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Abstract

Large language models (LLMs) can improve reasoning at inference time through
test-time scaling (TTS), where multiple reasoning traces are generated and the
best one is selected. Prior work shows that increasing the number of samples K
steadily improves accuracy. In this paper, we demonstrate that this trend does
not hold indefinitely: at large K, further scaling yields no gains, and certain hard
questions remain unsolved regardless of the number of traces. Interestingly, we
find that different sampling temperatures solve different subsets of problems, im-
plying that single-temperature scaling explores only part of a model’s potential.
We therefore propose scaling along the temperature dimension, which enlarges
the reasoning boundary of LLMs. Averaged over Qwen3 (0.6B, 1.7B, 4B, 8B)
and five representative reasoning benchmarks (AIME 2024/2025, MATH500, Live-
CodeBench, Hi-ToM), temperature scaling yields an additional 7.3 points over
single-temperature TTS. Temperature scaling also enables base models to reach per-
formance comparable to reinforcement learning (RL)-trained counterparts, without
additional post-training. We further provide a comprehensive analysis of this phe-
nomenon and design a multi-temperature voting method that reduces the overhead
of temperature scaling. Overall, our findings suggest that TTS is more powerful
than previously thought, and that temperature scaling offers a simple and effective
way to unlock the latent potential of base models.

1 Introduction

Large language models (LLMs) have demonstrated strong reasoning capabilities for complex prob-
lems at test time [1]. As illustrated in Figure 1a, two main approaches have emerged to achieve
such reasoning. The first trains models to produce long reasoning traces with self-reflection and
correction, often implemented through reinforcement learning (RL) [2, 3]. While effective, this
approach requires costly and time-consuming training [4]. The second, known as test-time scaling
(TTS) [5–7], shifts the burden to inference: the model generates multiple reasoning traces in parallel
and a verifier selects the most reliable one [8]. Unlike RL, TTS requires no large-scale post-training
and generates relatively short, prefix-sharing traces. This enables efficient reuse of the KV cache [9]
and offers speed advantages in modern serving systems [10, 11].

Recent studies on TTS have shown that increasing the number of samples K can enhance reasoning
performance [12]. As illustrated in Figure 1b, scaling K up to 1,024 shows a clear trend of steadily
improving accuracy. However, when we push K further to 13,312, the improvement stops: some
questions remain unsolved no matter how many samples are drawn. If further scaling K brings no
improvement, have we reached the ceiling of TTS performance?

The answer is no. As shown in Figure 1c, we observe an interesting phenomenon: when scaling
K up to 1,024 under different sampling temperatures T , the sets of solvable questions differ. For
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Figure 1: Observations and motivation for temperature scaling in TTS. (a) RL vs. TTS: RL produces
long single traces, while TTS generates multiple shorter ones. (b) Pass@K and − log(Pass@K)
curves at T = 0.7 on Qwen3-4B (AIME 2025); no gain beyond K = 1,024. (c) Question solvability
on AIME 2025 for Qwen3-4B: different temperatures solve different subsets of questions. (d) Single-
temperature vs. multi-temperature scaling: the latter expands the reasoning boundary.

example, a question unsolved at T = 0.5 may become solvable at T = 0.7. The model’s overall
solvable set is therefore larger than the solvable set under any single temperature. This indicates
that scaling K at a fixed temperature only explores part of the model’s potential. To unlock the full
boundary, we scale along the temperature dimension: given any budget, we divide samples evenly
across multiple temperatures. As shown in Figure 1d, this multi-temperature strategy achieves a much
higher performance upper bound. These results highlight the importance of temperature sampling in
TTS.

In this paper, we show that temperature provides a new dimension for scaling at test time. Through
extensive experiments across model sizes and datasets, we demonstrate that temperature scaling
expands the reasoning boundary of LLMs. This effect arises because, while all temperatures can solve
easy questions, some hard questions are only solvable at specific temperatures. With temperature
scaling, a base model can reach performance comparable to RL-trained models. Averaged over
Qwen3 (0.6B, 1.7B, 4B, 8B) and five benchmarks (AIME 2024/2025, MATH500, LiveCodeBench,
Hi-ToM), temperature scaling yields an additional 7.3 points over single-temperature TTS. We further
conduct entropy-based analyses and case studies to understand this phenomenon. Finally, we design
a multi-temperature voting method that identifies and exits easy questions early, making temperature
scaling more efficient. Overall, our contributions are threefold:

• Scaling test-time compute to a new dimension. We show that scaling the sampling temperature
expands the model’s reasoning boundary, revealing a new axis of test-time compute.

• Analyzing the dynamics of temperature scaling. Through comprehensive analysis, we show
that the enlarged reasoning boundary arises because different temperatures solve different hard
questions, while easy questions can be solved by all temperatures.

