
Compressing Recurrent Neural Networks for
FPGA-accelerated Implementation in Fluorescence

Lifetime Imaging

Ismail Erbas∗
Center for Modeling, Simulation, & Imaging in Medicine

Rensselaer Polytechnic Institute
Troy, NY 12206
erbasi@rpi.edu

Vikas Pandey∗
Center for Modeling, Simulation, & Imaging in Medicine

Rensselaer Polytechnic Institute
Troy, NY

pandev2@rpi.edu

Aporva Amarnath
IBM T.J. Watson Research Center

Yorktown Heights, NY
aporva.amarnath@ibm.com

Naigang Wang
IBM T. J. Watson Research Center

Yorktown Heights, NY
nwang@us.ibm.com

Karthik Swaminathan
IBM T.J. Watson Research Center

Yorktown Heights, NY
kvswamin@us.ibm.com

Stefan T. Radev
Center for Modeling, Simulation, & Imaging in Medicine

Rensselaer Polytechnic Institute
Troy, NY

radevs@rpi.edu

Xavier Intes
Center for Modeling, Simulation, & Imaging in Medicine

Rensselaer Polytechnic Institute
Troy, NY

intesx@rpi.edu

Abstract

Fluorescence lifetime imaging (FLI) is an important technique for studying cellular
environments and molecular interactions, but its real-time application is limited
by slow data acquisition, which requires capturing large time-resolved images and
complex post-processing using iterative fitting algorithms. Deep learning (DL)
models enable real-time inference, but can be computationally demanding due to
complex architectures and large matrix operations. This makes DL models ill-suited
for direct implementation on field-programmable gate array (FPGA)-based camera
hardware. Model compression is thus crucial for practical deployment for real-time
inference generation. In this work, we focus on compressing recurrent neural
networks (RNNs), which are well-suited for FLI time-series data processing, to en-
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able deployment on resource-constrained FPGA boards. We perform an empirical
evaluation of various compression techniques, including weight reduction, knowl-
edge distillation (KD), post-training quantization (PTQ), and quantization-aware
training (QAT), to reduce model size and computational load while preserving
inference accuracy. Our compressed RNN model, Seq2SeqLite, achieves a balance
between computational efficiency and prediction accuracy, particularly at 8-bit
precision. By applying KD, the model parameter size was reduced by 98% while
retaining performance, making it suitable for concurrent real-time FLI analysis on
FPGA during data capture. This work represents a big step towards integrating
hardware-accelerated real-time FLI analysis for fast biological processes.

1 Introduction

Non-invasive imaging methods that reliably capture dynamic cellular processes are key for disease
detection, treatment monitoring, and therapy development [5, 26, 23]. Fluorescence lifetime imaging
(FLI) has emerged as a powerful tool for this purpose, providing detailed insights into cellular
and molecular activities by measuring fluorescence decay times. Unlike traditional intensity-based
fluorescence imaging, FLI is unaffected by factors such as fluorophore concentration or excitation
light intensity [13], making it suitable for investigating complex biological phenomena, including
protein-protein interactions and ligand-target binding [5] in intact small animals.

To date, estimating fluorescence lifetime parameters from time-resolved data remains a computation-
ally intensive task. Conventional approaches rely on post-processing methods after time-resolved data
capture, which itself is highly time-consuming. As a result, FLI is not well-suited for applications
requiring rapid inference, such as real-time monitoring of fast biological processes or fluorescence-
guided surgery. Real-time processing is critical in these contexts, since immediate decisions are
necessary. Deep learning models, particularly sequence-to-sequence (Seq2Seq) architectures based on
Gated Recurrent Units (GRUs) [17], have shown promise in addressing the computational bottlenecks
of FLI data analysis. These models are well-suited for handling time-series data and can provide
faster and more efficient deconvolution of temporal point spread function (TPSF) signals. However,
deploying recurrent models on hardware-constrained platforms, such as FPGAs, comes with unique
implementational challenges due to limited memory and computational resources.

To address these challenges, the current paper focuses on compressing GRU-based Seq2Seq models
for real-time FLI data processing on FPGAs by reducing memory usage and computational complexity.
We explore quantization techniques for weight reduction, such as PTQ [7, 12, 24] and QAT [10, 8],
to lower the precision of model precision, improving efficiency without a significant drop in accuracy.
Additionally, we implement knowledge distillation [19, 18, 14] to further compress the model by
transferring knowledge from a larger model to a smaller one without compromising performance.

