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Abstract
Weight-ensembled models, formed when the pa-
rameters of multiple neural networks are directly
averaged into a single model, have demonstrated
a generalization capability in-distribution (ID)
and out-of-distribution (OOD) which is not com-
pletely understood, though weight-ensembles are
thought to successfully exploit functional diver-
sity allotted by each distinct model. Given a col-
lection of models, it is also unclear which com-
bination leads to the optimal weight-ensemble;
the SOTA is a linear-time “greedy” method. We
introduce two novel methods with targeted model-
selection mechanisms to study the link between
method-performance dynamics and the nature of
how each method decides to use apply the func-
tionally diverse components. We develop a vi-
sualization tool to explain how each algorithm
explores various domains defined via pairwise-
distances to further investigate selection and al-
gorithms’ convergence. Empirical analyses shed
perspectives which reinforce how high-diversity
enhances weight-ensembling while qualifying the
extent to which diversity alone improves accuracy
and demonstrate that sampling positionally dis-
tinct models can contribute just as meaningfully
to improvements in a weight-ensemble.

1. Introduction
Model ensembling plays a crucial role in enhancing the
performance and robustness of machine learning models.
Combining the information learned by models pre-trained
(or fine-tuned) with different configurations or on different
tasks can reduce overfitting to any particular hyperparameter
or dataset choice, leading to better generalization. The tradi-
tional approach to model ensembling in machine learning
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relies on averaging the predictions of the various models,
which suffers from high memory and requires the inference-
time computational cost of many modern neural networks.

Recent work by Wortsman et al. (2022) demonstrates the
promise of an alternative approach to model ensembling
by instead averaging the parameters of the models: the
weight-ensembling or weight-averaging (WA) approach.
Their “model-soups” approach results in a single model
(the WA), addressing many of the computational limitations
of prediction-based ensembling. The highly non-convex
neural network loss landscape suggests that this approach
should fail; yet, linear mode connectivity (LMC) (Frankle
et al., 2020) finds that the interpolation between models
sharing a stable region of a weight-space training trajectory
remains in a low-error region. An example includes when
models are fine-tuned from a shared foundation; models
were empirically demonstrated in this setting to reside in
convex low-loss basins where weight-ensembling does not
incur significant loss barriers (Neyshabur et al., 2021).

The literature in such weight-ensembling approaches typi-
cally assume access to multiple models of identical architec-
ture fine-tuned from a shared initialization varying hyperpa-
rameters such as learning rate and data randomness. Prior
work has relied on a “greedy” approach to construct the
ensemble, whereby models (the “ingredients”) are consid-
ered only once to be sequentially added to the “soup” based
on validation set performance of the candidate WA, and
thrown out of the soup if validation performance declines
(Wortsman et al., 2022; Rame et al., 2022). These greedy
WA models have shown remarkable performance across
complex tasks such as ImageNet (Deng et al., 2009) and
DomainBed (Gulrajani & Lopez-Paz, 2020), as shown by
Wortsman et al. (2022) and Rame et al. (2022) respectively.

Although the empirical effectiveness of weight-ensembling
has been attributed to their finding weights in flatter regions
of the loss landscape (Wortsman et al., 2022; Cha et al.,
2021) and the inclusion of functionally diverse ingredients
(Rame et al., 2022), the mechanics of how the greedy
algorithm elicits these phenomena is not clear. Additionally,
it is unknown if this algorithm is particularly well-suited
to find diverse ingredient-sets, or whether there exists other
methods better suited to this goal.
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In this work, we study the link between functional diversity
and weight-ensembling to further understand the effective-
ness of weight-ensembling. We use quantitative distance
measures (ratio-error, Euclidean distance) as proxies for
functional diversity. By characterizing how various weight-
ensembling algorithms leverage these relationships, we can
reason about the utility of these measures. Namely, we pro-
pose the novel “greedier” algorithm, specifically designed
to allow more flexibility in selecting new candidates, and
we show that when extra flexibility is offered the algorithm
tends to select more diverse ingredients. Yet, the novel
“ranked” algorithm, designed to select diverse candidates,
demonstrates that there is a limit to the benefit of diversity
even in the setting where ingredients remain averageable
under LMC. In summary, our contributions are:

• We develop the “greedier” algorithm for weight-
ensembling which has the flexibility at each iteration to
add any model to the set of ingredients.

