
Under review as a conference paper at ICLR 2022

NOISY ADVERSARIAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

In image classification, data augmentation and the usage of additional data has
been shown to increase the efficiency of clean training and the accuracy of the
resulting model. However, this does not prevent models from being fooled by ad-
versarial manipulations. To increase the robustness, Adversarial Training (AT) is
an easy, yet effective and widely used method to harden neural networks against
adversarial inputs. Still, AT is computationally expensive and inefficient in that
way, that only one adversarial input per sample of the current batch is created.
We propose Noisy Adversarial Training (N-AT), which, for the first time, com-
bines data augmentation in the decision space and adversarial training. By adding
random noise to the original adversarial output vector, we create multiple pseudo
adversarial instances, thus increasing the data pool for adversarial training. We
show that this general idea is applicable to two different learning paradigms, i.e.,
supervised and self-supervised learning. Using N-AT instead of AT, we can in-
crease the robustness relatively by 1.06% for small seen attacks. For larger seen
attacks, the relative gain in robustness increases up to 89.26%. When combining a
larger corpus of input data with our proposed method, we report an increase of the
clean accuracy and for all observed attacks, compared to AT. In self-supervised
training, we observe a similar increase in robust accuracy for seen attacks and
large unseen attacks, when it comes to the downstream task of image classifica-
tion. In addition, when the pretrained model is finetuned, we also report a relative
gain in clean accuracy between 0.5% and 1.11%.

1 INTRODUCTION

The performance of deep learning models in various domains, e.g., image classification (Zhai et al.
(2021)), semantic image segmentation (Tao et al. (2020)), or reinforcement learning (Tang et al.
(2017)) is already on a high level and constantly improving. Among other aspects, ongoing research
and advances in data augmentation (Cubuk et al. (2020)) techniques, as well as the creation of
more realistic synthetic inputs (Ho et al. (2020)) contribute to this success. Both techniques aim
to enrich the training data and increase performance. However, when it comes to safety-critical
applications, e.g., autonomous driving, adversarial inputs pose a threat. By applying small but
malicious manipulations to the input, the prediction of the model can change drastically.

Starting by manipulating digital inputs, several authors, e.g., Goodfellow et al. (2014); Carlini &
Wagner (2017); Madry et al. (2017), developed different techniques to calculate and create the nec-
essary manipulations to fool neural networks into misclassifying a given input. Later, these attacks
were adapted or extended to also work in the physical world (Athalye et al. (2018); Worzyk et al.
(2019); Ranjan et al. (2019)).

One widely used technique to harden neural networks against such attacks is called Adversarial
Training (AT), which is simple but yet very effective. The idea is to create adversarial inputs during
the training process, and include or exclusively use them for training. Thereby, the model learns to
be more resilient against these worst-case perturbations. Madry et al. (2017) for example, proposed
a method referred to as Projected Gradient Descent (PGD) which is very successful in finding adver-
sarial inputs and furthermore use these adversarial instances exclusively for training a given model.
Even though effective, this form of AT is rather inefficient in that way, that only one adversarial
input is created per sample in the current batch.

1

Under review as a conference paper at ICLR 2022

To create a more efficient way of AT, we propose to extend adversarial training by data aug-
mentation in the decision space and to increase the impact, and thereby the efficiency of any
given adversarial instance during adversarial training. While data augmentation in the input space is
widely used and researched, to the best of our knowledge, data augmentation in the decision space
to increase the efficiency of adversarial training has not yet been investigated. The overall concept
is shown in Figure 1.

In Figure 1a, the decision space during traditional adversarial training is displayed. Based on the
current decision boundary (bold line) and the output vector for a clean sample (orange circle), an
adversarial input (blue cross) is created, whose output vector is located on the wrong side of the
decision boundary. The adversarial decision boundary (dashed line) is then optimized to contribute
for the adversarial input.

Figure 1b outlines our extension to this process. Based on the output vector of an adversarial input
(large blue cross), multiple pseudo adversarial inputs (small blue crosses) are created by applying
normally distributed random noise within a predefined radius to the initial adversarial output vector.
By scattering the adversarial output vector, we widen its impact on the new adversarial decision
boundary (dashed line).

Clean Sample Adversarial Sample Clean decision boundary Adversarial decision boundary

(a) Adversarial Training (b) Noisy Adversarial Training

Figure 1: Difference between traditional (1a) and noisy (1b) adversarial training. Given the output
vector of a clean sample (orange circle) and the previous decision boundary (solid line), adversarial
inputs (blue cross) lying on the wrong side of the decision boundary are created. When adding
the adversarial samples to the training process, the decision boundary adapts accordingly (dashed
line). During Noisy Adversarial Training, the initial adversarial output vector is perturbed randomly
within a given radius to create a set of additional pseudo adversarial inputs (smaller blue crosses).
This extends the impact of any single adversarial input on the adversarial decision boundary (dashed
line) during training.

The remainder of this paper is structured as follows. In Section 2, we introduce the supervised,
as well as self-supervised adversarial training methods used for the experiments in this paper. In
Section 3, we define our proposed N-AT method in more detail, followed by the experiments and
their discussion in Section 4. Section 5 concludes this paper.

