Resolution Where It Counts: Hash-based GPU-Accelerated 3D Reconstruction
via Variance-Adaptive Voxel Grids

Lorenzo De Rebotti Emanuele Giacomini

Giorgio Grisetti Luca Di Giammarino

Sapienza University of Rome, Italy

{derebotti,giacomini,grisetti,digiammarino}@diag.uniromal.it

Abstract

Efficient 3D surface reconstruction from range data in
real-time scenarios remains computationally and memory-
intensive. Traditional volumetric methods using fixed grids
or octrees are memory-inefficient, computationally expen-
sive, and lack full GPU support. We present a variance-
adaptive, multi-resolution voxel grid that adjusts resolution
based on local SDF variance using a flat spatial hash table
that enables constant-time access and full GPU parallelism.
The system includes GPU-accelerated rendering via paral-
lel quadtree-based Gaussian Splatting with adaptive splat
density control. Our CUDA/C++ implementation achieves
up to 5x speedup and 4x memory reduction versus fixed-
resolution methods with only 3.3 % less accuracy on aver-
age.

1. Introduction

Accurate and scalable 3D reconstruction from depth or
point cloud data is a core challenge in computer graphics,
robotics, and vision. Applications such as robotic naviga-
tion, AR/VR, and large-scale mapping demand representa-
tions that are both geometrically precise and computation-
ally efficient. Volumetric methods, particularly the Trun-
cated Signed Distance Function (TSDF), are widely used
for this purpose.

Introduced by Curless et al. [2], TSDF-based fusion inte-
grates depth over time into a voxel grid, enabling robust sur-
face reconstruction. KinectFusion [11] demonstrated real-
time TSDF integration on dense, uniform voxel grids for
small bounded scenes, while Voxel Hashing [12] addressed
scalability by dynamically allocating voxel blocks using
spatial hash tables, enabling real-time mapping on mobile
platforms. Subsequent works, such as Voxblox [13] and Su-
pereight [4], improved scalability through block-wise hash-
ing and adaptive allocation strategies, prioritizing real-time
performance often at the cost of geometric precision. Tradi-
tional approaches employ uniform grids, which scale poorly

Allocation Integration

Resolution Down-Sampling

Figure 1. System Overview: Input data drives voxel block al-
location and integration into a multi-resolution sparse voxel grid.
Blocks with variance below a threshold are downsampled and re-
integrated at coarser resolution. Our pipeline supports isosurface
extraction or environment rendering.

due to high memory and compute demands. To improve ef-
ficiency, adaptive structures like octrees and OpenVDB [10]
have been proposed. OpenVDB provides sparse volumetric
data structures through hierarchical trees, which are well-
suited for 3D reconstruction in VDBFusion [18]. However,
its multi-level hierarchy introduces lookup costs unsuitable
for real-time integration. Octree-based methods like those
by Funk. et al. [4] provide adaptive occupancy mapping
but suffer from hierarchical access overhead, and they did
not provide a GPU-compatible implementation. Recently,
MAP-ADAPT [23] has explored adaptive resolution guided
by semantics or image gradients, but it depends on struc-
tured RGB-D input and does not generalize to raw point
clouds.

In parallel, neural representations like PIN-SLAM [14]
leverage hierarchical feature grids and MLP decoding for
high-quality geometry reconstruction. While achieving ac-
curate results, these approaches are typically limited to
small-scale scenes and require substantial computing re-
sources.

Recent methods, such as GSFusion [19], combine 3D
Gaussian Splatting [5] with TSDF mapping, extending sys-
tems like Supereight for online rendering where the TSDF
layer constrains Gaussian initialization and optimization.

Figure 2. Variance-driven merging. (a) Low-variance blocks are
reallocated at coarser resolution (red). (b) High-variance blocks
remain fine (green).

However, their system requires frequent data transfers be-
tween the GPU and the CPU during rendering, which intro-
duces performance bottlenecks.