• Designing efficient methods for temperature scaling. We propose a multi-temperature vot-
ing strategy that exits easy questions early, reducing overhead while preserving the benefits of
temperature scaling across models and datasets.

2 Scaling Temperature at Test Time

In this section, we first introduce the concept of temperature sampling and describe the experimental
setup for scaling temperature. We then present the performance improvements achieved through
temperature scaling, and compare this approach against further scaling K and RL-based methods.

2.1 Temperature Sampling

Temperature sampling. Temperature-based sampling has long been studied in probabilistic mod-
eling [13], and it remains a core component of decoding in LLMs. At each step of autoregressive
generation, the model conditions on the input x and previously generated tokens y1:t−1 to yield a
distribution over the next token, from which yt is sampled:

yt ∼ p(· | x, y1:t−1) = softmax
(

fθ(x,y1:t−1)
T

)
.

Here, fθ(·) denotes the model logits and T is the sampling temperature. The temperature rescales the
logits before applying the softmax, thereby shaping the probability distribution used for sampling.
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Table 1: Results (%) of temperature scaling across models and datasets. Base reports Pass@1, 024
under T = 0.6. +T reports Pass@All when scaling the sampling temperature from 0.0 to 1.2, with
1,024 samples per temperature. ∆ denotes the difference between +T and Base.

Models AIME2025 AIME2024 MATH500 LiveCodeBench Hi-ToM

Base +T ∆ Base +T ∆ Base +T ∆ Base +T ∆ Base +T ∆

Qwen3-8B 60.0 66.7 6.7 73.3 80.0 6.7 97.0 97.8 0.8 32.6 40.0 7.4 93.0 95.5 2.5
Qwen3-4B 60.0 73.3 13.3 66.7 76.7 10.0 95.5 98.5 3.0 36.0 40.0 4.0 83.0 92.0 9.0
Qwen3-1.7B 46.7 50.0 3.3 43.3 50.0 6.7 92.5 95.5 3.0 29.7 35.4 5.7 37.0 55.0 18.0
Qwen3-0.6B 20.0 36.7 16.7 23.3 30.0 6.7 88.1 94.0 5.9 25.7 31.4 5.7 71.5 82.5 11.0

Effect of temperature. The sampling temperature T is non-negative. When T = 0, the distribution
collapses to a delta on the maximum-logit token, equivalent to deterministic decoding. For T > 0,
smaller values sharpen the distribution, making generation more deterministic and favoring high-
probability tokens, while larger values flatten it, increasing randomness and promoting diversity.

2.2 Experimental Setup

Sampling temperature and number of samples. We vary the sampling temperature from 0.0 to
1.2 in increments of 0.1. At temperature 0.0, we generate a single reasoning trace for each question,
whereas at other temperatures we generate 1,024 traces per question.

Datasets and prompts. We evaluate on reasoning benchmarks spanning multiple domains. AIME
2024, AIME 2025, and MATH500 [14] are used to assess mathematical reasoning. LiveCodeBench
v6 [15] evaluates code generation, and Hi-ToM [16] focuses on social and logical reasoning. All these
benchmarks support automatic output verification. Further details about the datasets and prompts are
provided in Appendix A.

Platform and models. All experiments are conducted using vLLM [10] to enable large-batch rollouts.
We run our evaluations on a cluster using 64 NVIDIA H100 GPUs. The models include the Qwen3
series (0.6B, 1.7B, 4B, 8B) [17], and Polaris-4B-Preview [18], an RL-trained variant of Qwen3-4B.

Evaluation metrics. Our primary evaluation metric is Pass@K, where K is the number of sampled
traces. It measures the probability of obtaining at least one correct answer when sampling K times.
Let N be the total number of generated samples and C the number of correct ones, then

Pass@K = 1−
(
N−C
K

)(
N
K

) .

In addition, the average accuracy Avg@N = C/N approximates the model’s correctness probability
when N is large. As our aim is to highlight scaling behavior, we use ground-truth verification instead
of a reward model (RM) to avoid confounds from RM quality.

AIME 2024/2025 reasoning trace validation. Each AIME problem has an integer answer. It has
been argued that LLMs may sometimes arrive at the correct answer by chance rather than through
valid reasoning [19]. To address this concern, we conduct additional validation on all problems where
a model’s Avg@1, 024 is below 3%. For these problems, the model-generated reasoning traces and
human-written reference solutions are jointly reviewed by gpt-5 as an automatic judge. Further details
of this validation process are provided in Appendix A.