• We develop the “ranked” algorithm for weight-ensembling
which considers ingredients in order of decreasing diver-
sity from the current WA and greedily selects the first
candidate which improves performance

• We empirically demonstrate that higher Euclidean and
diversity-distances robustly explain the selection mecha-
nism of our “greedier” algorithm compared to “greedy”,
implying that having these distances between ingredi-
ents help improve accuracy efficiently. However, the
even larger diversities selected by the “ranked” algorithm,
which perform similarly to “greedy,” qualify the extent to
which selecting for maximal diversity is useful.

• We introduce a form of qualitative visualization that pro-
vide additional insights on the connection between these
weight-ensembling algorithms and loss landscapes.

2. Methodology
2.1. Distance Measures

Functional diversity, as measured by the ratio-error (Aksela,
2003) was claimed in Rame et al. (2022) to be the driving
force behind the improvements of weight-ensembling over
standard (SGD-found) models because of analysis claim-
ing that functional diversity decorrelates model predictions.
They also demonstrate a positive correlation of the average
pairwise diversity of a set of models with the accuracy gain
of the corresponding WA over the mean accuracy over the
individual ingredients, a statistic which does not directly
imply that there is a lack of functional redundancy in the
collection, only in the average case of a pair. For this reason,
when analyzing weight-ensembling algorithms iteration-by-
iteration in this work, we also pay attention to the diversity
between a selected candidate ingredient and the current WA
(in the context of unselected ingredients’ distances). Less

lossy than average pairwise diversity, we analyze these pair-
wise relationships jointly in the visualization method.

Definition 2.1. We use the convention of ratio-error (Aksela,
2003) to measure diversity following Rame et al. (2022).
For models θA and θB , where Nuns and Nsha refer to the
number of unshared and shared errors on a labelled dataset,
we refer to the diversity distance as dD(θA, θB) =

Nuns

Nsha

Motivated by the finding of loss basins in fine-tuning
(Neyshabur et al., 2021), convex regions in which mod-
els sharing initialization remain essentially linearly mode
connected, we also use a Euclidean geometry-inspired mea-
sure to determine the extent to which specific weight-space
geometry can explain weight-ensembling approaches. The
Euclidean metric allows us to explore how different weight-
ensembling traverse the basin and evaluate whether sam-
pling candidates different parts of a loss basin sufficiently
improves the WA, recasting the pursuit diversity as a weight-
space traversal question.

Definition 2.2. As such, we define the Euclidean distance
between two neural network parameters θA, θB ∈ Θ to be
dE(θA, θB) = ||vec(θA)− vec(θB)||22

2.2. The Greedy Weight-Ensembling Technique

The greedy souping method (Wortsman et al., 2022; Rame
et al., 2022) sorts the individual models by decreasing vali-
dation accuracy. Starting from the single highest-accuracy
model, we sequentially consider adding the remaining mod-
els, only adding to the ingredients list when a candidate
WA improves training-domain validation accuracy and oth-
erwise throwing out the failed candidate in a linear pass.

2.3. A Greedier Weight-Ensembling Technique

A novel weight-ensembling algorithm to this work, the
greedier algorithm’s ingredient-set also initializes to the
top validation-accuracy ingredient. At each step, we con-
sider the inclusion of every remaining ingredient to the set,
aggregating the candidate whose WA maximally performed
to the set if we have outperformed the current set’s WA
accuracy. If no candidate set’s WA has outperformed the
current set WA’s accuracy, the algorithm terminates. See Al-
gorithm 1 for granular details. The core difference between
the algorithms is that instead of the greedy algorithm’s one
single linear pass through the models sorted by individual
performance, the greedier algorithm can add models in any
order if they still contribute positively to the soup. The simi-
larity is that both algorithms initialize the ingredients list to
the maximal performing model.

