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ABSTRACT

In recent years, the long-range attention mechanism of vision transformers has
driven significant performance breakthroughs across various computer vision tasks.
However, these advancements come at the cost of inefficiency and substantial
computational expense, especially when dealing with sparse data. While sparse
attention mechanisms have been introduced to mitigate these issues by pruning
tokens involved in attention, they often lack context-awareness and intelligence,
frequently limiting the number of selected tokens uniformly across different inputs.
To address these challenges, we propose a novel algorithm: Select and Pack
Attention (SPA). SPA dynamically selects informative tokens using a low-cost
gating layer and packs these selected tokens into new batches, allowing for a
variable number of tokens to be used in GPU batch training and inference. Through
extensive experiments on diverse datasets and multiple computer vision tasks, our
method demonstrates superior performance and efficiency, including a 0.5-2.7 AP
improvement in object detection and a 10.9%-24.9% reduction in computation.

1 INTRODUCTION

Recent advancements in computer vision tasks such as image classification, segmentation, and
object detection have seen Vision Transformers (ViTs) surpass traditional convolutional approaches
(Dosovitskiy et al., 2020; Liu et al., 2021; Xia et al., 2022; Chen et al., 2023) due to their powerful self-
attention mechanisms. ViTs are particularly effective at capturing long-range dependencies, enabling
the learning of global features that are crucial for complex visual understanding. However, this
strength comes with a significant drawback: the computational overhead increases quadratically with
the number of tokens (Liu et al., 2021; Hua et al., 2022), leading to excessive and often unnecessary
computations among irrelevant tokens. This not only raises the computational burden but also risks
degrading performance by incorporating extraneous, often redundant, information in typical computer
vision tasks. As illustrated in Fig. 1, the self-attention mechanism in ViTs inadvertently processes a
large amount of superfluous data (i.e. background tokens), exacerbating computational inefficiency
and potentially degrading task performance by introducing irrelevant information into the model’s
learning process. This issue is particularly severe when dealing with sparse data, such as in small
object detection, where most pixels are not informative.

Numerous approaches have been proposed to address this issue by performing self-attention only on
the most informative tokens. However, these methods still encounter significant challenges in both
efficiency and performance.

• Efficiency: The constraints of GPU batch training, where images within a batch often contain
non-uniform numbers of informative tokens, pose challenges to parallelizing computation
effectively. Some methods, such as SparseViT (Chen et al., 2023), address this by padding
all effective tokens to match the maximum number in the batch, leading to inefficiencies,
as illustrated in Fig. 1. Other approaches, like DynamicViT (Rao et al., 2021) and EViT
(Liang et al., 2022), reduce computation only during inference by discarding a fixed number
of tokens. However, these methods still attend to all tokens during training, employing
an attention mask to focus on informative tokens, which, along with the mask prediction
module, can result in training costs that exceed those of a standard ViT. The Deformable
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Figure 1: Previous sparse attention methods either reduce computation only during the inference stage
or require padding the length of selected tokens to the maximum within a batch, which inevitably
introduces background tokens. This leads to reduced efficiency and worse accuracy.

Attention Transformer (DAT) (Xia et al., 2022), inspired by Deformable Convolutional
Networks (DCN) (Dai et al., 2017), merely reduces the receptive field of query tokens while
still computing all tokens, yielding minimal improvements in efficiency.

• Performance: Existing methods demonstrate effectiveness primarily in simpler tasks like
image classification, where some degree of information loss is tolerable. However, their per-
formance degrades in more complex tasks, such as object detection or instance segmentation,
which demand richer semantic information. For example, DynamicSwin (Rao et al., 2023),
a Swin-based DynamicViT, struggles in these scenarios due to inaccurate token selection,
leading to significant information loss.