2 Background

FLI operates through time-resolved imaging, where a fluorescent sample is excited with a short pulse
of light and the emitted fluorescence signal is captured over time using time-resolved/time-gated
detectors such as time-correlated single photon counting (TCSPC), time-gated instensified charge-
couple device (ICCD) [25], and single photon avalanche diode (SPAD) [2]. This process generates
the TPSF, representing photon-arrival temporal distribution after the excitation pulse (see Figure 1).
The TPSF is distorted by the Instrument Response Function (IRF), representing the temporal response
of the imaging system on the delta input signal. Hence, the observed TPSF can be modeled as a
convolution of the sample fluorescence decay (SFD) and the IRF [3]. In biological samples, multiple
fluorophore components or changes in local environmental conditions can alter the fluorescence
decay rate. These variations contribute to the SFD, which is modeled as the sum of the exponential
decay of each fluorophore component.

Despite the advantages of FLI, accurately extracting SFD is computationally expensive. Traditional
approaches, such as nonlinear least-squares fitting, center-of-mass, and maximum likelihood estima-
tion methods, require significant computational resources and depend on initial guess parameters[1].
These iterative computation methods require IRF estimation prior to the re-convolution and fitting
approach. Hence, they are less practical for fast FLI parameter estimation; DL methods are slowly
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Figure 1: Experimental set-up and data. Schematic illustration of fluorescence lifetime imaging
(FLI), time-resolved data capture, and the temporal point spread function (TPSF). The top-right panel
shows experimental time-resolved fluorescence images of HER2+ tumor xenografts labeled with
Alexa Fluor 700 conjugated to Trastuzumab in a nude mouse, captured at different time gates. The
bottom-right panel presents the corresponding TPSF for a single pixel.

replacing these computational methods[21, 6, 15]. Recently, recurrent neural networks (RNNs),
specifically GRU networks [4], have demonstrated potential in deconvolving SFD from the TPSF
without the need of IRF, allowing for faster and more accurate fluorescence lifetime parameter
extraction [17]. GRUs excel at handling sequential time-series data and reduce the computational
complexity compared to traditional methods, making real-time analysis feasible.

This deconvolution method [17], integrated in the camera FPGA, can be used for simultaneous
temporal data capture and deconvolution operation, which can be a step towards real-time FLI
parameter analysis. Such a hardware-accelerated camera will be suitable for clinical diagnostics and
dynamic biological process monitoring, where rapid, accurate processing of FLI data is important.
However, integration of this DL model architecture into FPGA is highly challenging due to its size
and complexities of computation operation. One promising approach, as demonstrated by [11],
involves integrating RNNs into SPAD camera systems to improve the speed and accuracy of FLI data
processing. The proposed method bypasses conventional histogram-based techniques by directly
estimating fluorescence lifetimes from raw photon timestamps using GRU and LSTM models. While
the system, using a 32× 32 pixel SPAD camera, achieved real-time processing with up to 4 million
photons per second and frame rates of 10 frames per second, the lower resolution of the camera
limited the overall data volume.

Deploying deep learning model on large-format time resolved detector such as the SwissSPAD2
(SS2) [2] introduces new challenges due to the increased data volume, which places additional
demands on FPGA for memory and computation. The SS2 camera with its large-format 512 x 512
time-gated SPAD detector arrays, sub-10-cps dark count rate (DCR) per pixel and 50% maximum
photon detection probability (PDP) has been shown [20] most suitable for fast FLI applications.

To address these challenges and constraints, DL model compression techniques including quantization
methods become highly important [9]. Quantization reduces the precision of model parameters
from floating-point to lower-precision fixed-point formats. This reduces the memory footprint and
computational demand, making the models more suitable for FPGA deployment [22]. Quantization
can be performed through two main approaches: PTQ and QAT. PTQ involves applying quantization
to a pre-trained model without further training, offering a quick but sometimes less accurate solution
[7, 12, 24]. In contrast, QAT incorporates quantization during the training process, allowing the
model to adapt to reduced precision and maintain higher accuracy, albeit at the cost of additional
training time [10, 8]. Another key model compression strategy is knowledge distillation [19, 18, 14],
where a smaller, more computation efficient model (student) is trained to replicate the performance
of a larger, more complex model (teacher). The student model learns from the original training
data as well as teacher model’s output, that is helpful to capture key data features while reducing
computational requirements. This approach is particularly valuable for deploying deep learning
models on hardware-constrained platforms like FPGAs, where maintaining accuracy while reducing
model size is critical for FLI applications.