2.3 Results on Temperature Scaling

Main results. We compare scaling at the default temperature (T = 0.6) with multi-temperature
scaling. As shown in Table 1, temperature scaling consistently enlarges the reasoning boundary
across all models and datasets. Averaged over Qwen3 (0.6B, 1.7B, 4B, 8B) and five benchmarks, it
yields an additional 7.3 points over single-temperature TTS. Concretely, on AIME 2025, Qwen3-4B
gains 13.3 points after temperature scaling, indicating that any single temperature covers only part
of the model’s reasoning capability. However, the effect varies by dataset: on MATH500, where
Qwen3-8B already performs strongly, the additional gain from temperature scaling is relatively small.

No single temperature works for all questions. Each question shows its own temperature preference.
For example, in Figure 2a, one AIME 2025 problem requires T = 1.1 with 128 traces to reach
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Figure 2: Scaling temperature for test-time compute on Qwen3-4B. (a) Pass@K curves for different
temperatures on AIME 2025 Q22. (b) Distribution of preferred temperatures across AIME 2024/2025.
(c) Pass@K scaling curves on AIME 2025. (d) Avg@1, 024 curves across five datasets.

Pass@K = 1, while T = 0.7 needs 256 traces. Figure 2b further shows the temperature preferences
of Qwen3-4B on all AIME 2024/2025 questions: each question has a different optimal temperature,
and no single value performs best across the board. Interestingly, while higher temperatures increase
diversity and creativity, we find no consistent link to improved reasoning capability.

Pass@K vs. Avg@N . Figure 2c shows Pass@K scaling curves of Qwen3-4B on AIME2025 under
different temperatures. When K is small, different temperatures yield similar Pass@K, since models
mainly solve easy questions that all temperatures can handle. As K grows, however, temperature-
specific advantages emerge: a hard question favoring one temperature may eventually be solved there
but not at others, leading to larger gaps at Pass@1, 024. In contrast, Figure 2d shows that Avg@1, 024
remains nearly identical across temperatures, as most easy questions are solved by all settings and
the ability to solve harder ones is drowned out in this metric.

Remarks. Prior work has reported similar Avg@N curves and argued that, within a range, tempera-
ture does not affect LLM reasoning performance [20]. Our results suggest this is not the case in the
TTS setting: Avg@N fails to capture the model’s ability to solve hard questions with low probability,
whereas a good verifier can still identify these sparse correct traces [7].

2.4 Scaling Along T vs. Scaling Along K

Understanding dataset difficulty distribution and solvability. Figures 3a and 3b plot the
Avg@1, 024 of each question under two different temperatures, with each point representing one
problem. From this view, the questions can be grouped as:

• Easy: questions near the upper-right diagonal, solved by both temperatures with high probability.
• Medium: points near the lower-left diagonal, harder but still solved by both temperatures.
• Hard: points lying on the axes, solvable at one temperature with low probability but not the other.
• Impossible: points at the origin, unsolved regardless of temperature.

We observe that many questions cluster along the upper-right diagonal: these are simple problems
that any temperature can solve, explaining why Avg@N shows little difference across temperatures.
Some questions remain at the origin: these are beyond the reach of temperature scaling and likely
require training rather than TTS.

Scaling across temperatures unlocks latent capability. The axis points (hard problems) illustrate
why temperature scaling is effective: sampling across multiple temperatures ensures that these
problems enter the solvable set, whereas sampling under a single temperature collapses all solvable
hard problems from other temperatures back to the origin.

Further scaling the number of samples does not help. As shown in Figure 1b, increasing K from
1,024 to 13,312 does not solve any additional problems. This suggests that the TTS curve has two
phases: an initial regime where more samples improve performance, followed by a plateau where
no further gains are observed. In contrast, Figure 3c shows that scaling temperature yields a 6.67%
improvement, demonstrating that temperature provides a meaningful additional dimension for TTS.

Remarks. When scaling K to 13,312, we initially observe improvements, with the model producing
correct final answers for questions unsolved under a smaller budget. However, after gpt-5-based trace
verification, these cases are found to be invalid: the model is merely more likely to guess the correct
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Figure 3: Comparison of scaling along K and scaling along T . (a) Correlation of Avg@1, 024 across
two temperatures on AIME2025, Qwen3-4B. (b) Correlation of Avg@1, 024 across two temperatures
on AIME2025, Qwen3-8B. (c) Scaling K vs. scaling T on AIME2025, Qwen3-4B. (d) Temperature
scaling vs. RL-trained model on AIME2025, Qwen3-4B, thinking mode.

answer with more samples. This highlights that future work on RL and TTS should account not only
for final-answer accuracy but also for the validity of reasoning traces.

2.5 Comparison with RL-Trained Methods

Setup. We evaluate the RL-trained Polaris-4B-Preview model against its base model, Qwen3-4B.
Following the setup suggested by [18], we run the RL model on AIME 2025 with temperature
T = 1.4, a maximum context length of 96K tokens, and the “thinking” mode enabled. To ensure
fairness, we apply the same configuration to the base model: scaling temperature from 0.0 to 1.4,
enabling “thinking” mode, and setting N = 128 samples per question.