To address these challenges, we propose a novel Select and Pack Attention (SPA) mechanism
that dynamically selects varying numbers of informative tokens from input batches, supervised by
selection labels, and packs them into new batches for parallelized training. Specifically, we introduce
a linear gating layer to generate scores for token selection, supervised by a multi-scale selection label
derived from object labels (e.g., bounding boxes, instance segmentation labels). After selection, the
chosen tokens are placed into uniform-sized package containers to form new batches, as illustrated
in Fig. 1. For attention computation within each container, tokens attend only to those from the
same original image, ignoring tokens from other images by using attention masks. Additionally,
SPA can be effectively integrated with the window-based attention proposed by Swin Transformer
(Liu et al., 2021), benefiting from the window shifting operation that captures information across
windows. To prevent information loss across package containers, we shift the feature maps every
two transformer blocks, ensuring that token pairs placed into containers vary, allowing the attention
computation to encompass all tokens. Based on SPA, we propose a backbone network, Select and
Pack Transformer (SPT), featuring a hierarchical architecture to generate image representations
at various scales for downstream computer vision tasks. To avoid mis-selection at the early stage
which may cause serious information loss (Xia et al., 2022), we leverage SPA from the third stage
with the adapted image features. Ultimately, SPA addresses the efficiency issue by selecting only
informative tokens and packing them into new batches, enabling efficient parallelized computation
for both training and inference. Moreover, by leveraging selection label supervision, SPA improves
performance in complex computer vision tasks, such as object detection. Comprehensive experiments
on three well-known datasets demonstrate the efficacy of SPA across multiple computer vision tasks.

To summarize, our main contributions are as follows:

• We propose a novel sparse attention mechanism, Select and Pack Attention (SPA), to
enhance both the efficiency and performance of Vision Transformers. For efficiency, SPA
dynamically selects informative tokens from images in a batch using a linear gating layer and
packs them together to enable efficient GPU batch training and inference. For performance,
we introduce a multi-scale selection label to explicitly supervise token selection, thereby
outperforming existing methods even in complex computer vision tasks.

• By effectively integrating our SPA mechanism with Swin blocks, which use a window
shifting trick to capture information across packages, we propose a backbone network with
a hierarchical structure called the Select and Pack Transformer (SPT). SPT can generate
features at various scales, making it suitable for many computer vision tasks.
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• Through extensive experiments on diverse datasets, with lower computation cost, SPT
outperforms state-of-the-art methods with a 0.5-2.7 AP improvement in object detection, a
1.3 AP gain in instance segmentation, and a 0.48 mAP increase in multi-label classification.

2 RELATED WORK

2.1 TRANSFORMER IN COMPUTER VISION

Given the remarkable success of transformers in natural language processing (NLP), this architectural
paradigm is progressively permeating diverse computer vision tasks (Vaswani et al., 2017; Bao et al.,
2021; Touvron et al., 2021; He et al., 2022; Zhang et al., 2024; Konstantinidis et al., 2023; Yang et al.,
2022; Kang et al., 2022; Ni et al., 2024a;b; Zhou et al., 2024; Fan et al., 2024; Fan & Tao, 2024). For
instance, Vision Transformer (ViT) divides input images into 16×16 patches, which are subsequently
treated as tokens for the application of the attention mechanism (Dosovitskiy et al., 2020). In
image segmentation, SAM (Kirillov et al., 2023) introduces a prompt-based algorithm, setting new
benchmarks across state-of-the-art methods. For object detection, DETR conceptualizes it as a direct
set prediction problem and designs a transformer-based network (Carion et al., 2020). DINO advances
self-supervised learning to propose a novel network rooted in the ViT architecture (Caron et al.,
2021). For super-resolution, transformers demonstrate exceptional capability in capturing long-range
dependencies for improved visual representations (Liang et al., 2021; Zhang et al., 2023).

2.2 EFFICIENT TRANSFORMERS

Despite their advantages in global feature extraction via self-attention across all tokens, Vision
Transformers (ViTs) are hindered by significant computational overhead because the computation of
attention weights scales quadratically with the number of tokens. To address this challenge, efficient
transformer variants (He et al., 2022; Child et al., 2019; Lingle, 2023) have explored multiple forms
of sparsity to reduce attention cost. Swin Transformer (Liu et al., 2021) introduces window-based
and shifted window-based self-attention mechanisms, significantly reducing computational demands
within localized windows. DynamicViT (Rao et al., 2021) proposes a dynamic token sparsification
framework to prune redundant tokens progressively and dynamically based on the input, SparseViT
(Chen et al., 2023) optimizes computation by selecting tokens based on the l2 norm of window
activations, prioritizing features with higher scores. DAT (Xia et al., 2022) employs an offset network
to refine the query token’s receptive field, further enhancing computational efficiency. Fixed sparse
patterns (Qiu et al., 2020; Zaheer et al., 2020) impose pre-defined attention masks to improve
scalability for long sequences. Hybrid local–global attention mechanisms (Chu et al., 2021; Dong
et al., 2022) restrict most computation to local windows while adding sparse global mixing tokens.
Spatial factorization approaches (Ho et al., 2019) decompose 2D attention into row/column operations
to reduce complexity. Learned sparsity frameworks (Wei et al., 2023) predict instance-dependent
sparse attention patterns directly from features.