3



Figure 2: Model and training setup. (a) Gated Recurrent Unit (GRU); (b) Time-resolved fluo-
rescence images; (c) Deep GRU-based encoder-decoder architecture (teacher), trained for TPSF
deconvolution to pixel-wise SFD from (b), with the resulting deconvolved SFDs shown in (e); (f)
Single-layer encoder-decoder RNN model (Student), derived from (c) using the knowledge distillation
(KD) method. The stack of time-resolved fluorescence images (b) and deconvolved SFDs (e) are used
to train (f). The student model learns hidden features using a combined loss function.

In this work, we explore optimization techniques such as quantization and weight size reduction
for the deployment of efficient FLI deconvolution on large-format time resolved detector using an
FPGA board. By optimizing these processes, we aim to enhance the performance of real-time FLI in
resource-constrained environments, broadening its potential applications in both biomedical research
and clinical diagnostics.

3 Methods

3.1 Synthetic data

To train and validate GRU-based model for FLI, we generated synthetic data simulating time-resolved
SFDs. Fluorescence decays were modeled using a bi-exponential function:

f(t) = AR exp

(
− t

τ1

)
+ (1−AR) exp

(
− t

τ2

)
+ ϵt, (1)

where τ1 ∈ [0.2, 0.8] and τ2 ∈ [0.8, 1.5] represent short and long lifetime components typically
observed in near-infrared (NIR) applications (measured in nanoseconds; ns), respectively, and
AR ∈ [0, 1] denotes the amplitude fraction. The residual term ϵt denotes system-generated Poisson-
distributed noise. We used the MNIST dataset to create 28 × 28 pixel images with simulated
fluorescence decays assigned to each pixel. To mimic the experimental conditions, we convolved
these decays with pixel-wise instrument response functions (IRFs) obtained by illuminating a diffused
white paper with a 700 nm laser and capturing the reflected light through a neutral density filter. A
total of 200 synthetic image sets were generated, yielding 3,920,000 TPSFs for training.

3.2 Experimental data

For experimental validation, we imaged a 10M solution of Alexa Fluor 700 (AF700) dye in PBS
using the large-format time resolved detector. AF700 is a mono-exponential NIR dye with excitation
and emission maxima at 702nm and 723nm, respectively, and a fluorescence lifetime of approximately
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Seq2Seq model size (64 × 64) (64 × 32) (64 × 16) (45 × 45) (32 × 32) (16 × 16)

RMSE 0.071±0.01 0.084±0.01 0.032±0.001 0.063±0.01 0.1±0.01 0.1±0.01
R2 Score 0.86±0.02 0.81±0.03 0.96±0.01 0.89±0.02 0.74±0.04 0.76±0.03
L2 norm 0.60±0.05 0.71±0.05 0.32±0.04 0.53±0.05 0.83±0.05 0.79±0.05
DTW distance 0.49±0.01 0.47±0.03 0.35±0.02 0.46±0.02 0.55±0.04 0.48±0.02

Table 1: Performance metrics for different Seq2Seq model configurations on experimental data.

1ns in PBS. The dye was excited at 700nm, and emission was collected using a 740± 10nm filter.
The collected TPSFs were used to evaluate the model’s performance on real-world data.

3.3 Model development and optimization

Seq2Seq model We implemented the GRU-based sequence-to-sequence (Seq2Seq) architecture
from [16] for fast estimation of SFDs. Figure 2 The encoder consists of two GRU layers, each with
128 hidden units. The input to the encoder is the TPSF sequence for each pixel. Each GRU cell
sequentially processes an input time point xt and the hidden state ht−1, producing an output yt and
an updated hidden state ht. The decoder mirrors the encoder architecture, generating the output SFD
sequences from the encoded representation. A final linear dense layer refines the output. The model
was trained using the Adam optimizer with a learning rate of 0.001, with mixed loss function. All the
models were trained using Windows 11 system with Intel i9-13900K CPU and Nvidia RTX 4090.

