided model weights (atlas.ckpt). The model was
trained on ATLAS trajectories preprocessed with 400 ps intervals (stride 40 with base interval
10 ps). For inference, we used the forward simulation script (sim inference.py) with pa-
rameters num frames=250 and suffix= R1.

This model generates trajectories autoregressively in blocks of 250 frames with an internal timestep
of 400 ps per frame. A single rollout produces 100 ns of simulation time (250 frames × 400 ps
= 100 ns). For 100 ns trajectories, we used num rollouts=1. For 240 ns and 1 µs evaluations,
we extended generation by setting num rollouts to the required number of sequential blocks.
Generated trajectories were then sampled post-generation to match the frame rates required for eval-
uation.

ConfRover (Shen et al., 2025). We use the code and model weights provided by the authors.
ConfRover is a frame-level autoregressive model similar to STAR-MD, and we adopt the same
setup as our model to generate trajectories for each experiments. For 100 ns results, we enable
CPU-offloaded caching to store full key-value history in system memory, while for 240 ns and 1 µs
results, we employ a sliding-window cache with attention sinks (Xiao et al., 2023a) (window size of
14 with first two frames as attention sinks) to prevent out-of-memory errors.

All generative model baselines are evaluated on NVIDIA H100 GPUs with 80 GB GPU memory
and 2 TB system memory.

C.3 DETAILS ON EVALUATION METRICS

Trajectory Alignment. Prior to any quantitative analysis (including conformational coverage and
kinetic fidelity), all model-generated trajectories are aligned to the corresponding reference MD
simulation. This is performed via Cα superposition to a common reference frame, ensuring that all
comparisons are independent of global rotational and translational differences.

Conformational coverage. Conformational state recovery is evaluated by comparing the distri-
bution of model-generated and reference conformations in a PCA space. Each conformation is pa-
rameterized by the 3D coordinates of Cα atoms. The PCA space is constructed using conformations
from reference MD simulations in ATLAS. To compare distributions, each principal component
is discretized into 10 evenly spaced bins. After projecting the conformations into this space, we
count their occurrences in each bin and compute the distribution similarity using Jensen–Shannon
Distance (JSD). We also binarize the occupancy counts to compute precision, recall, and F1-score
– evaluating whether sampled conformations fall within known states, following prior works (Lu
et al., 2024; Wang et al., 2024; Zheng et al., 2024; Shen et al., 2025).

2https://github.com/fudan-generative-vision/dynamicPDB/tree/main/applications/4d diffusion
3https://github.com/bjing2016/mdgen
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Kinetic fidelity. Previous metrics operates on individual proteins and ensembles of proteins, inde-
pendent of their temporal ordering. To characterize the temporal evolution of protein conformations,
we use the correlation of leading Time-lagged Independent Component Analysis (tICA) components
at varying lagtime similar to Shen et al. (2025), and additionally include two kinetic metrics: coor-
dinate root mean squared distance (RMSD) and autocorrelation as functions of lagtime.

Given model-generated trajectory {x̂t}t ∈ RNatom×3 and MD reference {xt}t ∈ RNatom×3, we project
all trajectories onto the top 32 principal components computed using MD reference Cα coordinates.
For a particular lagtime τ , the coordinate RMSD is computed via

Et[RMSD(xt+τ , xt)], (31)

which is an approximate average velocity highlighting the dynamical timescales of conformational
changes. Autocorrelation is computed via

Et

[
(xt − µ)(xt+τ − µ)

σ2

]
, (32)

which is a measure of covariance within each trajectory. The aim of each metric is to approximate
how the corresponding measure behaves in the MD reference data (dashed lines), capturing not only
their overall trend but also characteristic magnitudes.

tICA Correlation Metric. Following Shen et al. (2025), we evaluate dynamic fidelity by comparing
the principal dynamic modes of the generated and reference trajectories. Input trajectories (Xref and
Xgen) are aligned and represented by Cα coordinates flattened to d = 3N features. We first compute
a validity mask M ∈ {0, 1}T for the generated trajectory, retaining only frames that pass the “CA +
AA Validity” checks defined in Appendix C.3. Only time-lagged pairs (xt, xt+τ ) where both frames
are valid (Mt = 1,Mt+τ = 1) are used for analysis.

We fit separate Time-lagged Independent Component Analysis (tICA) models to the reference and
generated trajectories by solving Cτvi = λiC0vi, where C0 and Cτ are the instantaneous and
time-lagged covariance matrices, respectively. We use lagtimes τ ∈ [1, 5, 10, 20], apply kinetic map
scaling, and set the regularization cutoff to ϵ = 10−6.

For the top k independent components (PC1 and PC2), we extract the left singular vector v(k) ∈
R3N and compute a per-residue contribution score S(k)

i = max (|vi,x|, |vi,y|, |vi,z|) for each residue
i. The final metric is the absolute Pearson correlation coefficient between the reference and gener-
ated scores: |rk| = |Pearson(S(k)

ref , S
(k)
gen )|, averaged across PC1 and PC2.