While effective, these approaches either (i) rely on heuristic or structure-driven sparsity that does not
adapt well to downstream detection objectives, or (ii) lack dense supervision to ensure retention of
small-object regions. In contrast, SPA learns token importance under explicit multi-scale supervision
from object-level labels. Moreover, our packaging mechanism addresses a practical limitation of
dynamic sparse attention (irregular sequence lengths) by restoring batchwise parallelism.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE OF SPT

As illustrated in Fig. 2, SPT features a hierarchical structure composed of four stages. Each stage
generates image representations of varying sizes, resulting in a total of four different scales.

Specifically, suppose we consider a small 4×4 patch as a single token, the input image x ∈ RH×W×3

(H and W are the input image height and width), are progressively embedded into representations
r1 ∈ RH

4 ×W
4 ×C , r2 ∈ RH

8 ×W
8 ×2C , r3 ∈ RH

16×
W
16×4C , r4 ∈ RH

32×
W
32×8C (C is the embedding

dimension of the first patch embedding layer) stage by stage. Each stage is structured around an
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Figure 2: Overall architecture of Select and Packing Transformer (SPT). The hierarchical structure
can generate features with various scales as common backbone networks. The SPA blocks in the last
two stages can improve both efficiency and accuracy by disregarding uninformative tokens.

embedding block for feature map downsampling, followed by Ni transformer blocks tasked with
feature learning (Ni signifies the block count in the ith stage). Similar to Swin (Liu et al., 2021;
2022), the embedding block of the first stage fθ1 employs a convolution layer while the subsequent
embedding block consists of a patch merging layer that concatenates features as groups of 2 × 2
patches and a linear layer for feature projection. For the transformer blocks, the first two stages fθ1 ,
fθ2 utilize standard Swin Transformer blocks, whereas the latter two stages fθ3 , fθ4 incorporate our
Select and Pack Attention (SPA) block. This design decision is informed by observations from DAT
(Xia et al., 2022), which noted that early-stage transformer block replacement diminishes accuracy
due to the model’s inability to efficiently distinguish positive tokens based on shallow features. SPA
blocks in the second and third stages not only generate outputs for subsequent layers but also transfer
the score map to the next stage for the multi-scale supervision s0 ∈ RH

8 ×W
8 ×1 and s1 ∈ RH

16×
W
16×1

for computing select loss. With the selection map s2 ∈ RH
32×

W
32×1 generated in the last stage, there

are a total of three different scales. The complete process is as follows:

r1 = fθ1(x), r2 = fθ2(r1), s0 = fθg (r2) (1)

r3, s1 = fθ3(r2, s0), (2)
r4, s2 = fθ4(r3, s1), (3)

where r1, r2, r3, and r4 are output representations of four stages. fθ1 , fθ2 , fθ3 , and fθ4 denote the
four stage models. And s0, s1 and s2 denote the predicted score map for selection from the last three
stages, separately. fθg is the gating layer to generate scores for the output of stage 2.

In addition, given the higher efficiency of SPA blocks compared to Swin (Liu et al., 2021), we
included 4 additional blocks at the third stage to enhance performance while maintaining a lower
computation cost.

3.2 SELECT AND PACK ATTENTION (SPA)

Inspired by the gated networks in Mixture of Experts (MoE) (Petersen et al., 2022; Huang et al.,
2020; Shazeer et al., 2017; Aoki et al., 2022; Chen et al., 2022) and heterogeneous federated learning
(Lin et al., 2021; Ye et al., 2023), which adeptly guide models in selecting appropriate computational
paths and enhancing task-specific generalization, we design a Select and Pack (SnP) block. This
block utilizes a linear gating layer to select informative tokens (Detailed in Section A) and pack
them into fixed-size package containers, generating new batches for GPU training or inference.
While positive tokens undergo multi-head self-attention (MSA), negative tokens are directly passed
to the feedforward network, as illustrated in Fig. 3a. SPA not only enhances the efficiency of the
self-attention mechanism but also improves performance by focusing exclusively on informative
tokens, effectively mitigating the potential for misleading context introduced by background tokens.

Multi-Scale Supervised Selection. Although token selection can be implicitly guided by the final
objective, our experiments reveal that the gating layer tends to assign large values to all tokens, leading
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(b) SnP block.