Weight reduction and model quantization To enable deployment on resource-constrained hard-
ware, we explored weight reduction and quantization techniques to reduce the model size and
computational complexity. We experimented with various configurations of hidden units in the GRU
layers, including sizes of 128, 64, 45, 32, and 16. This resulted in weight matrices of sizes 128× 128,
128 × 64, 64 × 32, 64 × 16, 45 × 45, 32 × 32, and 16 × 16. We trained and tested these models
to find the optimal settings within a reasonable error margin. For model quantization, we applied
PTQ, reducing the precision of the weights from 32-bit floating-point to 16-bit and 8-bit integers.
The quantization process is defined as q = round (x/s), where x is the floating-point weight, q is
the quantized integer value, and s is the scale factor determined by the range of the floating-point
weights, typically calculated as s = max (|x|) /

(
2b − 1

)
where b represents the bit-width of the

target precision (e.g., 8-bit or 16-bit). This approach ensures the quantized values maintain the highest
possible precision within the given range.

Knowledge distillation To further reduce model complexity, we developed a simplified model
called Seq2SeqLite, which consists of a single GRU layer in both the encoder and decoder. We
experimented with hidden unit sizes of 128, 64, 32, and 16. During the training process, QAT was
applied to the Seq2SeqLite model. QAT incorporates quantization effects by simulating reduced-
precision arithmetic during training, allowing the model to adapt effectively to quantization. This
approach helps maintain accuracy after quantization to 16-bit or 8-bit precision. In addition to QAT,
we also employed KD to compensate for the reduced model capacity. In this setup, the Seq2Seq
model serves as the teacher, while Seq2SeqLite acts as the student. The student model was trained to
minimize a combined loss function as shown in Figure 2.

4 Empirical Evaluation

All models were evaluated using RMSE, R2 score, L2 norm, and DTW distance. Together, these
metrics provide a comprehensive assessment of model performance in terms of accuracy, error
magnitude, and temporal consistency. All models were trained on the simulated data and evaluated
on the experimental well plate data, aggregating the metrics across all pixels.

4.1 Weight reduction results with Seq2Seq model

The results of the weight reduction experiments for the Seq2Seq model using 32-bit floating point
precision are shown in the Table 1, illustrating the performance across various sizes, including
(128× 64), (64× 64), (64× 32), (64× 16), (45× 45), (32× 32), and (16× 16). RMSE values range
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from 0.0374 to 0.0995, with the (64× 16) model showing the lowest error. The R2 score is highest
at 0.96 for the (64× 16) configuration, while more compressed models like (32× 32) and (16× 16)
show lower performance. The L2 norm is smallest with the (64× 16) model, whereas compressed
models exhibit larger norms. DTW distance is lowest for the (64 × 16) model and highest for the
(32× 32) model. Overall, these results highlight the trade-offs between model size and performance,
with the (64× 16) configuration consistently achieving superior results across most metrics.

4.2 Quantization results

Seq2Seq Models (16-bit and 8-bit)

Type Metrics 64 × 64 64 × 32 64 × 16 45 × 45 32 × 32 16 × 16

16-bit RMSE 0.071±0.01 0.084±0.01 0.032±0.001 0.063±0.01 0.1±0.01 0.095±0.01
R2 Score 0.87±0.02 0.81±0.03 0.96±0.01 0.89±0.02 0.74±0.04 0.76±0.03
L2 norm 0.59±0.05 0.71±0.05 0.31±0.04 0.53±0.05 0.83±0.05 0.79±0.05
DTW distance 0.49±0.01 0.47±0.03 0.34±0.02 0.46±0.02 0.55±0.04 0.48±0.02

8-bit RMSE 0.063±0.01 0.089±0.01 0.032±0.001 0.071±0.01 0.105±0.01 0.089±0.01
R2 Score 0.89±0.02 0.79±0.03 0.97±0.01 0.87±0.02 0.70±0.04 0.79±0.03
L2 norm 0.54±0.05 0.74±0.05 0.27±0.04 0.58±0.05 0.88±0.05 0.75±0.05
DTW distance 0.69±0.02 0.72±0.04 0.52±0.03 0.53±0.02 0.61±0.04 0.44±0.02

Table 2: Performance metrics for Seq2Seq models (16-bit and 8-bit) across various configurations on
experimental data.