Our evaluation procedure mirrors Shen et al. (2025), with the sole exception that we only consider
valid pairs via M . For any given lagtime, we report the tICA correlation only if at least 30 time-
lagged pairs are valid; otherwise, we denote the result as “N/A”.

Structural Quality and Validity To assess the physical plausibility of generated protein confor-
mations, we use a suite of metrics that measure different aspects of structural integrity. A generated
frame is considered structurally valid if it simultaneously satisfies all of the following conditions,
which are based on thresholds derived from oracle MD simulations:

• No Cα Chain Breaks: The distance between consecutive Cα atoms must be below a certain
threshold.

• No Cα Clashes: The distance between any two non-adjacent Cα atoms must be above a certain
threshold.

• Plausible Backbone Geometry: The percentage of residues that are outliers in the Ramachandran
plot must be below a threshold.

• Plausible Side-Chain Geometry: The percentage of residues with outlier rotamers must be below
a threshold.

Threshold Derivation. The specific thresholds for these metrics were determined by analyzing the
distribution of these quality metrics in the ground-truth 100ns MD simulation trajectories (our “ora-
cle”). For each metric, we computed its value across all frames of the oracle trajectories and set the
threshold at the 99th percentile (i.e., accepting 99% of the oracle frames).
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Table 5: Dataset and Training Configuration

Parameter Value
Dataset Configuration

Training data ATLAS train split (length ≤ 384)
Global batch size 1
Frames per trajectories 8
Frame intervals 1∼ 210 of 10 ps snapshots

Feature Representation

Single-residue feature dim 384
Pairwise feature dim 128
Number of recycles 3

Data Augmentation

Clean noise max magnitude 0.1
Clean noise sampling prob 0.75
Noise sampling Frame-level

An exception was made for the Cα chain break rate. The oracle MD simulations contained no chain
breaks, resulting in a 99th percentile threshold of 0. This is too strict for current generative models.
To allow for a more meaningful comparison, we set a small, non-zero tolerance for chain breaks.

The exact thresholds used for determining a valid frame are listed in Table 9. We define three sets
of criteria for validity: Cα + All-Atom, which requires passing all four checks; All-Atom Only,
which checks only Ramachandran and rotamer criteria; and Cα-Only, which checks only for Cα
clashes and breaks.

C.4 MODEL HYPERPARAMETERS

We include the details of our training and inference configuration as follows. The model was trained
on the ATLAS dataset following the train/val/test split in the previous works(Shen et al., 2025; Jing
et al., 2024a;b; Wang et al., 2024; Cheng et al., 2025). STAR-MD contains 4 diffusion blocks, each
containing 1 IPA layer and 2 S×T layers with hidden dimension 256 and 8 attention heads. We train
on trajectory snippets with context length L = 8 frames and global batch size of 8.

We use the Adam optimizer and learning rate 5× 10−5 with the similar loss setup as used in Shen
et al. (2025).

For distributed training, we employed DeepSpeed Stage 2 optimization with gradient checkpointing
to efficiently manage memory usage during training of large protein systems. All models are trained
8 NVIDIA H100 GPUs with 80 GB memory.
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Table 6: Diffusion Model Configuration

Parameter Value
SE(3) Diffusion

Coordinate scaling 0.1
Translation bmin/bmax 0.1 / 20.0
Translation schedule Linear
Rotation σmin/σmax 0.1 / 1.5
Rotation schedule Logarithmic

Sampling

Method Euler SDE
Diffusion steps 200
tmax / tmin 1.0 / 0.01

Table 7: Model Architecture

Component Configuration
Encoder (PseudoBetaPairEncoder)

Residue index embedding size 128
Output size 128

Invariant Point Attention

IPA blocks 4
Single channel size 256
Pair channel size 128
Hidden channel size 256
Skip channel size 64
Attention heads 4
Query/key points 8
Value points 12

Spatiotemporal Attention

Model dimension 256
Number of layers 2
Number of heads 4
RoPE 2D Enabled
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Table 8: Loss Functions and Optimization

Parameter Value
Loss Weights

Rotation score loss 0.5
Translation score loss 1.0
Torsion loss 0.5
Backbone FAPE loss 0.5
Sidechain FAPE loss 0.5
Backbone coordinates loss 0.25 (diffusion t ≤ 0.25)
Backbone distance map loss 0.25 (diffusion t ≤ 0.25)

Optimization

Optimizer Adam
Learning rate 0.0002
LR schedule Linear warmup + cosine decay
Warmup epochs 5
Total epochs 250
Warmup start LR factor 0.01
Minimum LR factor 0.1
Gradient clipping 1.0 (norm)
Precision BF16 mixed precision

Table 9: Structural quality thresholds for validity. Thresholds were derived from the 99th per-
centile of the oracle 100ns MD simulations, except for the Cα break rate.