Figure 3: (a) SPA computes attention (i.e., MSA) only for informative tokens. (b) SnP block selects
informative tokens under multi-scale supervision and packs selected tokens for batch training and
inference. The packed tokens attend to only tokens from the same image.

to the selection of too many tokens and reduced efficiency. To address this, we introduce a selection
label based on object labels, which directly indicate areas of interest, such as instance segmentation
masks or object detection bounding boxes. For segmentation, a binary mask assigns a value of 1 to all
object pixels and 0 otherwise. For object detection, an aggregated binary mask is formed by stacking
all bounding boxes. However, a single-scale label overly restricts token selection, causing significant
information loss and poor performance. To mitigate this, we reduce the Gumbel-Softmax function’s
threshold and integrate multi-scale select labels. In Fig. 3b, each SPA block in SPT not only uses
the selection scale matching the representation but also incorporates scores from up-scaled features,
adjusted via max-pooling to match the correct feature size. This approach selects the maximum
scores from two scales to include more informative tokens, thereby enhancing performance.

Specifically, given flattened input batch r ∈ RB×N×C (B, N and C are the batch size, the length
of each image representation and the number of channels, separately), the gate fθg assigns scores
s ∈ RB×N×1 to each token. Then, we element-wise multiply the normalized scores by a sigmoid
layer with the input representations to obtain the gated representations rg ∈ RB×N×C . After that, we
leverage the Gumbel-Softmax function (Jang et al., 2016) to separate positive tokens (i.e., informative
tokens), rp ∈ RNp×C (Np is the number of positive tokens from all images in the batch) as follows:

s = Max(fθg (r), sup), (4)

rg = Sigmoid(s)⊙ r, (5)
rp = Gumbel-Softmax(s)⊙ rg (6)

where r, sup, s, rg, rp denotes the input representation, scores for up-scale features, scores for
this scale, gated representation, and output positive tokens, separately. And ⊙ is element-wise
multiplication with boardcasting. fθg is the linear gating layer.

Token Packing. After the dynamic selection for each input image, the lengths of selected tokens vary.
To avoid padding all tokens to the maximum length, which would introduce significant computational
overhead, we pack the selected tokens into new batches. Inspired by (Dehghani et al., 2024), we
set a series of package containers with a fixed length L and fill them with the selected tokens. After
packing all selected tokens, if the total number of tokens is not a multiple of the packing length, we
only pad the last package. This approach is significantly more efficient than padding the selected
tokens for all images in the batch. Consequently, we obtain packed tokens, p ∈ RB′×L×C (B′ is
the new batch size of packed tokens), and the number of tokens (B′ × L) is much smaller than the
original input (B × N ), especially for sparse data. And the attention computation depends on L,
similar to the window size M of Swin. And we set L to be M2. Specifically, for input representation
batch r ∈ RB×N×C , the complexity of regular MSA, window-based self-attention (W-MSA), and
SPA are as follows:

Ω(MSA) = B(4NC2 + 2N2C), (7)

Ω(W-MSA) = B(4NC2 + 2M2NC), (8)

Ω(SPA) = B(NC +NC2) +B′(3LC2 + 2L2C), (9)
Compared to MSA, W-MSA is more efficient since the complexity is linear to the original token
length N . However, our SPA is not only linear to N , the new batch size B′ is also much smaller than
B, resulting in higher efficiency. For the self-attention of the packed tokens, we employ an attention
mask to ensure that all tokens attend only to tokens from the same image, as illustrated in Fig. 3b.
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Table 1: SPT achieves superior object detection performance on COCO2017 across three config-
urations while requiring lower overall computation. FLOPs are reported for the training stage.
Additionally, we include the performance gain over the best sparse attention baseline. *For all base
models, we adopted Cascade Mask RCNN framework for fair comparison.

Methods Attention OD Performance FLOPs (G) #Params
(M)