While this algorithm has a costly runtime, it serves to il-
luminate the measures which maximally explain the selec-
tion mechanism of the algorithm. This will help diagnose
what drives the selection of new ingredients to understand
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what relationships between ingredients and the current WA
contribute to maximal improvements in the WA. Treating
greedier as a “gold-standard” benchmark also allows us to
correlate other algorithms’ selection mechanisms with their
performance characteristics.

2.4. Ranked Weight-Ensembling

The next novel weight-ensembling algorithm to this work,
the ranked algorithm, is initialized identically to previous
algorithms. At each step, we sort remaining ingredients by
decreasing distance from the current set’s WA and proceed
through these rankings considering the addition of each
ingredient to the set individually. The first ingredient whose
candidate set improves training domain accuracy is accepted,
and the rejected models are stashed for the next iteration.
See Algorithm 2. The intent of this method is to make salient
the effect of biasing diversity into the selection mechanism,
which allows us to tease out benefits which stem from the
inclusion of diverse candidates and less of the confounding
factors which may affect the greedier and greedy algorithms.

3. Experiments
3.1. Experimental Setting

We adopt the DomainBed setting (Gulrajani & Lopez-Paz,
2020) used by Rame et al. (2022), honing the focus of our
experiments to the OfficeHome dataset (Venkateswara et al.,
2017), a domain generalization dataset containing four test
environments. We refer the reader to Section 3.2 of Rame
et al. (2022) which established the setting adopted here,
including the random initialization fine-tuning setup for
ResNet50 (He et al., 2016) trained on ImageNet (Deng et al.,
2009) as a foundation model varying hyperparameters and
randomness to obtain distinct fine-tuned models. Holding
out one test environment at a time as OOD set, we run ten
trials of fine-tuning on the three ID environments 40 models
per trial. After the fine-tuning, we run the greedier, greedy,
and ranked weight-ensembling algorithms. For the ranked
method, we run two versions, one which ranks ingredients
by ratio-error which we call “diversity-ranked” and the other
using Euclidean distance called “Euclidean-ranked.”

3.2. Weight-Ensemble Algorithm Performance Results

To compare performance the performance of the methods,
for each trial in all test environments we calculate the dif-
ference in accuracy at each iteration from the other weight-
ensembling algorithms to the greedier method, visualizing
the average difference in Figure 1. This amounts to bench-
marking the performance of other methods relative to the
greedier method. As some algorithms terminate before the
ultimate time step t = 39, we propagate the terminal ac-
curacy value forward through time in order to still be able

to run our aforementioned calculation for subsequent time
steps. Initially, the increasingly negative values show that
the greedier algorithm gains accuracy faster than the ranked
and greedy methods at the outset. As more ingredients are
included past t = 4, ranked and greedy methods start to
recover, with ranked methods suffering fewer losses and
rebounding faster. This rebound occurs after many greed-
ier runs have flatlined due to termination. Both ranked
performances are similar, initially falling behind greedier
but slowly recovering later on; greedy follows a similar
trajectory, thus demonstrating that the greedier algorithm
utilizes fewer ingredients effectively. ID validation (“train-
ing”) accuracy for the non-greedier methods finish below
the accuracy of greedier at a statistically significant level,
while for OOD accuracy (“testing”), greedy closes below
greedier at a statistically significant level with the ranked
algorithms’ intervals just barely enveloping the performance
of greedier in the upper bound.

Figure 1. Difference between greedier accuracy and other methods’
accuracy averaged across all trials with 95% confidence interval.
Training at left, testing at right. Terminal value carried forward.