Metric Threshold
Cα + All-Atom Evaluation

Ramachandran Outliers (%) ≤ 4.12
Rotamer Outliers (%) ≤ 7.05
Cα Clash Rate (%) ≤ 1.29
Cα Break Rate (%) ≤ 0.2

All-Atom Only Evaluation

Ramachandran Outliers (%) ≤ 4.12
Rotamer Outliers (%) ≤ 7.05

Cα-Only Evaluation

Cα Clash Rate (%) ≤ 1.29
Cα Break Rate (%) ≤ 0.2
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C.5 ADDITIONAL RESULTS ON DYNAMIC FIDELITY

We visualize the corresponding kinetic metrics for 100ns, 240 ns, and 1µs in Figure 7. For each
metric, we include 2 separate MD simulations for reference (dashed lines). In all but one case
(autocorrelation for 1µs), STAR-MD better approximates the trend and values of MD references,
showing higher kinetic fidelity than the rest of models.

We also include the corresponding metrics for our ablation study (Section 4.5) in Figure 8, where
STAR-MD outperforms other variants in all but two cases (100 ns Cα coordinate RMSD and 1 µs
Cα autocorrelation at large lagtime).

We further provide a detailed breakdown of the tICA correlation metric in Figure 9 and Table 10.
Figure 9 shows the per-component and per-lagtime correlations for all valid runs, highlighting the
variability across different simulation instances. Table 10 summarizes these results, demonstrating
that STAR-MD achieves the highest mean correlation among generative models, closely matching
the reference MD baseline.

Table 10: Aggregated tICA Correlation Statistics. Mean and standard deviation of tICA correla-
tions averaged over PC1, PC2, and all lagtimes. We report results on both valid samples (Valid) and
all samples (Unfiltered).

Model tICA (Valid) tICA (Unfiltered)
MD (Oracle) 0.170 0.17
MDGen 0.130 ± 0.039 0.12±0.00

AlphaFolding N/A 0.14
ConfRover 0.162 ± 0.035 0.18±0.01

STAR-MD 0.176 ± 0.033 0.18±0.01

C.5.1 VAMP-2 SCORE

The variational approach for Markov models (VAMP, Wu & Noé (2020)) is another metric to evalu-
ate the kinetic fidelity for Markov state models, which measures how well a set of features captures
the slow dynamical modes of the system. Given a sequence {xt}t, the Koopman matrix for the
system is approximated via

K = C−0.5
00 C0τC

−0.5
ττ where Ct1t2 = Et[(xt1 − µ)(xt1+t2 − µ)], (33)

and the VAMP-2 score is the Frobenius norm of the Koopman matrix.

To expand on the metrics for dynamic fidelity, we computed VAMP-2 score as a function of lagtime,
where we first project all trajectories onto the top 32 principle components computed using MD
reference Cα coordinates, similar to RMSD and autocorrelation metrics. The results for 100 ns are
included in Figure 10, and we observe that STAR-MD better approximates the VAMP-2 score of
MD references for all lagtime than other models we compared against and other variants.
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(a) Cα coordinate RMSD vs lagtime (100 ns simulation)
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(b) Cα autocorrelation vs lagtime (100 ns simulation)
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(c) Cα coordinate RMSD vs lagtime (240 ns simulation)
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(d) Cα autocorrelation vs lagtime (240 ns simulation)
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(e) Cα coordinate RMSD vs lagtime (1 µs simulation).
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(f) Cα autocorrelation vs lagtime (1 µs simulation).

Figure 7: Kinetic metrics at different trajectory lengths: 100ns, 240 ns, and 1µs. Dashed lines
are MD references (in most cases MD reference metrics are very close, demonstrating the metrics
are robust across independent MD reference simulations). STAR-MD better approximates the MD
references, demonstrating higher kinetic fidelity than the other models.
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(a) Cα coordinate RMSD vs lagtime (100 ns simulation)

3 6 9 12 15 18
Lagtime t (frames)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

au
to

co
rre

la
tio

n

MD Reference
STAR-MD

w/ Sep Attn
w/o Noise

w/ Preproc Attn

(b) Cα autocorrelation vs lagtime (100 ns simulation)
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(c) Cα coordinate RMSD vs lagtime (240 ns simulation)

3 6 9 12 15 18
Lagtime t (frames)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
au

to
co

rre
la

tio
n

MD Reference
STAR-MD

w/ Sep Attn
w/o Noise

w/ Preproc Attn

(d) Cα autocorrelation vs lagtime (240 ns simulation)
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(e) Cα coordinate RMSD vs lagtime (1 µs simulation)
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(f) Cα autocorrelation vs lagtime (1 µs simulation)