FPS
(image/s)AP AP50 AP75 APS APM APL backbone overall

Swin-T (Liu et al., 2021) Dense 46 68.1 50.3 31.2 49.2 60.1 96 267 48 50
SparseViT (Chen et al., 2023) Sparse 42.4 63.3 46.4 - - - - - 48 -
DAT-T (Xia et al., 2022) Sparse 44.4 67.6 48.5 28.3 47.5 58.5 101 272 48 46
DynamicSwin-T (Rao et al., 2023) Sparse 44.3 65.9 48.5 30.2 47.1 58.5 101 272 48 46
SPT-T (ours) Sparse 47.1 (+2.7) 68.9 51.6 31.7 50.6 60.9 90 (-10.9%) 261 (-4.0%) 55 54
Swin-S (Liu et al., 2021) Dense 48.5 70.2 53.5 33.4 52.1 63.3 188 359 69 32
DAT-S (Xia et al., 2022) Sparse 47.1 69.9 51.5 30.5 50.1 62.1 208 379 69 31
DynamicSwin-S (Rao et al., 2023) Sparse 47.2 68.1 52.7 32.6 49.8 62.3 192 363 69 32
SPT-S (ours) Sparse 49.3 (+2.1) 71 55.2 33.9 54.3 64.1 171 (-10.9%) 342 (-5.8%) 76 33
Swin-B* Liu et al. (2021) Dense 51.9 70.5 56.4 35.4 55.2 67.4 332 982 145 11
DynamicSwin-B (Rao et al., 2023) Sparse 50.5 69.7 58.9 34.7 53.2 66.1 341 991 145 11
SPT-B (ours) Sparse 53.2 (+2.7) 71.3 58.9 36 57.6 67.9 294 (-11.4%) 944 (-3.9%) 153 12

3.3 LOSS FUNCTION

The loss function of SPT comprises the loss for the target task and the selection loss. For the selection
loss, we adopt binary cross-entropy and sum over all SPA blocks as follows,

Lselect = −
∑
block

(y log s+ (1− y) log(1− s)) (10)

where s is the normalized score map through Sigmoid layer, and y denotes the ground truth label.

The overall loss function of SPT is LSPT = Ltask + αLselect, where α is a hyperparameter.

4 EXPERIMENTAL RESULTS

4.1 DATA AND EXPERIMENTAL SETUP

Table 2: SPT-based Mask RCNN achieves better object detection performance with less total
computation on BDD100K for all three configurations. FLOPS is for training stage. We adopted the
same image resolution as COCO2017.

Methods Attention OD Performance FLOPs (G) #Params
(M)

FPS
(image/s)AP AP50 AP75 APS APM APL backbone overall

Swin-T (Liu et al., 2021) Dense 22.4 34.6 24.6 7.9 20.1 46.8 96 267 48 50
DynamicSwin-T (Rao et al., 2023) Sparse 22.0 33.1 23.7 9.2 19.7 44.7 101 272 48 46
SPT-T (ours) Sparse 22.6 (+0.6) 33.1 24.6 8.8 18.5 47.7 84 (-16.8%) 255 (-6.3%) 55 58
Swin-S (Liu et al., 2021) Dense 22.6 34.9 24.9 8.1 20.3 47.1 188 359 69 32
DynamicSwin-S (Rao et al., 2023) Sparse 22.3 33.4 24.2 9.0 19.9 45.4 192 363 69 32
SPT-S (ours) Sparse 22.9 (+0.6) 33.8 25.2 8.7 19.8 48.2 155 (-19.3%) 326 (-10.2%) 76 34
Swin-B (Liu et al., 2021) Dense 22.7 35.1 25.1 8.2 20.5 47.6 332 508 107 18
DynamicSwin-B (Rao et al., 2023) Sparse 22.4 33.6 24.6 8.5 20.2 46.3 341 517 107 18
SPT-B (ours) Sparse 23.1 (+0.7) 34.3 25.5 8.2 20.6 48.6 256 (-24.9%) 432 (-16.4%) 115 20

Table 3: For early object detection on the more challenging BDD-S dataset, SPT also outperforms
baseline models with 20.8-22.4% backbone computation cost reduction when compared to baselines.

Methods Attention OD Performance FLOPs (G) #Params
(M)

FPS
(image/s)AP AP50 AP75 APS APM APL backbone overall

Swin-T (Liu et al., 2021) Dense 5.5 8.6 5.9 1.4 2.7 15.4 96 267 48 50
DynamicSwin-T (Rao et al., 2023) Sparse 4.7 8.4 3.7 1.0 2.6 12.8 101 272 48 46
SPT-T (ours) Sparse 5.6 (+0.9) 9.0 6.4 1.5 2.7 15.4 80 (-20.8%) 251 (-7.7%) 55 62
Swin-S (Liu et al., 2021) Dense 5.4 9.0 6.0 1.7 2.9 14.1 188 359 69 32
DynamicSwin-S (Rao et al., 2023) Sparse 5.2 8.2 6.0 0.9 2.3 14.3 192 363 69 32
SPT-S (ours) Sparse 5.7 (+0.5) 9.2 6.6 1.7 2.9 15.5 149 (-22.4%) 320 (-11.8%) 76 35

To evaluate the effectiveness of our SPT Transformer in complex computer vision tasks, we conducted
extensive experiments on object detection using the widely adopted COCO2017 and BDD100K
datasets. The COCO2017 dataset includes objects from 80 categories, while BDD100K comprises 10
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categories. Beyond standard object detection, we further tested our method on the challenging task
of early object detection, where objects are predominantly small, making both object detection and
token selection significantly more difficult. This scenario underscores the importance of accurate
token selection, as errors can result in the loss of entire objects, thereby highlighting the robustness
of our approach. To simulate this scenario, we adopted the method proposed in (Zhang et al., 2024).
Specifically, we computed the object-to-pixel ratios across entire images and selected samples from
the BDD100K dataset with object ratios below 25%, creating the BDD-S dataset.