4. Explaining the Role of Diversity
4.1. Distributions of Quantiles over Selected Models

We next probe the extent to which distance measures (be-
tween the current WA to the candidate calculated ID when
prediction is necessary) were associated with each algo-
rithm’s selection mechanism by binning the quantiles of
distances of selected candidates to the current WA at each
iteration time t. Since both greedier and ranked have a dis-
crete host of models from which they can add a candidate
at each step (but only select one), we first bin the quan-
tile of the distance instead of the distance itself to make a
well-posed statement about whether the more or less distant
ingredients at some step were selected. For example, if θj
had been the second least diverse from the current WA and
had gotten selected for inclusion at time t, we would have
binned 2

Num Remaining at time t. We can thus view each addi-
tion of a candidate as the discrete choice which was most
useful to the WA. A similar procedure may be repeated
for the greedy algorithm, where we only advance t in the
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figure when candidates are actually accepted by greedy; if
a candidate is skipped (getting thrown out for the remain-
der of the procedure), we do not advance t because in this
visualization we are interested in the distances of selected
ingredients with the current WA.

The distributions of the diversity-quantiles of selected mod-
els over time for each method is visualized in Figure 2, with
mean trends compared side-by-side in Figure 6 of the Ap-
pendix. Over the greedier algorithm’s first few iterations
t = 1 to t = 4, we see that the distribution of quantiles is
skewed to select ingredients which are more-diverse than
random chance, reinforced by the confidence interval in
Figure 6. This comes in direct opposition to the greedy
algorithm, which specifically selects less-diverse candidates
from its first iteration t = 1 up to iteration t = 7 as seen
in Figure 6. As expected, the ranked-diversity algorithm
tends to select ingredients which are most diverse from the
current WA.

Contextualizing early-stage diversity-quantile results with
the ID and OOD accuracy gains that greedier and ranked
make relative to greedy between t = 1 to t = 4 in Figure
1, this shows a clear association between selecting the most
diverse points and rapid accuracy improvement. Yet, the
algorithm designed to select the most diverse candidates,
ranked-diversity, still underperforms the greedier method.
This comes in spite of ranked-diversity having ingredient
models which have the highest average pairwise diversity,
the proxy of diversity used in Rame et al. (2022) as we
see in Figure 13. Although ranked-diversity’s selection of
more diverse ingredients seen in Figure 2 led to ranked-
diversity WAs having the highest average pairwise diversity
as seen in Figure 13, the fact that the greedier method out-
performs the ranked-diversity method while having a less
diversity-inducing selection mechanism indicate that the
greedier method benefits from some force beyond what is
provided for by diversity. Diversity correlates with the ben-
efits realized by the greedier algorithm, but it does not quite
encapsulate the full power of the greedier algorithm be-
cause building it into the selection mechanism with ranked-
diversity does not achieve competitive accuracy. That in
the latter stages past t = 5 of the greedier routine, both
the diversity-quantiles of ingredients that we select for and
the average pairwise diversity of the WA that is accepted
seems to have saturated further evidence that the benefits of
diversity are capped.

The quantiles of selected Euclidean distances are given by
Figure 7 in the Appendix. In the figure, we observe an
even stronger association between high-quantile Euclidean
distance and selection by our greedier algorithm, with each
boxplot living well-above random chance up to t = 4 when
greedier’s is making gains on algorithms’ accuracies. The
result is correlated with diversity selection, although clear

differences in ranked-diversity and ranked-Euclidean distri-
butions in Figures 6, 7 indicate some decoupling between
the selecting for divesity and Euclidean distance. The strong
association of Euclidean distance and greedier decision-
making demonstrate that sampling far-apart ingredients in a
loss basin can be just as powerful as selecting for diversity
when it is quantified by ratio-error.

Figure 2. Box-plot of quantiles of diversity distance between the
current WA and the selected model at each iteration t of each
algorithm across the 40 trials. Dashed red-line at 50% indicates
random selection.