Figure 8: Kinetic metrics for ablation study. Dashed line is MD reference. STAR-MD has simi-
lar/better performances than other variants in all but two cases (100ns Cα coordinate RMSD and
1µs Cα autocorrelation at large lagtime).
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Figure 9: Detailed tICA Correlation Analysis. We report the per-component (PC1, PC2) and per-
lagtime tICA correlation values for all runs that produced at least 30 valid pairs for computation.
Shaded regions represent the standard deviation across valid runs.
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(a) Comparison with other models
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Figure 10: VAMP-2 score as a funciton of lagtime (100 ns simulation). Dashed line is MD reference.
STAR-MD better approximates VAMP-2 score of MD reference than other models and variants,
demonstrating better capture of slow dynamical modes.
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D FULL ABLATION RESULTS

We include the full results Tables for ablation study in this section (Table 11,12). We observe
a consistent trend that contextual noise improves structure quality, and spatio-temporal attention
improves conformation coverage.

Figure 11 compares the CA+AA validity over time for models with and without contextual noise on
the 240 ns and 1µs benchmarks, showing that the noise helps maintain structural quality over long
horizons.
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Figure 11: Effect of Contextual Noise on Long-Horizon Stability. Comparison of Structural
Validity (Cα + All-Atom) over time for STAR-MD with and without contextual noise on 240 ns and
1µs benchmarks.

Table 11: Complete ablation study results (240 ns). We compare our full model, STAR-MD,
against variants with key components removed. All metrics are reported for the 240 ns generation
task. Metrics degraded in each ablation setting are highlighted in red.

Cov Valid Dynamic Fidelity Validity

Model JSD↓ Rec↑ RMSD↓ AutoCor↓ CA%↑ AA%↑ CA+AA%↑
STAR-MD 0.45 0.59 0.20 0.02 86.44 97.61 84.62

w/o Noise 0.42 0.61 0.22 0.16 77.11 96.19 74.25
w/ Sep Attn 0.48 0.51 0.26 0.04 87.09 97.58 84.83
w/ Preproc Attn 0.47 0.52 0.25 0.03 87.25 96.72 84.28

Table 12: Complete ablation study results (1 µs). We compare our full model, STAR-MD, against
variants with key components removed. All metrics are reported for the 1µs generation task. Metrics
degraded in each ablation setting are highlighted in red.

Cov Valid Dynamic Fidelity Validity

Model JSD↓ Rec↑ RMSD↓ AutoCor↓ CA%↑ AA%↑ CA+AA%↑
STAR-MD 0.45 0.61 0.11 0.11 91.00 91.44 83.59

w/o Noise 0.48 0.63 0.17 0.10 75.84 91.22 68.66
w/ Sep Attn 0.51 0.49 0.30 0.10 93.12 92.03 85.31
w/ Preproc Attn 0.52 0.49 0.32 0.11 94.12 92.19 86.44
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E INFERENCE COST

We evaluated the wall-clock time for generating 100 ns trajectories under our 100 ns benchmark
setting for each methods, across proteins of varying lengths (50∼750 amino acids). To estimate the
runtime of molecular dynamic (MD) simulation, we used OpenMM with the Amber force field and
implicit solvent, running a 0.1 ns simulation and extrapolating the cost to 100 ns. MDGen, trained
with a time step of 400 ps and window of 250 frames, can directly generate 100 ns trajectories in
single joint diffusion process and therefore provides the greatest acceleration. AlphaFolding, trained
on a fixed time step of 10 ps and a window of 16 frames, requires substantially longer inference time
to complete a 100 ns simulation. Both ConfRover and STAR-MD support varying-stride simulation
and can generate under our evaluation configuration (stride=1.2 ns, 80 frames). While STAR-MD is
slightly slower than ConfRover for small proteins, it is more efficient when scaling to larger proteins
and is faster on 6SMS-A (724 AA). All methods are evaluated on a single NVIDIA H100 GPU.

Table 13: Inference cost for different methods. The wall-clock time (in seconds) to generate
100 ns trajectories across proteins with varying lengths. AlphaFolding encounters out-of-memory
error for larger proteins and is reported as ‘N/A’. All methods are evaluated on a single NVIDIA
H100 GPU.

Method 6OKD-C
(51)

6Q9C-A
(155)

6XB3-H
(241)

7AQX-A
(364)

7P41-D
(448)

7MF4-A
(554)

6L8S-A
(650)

6SMS-A
(724)

MD 6322.8 9610.8 14420.3 24272.4 34850.8 49294.4 66296.7 78451.4
AlphaFolding 3135.7 5846.5 10024.8 19036.3 27340.3 40472.5 N/A N/A
MDGen 4.1 8.1 13.0 20.5 28.2 35.3 41.2 54.4
ConfRover 404.5 423.6 463.5 573.7 710.4 934.4 1170.2 1617.7
STAR-MD 766.3 807.4 818.4 795.8 902.5 1055.5 1232.4 1381.2

F ARCHITECTURE DETAILS: PAIR FEATURES

STAR-MD modifies Shen et al. (2025)’s standard AlphaFold-derived architecture by removing the
Pairformer module to reduce computational cost, while retaining explicit pairwise feature updates.