Additionally, to further showcase the robustness of our SPT Transformer, we extend our experiments
to additional computer vision tasks, including instance segmentation on COCO2017 and multi-label
classification on PASCAL VOC 2012 dataset. For multi-label classification, we also select images
with object pixel ratios smaller than 25% to show the effectiveness of SPT in challenging scenarios.

To evaluate object detection and instance segmentation, we utilize the Mask RCNN framework, and
replace the backbone network with our SPT or other baselines. We adopt the default training settings,
such as 36 max training epochs, batch size of 2. In addition, we set the threshold of Gumbel-Softmax
to 0.01, and set the select loss weight α to 0.01. We set the window size of Swin block to 7, and the
container length of SPA to 49. Experiments were performed on two Linux servers, each outfitted
with dual NVIDIA L40S GPUs.

4.2 SPT FOR OBJECT DETECTION

In Table 1, we present a comparison of SPT with other baselines for the tiny, small, and base
configurations (i.e., SPT-T, SPT-S, and SPT-B) on the COCO2017 dataset. For baselines, we
focused on hierarchical backbones, as vanilla ViT-based methods, such as EViT (Liang et al., 2022),
produce single-scale outputs and perform significantly worse on object detection tasks compared
to hierarchical architectures like Swin Transformer (Liu et al., 2021; 2022), which provide feature
pyramids. In addition to comparisons with sparse attention approaches, we included Swin results
as a dense attention reference. Under the same settings, our approach outperforms all baselines
including dense attention (i.e., Swin). Compared to the best-performing sparse attention baseline,
SPT delivers AP improvements ranging from 2.1 to 2.7. Similarly, in Table 2, we report the results
on the BDD100K dataset, where SPT surpasses all baselines and achieves state-of-the-art object
detection performance, with an AP improvement of 0.6 to 0.7 over DynamicSwin (Rao et al., 2023).
SPT-B attains the highest AP of 23.1.

Early Object Detection Performance. For the performance of early object detection on the BDD-S
dataset, we observed that the base model underperforms compared to the tiny and small versions in
this scenario. Consequently, we included only the results of the tiny and small models in Table 3.
Notably, SPT-T and SPT-S achieved performance improvements of 19.1% and 9.6%, respectively. The
superior performance in early OD, which involves much smaller objects, highlights the effectiveness
of SPA in accurately selecting informative tokens, guided by multi-scale selection labels.

Table 4: SPT also performs better for instance segmentation on COCO2017.

Methods AP AP50 AP75 APS APM APL

DynamicSwin-T (Rao et al., 2023) 38.8 61.8 41.7 20.1 40.8 57.7
SPT-T (ours) 39.3 62.4 42.1 20.4 41.5 58.1
DynamicSwin-S (Rao et al., 2023) 39.6 63.1 42.8 21.0 42.4 59.2
SPT-S (ours) 40.9 64.6 44.0 21.8 43.9 60.1

Efficiency Analysis. The GFLOPs reported in Table 1, Table 2, and Table 3 are computed over
backbone, FPN and detection head with RGB input image at the resolution of 1280× 800 for training
stage. For a clearer comparison, we evaluate the throughput (i.e., FPS) only over the backbone
network on a machine with an NVIDIA L40S GPU, as including other components would result in
values that are too small. From these tables, we obtain the following foundings: 1) SPT consistently
outperforms all baselines in terms of efficiency, achieving a reduction in backbone computation
cost by 10.9% to 24.9%. 2) The efficiency improvement is more pronounced when datasets contain
smaller objects. For instance, the computation reduction of SPT-T on BDD-S is 20.8%, compared
to 16.8% on the full BDD100K dataset. This aligns with expectations, as our approach selects only
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object-containing tokens for computation. 3) To achieve better performance, SPA is applied only
at the last two stages, with four additional blocks introduced at the third stage. However, due to
downsampling at the third stage, the number of tokens is reduced by a factor of 16×, leaving the early
stages to dominate computation costs. Despite SPA selecting only 22% of tokens for computation
(discarding 78%), the overall efficiency improvement is limited to 16.8%.