The performance of different Seq2Seq model architectures under PTQ with 16-bit and 8-bit precision
was evaluated as shown in Table 2. The models assessed include configurations such as (64× 64),
(64 × 32), (64 × 16), (45 × 45), (32 × 32), and (16 × 16). For the 16-bit models, the (64 × 16)
architecture achieved the lowest RMSE of 0.032, along with an R2 score of 0.96 and a relatively low
L2 norm of 0.31, indicating efficient weight scaling. The model also exhibited a low DTW distance
of 0.34, making it suitable for applications where both accuracy and computational efficiency are
required. In contrast, the (32×32) model, while showing reasonable performance with an R2 score of
0.74, demonstrated higher RMSE and L2 norm values, indicating larger errors and weight magnitudes.
In the 8-bit setting, the (64 × 16) model continued to perform well, with an RMSE of 0.032 and
an R2 score of 0.97. The L2 norm decreased slightly to 0.27, suggesting that the 8-bit quantization
did not introduce significant degradation in performance. While DTW distance increased to 0.52,
the model maintained competitive performance compared to other configurations. Overall, 8-bit
quantized models showed a slight increase in RMSE and DTW distance compared to their 16-bit
counterparts, but still performed competitively. The (64× 16) configuration consistently delivered
strong results across both precision levels, making it a favorable choice for memory-constrained
deployment scenarios.

The results for the quantized Seq2SeqLite models, focused on memory-efficient architectures, are
summarized in Table 3, comparing different configurations under 16-bit and 8-bit quantization, both
with and without KD. For the 16-bit models, the (32× 32) architecture with KD achieves the lowest
RMSE (0.068), while the (16×16) model shows moderate improvement with KD, reducing its RMSE
from 0.088 to 0.072. R2 scores indicate better fit when KD is applied, with the (32 × 32) model
improving from 0.73 without KD to 0.88 with it, and similar trends are observed for the (16× 16)
architecture. Metrics such as L2 norm and DTW distance also improve with KD. In the 8-bit setting,
the impact of KD is more pronounced. The (32× 32) model with KD achieves an RMSE of 0.01,
a significant improvement over the non-KD configuration (0.138). Similarly, the (16× 16) model
shows improved performance with KD, reducing RMSE from 0.13 to 0.047. R2 scores and L2 norms
confirm the overall benefit of KD across the architectures.

In summary, applying KD improves performance across all architectures in both 16-bit and 8-bit
quantized models, particularly in terms of the RMSE, R2, L2 norm, and DTW metrics, making them
more suitable for deployment in memory-constrained environments.
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Seq2SeqLite Models (16-bit and 8-bit)

Type Metrics 128 × 128 32 × 32 32 × 32 w/ KD 16 × 16 16 × 16 w/ KD

16-bit RMSE 0.03±0.000 0.1±0.01 0.068±0.01 0.088±0.01 0.072±0.01
R2 Score 0.98±0.01 0.73±0.39 0.88±0.29 0.79±0.04 0.86±0.03
L2 norm 0.25±0.04 0.84±0.05 0.57±0.06 0.74±0.06 0.60±0.06
DTW distance 0.37±0.03 0.50±0.04 0.44±0.04 0.49±0.03 0.45±0.04

8-bit RMSE 0.12±0.01 0.138±0.02 0.01±0.001 0.13±0.01 0.047±0.01
R2 Score 0.62±0.08 0.49±0.11 0.99±0.01 0.55±0.08 0.94±0.02
L2 norm 1.00±0.10 1.15±0.12 0.10±0.02 1.09±0.09 0.39±0.06
DTW distance 0.61±0.07 0.71±0.08 0.52±0.05 0.71±0.06 0.55±0.03

Table 3: Performance metrics for Seq2SeqLite quantized models (16-bit and 8-bit) with and without
KD on experimental data.

5 Conclusion

In this work, we compressed DL models for real-time FLI data processing on resource-constrained
hardware, such as FPGAs. By focusing on GRU-based Seq2Seq architecture, we explored model
weight reduction and quantization techniques to enable efficient deployment of these models in
FPGAs. Specifically, we applied PTQ and QAT to reduce the precision of model parameters to 16-bit
and 8-bit formats. Furthermore, we incorporated KD as a model compression strategy to reduce
computational complexity while maintaining high performance. The (32× 32) Seq2SeqLite model
with KD demonstrated an optimal balance between model size and performance in both 16-bit and
8-bit quantized versions. The 8-bit version, in particular, showed strong suitability for real-time
applications, making it ideal for FPGA deployment. These improvements make the (32× 32) KD
model particularly suited for FPGA deployment in clinical and research settings where both memory
efficiency and computational speed are critical.
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