2 BACKGROUND

2.1 SUPERVISED ADVERSARIAL TRAINING

PGD: One of the widest known and applied techniques for adversarial training is PGD, proposed
by Madry et al. (2017). Instead of using clean samples during training, the authors use the corre-
sponding adversarial instances, created based on the following iterative equation,

xi+1 = ΠB(x,ε)

(
xi + αsign

(
∇xiLCE

(
θ, xi, y

)))
, x0 = x . (1)

This function is initialized by the original input x and calculates the gradients, regarding the interme-
diate adversarial input xi, of the cross-entropy loss LCE away from the true label y. This calculation
is based on the current parameters of the model θ. The sign of the gradients is multiplied by a step
size parameter α and added to the current intermediate adversarial input. The projection Π then
limits the perturbation to be within an ε-ball around the initial input x. The parameter ε essentially
governs the allowed amount of perturbation. For example, ε = 8/255 regarding the `∞ norm would

2

Under review as a conference paper at ICLR 2022

state, that each pixel of the original input vector is allowed to be increased or decreased by not more
than 8 values.

2.2 SELF-SUPERVISED ADVERSARIAL TRAINING

More recently, adversarial training is also applied to self-supervised training. The general goal
of self-supervision is to train for some pretext tasks where no labels are required. After training,
the model and its parameters are transferred to a given downstream task, e.g., image classification.
Therefore, the overall model in self-supervised learning is split into a backbone and a projector.
The backbone can be based on, e.g., a ResNet architecture (He et al. (2016)), stripped of the last
fully connected layer. The projector reduces the dimensionality of the output features from the
backbone to a usually 128-dimensional vector. To train without labels, given a batch of samples
{x1, ..., xb}, each sample is duplicated and transformed by a given series of random transformations
t, e.g., cropping and flipping. The resulting transformed versions of the same origin, i.e., t1 (xi)
and t2 (xi) are called positive pair, while pairs of samples with different origin, i.e., t (xi) and t (xj)
with i 6= j are called negative pair. The pretext task of the models used in this paper is to maximise
the distance between the output vectors of negative pairs while minimising the distance between the
output vectors of positive pairs.

After pretraining for the pretext task, the backbone is kept and the projector is discarded. Instead
of the projector, a downstream task-specific head is attached. The parameters of the backbone are
usually frozen and only the classification head is trained. In essence, self-supervised pretraining
aims to learn good feature representations which can, later on, be used for the given downstream
task.

RoCL: Kim et al. (2020) added adversarial training to the SimCLR (Chen et al. (2020)) framework
and dubbed it Robust Contrastive Learning (RoCL). To calculate the distance within positive and
negative pairs, SimCLR uses the contrastive loss function as given in Table 2 in Appendix A.1
where sim is the cosine similarity. To create the necessary adversarial inputs, Kim et al. (2020)
adapted PGD (cf. Equation 1) to use the contrastive loss instead of the cross-entropy loss as follows,

t1 (x)
i+1

= ΠB(t1(x),ε)

(
t1 (x)

i
+ αsign

(
∇t1(x)iLcon,θ

(
t1 (x)

i
, {t2 (x)}, {t1 (x)neg}

)))
, (2)

where ti is a random transformation, while the rest of the notation is the same as in Equation 1. To
implement adversarial training, Kim et al. (2020) essentially use the adversarial inputs to extend the
positive and negative pairs to triplets. During training, they aim to minimize the distance between
the two transformed inputs, as well as the distances between the two transformed inputs each and
the created adversarial input for the given pair. The formalization of the RoCL objective is given in
Table 2, where t (x) + δ is the adversarial sample. The overall training loss is then calculated based
on the standard contrastive loss only considering the clean transformed samples, plus the adversarial
loss based on the triplets of two transformed inputs and the additional adversarial input.

One challenge using SimCLR as the basic framework is that it requires a large batch size to achieve
good performance (Chen et al. (2020)). That comes from the fact that no form of dictionary or
memory bank is used to increase the number of negative samples, which are essential for good
performance in this type of self-supervised learning. By including adversarial samples into the
training process, the batch size per GPU has to be reduced compared to standard SimCLR training.

AMOC: Another widely known self-supervised framework is Momentum Contrast (MoCo) pro-
posed by He et al. (2020). The conceptual idea is the same as for SimCLR, i.e., minimising the
distance between positive instances while maximising the distance towards negative samples. How-
ever, to overcome the problem of large batch sizes, He et al. (2020) implement a dictionary or mem-
ory bank and use two networks of the same architecture and the same initial weights. One model
is referred to as the query encoder, which is updated after each batch as usual. The other model
is called momentum or key encoder, whose parameters are a copy of the query encoder, delayed
by a predefined momentum. This makes the output of the key encoder slightly different from the
output of the query encoder, which can be considered as an additional form of data augmentation.
After processing the inputs of the current batch, the encoded vectors of the momentum encoder are
enriched by output vectors calculated during the last batches, stored in the dictionary. Thereby, a
large number of negative samples can be created consistently, leading to overall better performance.