4.3 SPT FOR OTHER COMPUTER VISION TASKS

In addition to the object detection task, we also evaluated our SPT on other tasks, including instance
segmentation and multi-label classification.

Instance Segmentation. As shown in Table 4, both tiny and small versions of SPT outperform
baseline models (Rao et al., 2023). SPT-S achieves a more substantial improvement, increasing AP
from 39.6 to 40.9 on COCO2017.

Table 5: The SPA blocks reduce the computation with a low number of selected tokens (i.e., select
ratio) and achieve better performance in multi-label classification on PASCAL VOC 2012.

Dataset Methods Mean Select Ratio(%) mAP

PASCAL VOC DynamicSwin-T (Rao et al., 2023) - 44.12
SPT-T (ours) 29.6 44.60

Figure 4: Under ground truth supervision, attending to only informative tokens can achieve better
performance and efficiency.

Table 6: Starting to replace the Swin blocks from the third stage performs the best, as early-stage
selection leads to information loss. Lselect significantly reduces the number of selected tokens for
computation, with lower select ratios. AP and FLOPs in this table are evaluated with Lselect.

Dataset SPA Blocks Select Ratios of stages (w/o Lselect) Select Ratios of stages (w/ Lselect) AP AP50 AP75

1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

BDD100K

✗ ✗ ✗ ✓ ✗ ✗ ✗ 36.5 ✗ ✗ ✗ 25.02 21.9 32.7 24.2
✗ ✗ ✓ ✓ ✗ ✗ 85.02 52.41 ✗ ✗ 23.21 25.01 22.6 33.1 24.6
✗ ✓ ✓ ✓ ✗ 99.24 82.15 71.45 ✗ 20.18 22.56 25.0 20.5 31.3 22.3
✓ ✓ ✓ ✓ 83.49 99.12 88.64 79.86 13.42 20.78 22.36 25.0 18.3 29.4 20.6

Multi-Label Classification. For multi-label classification on PASCAL VOC 2012, SPA improves per-
formance to 44.6, outperforming DynamicSwin (Rao et al., 2023), as shown in Table 5. Additionally,
we present the mean select ratios for SPA blocks. Overall, SPT reduces GFLOPs by 10.2%.

4.4 ABLATION STUDY

The Effect of Token Selection for Attention. To illustrate the effectiveness of informative token
selection, we designed experiments where all informative tokens were selected based on ground truth
selection. As illustrated in Fig. 4, for both plain ViT and window-based attention mechanisms (i.e.,

8
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Figure 5: We overlay the summation of the selection masks generated by all SPA blocks on the
original image. Warm color denotes high frequency of selection while cold color means be pruned
before the attention computation. With multi-scale supervision, the selection process is more accurate.

Swin), selecting tokens to disregard background information improves both accuracy and efficiency
on PASCAL VOC 2012 dataset.

Specific Design for Selection. Even though we know that token selection works, a critical challenge
is how to correctly select these informative tokens without ground truth labels. As discussed earlier,
previous methods (e.g., SparseViT) commonly adopt uniform token selection, applying a fixed
ratio for all images in each batch. However, the results in Table 7 demonstrate that our SPA with
dynamic selection performs better. Additionally, Fig. 5 provides visual comparisons to illustrate the
effectiveness of our proposed multi-scale select label.

Table 7: For uniform sparse attention, we adopt the top-50 technique as SparseViT (Row 1). SPA
block performs better. Lselect further improves the performance.

Dataset SPA Lselect Mean Select Ratio(%) mAP

PASCAL VOC
✗ ✗ 50 44.42
✓ ✗ 59.77 44.49
✓ ✓ 29.60 44.60

Number of SPA blocks. Table 6 explore the optimal number of SPA blocks in SPT. The results
match with the findings in Xia et al. (2022). Starting from the third stage yields the best performance.
Early-stage selection leads to information loss, resulting in worse performance.

5 CONCLUSION

In this paper, we analyze the current issues with sparse attention mechanisms and propose a novel
Select and Pack (SPA) mechanism to address these challenges for both efficiency and performance.
SPA focuses attention computations solely on informative tokens using a supervised gating block in
Vision Transformers and packs the selected tokens for parallelized GPU batch training and inference.
Integrated into the Swin Transformer’s hierarchical architecture, SPA forms the efficient Select and
Pack Transformer (SPT), which works as image backbone network for various computer vision tasks
and generates multi-scale representations. Extensive experiments across three datasets and a range of
vision tasks validate the effectiveness of SPT.