FrameEncoder. STAR-MD takes as input the pre-trained pairwise features from a frozen Open-
Fold (Jumper et al., 2021) model. Then, it employs a FrameEncoder module Shen et al. (2025)
which incorporates pairwise geometric information into the pair features.

EdgeTransition. Pairwise features z ∈ RN×N×dz are initialized by the FrameEncoder
and updated via EdgeTransition layers. Unlike the global attention in Pairformer,
EdgeTransition uses a local MLP update after each spatio-temporal attention block. For
residues i and j:

zij ← zij + MLP(si, sj , zij) (34)

This maintains spatial context without O(N3) complexity.

Singles-Only Spatio-Temporal Attention. Joint spatio-temporal attention is applied exclusively to
single-residue features s. This avoids the O(N2L) memory cost of temporal attention over pairs.
Pair features modulate the attention mechanism solely through bias terms, similar to Invariant Point
Attention (IPA).
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G EXTREME-HORIZON GENERATION (10 µS)

To probe the limits of STAR-MD’s stability, we generated trajectories using the maximum training
stride (∼10 ns) for 1000 steps, resulting in a total simulation time of approximately 10 µs. Table 14
reports the structural validity metrics averaged over the full 10 µs trajectory for the ATLAS test set.
Figure 12 visualizes the stability of structural validity over the course of the generation.

Table 14: Structural validity for 10 µs trajectories. Metrics are averaged over 1000 steps (∼10 ns
stride) for the ATLAS test set.

Metric Validity (%)
CA Validity 85.21
AA Validity 90.93
CA + AA Validity 77.28
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Figure 12: Structural validity over 10 µs. The average CA + AA Validity remains stable through-
out the 1000-step generation process.
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H EXTENDED STABILITY ANALYSIS

To further characterize the stability of STAR-MD, we provide a detailed breakdown of the variability
in structural validity (Cα + All-Atom) for the 100ns, 240 ns, and 1µs settings. Figure 13 decomposes
the total variability into inter-seed and inter-protein components.
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(a) Per-seed variability
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(b) Per-protein variability
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Figure 13: Breakdown of stability variability. We analyze the standard deviation of the Structural
Validity (Cα + All-Atom) metric over time. (a) Variability across 5 random seeds for a single
protein (as reported in the main text). (b) Variability across different test proteins for a single seed.
(c) Combined variability incorporating both seed and protein variance.
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I ADDITIONAL VISUALIZATIONS OF CONFORMATIONAL COVERAGE

Figures 14 to 23 show conformational coverage of 10 proteins from the test set. These visualiza-
tions follow the same format as Figure 2(b) in the main text, with one key difference: we filter the
generated conformations to show only those that are structurally valid (passing all validity checks).
This provides a more rigorous view of the useful conformational space explored by each model.
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PC1

STAR-MD (R: 0.60, V: 99%)

Figure 14: Conformational coverage for 6kty A (Valid conformations only).
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Figure 15: Conformational coverage for 6jwh A (Valid conformations only).
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Figure 16: Conformational coverage for 6jpt A (Valid conformations only).
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Figure 17: Conformational coverage for 6okd C (Valid conformations only).
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Figure 18: Conformational coverage for 6odd B (Valid conformations only).
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Figure 19: Conformational coverage for 7dmn A (Valid conformations only).
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Figure 20: Conformational coverage for 7lp1 A (Valid conformations only).
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Figure 21: Conformational coverage for 6l34 A (Valid conformations only).
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Figure 22: Conformational coverage for 5znj A (Valid conformations only).
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Figure 23: Conformational coverage for 6tly A (Valid conformations only).
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J ENSEMBLE GENERATION

We examine the performance of STAR-MD to approximate target ensemble distributions from MD
simulation, and compare it against the state-of-the-art ensemble emulator BioEmu (Lewis et al.,
2024). Due to several differences in training dataset and paradigms, we evaluate them on two bench-
marks: (1) the standard ATLAS ensemble benchmark used in prior works (Jing et al., 2024a;b), and
(2) the CATH1 ensemble benchmark introduced in BioEmu.

We follow the standard protocol from Jing et al. (2024a), sampling 250 conformations for each of the
82 test proteins and comparing the generated ensembles with MD reference ensembles. For STAR-
MD, we repeat the 100 ns simulation procedure five times and randomly sample 250 conformations
from the collected set. As shown in Table 15, STAR-MD better captures the expected diversity,
more accurately reflects both global and local flexibility, and matches the reference ensemble at
distributional and ensemble-observable levels. In contrast, BioEmu tends to produce overly diverse
samples and shows lower similarity to the reference ensemble across most metrics.