We propose a variance-adaptive, multi-resolution voxel
grid implemented on GPU using a flat spatial hash table.
Our system adjusts resolution based on local TSDF vari-
ance, enabling fine detail where needed and coarse repre-
sentation elsewhere, while achieving constant-time access
and real-time performance across RGB-D and LiDAR in-
puts. Our contributions include:

e a variance-adaptive voxel grid with extended Marching
Cubes [7] for seamless meshing across resolution bound-
aries

* a flat hash table managing mixed-resolution voxel blocks
without hierarchical overhead

* a fully parallel GPU-based quad-tree for adaptive Gaus-
sian Splatting

2. Technical Section

The TSDF map consists of spatially hashed voxels V; with
variable size v € R™, chosen according to local voxel den-
sity. Voxels of equal size are grouped into blocks B;, each
identified by integer grid coordinates b; = (z,y,)T € Z3.
A vogxel stores its signed distance D;, confidence weight
W, color, and variance J? of the mean Signed Distance
Function (SDF). At every frame k, sensor data (raw point
cloud or depth image) is fused into this structure.
Integration follows standard volumetric fusion [2, 12].
Each voxel encodes a truncated signed distance D;, positive
in free space and negative behind surfaces, clipped to 7 > 0.
For LiDAR sensors, rays are cast via DDA [1], updating
voxels along the path to each point p. For voxel center x,
dy.(x) = clip(w, _ T), (1)
[[n]]
with n the ray direction. For RGB-D cameras, depth val-
ues are back-projected with intrinsics 7! (u, v, d), and dis-
tances are computed along the viewing ray:

de(x) = clip(7 ™ (u,v,d) — [|x],-7,7). (2
Voxel updates use a running weighted average:

D; « Wi Di+widy (x)

W, +wg) WZ — W’i + W, (3)

(@) (b)

Figure 3. Transition handling. (a) Measurement-driven alloca-
tion creates overlaps between coarse and fine voxels. (b) Coarse
voxels are truncated, aligning Marching Cubes vertices consis-
tently.

with fixed wy, = 1 for consistent variance estimation. Using
Welford’s algorithm [20], we maintain voxel-level variance
over time o7, which reflects geometric complexity: low in
smooth areas, high near surfaces. This variance drives adap-
tive resolution by merging low-variance voxels into coarser
blocks.

To address sparsity, voxel blocks are stored in a hash ta-
ble [12]. Each block spans a fixed metric size but contains
a resolution-dependent number of voxels. Positions b, are
mapped with a spatial hash:

H(z,y,2) = (zp1 ® yp2 ® zp3) mod npash, (4)

where p; = 73856093, pa = 19349669, ps =
83492791 [17]. Collisions are handled via per-entry buck-
ets and linked lists. Unlike octrees or hybrid tree struc-
tures [4, 10], our unified hash table supports multiple res-
olutions in constant average time O(1), avoiding costly re-
cursive traversal and improving GPU parallelism.

Surface extraction is performed with Marching
Cubes [7] on the multi-resolution grid. At boundaries be-
tween different resolutions, trilinear interpolation becomes
ambiguous: a voxel corner at a coarse-fine interface may
lack one or more neighbors at the expected resolution,
resulting in undefined or inconsistent interpolated values.
We address this by computing a weighted interpolation
where contributions from finer voxels are prioritized,
ensuring continuity and preserving geometric detail across
resolution transitions. To prevent overlapping geometry
across resolutions, coarse voxels adjacent to finer ones are
truncated along shared faces (Fig. 3), following ideas from
Transvoxel [6]. Finally, we collapse the vertices that are
close to each other to ensure consistent meshing across
scales.

Furthermore, the proposed adaptive grid is not limited
to surface reconstruction; it also forms an efficient back-
bone for our high-quality, real-time rendering pipeline. To
achieve this, we adopt a 3D Gaussian Splatting (3DGS) for-
mulation [8], adapted for incremental processing of sequen-
tial images. Depth seeds Gaussians, while the voxel grid
regulates their spawning. An image-space quadtree, built
in parallel on the GPU, ensures density control. Contrast

ALGORITHM 1: Parallel GPU Quadtree Subdivision

Data: Image, Threshold, MinPixelSize
Result: FinalLeaves

NodeQueue < RootNode covering full image;
while NodeQueue not empty do

forall Node € NodeQueue (parallel block) do
| Compute contrast with shared memory;

end
NewQueue < (;

forall Node € NodeQueue (parallel thread) do
if Node.Contrast > Threshold and Node.Size >

MinPixelSize then
Subdivide and append children to

NewQueue;

end

else
| Add Node to FinalLeaves;

end

end
NodeQueue +— NewQueue;

end
return Finalleaves

¢(Q) for a quadtree () is defined using luma-weighted RGB
variance:

quQ (q — Inean;gh (Q))2
Q| ’

with 1 = [0.2989,0.5870,0.1140]. Subdivision continues
until contrast falls below the threshold or pixel size is min-
imal. Unlike recursive CPU methods [19], our breadth-
first GPU construction, in Alg. 1, exploits shared mem-
ory reductions, avoiding costly transfers and enabling high-
throughput adaptive splat generation.