Despite these advantages, SPA relies on spatial supervision (e.g., bounding boxes or masks) to guide
token selection; while this is naturally available in detection and instance segmentation, its benefits
may diminish in tasks lacking structured spatial labels or in highly dense-label settings. Exploring
self-supervised or task-adaptive selection strategies represents a promising direction for future work.
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APPENDIX

A GATE MECHANISM IN THE SELECT-AND-PACK MODULE

This section provides additional details on the gating mechanism used in the Select-and-Pack (SnP)
module, complementing the description in Section 3.2. Similar to FLASH attention (Hua et al.,
2022) which proposes a transformer with linear time complexity, utilizing Gated Linear Units
(GLUs) (Shazeer, 2020), the gate is a lightweight, single-layer linear projection applied to each token
embedding to produce a scalar importance score. Formally, given token feature xi, the gate computes:

si = σ(Wgxi + bg) (11)

These scores si represent token informativeness and are supervised using the multi-scale selection
labels described in Section 3.2.
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To enable end-to-end training while sampling discrete tokens, we use the Gumbel-Softmax straight-
through estimator. The sampling probability for each token is:

s̃i = Gumbel-Softmax(si, τ) (12)
where τ is the temperature parameter.

This allows gradients to flow through the sampling operation during training.

B MORE RESULTS AND ANALYSIS

B.1 SELECT LOSS

We experimented with weighted cross-entropy to emphasize the selection of positive tokens. This
approach indeed increased the number of selected tokens. However, it also included more background
tokens, which resulted in worse performance. For example, when the weight was set to 5 in our
experiment on BDD-S, the selection ratio increased from 33% to 71%, but the final mAP dropped to
5.3.

B.2 SPT LIGHTWEIGHT VARIANTS

We actually offer two variants of the proposed SPT. The version shown in the main text (SPT-T/16)
emphasizes higher accuracy and thus introduces slightly more transformer blocks, resulting in a
modest increase in parameter count.

To provide a fairer comparison in terms of model size and efficiency, we also implemented a
lightweight variant (SPT-T/12) that maintains a similar parameter count to DynamicSwin-T while
achieving better performance and higher FPS. Table 8 provides a detailed comparison on the
BDD100K dataset.

Table 8: SPT-T/16 achieves the best performance with slightly higher computational overhead
compared to SPT-T/12; however, its FPS remains lower than that of DynamicSwin-T (Rao et al.,
2023).

Model AP #Params FPS
DynamicSwin-T (Rao et al., 2023) 22.0 48 46
SPT-T/12 22.3 48 62
SPT-T/16 (Main text) 22.6 55 58

B.3 OBJECT-TOKEN RETENTION ANALYSIS

We analyzed the proportion of object-containing tokens retained by SPA after selection. An object-
containing token is defined as any token whose receptive field overlaps with a ground-truth object
mask by ≥ 1 pixel.

Results show that 92.3% of ground-truth object tokens are retained, with the minor loss (7.7%)
confined mostly to non-critical object boundaries. Furthermore, the density of object-containing
tokens improves drastically from 11.2% to 49% after screening.

B.4 PERFORMANCE–EFFICIENCY TRADE-OFF ANALYSIS

Unlike traditional sparse attention methods that require predefined pruning ratios, SPA learns an
input-adaptive selection policy. This allows the model to retain more tokens for complex scenes and
prune aggressively when the background is simple.

To validate this design, we compare SPT with fixed pruning baselines. We enforce a fixed percentage
of tokens to be kept at Stages 3–4 and evaluate performance.

Fig. 6 shows that Dynamic SPA achieves the highest accuracy (22.6 AP) even while pruning more
tokens (74%) on average than fixed 50% pruning. Fixed heavy pruning (80%) causes a noticeable
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accuracy drop. This demonstrates that input-adaptive token selection is crucial: scenes with dense
traffic naturally require more tokens to be preserved, while sparse scenes allow aggressive pruning.

Figure 6: Performance vs. Pruning Level on BDD100K.

C LIMITATIONS

Currently, the proposed method needs segmentation masks or bounding boxes to create select labels
for supervision. Although our main target task is object detection, some vision tasks may lack this
kind of labels. While some models can be used to generate these labels, like SAM (segment-anything),
the generation process may introduce some errors.

D IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

E SOURCE CODE

We provide the anonymized source code in a zip file.
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