4.2. Dynamics of Errors

In Section 4.1, we concluded that diverse ingredients are a
beneficial component for a WA, although WAs may improve
through other means and the benefit stemming from diver-
sity is likely to saturate relatively quickly. In this section,
we analyze the dynamics of how the errors that WAs make
evolve as ingredients are added to the WA. The comparison
of such dynamics across algorithms will make conspicuous
the direct benefits and limitations of diversity for ID and
OOD prediction, and how the greedier approach may exploit
new ingredients better than ranked-diversity.

To this end, at each time step t (starting with t = 1 with
2 ingredients) we split up the ID and OOD sets into data
points disjointly into four sets: 1) points which the WA
at time t had classified incorrectly but the time-t selected
ingredient classified correctly (not yet included in the latter
WA), denoted “t-incorrect ingredient-correct”, and simi-
larly the disjoint sets 2) “t-correct ingredient-incorrect”,
3) “t-correct ingredient-correct”, and 4) “t-incorrect and
ingredient-correct”. For each of these sets are interested
in the probability for some data point that the ingredient’s
outcome takes hold in the t + 1 WA: such as for 1) the
probability that the time t+ 1 WA is correct given that the
time t WA was incorrect and the ingredient was correct.

As in previous analysis, given a weight-ensembling method
and experimental trial, we benchmark each series with re-
spect to the greedier method’s series to contrast the methods.
We carry forward the terminal values of each series before
averaging. In Figure 3, we plot the first 10 iterations of the
differenced series corresponding to t-incorrect ingredient-
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correct. We plot the first ten only as the greedier method
typically terminates within 10 time steps. For these early
time periods, it is clear that the greedier algorithm makes
relatively better use of its new ingredients in both the ID
and OOD setting. Noticeably, we observe the importance
of diversity for generalization in the OOD setting (right),
where for the first several iterations algorithms (t = 2, t = 3
when the impact of adding a new ingredient is greatest due
to weighting), selecting for diversity induces approximately
a 10% greater probability of being the current-step WA’s
mistake corrected by the ingredient. The decreasing trend of
other non-greedier beyond t = 5 correspond to many cases
in which greedier has terminated, and other methods (which
may still be running) already include more ingredients and
thus it is more difficult for any newly-added individual to
strongly impact the result. Figures 15, 16 in the appendix
demonstrate that the selection of diverse candidates makes
scenarios 2) and 4), in which new errors appear or existing
ones are retained, less likely.

Figure 3. t-incorrect ingredient-correct: Probabilities that the next-
step WA predicts correctly given that the current-step WA was
incorrect and the ingredient was correct, difference from greedier
and other methods’ averaged across all trials with 95% confidence
interval. Training at left, testing at right. Terminal value carried
forward.

5. Visualization of Weight-Ensembling
5.1. MDS Visualization of the Greedier Algorithm

We develop a visualization method to capture all pairs of dis-
tance relationships jointly without reducing the diversity to
a single number, as does average pairwise diversity. We do
so with Multidimensional Scaling (MDS), a dimensionality
reduction algorithm designed to preserve pairwise distances.

After running a weight-ensembling algorithm on the set of k
neural networks, we calculate all pairwise distances between
the models evaluated in the experiment. We store these dis-
tances in a symmetric distance matrix, then use this matrix
as a plug-in to MDS. We use metric MDS for Euclidean
distance, and for diversity we use non-metric MDS. At each
iteration t, we reveal in the decomposed space the candidate
WAs that we considered at this time using our current set

of ingredients and the remaining ingredients. Due to the
structure of MDS, we thus visualize the pairwise distances
between the candidate WAs, the current and past WAs, and
the individual candidates which shed qualitative insight on
the selection mechanism of the greedier algorithm.