(@) =1 ®)

3. Experiments

To evaluate performance, we used several publicly avail-
able benchmarks: Replica (synthetic indoor) [15], Scan-
net (RGB-D indoor) [3], Newer College (LiDAR hand-
held) [21], and Oxford Spires (LiDAR handheld) [16].

Mapping quality is assessed with surface reconstruc-
tion metrics [9]: Accuracy (Acc), Completeness (Comp),
Chamfer-L; (C-L;), and F-score. Rendering quality is
measured with Peak Signal-to-Noise Ratio (PSNR), Struc-
ture Similarity Index Measure (SSIM), and Learned Percep-
tual Image Patch Similarity (LPIPS) [22]. For both mapping
and rendering, we also reported Frame Per Seconds (FPS).

Concerning reconstruction, we compared our method
against SOTA baselines: VDBFusion [18], VoxBlox [13],
Supereight2 [4], and PIN-SLAM [14]. For rendering, we
compared against GSFusion [19]. For both tasks, pipelines
were run with ground-truth poses.

Experiments were executed on a PC (Intel 19-13900K,
128 GB RAM, RTX 4090). For single- and multi-resolution

Reconstruction Error Runtime and Memory

—— Acc. —e— Time [ms]
—e— Fine [MB] 250

—e— Coarse [MB]

3.0 Comp. 238
—e— C-L1

ta //—/_‘

L5 23.0

4 22.8

T T T T T T T T T T T T

0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
o I

Figure 4. Comparison of reconstruction error, runtimes, and
memory usage for different variance thresholds o. The left plot
reports accuracy, completeness, and Chamfer distance, while the
right plot shows runtime and memory consumption of the fine- and
coarse-level voxel structures.

grids, we used a block size of 512 (fine) and 64 (coarse),
with hash parameters p; = 73856093, po = 19349669,
p3 = 83492791.

Rendering used identical quadtree subdivision parame-
ters (contrast 0.1, min pixel 1), and Gaussian optimization
employed the same solver across methods, except Ours (+it-
erations), where we set more iterations to optimize GS pa-
rameters, using the single-resolution grid.

Our method achieves reconstruction quality comparable
to or better than prior approaches across multiple datasets,
with an accuracy loss of only 3.3 % on average, demon-
strating that the variance-adaptive multi-resolution grid pre-
serves accuracy while significantly reducing memory and
computation requirements, as shown in Tab. 1.

Memory usage, in Tab. 2, shows that our multi-resolution
configuration produces much more compact reconstructions
than existing approaches, with reductions of 2.0-7.5x for
RGB-D and 2.3-2.9x for LiDAR data, excluding VDBFu-
sion, whose mesh size is slightly smaller. Runtime perfor-
mance, reported in Tab. 2, demonstrates that our method is
consistently faster than all baselines, achieving up to 13x
speedup over state-of-the-art methods while maintaining
high reconstruction fidelity. These gains arise from adap-
tive voxel allocation, which concentrates resolution in geo-
metrically complex regions while coarsening uniform areas,
a fully GPU-based pipeline that avoids CPU-GPU transfer
overhead, and a flat hash table structure enabling constant-
time access. Competing methods such as Supereight2 and
Voxblox sometimes failed or required special configuration,
highlighting the robustness, scalability, and efficiency of
our approach across dense and sparse 3D data.

We evaluate rendering by integrating our voxel grid with
a Gaussian Splatting renderer and comparing against GSFu-
sion [19], see Tab. 3. Our multi-resolution design improves
perceptual metrics (PSNR, SSIM, LPIPS), while the single
resolution one achieves the highest rendering speed (28.05
FPS) thanks to a fully GPU-based quad-tree that dynami-
cally manages splat density. Compared to GSFusion, which

Method ScanNet (RGB-D) \

Newer-College (LiDAR)

‘ Avg.