Scaling K cannot make the base model comparable to RL. As shown in Figure 3d, the RL-trained
model consistently outperforms the base model when scaling the number of samples, with a clear
advantage under small budgets (e.g., Pass@1). Although the performance gap narrows as K increases,
the base model never fully catches up.

Further scaling T can make the base model comparable to RL. As shown in Figure 3d, scaling
across temperatures raises the base model to Pass@All performance on par with the RL-trained
model. The overall success rates are similar, though they differ in which questions remain unsolved:
the base model fails on Q14, Q15, and Q28, while the RL model fails on Q13, Q14, and Q15. Thus,
temperature scaling extends the base model’s reasoning boundary to match RL performance.

Remarks. There is an active debate on whether RL brings genuinely new capabilities to LLMs [4].
Some prior work argues that scaling K sufficiently can erase or even reverse the advantage of RL [21],
while others contend that many of the base model’s large-K successes are merely guesses, and after
verifier filtering the RL-trained model remains stronger [19]. Our findings align with the latter:
scaling K narrows the gap but does not eliminate it. However, when we further scale across T , the
base model becomes comparable to RL. In this sense, exploring both K and T dimensions reveals a
broader reasoning boundary than either alone.

3 Deep Analysis of Temperature Scaling

In this section, we first present the entropy dynamics underlying temperature scaling, then provide a
case study to illustrate these behaviors in practice, and finally discuss the strengths and limitations of
temperature scaling.

3.1 Learning the Entropy Dynamics of Temperature Scaling

Entropy. We measure model uncertainty using the entropy of the next-token distribution. At each
step, given logits fθ(x, y1:t−1), we compute

H = −
∑
y

p(y | x, y1:t−1) log p(y | x, y1:t−1), p(y | x, y1:t−1) = softmax(fθ(x, y1:t−1)).

We report the average entropy H across all generated tokens. Low H indicates sharp logits and
high confidence, while high H reflects uncertainty. Here, it is always computed from the model’s
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Figure 4: Entropy dynamics of Qwen3-4B across temperatures on AIME 2025. (a) Q16. (b) Q29. (c)
Q11. (d) Across the whole dataset.
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Figure 5: Entropy distributions and temperature subset. (a) An easy problem (AIME 2025 Q16,
Qwen3-4B). (b) A hard problem (AIME 2025 Q25, Qwen3-4B). (c) Temperature minimal subset for
Qwen3-4B.

untempered softmax. As shown in Figure 4a–c, average H rises with T : higher T increases the
chance of selecting low-probability tokens, raising the sequence-level H .

Entropy dynamics of correct vs. incorrect traces. We analyze the average entropy of all traces,
as well as the correct and incorrect subsets. For easy/medium questions (Figure 4a), correct-trace
entropy increases smoothly with temperature, while incorrect-trace entropy rises much faster. At low
T , correct traces show higher entropy, reflecting greater diversity; at high T , they show lower entropy,
reflecting coherence when the model answers correctly. For impossible questions (Figure 4c), in
contrast, the entropy of all traces increases rapidly as T grows. At the dataset level (Figure 4d), correct
traces consistently maintain lower entropy than incorrect ones at higher temperatures, suggesting that
the model seems to “know” when it is answering correctly. But is this always the case?

When does the model “know it knows”? The entropy gap between correct and incorrect traces holds
reliably only for easy/medium questions. As shown in Figure 5a, for an easy problem at T = 1.0,
the entropy distribution of correct traces is clearly shifted to the left compared to incorrect ones.
However, for a hard problem (Figure 5b), where only 2 out of 1,024 traces are correct, the entropy
of correct traces is not always lower than that of incorrect ones. The model “knows it knows” only
when the question is easy, but not when it is hard. This explains why in Figure 4d, where easy
problems dominate, the aggregate effect makes it appear that correct traces always have lower entropy,
drowning out the behavior on hard problems.

Remarks. Recent work has explored uncertainty-guided decoding [22, 23], where high-entropy
traces are discarded under the assumption they are unlikely correct [24]. Our findings suggest
this assumption holds for easy/medium questions, where correct traces typically align with lower
entropy. However, for hard questions, correct traces do not necessarily exhibit low entropy, indicating
uncertainty alone is insufficient as a universal signal.

3.2 Case Study

Problem. We illustrate the effect of sampling temperature using AIME 2025 Q24. The task is
to determine the number of zeros of the function f(x) = sin

(
7π sin(5x)

)
, 0 < x < 2π. This
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problem essentially has a single correct reasoning path: one must reduce the condition f(x) = 0 to
sin(5x) = k/7 with k ∈ {−7, . . . , 7}, and count the corresponding solutions over five periods.