We then evaluate ensemble generation performance on the CATH1 benchmark from BioEmu. This
benchmark contains the longer trajectories at microsecond level for 17 short proteins (< 75 amino
acids). We follow BioEmu’s setup by sampling 10,000 conformations per system and projecting
them onto the reaction coordinates to estimate free-energy and compute metrics using author’s eval-
uation code. For STAR-MD, we sample from five different starting frames of the initial MD runs
in the datasets, generating 80 frames at a stride of 1.28 ns. We repeat this process 25 times to col-
lect 10,000 samples per protein. As shown in Figure 24, BioEmu achieves higher accuracy with
lower error and higher coverage. When compared to the ground-truth distributions, STAR-MD con-
centrates around the low energy basins, while BioEmu explores a broader range of conformations,
occasionally extending beyond the region supported by the ground truth.

To verify this performance difference is not caused by the forward simulation setup used for STAR-
MD, we also test unconditional generation (STAR-MD-iid) by inferring single frames from masked
token, similar to (Shen et al., 2025). The similar results between STAR-MD and STAR-MD-iid sug-
gest that the performance gap between STAR-MD and BioEmu on CATH1 likely arises from factors
other than the trajectory-generation archiecture, such as differences in training datasets, training
objectives, or fine-tuning procedures.

STAR-MD BioEmu

RMSF (=1.63) 1.38 2.87
Pairwise RMSD (=2.76) 2.34 4.51

Pairwise RMSD r (↑) 0.52 0.33
Global RMSF r (↑) 0.56 0.52
Per target RMSF r (↑) 0.86 0.82

RMWD (↓) 2.85 4.33
MD PCA W2 (↓) 1.50 1.64
Joint PCA W2 (↓) 2.33 3.43
PC sim > 0.5 (↑) 35.4 % 26.8 %

Weak contacts J (↑) 0.52 0.49
Transient contacts J (↑) 0.37 0.37
Exposed residue J (↑) 0.57 0.54
Exposed MI matrix rho (↑) 0.24 0.26

Table 15: ATLAS ensemble results. Reported metrics include diversity, flexibility accuracy, dis-
tributional similarity, and ensemble observables. Parentheses indicate whether higher/lower values
are the better, or the expected value estimated from the ground truth trajectory. The better value is
shown in bold.
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Figure 24: Free energy accuracy and coverage from the BioEmu CATH1 ensemble benchmark.
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Figure 25: Example free energy surfaces from the BioEmu CATH1 ensemble benchmark. Five
systems are randomly selected for visualization. The left columns shows the reference MD distribu-
tions provided in BioEmu. For each model and system, the number of valid samples (out of 10,000)
that passes BioEmu’s quality filter is indicated in the upper-right corner of each subplot.
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K CASE STUDIES ON FUNCTION-RELATED CONFORMATIONAL DYNAMICS

K.1 CRYPTIC-POCKET BINDING

Sampling conformational changes during ligand binding is challenging, especially for proteins with
cryptic pockets, where cooperative and complex pocket dynamics are required to enable binding. To
assess whether STAR-MD can sample bound-state (holo) conformations from unbound-state (apo)
structures in such settings, we selected three cases from BioEmu’s cryptic-pocket dataset: Adeny-
losuccinate Synthetase (AdS), an enzyme has several allosteric or competitive binding substrates;
TEM-1 β-Lactamase (TEM-1), forming complexes with allosteric inhibitors; and Adenylate Kinase
(AdK), a highly flexible protein that undergoes large structural arrangement to each closed holo
conformation with covered ‘lid’.

For each of the case, we initialize from the provided apo structure and generate 200 frames at a
stride of 2.56 ns, approximating a 500 ns simulation. We compare sampled conformations with
the reference holo structure and compute RMSD over the local binding residues involved in the
conformational changes4. The best holo samples with minimum local RMSD are shown in Fig-
ure 26. Across all three cases, STAR-MD successfully samples holo-like conformations with RMSD
< 1.5Å (Lewis et al., 2024). For AdS and AdK, the sampled conformations closely algin with the
target holo structures. For TEM-1, we observe remaining differences in the left small helix where the
sampled structure does not fully form the helix. Nevertheless, these results demonstrate promising
capability of STAR-MD in predicting complex, cooperative, and long-range conformational dynam-
ics.

Adenylosuccinate Synthetase (P0A7D4) TEM-1 β-Lactamase (P62593) Αdenylate Κinase (P69441)

Holo: 1CIB

Apo: 1ADE

Holo RMSD: 0.71 Å Holo RMSD: 1.42 Å Holo RMSD: 0.81 Å

Apo: 1JWP

Holo: 1PZO

Apo: 4AKE

Holo: 1ANK

Figure 26: STAR-MD samples Holo structures started from Apo. Structures are superimposed
and the local binding regions are highlighted. The Holo RMSD shown under each case is calcualted
based on the local binding residues.