Acc[ecm] Comp[cm] C-L1[cm] F-Score[%]‘Acc[cm] Comp[cm] C-L1[cm] F-Score[%]‘Acc[cm] Comp[cm] C-L1[cm] F-Score[%]

VDBFusion 3.336 0.837 2.086 92.696 7.230
PIN-SLAM 4.292 1.276 2.784 92.398 9.765
Voxblox 3.234 3.982 3.608 90.052 9.242
Supereight2 ¥ 3.441 1.553 2.497 93.468 -

Supereight2 I 3.248 1.548 2.398 94.250 -

Ours 2.030 1.273 1.637 96.845 7.737
Ours (multi) ~ 2.540 1.345 1.943 95992 | 11.135

12.329
14.103
19.349

13.074
19.298

9.780 88.217 4.504 4.285 4.394 91.352
11.934 83.250 5.934 5.124 5.529 89.654
14.296 75.539 5.037 8.592 6.814 85.698
10.405 86.710 3.743 4.813 4.267 93.804
15.216 78.346 5.119 6.731 5.925 90.698

Table 1. 3D Reconstruction Results. The RGB-D data are sequences of ScanNet [3] and LiDAR data are sequences of NC [21]. All
the pipelines are run with ground truth fixed poses. Voxel size is set to 1 cm for RGB-D data and 20 cm for LiDAR data and the F-score
is computed with a 10 cm error threshold for the RGB-D and 20 c¢cm for the LiDAR. Best results are highlighted as first and second .
Supereigtht represents single resolution grid, Supereight] represents multi-resolution grid. Both failed on all LiDAR sequences.

reference

o = 0.005 o = 0.001

Figure 5. Comparison of different variance thresholds o. In red, the coarser voxels, in green, the finer ones. From left to right: the
reference ground truth mesh and the underlying grid at the respective thresholds. For simplicity, we show just two levels at a time. The

sequence is part of the Replica dataset [15].

Method Avg. Memory [MB] | Avg. FPS 1
VDBFusion 173.3 10.5
PIN-SLAM 361.5 124
Voxblox 212.2 8.6
Ours (single) 132.5 50.9
Ours (multi) 88.7 45.9

Table 2. Memory and Runtime trade-off. We report the average
memory consumption [mb] and average FPS across all datasets.

Best values are highlighted as first and second . Missing values
(“=") indicate unavailable results.

uses Supereight2, our method delivers higher reconstruction
quality and faster mapping time (14.99 FPS vs. 23.70 FPS),
demonstrating both efficiency and fidelity.

Furthermore, we analyze the effect of the variance
threshold o on the trade-off between accuracy and memory.
As shown in Fig. 4, lower thresholds improve reconstruc-
tion quality but increase fine voxel allocation, while higher
thresholds reduce detail. Fig. 5 further illustrates that mod-
erate o values preserve quality while lowering memory us-
age.

Method PSNR1 SSIM1t LPIPS| FPS?
GSFusion 34.65 0.949 0.056 14.99
Ours 33.90 0.949 0.057 28.05
Ours (+iterations) 34.27 0.951 0.052 14.22
Ours (multi) 35.73 0.960 0.044 23.70

Table 3. Rendering quality and performance. Comparison of
perceptual metrics (PSNR, SSIM, LPIPS) and rendering speed
(FPS) on Replica dataset [15]. Best results are highlighted as
first and second .

4. Conclusion

We propose a multi-resolution voxel grid for real-time 3D
reconstruction, adapting resolution via local TSDF variance
and managing blocks with a flat hash table for constant-
time GPU access. The method is sensor-agnostic, works
with RGB-D and LiDAR inputs, and integrates with GPU
Gaussian Splatting for high-quality rendering. Experiments
show up to 4x memory savings, up to 5x speedup, and com-
petitive accuracy.