Case study. At temperature T = 0.7, the model solved the problem in 2 out of 1,024 samples.
The successful traces explicitly reduced the condition to sin(5x) = k/7, enumerated the valid k
values, and counted their solutions within (0, 2π). In contrast, at T = 0.9, none of the sampled traces
followed this reasoning structure; typical attempts instead guessed the number of zeros by listing
approximate intersection points, without connecting them to the k/7 values, and thus failed to reach
the correct count. This illustrates that a hard question may be solvable under one temperature but not
another, highlighting the need for temperature scaling.

3.3 Strengths and Limitations of Temperature Scaling

Strengths. As shown in Figure 1d, the most notable strength of temperature scaling is that it
achieves a higher upper bound when K is large, revealing a larger reasoning boundary. A second
advantage is that distributing samples across temperatures does not substantially deviate from any
single-temperature Pass@K curve when K is small. This is because improvements at small budgets
mainly come from solving easy questions, for which accuracy is largely unaffected by the choice of
temperature (as also shown in Figures 2d and 3a,b).

Limitations. The main limitation of temperature scaling lies in computational efficiency. For
example, using 12 temperatures requires roughly 12× the compute of single-temperature scaling to
reach the expanded reasoning boundary. This overhead is less of a concern when a strong verifier is
available: most easy questions can be solved with little computation and verified early, allowing the
budget to be focused on hard ones. However, such verifiers are not always accessible. In the next
section, we investigate whether some of this cost can be saved even without verifiers.

4 Design Test-Time Methods with Temperature Scaling

In this section, we first analyze whether all temperatures and all questions are necessary for tempera-
ture scaling. We then design an algorithm for more efficient temperature sampling.

4.1 Are All Temperatures and Questions Necessary for Scaling?

Finding a minimal subset of temperatures. A natural question is whether we must sample from all
available temperatures to achieve the expanded upper bound, or whether a smaller subset is sufficient.
As shown in Figure 5c, we evaluate subsets formed by gradually adding temperatures from either the
low or high end. The results show that starting from higher temperatures requires a smaller subset
to reach the upper bound; traces generated at low temperatures can also be obtained at higher ones.
Based on this, we select a subset that generalizes across models and datasets, excluding very low
temperatures (0.1–0.3).

Early exit for easy questions under temperature scaling. Figures 3a and 3b show that easy
questions require far fewer samples to solve and can be answered reliably at any temperature with
high probability. This observation motivates a simple strategy: avoid redundant sampling on such
problems by using a voting-based mechanism across temperatures. In the following, we describe how
multi-temperature voting can serve as an early-exit method.

4.2 Algorithm for Efficient Temperature Scaling

Method overview. As illustrated in Figure 6, for each question we maintain per-temperature candidate
answer pools. In each round, every temperature contributes one new trace per active question, and the
corresponding answers are recorded. We first perform intra-temperature voting: for each temperature,
the most frequent answer is selected, and if its vote count does not reach the intra-threshold τintra, that
temperature is deemed not yet confident and sampling continues. Only when all temperatures satisfy
the intra-threshold do we proceed to cross-temperature voting, where the majority answers from each
temperature are voted across temperatures. If the winning answer reaches the cross-threshold τcross,
the question is marked as easy and exits early. Otherwise, sampling continues in the next round. The
complete algorithm is provided in Appendix C.
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Figure 6: Overview of the voting algorithm for efficient temperature scaling. Each temperature
maintains its own candidate pool and first performs intra-temperature voting with threshold τintra =
0.8. Only if all temperatures pass this stage do we proceed to cross-temperature voting, where
majority votes are aggregated across temperatures with threshold τcross = 1.0. Questions that meet
both criteria are marked as easy and exit early.

Table 2: Results across five datasets. Base reports Pass@1, 024 at T = 0.6. +T reports results with
full temperature scaling. +Ours denotes our efficient temperature-scaling method. ∆C shows the
reduction in computation cost relative to full temperature scaling.

Models AIME2025 AIME2024 MATH500

Base +T +Ours ∆C Base +T +Ours ∆C Base +T +Ours ∆C

Qwen3-8B 60.0 66.7 66.7 -31.6% 73.3 80.0 80.0 -31.6% 97.0 97.8 97.8 -54.4%
Qwen3-4B 60.0 73.3 73.3 -33.5% 66.7 76.7 76.7 -31.6% 95.5 98.5 98.5 -49.5%
Qwen3-1.7B 46.7 50.0 50.0 -27.2% 43.3 50.0 50.0 -27.2% 92.5 95.5 95.5 -36.3%
Qwen3-0.6B 20.0 36.7 36.7 -25.0% 23.3 30.0 30.0 -25.0% 88.1 94.0 94.0 -26.0%