K.2 KINASE ACTIVATION

Abl kinase is a signaling protein related to leukemia and other cancers. It undergoes conformational
transitions between active and inactive states, which regulate its activity. These transitions involve
several functional domains (P-loop, αC-helix, and the Asp-Phe-Gly DFG motifs), imposing complex
millisecond-scale dynamics (Xie et al., 2020). We investigate whether STAR-MD can sample the
active-inactive transition when initialized from one of the two states. Specifically, we generate
trajectories of 500 frames with a stride of 5.12 ns, corresponding to roughly 2.5 µs of simulation.

To assess the states of generated conformations, we extract pairwise Cα distances and backbone
dihedral angles (ψ, ϕ) for residues around function domains involved in the transition (THR262-
GLU277, VAL287-LEU317, LYS397-GLY417), from 20 active-state structures (PDB:6XR6) and

4Residue information: https://github.com/microsoft/bioemu-benchmarks/tree/main/bioemu benchmarks/
assets/multiconf benchmark 0.1/crypticpocket/local residinfo
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20 inactive-state structures (PDB:6XR7). We then apply principle component analysis to obtain a
2D low-dimensional projection that separates the active and inactive conformations. We also define
a core-RMSD metric measured as the Cα-RMSD between sample and the reference structure over
the aforementioned residues of interest.

As shown in Figure 27, when starting from the inactive state, STAR-MD is able to sample towards
the active state with the best core-RMSD to the active state as 2.00 Å. When sampling from the
active state, the majority of sampled conformations remain near the active-state region, while a
subset of samples explores the inactive region. This behavior is in line with the underlying energetic
profile, where approximately 88% of conformations correspond to the active state and only ∼8%
correspond to the inactive state (Xie et al., 2020). The best RMSD to the inactive reference (2.60 Å)
is still smaller than the average pairwise RMSD between active and inactive conformations in PDB
(3.30 ± 0.34 Å).

Overall, this case demonstrates the potential of STAR-MD to sample complex conformational dy-
namics such as active-inactive transition in kinases.

Sample from active state (6XR6) to inactive state (6XR7)

Sample

6XR6

Sample
6XR7

Sample from inactive state (6XR7) to active state (6XR6)

RMSD: 2.00 Å

RMSD: 2.60 Å

Figure 27: Results on ABl Kinase sampled from the inactive state (top) and active state (bot-
tom). Left: PCA projection of reference conformations from the active and inactive PDB ensembles,
with STAR-MD samples shown in green. Right: Superposed structures of the best sample and the
corresponding target state, with core dynamic regions highlighted.
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L 100NS FILTERED RESULTS

L.1 PERFORMANCE BY SEQUENCE LENGTH

We break down the performance of STAR-MD and baselines across different protein sequence length
buckets to analyze scalability and robustness. Tables 16 to 20 summarize these findings.

Table 16: Sequence Length Bucket: 0-100 (17 chains)

Cov Valid Dyn. Validity

Model JSD↓ Rec↑ tICA↑ CA%↑ AA%↑ CA+AA%↑
MD (Oracle) 0.28 0.71 0.10 100.00 93.24 93.24
MDGen 0.48±0.01 0.38±0.01 0.11±0.01 85.66±3.15 87.34±1.76 75.91±2.08

AlphaFolding 0.56 0.28 N/A 30.07 3.60 2.06
ConfRover 0.48±0.02 0.39±0.02 0.11±0.01 79.59±2.00 81.24±0.18 65.26±1.30

STAR-MD 0.37±0.01 0.56±0.02 0.11±0.01 91.37±1.87 93.75±0.47 86.10±1.88

Table 17: Sequence Length Bucket: 100-150 (16 chains)

Cov Valid Dyn. Validity

Model JSD↓ Rec↑ tICA↑ CA%↑ AA%↑ CA+AA%↑
MD (Oracle) 0.30 0.69 0.12 98.98 98.44 97.42
MDGen 0.51±0.02 0.35±0.02 0.10±0.01 74.50±7.40 94.17±1.39 70.62±7.62

AlphaFolding 0.58 0.10 N/A 14.38 0.23 0.16
ConfRover 0.53±0.01 0.35±0.01 0.12±0.01 55.89±0.95 86.38±0.78 49.08±1.18

STAR-MD 0.49±0.01 0.53±0.01 0.12±0.01 79.05±3.41 98.25±0.35 77.64±3.49

Table 18: Sequence Length Bucket: 150-225 (11 chains)

Cov Valid Dyn. Validity

Model JSD↓ Rec↑ tICA↑ CA%↑ AA%↑ CA+AA%↑
MD (Oracle) 0.27 0.66 0.16 90.57 99.66 90.23
MDGen 0.52±0.02 0.32±0.03 0.12±0.01 66.86±5.84 97.18±0.91 65.23±5.65