Acknowledgments

This work has been supported by PNRR MUR project
PE0000013-FAIR.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

John Amanatides and Andrew Woo. A Fast Voxel Traversal
Algorithm for Ray Tracing. In EG 1987-Technical Papers.
Eurographics Association, 1987. 2

Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In Proceedings
of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, page 303-312, New York, NY, USA,
1996. ACM. 1,2

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niener. ScanNet:
Richly-Annotated 3D Reconstructions of Indoor Scenes. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2432-2443, 2017. 3, 4

Nils Funk, Juan Tarrio, Sotiris Papatheodorou, Marija
Popovié, Pablo F. Alcantarilla, and Stefan Leutenegger.
Multi-Resolution 3D Mapping With Explicit Free Space
Representation for Fast and Accurate Mobile Robot Mo-
tion Planning. IEEE Robotics and Automation Letters, 6(2):
3553-3560, 2021. 1,2, 3

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139-1,
2023. 1

Eric Lengyel. Transition Cells for Dynamic Multiresolu-
tion Marching Cubes. Journal of Graphics, GPU, and Game
Tools, 15(2):99-122, 2010. 2

William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In
Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, page 163—-169, New
York, NY, USA, 1987. ACM. 2

Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and An-
drew J. Davison. Gaussian Splatting SLAM. In 2024
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 18039-18048, 2024. 2

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy Net-
works: Learning 3D Reconstruction in Function Space. In
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4455-4465, 2019. 3

Ken Museth. Vdb: High-resolution sparse volumes with dy-
namic topology. ACM transactions on graphics (TOG), 32
(3):1-22,2013. 1,2

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. KinectFusion: Real-time dense surface mapping
and tracking. In 2011 10th IEEE International Symposium
on Mixed and Augmented Reality, pages 127-136, 2011. 1
Matthias NieBner, Michael Zollhofer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-

(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

ing voxel hashing. ACM Transactions on Graphics (ToG), 32
(6):1-11,2013. 1,2

Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland
Siegwart, and Juan Nieto. Voxblox: Incremental 3d eu-
clidean signed distance fields for on-board mav planning.
In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1366—-1373. IEEE, 2017.
1,3

Yue Pan, Xingguang Zhong, Louis Wiesmann, Thorbjérn
Posewsky, Jens Behley, and Cyrill Stachniss. PIN-SLAM:
LiDAR SLAM Using a Point-Based Implicit Neural Rep-
resentation for Achieving Global Map Consistency. [EEE
Transactions on Robotics, 40:4045-4064, 2024. 1, 3

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal,
Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan,
Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang
Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler
Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva,
Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael
Goesele, Steven Lovegrove, and Richard Newcombe. The
Replica Dataset: A Digital Replica of Indoor Spaces, 2019.
3,4

Yifu Tao, Miguel Angel Mufioz-Baiién, Lintong Zhang, Ji-
ahao Wang, Lanke Frank Tarimo Fu, and Maurice Fal-
lon. The Oxford Spires Dataset: Benchmarking Large-Scale
LiDAR-Visual Localisation, Reconstruction and Radiance
Field Methods, 2024. 3

Matthias Teschner, Bruno Heidelberger, Matthias Miiller,
Danat Pomerantes, and Markus H. Gross. Optimized Spatial
Hashing for Collision Detection of Deformable Objects. In
8th International Fall Workshop on Vision, Modeling, and Vi-
sualization, VMV 2003, Miinchen, Germany, November 19-
21, 2003, pages 47-54. Aka GmbH, 2003. 2

Ignacio Vizzo, Tiziano Guadagnino, Jens Behley, and Cyrill
Stachniss. VDBFusion: Flexible and Efficient TSDF Inte-
gration of Range Sensor Data. Sensors, 22(3):1296, 2022. 1,
J

Jiaxin Wei and Stefan Leutenegger. GSFusion: Online RGB-
D Mapping Where Gaussian Splatting Meets TSDF Fusion.
IEEE Robotics and Automation Letters, 9(12):11865-11872,
2024. 1,3

B. P. Welford. Note on a Method for Calculating Corrected
Sums of Squares and Products. Technometrics, 4(3):419-
420, 1962. 2

Lintong Zhang, Marco Camurri, and M. Fallon. Multi-
Camera LiDAR Inertial Extension to the Newer College
Dataset. ArXiv, 2021. 3, 4

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The Unreasonable Effectiveness of
Deep Features as a Perceptual Metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 586-595, 2018. 3

Jianhao Zheng, Daniel Barath, Marc Pollefeys, and Iro Ar-
meni. MAP-ADAPT: Real-Time Quality-Adaptive Semantic
3D Maps. In Computer Vision— ECCV 2024, pages 220-237,
Cham, 2024. Springer Nature Switzerland. |

	Introduction
	Technical Section
	Experiments
	Conclusion