Models LiveCodeBench Hi-ToM Average

Base +T +Ours ∆C Base +T +Ours ∆C Base +T +Ours ∆C

Qwen3-8B 32.6 40.0 40.0 -35.0% 93.0 95.5 94.5 -78.7% 71.2 76.0 75.8 -46.3%
Qwen3-4B 36.0 40.0 40.0 -32.8% 83.0 92.0 86.5 -32.8% 68.2 76.1 75.0 -36.0%
Qwen3-1.7B 29.7 35.4 35.4 -29.9% 37.0 55.0 42.0 -78.3% 49.8 57.2 54.6 -39.8%
Qwen3-0.6B 25.7 31.4 31.4 -26.1% 71.5 82.5 81.5 -32.4% 45.7 54.9 54.7 -26.9%

Remarks. It is well known that the answer most favored by the model is not always correct [5]. We
acknowledge this limitation. However, our goal here is not to aggregate answers for final prediction,
but to identify which questions are easy and can exit early. Moreover, the use of multi-temperature
voting helps smooth out spurious signals, and the relatively high thresholds we adopt (τintra = 0.8,
τcross = 1.0) provide additional robustness against noise.

5 Experiments

In this section, we evaluate the proposed method for more efficient temperature sampling. We then
analyze the results and discuss directions for future work.

5.1 Results and Analysis

Main results. As shown in Table 2, our method reduces the computation required for temperature
scaling across tasks, while maintaining nearly the same performance. The efficiency gains come
from excluding very low temperatures and enabling early exit on easy questions. For example, on
MATH500, Qwen3-8B achieves a 54.4% reduction in computation with negligible loss in Pass@All.
Notably, Hi-ToM shows a different pattern: as a belief-allocation reasoning task, it can be solved by
powerful models but also occasionally by weaker ones for spurious reasons, leading to less consistent
scaling behavior.

A powerful model is what we need. As shown in Table 2, the overall computation savings also
follow a scaling trend. A strong yet compact model, such as Qwen3-8B, is particularly well-suited
for temperature scaling: it classifies more questions as easy, enabling our method to evict them early
for efficiency and apply temperature scaling only to the hard ones. By contrast, models that are too
small struggle even on easy questions, leaving little room for efficient scaling.
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5.2 Discussion

Alternative strategies for evicting easy questions. Beyond multi-temperature voting, we also
explored using entropy signals to identify questions that can be exited early. If the entropy remains
very low and changes little across temperatures, the question is likely easy; if the entropy is very high,
the question is likely impossible, and repeated sampling will not help. However, we find that entropy
distributions vary significantly across datasets and domains, making it difficult to design a universal
entropy-based eviction strategy.

Temperature sampling in feedback-based workflows. In this paper, we focus on internal model
signals to evict easy questions. In real applications, this is less of a concern: one can simply call
a powerful verifier after each run, and if a trace is deemed correct, the question can be evicted
immediately. This would allow temperature sampling to focus only on unsolved questions, yielding
substantial savings. However, in such workflows the verification cost itself becomes a critical factor.
Regardless, we believe temperature sampling remains a simple yet powerful way to explore the
reasoning boundary of base models. An interesting direction for future work is to study how variable
temperature within a single trace may further influence reasoning ability.

6 Related Work

TTS for LLMs. Multi-trace TTS [5, 6, 12, 7, 25, 26] generates multiple candidate completions in
parallel and selects the best one using either a verifier [27–33, 8] or voting-based approaches [34, 35].
This approach can be further combined with search algorithms [36–41], which interleave generation
and selection in a step-by-step manner to progressively improve the final output.

Recent studies have also explored the connection between RL and TTS [42, 43, 21, 19, 4]. In
parallel, other works investigate how to teach models to dynamically choose between single-trace
and multi-trace reasoning strategies [44–47]. Recent work also incorporates TTS into reasoning
workflows [48–50].

Sampling methods for TTS. A typical sampling pipeline consists of three components: the prompt
input to the model, the stochastic sampling procedure, and post-processing of the logits. Prior work
[51, 52] has shown that the design of the prompt can influence the inference performance. Based on
temperature sampling [13], many works have explored new strategies for sampling [53–59] and logit
truncation [60–64] to better balance diversity and quality. Recently, (author?) [20] reported that
temperature has limited impact on model reasoning capability. Our results suggest this is not the case
when using Pass@K as the metric. Meanwhile, (author?) [65] found that the optimal temperature
varies across datasets, a pattern we also observe in Figure 2d.

More related work on single-trace TTS, efficient algorithms, and serving systems can be found in
Appendix D.