We demonstrate the progression of the greedier algorithm
through Euclidean distance in one example in Figure 11 (in
Appendix due to figure size). Consistent with the results
of quantile-ranks in Euclidean space, we see for iterations
t = 2, 3, 4 that we have selected points in space which were
on the larger end of Euclidean distance from the current
WA; at t = 5 we have saturated accuracy and the algorithm
has terminated. We can see convergence in decomposed
weight space, reflecting the diminishing returns from adding
more candidates after location in Euclidean space saturates.
Turning to the diversity distance Figure 12 we observe that
the WA points do not converge as nicely as time passes
through the algorithm, although we still manage to select
candidates which tend to lie on the farther side from our
current WA through 4 iterations. Finally, we observe the
intuition allotted by the visualization technique: we have
selected truly distinct points in weight space, as the selected
candidates exhibit separation in both decomposed spaces,
as opposed to the comparitively reductive average pairwise
diversity or Euclidean distance in the literature.

6. Discussion
We have introduced the greedier algorithm which at each it-
eration selects the ingredient which maximally improved the
WA’s ID validation performance. When treated as a “gold-
standard,” greedier’s decision-making helps to uncover how
relationships between ingredients and a WA are leveraged
to best improve the WA’s performance. We also propose
the ranked algorithm, which at each iteration sorts ingredi-
ents by their distance from the WA and selects the first to
improve ID validation accuracy. We can contrast greedier re-
sults with the ranked and greedy algorithms, using different
behaviors to reason about the role that diversity plays in per-
formance dynamics. Leveraging this structure, we identify
that both high diversity distance and high Euclidean distance
explain the selection method when performance improves
the fastest, implying that selecting diverse or spaced out
candidates contributes rapidly towards improving the WA.
Yet, that the ranked-diversity algorithm does not match the
greedier method ID or OOD limit the extent to which diver-
sity plays a role in this performance. We finally introduce
a method by which we can examine how our algorithms
selection traverses a loss basin and whether our candidates
are truly diverse by not reducing our distance relationships
but rather leveraging pairwise structure in a decomposition
for qualitative analysis.
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Impact Statement
This work provides a new weight-ensembling algorithm and
explanations for why a WA procedure improves accuracy
when able to choose which model to add to the list of can-
didates using the greedier algorithm. By shedding light on
what may cause WA to improve, we provide new support
to an existing avenue by which they can improve inference
using the WA efficiently. Such work has the potential to im-
prove deep learning algorithms in all facets of society, both
for clearly positive (such as medicine) and more nuanced to
negative (such as surveillance) purposes.
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A. Quantiles and Distance Distributions from Iterations of Weight-Ensemble Algorithms to
Selected Ingredients

In this section, we provide the boxplots of distances and quantiles of the selected models at each iteration using our
weight-space geometric distance measures. We also plot their mean trends together for a closer comparison.

A.1. Distance Distributions

In Section 4.1, the quantiles of the distances of selected ingredients from a current soup has the advantage of elucidating
within a set of ingredients whether the more or less diverse ingredients were utile. In contrast, we examine here the raw
trends (without taking quantiles) to ensure the robustness of the analysis.

For example, we can explain the first iteration of this process through the lens of diversity distance. Following notation in
Algorithm 1, at t = 1 we know the current WA is equal to the model average(ingredients) = θ1. Then if we selected θj
to add to the ingredients using the greedier method, we store the result dD(θ1, θj) in our bin for t = 1. We proceed this
binning from t = 1 to t = Tmax where Tmax is equal to the largest amount of time any greedier algorithm instance ran for.
We then boxplot over each t. As in the quantile example, we have an analogous implementation for the greedy algorithm.
These results are similarly in favor of the higher diversity and Euclidean distances being selected by the greedier algorithm
in earlier iterations. In both but especially in the Euclidean res ult of Figure 8 we see a steep drop-off in selected distances
after t = 4. Such a dropoff is intuitive because as we roughly move towards center of the the points in weight space, our
distance to unincorporated but likely related points will also decrease.