AlphaFolding 0.72 0.10 N/A 4.55 0.34 0.11
ConfRover 0.47±0.02 0.39±0.01 0.15±0.01 73.39±2.56 98.77±0.34 72.43±2.43

STAR-MD 0.37±0.02 0.53±0.03 0.16±0.01 89.55±1.70 99.82±0.22 89.41±1.81

L.2 GENERALIZATION TO DISSIMILAR PROTEINS

To strictly evaluate generalization to unseen protein folds, we report results excluding two test pro-
teins (7buy A and 7e2s A) that have high sequence similarity (> 80%) to the training set. Table 21
summarizes these findings.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Table 19: Sequence Length Bucket: 225-400 (15 chains)

Cov Valid Dyn. Validity

Model JSD↓ Rec↑ tICA↑ CA%↑ AA%↑ CA+AA%↑
MD (Oracle) 0.33 0.65 0.22 100.00 99.90 99.90
MDGen 0.62±0.01 0.21±0.01 0.14±0.00 61.69±4.22 97.71±1.06 60.40±4.75

AlphaFolding N/A N/A N/A 1.15 0.00 0.00
ConfRover 0.53±0.00 0.36±0.01 0.22±0.02 54.00±2.82 99.44±0.08 53.77±2.95

STAR-MD 0.44±0.02 0.53±0.02 0.22±0.02 82.38±1.62 99.98±0.04 82.37±1.63

Table 20: Sequence Length Bucket: 400+ (23 chains)

Cov Valid Dyn. Validity

Model JSD↓ Rec↑ tICA↑ CA%↑ AA%↑ CA+AA%↑
MD (Oracle) 0.33 0.66 0.24 99.86 100.00 99.86
MDGen 0.65±0.01 0.16±0.01 0.14±0.01 66.75±3.69 99.81±0.17 66.67±3.67

AlphaFolding N/A N/A N/A 0.97 0.00 0.00
ConfRover 0.57±0.01 0.32±0.01 0.26±0.01 28.54±1.14 99.61±0.31 28.54±1.14

STAR-MD 0.45±0.01 0.54±0.03 0.24±0.01 90.92±1.77 100.00±0.00 90.92±1.77

Table 21: Non-similar Proteins, Excluding 7buy A, 7e2s A (80 chains)

Cov Valid Dyn. Validity

Model JSD↓ Rec↑ tICA↑ CA%↑ AA%↑ CA+AA%↑
MD (Oracle) 0.31 0.67 0.17 98.37 98.07 96.43
MDGen 0.56±0.01 0.28±0.01 0.12±0.00 71.83±1.90 95.03±0.59 68.31±2.20

AlphaFolding1 0.58 0.22 N/A 10.98 0.92 0.52
ConfRover 0.52±0.01 0.36±0.01 0.15±0.01 56.94±0.52 92.47±0.25 52.06±0.36

STAR-MD 0.43±0.01 0.54±0.01 0.17±0.00 86.81±0.64 98.18±0.05 85.29±0.62
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M CONFROVER-W: WINDOWED ATTENTION BASELINE

To enable long-horizon generation (240 ns and 1 µs) within GPU memory limits, we implemented
ConfRover-W, a variant using windowed attention (window size 14) with attention sinks (first 2
frames) (Xiao et al., 2023a). This reduces temporal complexity from O(L2) to O(L×W ).

Figure 28 and Table 22 validate this approach on the 100ns benchmark, showing that ConfRover-W
maintains structural validity comparable to the full-attention model, confirming it as a fair baseline
for longer horizons.
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Figure 28: Validation of ConfRover-W at 100ns. Comparison of Structural Validity (Cα + All-
Atom) between the standard full-attention ConfRover and the windowed ConfRover-W. The win-
dowed variant maintains comparable performance, validating its use as a proxy for long-horizon
experiments.

Table 22: Comparison of ConfRover and ConfRover-W at 100ns. Quantitative metrics show that
the windowed approximation (ConfRover-W) achieves performance comparable to the full-attention
model (ConfRover), justifying its use for longer horizons.

Cov Valid Dyn. Validity
Model JSD↓ Rec↑ tICA↑ CA%↑ AA%↑ CA+AA%↑
ConfRover 0.52 0.36 0.15 56.43 92.37 52.02
ConfRover-W 0.51 0.37 0.15 50.08 89.05 45.70
STAR-MD 0.42 0.57 0.17 86.83 98.23 85.35
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N LLM USAGE DISCLOSURE

We utilized Large Language Models (LLMs) as a writing assistant during the preparation of this
manuscript. For a few sections, our process involved authoring detailed outlines and initial drafts
to establish the core scientific arguments and structure. Subsequently, we used LLMs to refine the
verbiage, improve grammar, and enhance the overall clarity of the text in those specific sections. All
scientific claims, experimental results, and theoretical assertions originated from the human authors,
who take full responsibility for the final content of the paper, in accordance with ICLR 2026 policy.
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