7 Conclusion

We revisit TTS for reasoning in LLMs and show that scaling the number of samples K alone has
diminishing returns: once K is large, accuracy plateaus and some questions remain unsolved. In
contrast, scaling the sampling temperature expands the reasoning boundary, as different temperatures
unlock different hard problems while easy ones are solved universally. This makes temperature
scaling a simple yet powerful complement to traditional TTS, enabling base models to match RL-
trained counterparts without additional training. Through entropy-based analysis and case studies, we
further characterize the dynamics behind this effect. Finally, we propose efficient multi-temperature
voting methods that cut the overhead of temperature scaling by exiting early on easy questions.
Overall, our results highlight temperature scaling as an effective and practical tool to unlock the latent
reasoning capabilities of LLMs.
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Appendix

A Datasets, Evaluation, and Verification

A.1 Datasets and Evaluation Methods

Mathematical reasoning. We use AIME 2024, AIME 2025, and MATH500 [14] to evaluate
mathematical reasoning. AIME is a high school mathematics competition that features 30 challenging
problems each year, and we include all 30 problems from both the 2024 and 2025 editions. MATH500
is a subset of the MATH benchmark comprising challenging problems across multiple topics; we

15



select all problems of difficulty level 5, which is the highest level in MATH500, yielding 134 questions.
For evaluation, we prompt the model to place its final answer inside a \boxed{} expression. For
AIME, where answers are integers, the boxed content can be directly parsed and compared to the
reference. For MATH500, where boxed expressions can be more complex, we use sympy to check
mathematical equivalence between the predicted and reference answers.

Code generation. We use LiveCodeBench v6 [15], which consists of recently collected programming
problems from AtCoder and LeetCode. Version 6 covers 175 problems released between January
2025 and May 2025. To evaluate model outputs, we run each generated program against a large set
of private test cases, and a solution is considered correct only if it passes all test cases.

Social and logical reasoning. Theory-of-mind (ToM) refers to the ability to infer others’ mental
states such as beliefs [66, 67]. A common ToM evaluation format is the unexpected transfer task,
which can be viewed as a form of commonsense dynamic logical reasoning [68]. For example, in
a multi-step story: Alice and Bob are in a room with a chocolate in a box; after Alice leaves, Bob
moves the chocolate to the table. A correct solver should infer that Alice still believes the chocolate
is in the box. Hi-ToM [16] contains 200 problems that evaluate multi-agent ToM reasoning over long,
temporally structured scenarios. To evaluate model outputs, we generate process-level labels, and a
prediction is considered correct only if all beliefs are correctly inferred at every step.

A.2 Evaluation Prompts

The prompts for AIME, MATH500, and LiveCodeBench are shown in Figure 7, Figure 8, and
Figure 9, respectively. For Hi-ToM, we use the same one-shot prompt format as in (author?) [68].

Prompt for AIME

Please reason step by step , and put your final answer within
\boxed {}.

{Question}

Figure 7: Prompt used for AIME.

Prompt for MATH500

Answer the following math question step by step , given in LaTeX
format , clearly and concisely , and present the final answer as
\boxed{x}, where X is the fully simplified solution.

Example:
Question: \int_0^1 (3x^2 + 2x) \,dx
Solution: \int (3x^2 + 2x) \,dx = x^3 + x^2 + C
Evaluating from 0 to 1: (1^3 + 1^2) - (0^3 + 0^2) = 1 + 1 - 0 = 2

\boxed {2}

Now , solve the following question step by step.

{Question}

Figure 8: Prompt used for MATH500.
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Prompt for LiveCodeBench

You are an expert Python programmer.
You will be given a programming problem and must generate a correct

Python solution that matches the specification and passes all
tests.