A.2. Diversity Distance

The distributions over selected-ingredient diversity distances is visualized in Figure 4. We also plot the mean trends in
selected diversity distance with confidence intervals in one plot in Figure 5. Elaborating on Figure 2, we plot the mean trend
in the quantiles of the distances of selected ingredients in one plot in Figure 6.

Figure 4. Box-plot of diversity distance between the current WA and the selected model at each iteration t of each algorithm across the 40
trials.
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Figure 5. Diversity distance between the current WA and the selected model at each iteration t of the greedy, greedier, ranked-diveristy,
and ranked-Euclidean algorithms averaged across all trials with 95% confidence interval. First ten iterations plotted.

A.3. Euclidean Distance

The quantiles over selected-ingredient Euclidean distances is visualized in Figure 7. The distributions over selected-
ingredient Euclidean distances is visualized in Figure 8. We also plot the mean trends in selected diversity distance with
confidence intervals in one plot in Figure 9. Elaborating on Figure 7, we plot the mean trend in the quantiles of the distances
of selected ingredients in one plot in Figure 10.

B. MDS Extended
We demonstrate an example of the MDS visualization in Euclidean space (Figure 11) and diversity space (Figure 12).

Remaining experiments will be attached as supplementary material.

C. Analyzing Diversity and Errors
C.1. Average Pairwise Diversity

Given a collection of models {θ1, . . . , θk} it is unclear how to measure the total diversity of the collection because the
ratio-error diversity is defined via pairwise relationships. As such, (Rame et al., 2022) choose to represent the diversity of
the collection as the average pairwise diversity between any two distinct models in the collection. In these algorithms at any
time step, we can use the ingredients selected so far to calculate the average pairwise diversity. In Figure 13 we plot the
average pairwise diversity up to time step 20.

In only the greedier algorithm at each time-step do we have access to the result of including each remaining ingredients
with the current set. As such, we may calculate the average pairwise diversity of every WA from the time step and bin the
quantile of the average pairwise diversity of the selected model. This allows us to see whether WAs with a higher or lower
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Figure 6. Quantiles of Diversity distance between the current WA and the selected model at each iteration t of the greedy, greedier,
ranked-diveristy, and ranked-Euclidean algorithms averaged across the 40 runs with 95% confidence interval. First ten time steps plotted.

average pairwise diversity are selected. Figure 14 visualizes the mean trend in the quantile of the new WA at each time step.

C.2. Dynamics of Errors

Similar to the benchmarking of the probability trend in Figure 3, we plot the results for 2) t-correct ingredient-incorrect in
Figure 15, and 4) t-incorrect and ingredient-correct in Figure 16. We do not plot 3) t-correct ingredient-correct due to a lack
of observable trend.

From Figure 15, we observe in the ID and OOD case for early iterations up to t = 4 the greedy method is signifcantly more
likely than greedier to make a “new” error when the ingredient made the error as well. Most of the distribution of values
for the diversity-ranked also lie below that of the greedy algorithm, although there is some intersection of the confidence
intervals. This evidences that diversity between a WA and an ingredient which makes mistakes may contribute to being
more robust to the next-step WA making the same error.

In Figure 16, we observe that the the diversity-selecting methods and the greedier algorithm lower probabilities of retaining
a current WA’s errors when the ingredient was also correct. This demonstrates that if an ingredient (though well-trained)
is incorrect, the WA’s performance on previously-misclassified points will benefit more from its inclusion if the model is
diverse from the current WA.

D. Algorithms
We formalize our greedier algorithm below as Algorithm 1. Notation for Algorithm 1 is drawn from (Wortsman et al., 2022).
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Figure 7. Box-plot of quantiles of Euclidean distance between the current WA and the selected model at each iteration t of each algorithm
across the 40 trials. Dashed red-line at 50% indicates random selection.

Figure 8. Box-plot of Euclidean distance between the current WA and the selected model at each iteration t of each algorithm across the
40 trials.

10



A Greedier Perspective on the Weight-Ensemble

Figure 9. Euclidean distance between the current WA and the selected model at each iteration t of the greedy, greedier, ranked-diveristy,
and ranked-Euclidean algorithms averaged across all trials with 95% confidence interval. First ten iterations plotted.

Algorithm 1 Greedier Algorithm for Weight-Ensembling
Input: Fine-tuned, potential ingredients {θ1, . . . , θk}, sorted by ID validation accuracy in the training domain, and a
choice of diversity metric.
Initialize ingredients← {θ1}
Initialize remaining ingredients← {θ2, . . . , θj}
Initialize MaxAcc← ValAcc(θ1).
for i = 2 to k do

Besti ← 0
for θj in remaining ingredients do

if ValAcc(average(ingredients ∪ {θj})) ≥MaxAcc then
MaxAcc← ValAcc(average(ingredients ∪ {θj}))
Besti ← j

end if
end for
if Besti > 0 then

ingredients← ingredients ∪ {θj}
remaining ingredients← remaining ingredients \ {θj}

else
return average(ingredients)

end if
end for
return average(ingredients)
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Figure 10. Quantiles of Euclidean distance between the current WA and the selected model at each iteration t of the greedy, greedier,
ranked-diveristy, and ranked-Euclidean algorithms averaged across the 40 runs with 95% confidence interval. First ten time steps plotted.

Algorithm 2 Ranked Algorithm for Weight-Ensembling
Input: Fine-tuned, potential ingredients {θ1, . . . , θk}, sorted by ID validation accuracy in the training domain
Initialize ingredients← {θ1}
Initialize remaining ingredients← {θ2, . . . , θj}
Initialize MaxAcc← ValAcc(θ1).
for i = 2 to k do

Besti ← 0
Calculate diversity-metric between average(ingredients ∪ {θj}) and each remaining ingredient
for θj Diversity-Ranked-Descending(remaining ingredients) do

if ValAcc(average(ingredients ∪ {θj})) ≥MaxAcc then
MaxAcc← ValAcc(average(ingredients ∪ {θj}))
Besti ← j
Break loop

end if
end for
if Besti > 0 then

ingredients← ingredients ∪ {θj}
remaining ingredients← remaining ingredients \ {θj}

else
return average(ingredients)

end if
end for
return average(ingredients)
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Figure 11. Euclidean distances between models in the greedier procedure plugged into MDS, with points color-coded by number of
ingredients. Previously used ingredients are circled, currently selected ones are in a square, and the current WA is in an x. Backdropped
by triangulated accuracy. Left: all points up to and including time t. Center: zoomed in on previous WA and time t candidate WAs. Right:
current WA and individual candidates. Smaller experiment (20 candidates) is visualized.
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Figure 12. Diversity distances between models in the greedier procedure plugged into non-metric MDS, with points color-coded by
number of ingredients. Previously used ingredients are circled, currently selected ones are in a square, and the current WA is in an x.
Backdropped by accuracy. Left: all points up to and including time t. Center: zoomed in on previous WA and time t candidate WAs.
Right: current WA and individual candidates. Smaller experiment (20 candidates) is visualized.
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Figure 13. Average pairwise diversity through time for all algorithms across the 40 trials.
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Figure 14. Quantile of average pairwise diversity of selected model through time for all algorithms across the 40 runs.
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Figure 15. t-correct ingredient-incorrect: Series of probabilities that the next-step WA predicts incorrectly given that the current-step WA
was correct and the ingredient was incorrect, difference from greedier and other methods’ averaged across all trials with 95% confidence
interval. Training at left, testing at right. Terminal value carried forward.
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Figure 16. t-incorrect ingredient-incorrect: Probabilities that the next-step WA predicts incorrectly given that the current-step WA was
incorrect and the ingredient was incorrect, difference from greedier and other methods’ averaged across all trials with 95% confidence
interval. Training at left, testing at right. Terminal value carried forward.
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