{Question}

Format:
You will use the following starter code to write the solution
and enclose your code within backticks.

```python
class Solution:

def solve(self , ...):
pass

Answer:

Figure 9: Prompt used for LiveCodeBench.

A.3 Verification Pipeline

For AIME, we apply an additional reasoning-trace verification step to reduce the risk of spurious
correctness. Specifically, for every model and every AIME problem, if among 1,024 sampled traces
the number of correct answers is ≤ 32 (i.e., Avg@1024 ≤ 3%), we perform gpt-5-assisted validation.
Gpt-5 is provided with multiple human-written reference solutions and asked to judge whether each
model-generated reasoning trace is logically valid and leads to the correct answer. Only traces judged
as correct are retained; all others are filtered out. The validation prompt is shown in Figure 10.

B LLM Usage

We used GPT-5 as a general-purpose assist tool for language refinement and proofreading. In
addition, GPT-5 was employed to assist in the verification of AIME reasoning traces, as described in
Appendix A.

C Algorithm

The algorithm for the efficient temperature scaling can be found in Algorithm 1.

D Extended Related Work

Single-trace TTS. In single-trace TTS, the goal is to encourage deeper and more deliberate reasoning
within a single inference path [1, 69]. This can be achieved by RL [2, 3, 70, 71, 18] or by distilling
reasoning traces from a stronger teacher model [72]. Compared to single-trace approaches, multi-trace
TTS has been shown to produce more stable results [73, 74]. This work focuses on the multi-trace
setting.

Efficient algorithms for TTS. One line of work focuses on resource allocation, aiming to allocate
more computation to difficult examples and less to easier ones [75–82, 24]. Another line of work
incorporates system-level techniques into TTS, such as compressing or reusing the KV cache to
avoid redundant computation [83–85, 9], or integrating with speculative decoding to reduce latency
[86, 87]. These methods improve test-time efficiency by combining better search with system-level
optimizations.
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Validation Prompt for AIME

You are a rigorous grading instructor for math contest solutions.
You are given the original problem text , the student 's full written

solution (whose final numeric answer is known to be correct),
and one or more reference solutions (provided only as guidance;
exact verbatim matching is NOT required).

Your task is to judge whether the student 's *reasoning process* is
logically valid and self -contained , instead of merely checking
the final answer.

[Original problem]
{ProblemText}

[Student 's full solution]
{ModelTrace}

[Reference solution(s) - for guidance only]
Solution 1: ...
Solution 2: ...
Solution 3: ...

Judging criteria:
1) Are key derivations justified with sufficient intermediate steps ,

without circular reasoning or illicit assumptions?
2) Minor arithmetic/notation slips that are explicitly corrected

later and do not affect the logic may still be acceptable.
3) If there is a fundamental flaw (misused theorem , false equality ,

missing essential conditions) such that the correct final answer
could be a coincidence , the solution should be judged incorrect

.
4) Different approaches from the reference are permitted as long as

the argument forms a logically sound and complete proof.
Please reason step by step before you decide.

Output requirement:
After your analysis , the VERY LAST LINE must be exactly one of the

following:
[CORRECT]
or
[INCORRECT]
Do not output anything after that final line.

Figure 10: Validation prompt used for gpt-5-assisted verification on AIME problems.

Efficient serving system for TTS. Recent work has proposed various serving systems to reduce
decoding latency. These include optimized attention kernels [88, 89], speculative decoding methods
[90], and KV cache compression techniques [91]. Other efforts improve system throughput via
techniques like continuous batching [92] and separating the prefilling and decoding stages [93].

Parallel decoding-based TTS can be viewed as a tree-structured decoding problem, where a shared
prefix is expanded into multiple completions. In this setting, many queries access the same KV cache
from the shared prefix, making efficient KV cache management a key challenge [94–97]. vLLM
addresses this by introducing PagedAttention [10], which reduces memory usage and improves
throughput. Building on this, SGLang proposes RadixAttention [11], allowing programmatic control
over KV cache reuse. In addition, to address the I/O overhead of reading and writing the KV cache,
recent works [98–102] develop new methods to more efficiently compute both the shared prefix and
its multiple completions.
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Algorithm 1 Efficient Temperature Scaling with Two-Stage Voting

Require: Questions Q; temperatures T = {T1, . . . , TM}; max rounds R; intra-temp threshold
τintra; cross-temp threshold τcross; sampler SAMPLE(q, T ); extractor ANS(y)

Ensure: For each q ∈ Q, per-temperature pools {Sq,T } and their answers
1: for all q ∈ Q do
2: for all T ∈ T do
3: Sq,T ← ∅ ▷ trace pool at temperature T
4: Aq,T ← ∅ ▷ multiset of answers for T
5: end for
6: ACTIVE(q)← true
7: end for
8: for r ← 1 to R do
9: for all q ∈ Q with ACTIVE(q) = true do ▷ Round-r sampling

10: for all T ∈ T do
11: y ← SAMPLE(q, T )
12: a← ANS(y)
13: Append (T, y, a) to Sq,T ; insert a into Aq,T

14: end for
▷ Stage 1: intra-temperature voting

15: all_passed← true; Vq ← ∅ ▷ Vq: one vote per T
16: for all T ∈ T do
17: Build hq,T (a)← #{a′ ∈ Aq,T : a′ = a}
18: v

(T )
max(q)← maxa hq,T (a)

19: if v(T )
max(q) < τintra then

20: all_passed← false ▷ this T not confident yet
21: else
22: aT ← argmaxa hq,T (a) ▷ temperature-T majority
23: Append aT to Vq ▷ one vote from this T
24: end if
25: end for
26: if all_passed = false then
27: continue ▷ skip cross-temp vote; keep sampling next round
28: end if

▷ Stage 2: cross-temperature voting
29: Build cross-temp tally Hq(b)← #{aT ∈ Vq : aT = b}
30: Vmax(q)← maxb Hq(b)
31: if Vmax(q) ≥ τcross then
32: ACTIVE(q)← false ▷ early exit for q
33: end if
34: end for
35: if ALLINACTIVE(Q) then
36: break
37: end if
38: end for
39: return {Sq,T | q ∈ Q, T ∈ T } ▷ downstream verifier/BoN picks final answers
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