3

Under review as a conference paper at ICLR 2022

The standard loss function for MoCo is given in Table 2, where q and k refer to the encoded vector
by the query, resp. key encoder, τ is a temperature parameter, andM refers to the memory bank of
old key vectors.

Based on this framework, Xu & Yang (2020) proposed an extension for adversarial training. They
introduce a second memory bank to store exclusively the historic adversarial inputs, and to further
disentangle the clean and adversarial distribution, they use dual Batch Normalization as proposed
by Xie et al. (2020). The optimization problem they solve is given in Table 2, with t1 and t2 being
two different random transformations from a set T of possible transformation, and δ being the adver-
sarial perturbation. Mclean andMadv refer to the clean, and adversarial memory bank, respectively.
As for the loss function, Xu & Yang (2020) tested different memory bank and batch normalization
combinations, and reported good results for a combination they refer to as ACC, indicating that the
adversarial perturbation is injected into the query encoder, while the key encoder does not observe
any perturbation and also the clean memory bankMclean is used. The formulation is given in Ta-
ble 2. Intuitively, the ACC loss function trains the query encoder fq to classify adversarial inputs
as its clean augmentation. To create the adversarial perturbation, Xu & Yang (2020) use PGD as
well, but with the MoCo loss instead of the cross-entropy loss. Finally, the overall training loss is
calculated as a weighted sum of the standard MoCo loss solely trained on transformed clean data,
and the selected, e.g., ACC loss to incorporate adversarial instances.

3 METHOD

Multiple approaches for adversarial training are outlined in Section 2. Our goal is to develop a
method that is not specifically tailored to one approach, but rather generalizable between different
sorts of adversarial training. Therefore, given an input x and a neural network f , f (x) denotes the
general output vector. In supervised learning, this vector would be the logits, while in self-supervised
learning, this would be the 128-dimensional output vector of the projector.

After an adversarial input x′ and in consequence also its output vector f (x′) has been created by
one of the approaches in Section 2, we create multiple pseudo adversarial inputs f (x′s) by adding
normal distributed random noise,

f (x′)s = f (x′) +N (0, 1) · δx′,x · αs , (3)
where δx′,x is defined as

δx′,x = f (x′)− f (x) (4)
and αs is a hyperparameter, used to scale the normal distribution to reasonable values. Later on, we
will show that using the same amount of perturbation during the whole training is not useful, and
can even harm the performance. The parameter αs fulfils a similar role to a learning rate step size,
which is usually reduced during training. Intuitively, δx′,x defines the element-wise difference that
the initial adversarial input is moved away from the original instance in the decision space, while αs
scales this initial manipulation as desired.

To confirm that this type of decision space data manipulation is suitable, we create randomly per-
turbed adversarial instances for a standard, clean trained model (ST) and track their classification
behaviour. In Figure 2, the results for an ST model are shown in the most left bar of each group. The
blue (bottom) portion of the bar indicates the percentage of pseudo adversarial inputs being clas-
sified the same, as the initial adversarial input. The orange (middle) portion indicates the number
of pseudo adversarial inputs returning to the classification area of the initial clean sample, and the
green (top) portion gives the percentage of samples that move to a third classification area, which is
neither the class of the clean nor the initial adversarial sample.

We can observe that for sufficiently small perturbation 100% of the pseudo adversarial inputs are
classified the same, as the initial adversarial input. This demonstrates empirically, that the applied
conditioned random noise as a form of data augmentation in the decision space can also be ‘label
preserving’. Only with larger perturbation radius, more and more perturbed adversarial inputs move
towards a third classification area. The samples returning to their originally true class, however,
can be ignored, since the adversarial instances are labelled to have the same class as their clean
counterparts during training. Therefore, the assigned label for these instances would not change.

This observation is underlined by an early study of Tabacof & Valle (2016). They also found that
randomly perturbing adversarial instances only affects the classification at larger amounts of pertur-

4

Under review as a conference paper at ICLR 2022

0.
01

0.
02

0.
05 0.
1

0.
2

0.
5

1.
0

2.
0

2.
5

3.
0

5.
0

Perturbation radius

0

20

40

60

80

100

Cl
as

sif
ica

tio
n

ov
er

la
p

in
 %

C(noisy) = C(adversarial)
C(noisy) = C(clean)
C(noisy) != C(adversarial) != C(clean)

Figure 2: Percentages of pseudo adversarial inputs being classified as indicated, depending on the
perturbation scaling factor αs. The bars of each group show the results based on the following
models: Left bar: Standard trained model; Middle bar: Adversarial trained model; Right bar:
Noisy adversarial trained model. C(noisy) = C(adversarial) indicates the noisy adversarial input
is classified the same, as the initial adversarial input. C(noisy) = C(clean) gives the percentage
of pseudo adversarial inputs, which return to the original true classification area, while C(noisy)
!= C(adversarial) != C(clean) gives the percentage of pseudo adversarial inputs moving to some
different, third class when perturbed randomly.

bation. However, they apply random perturbation in pixel space, which alone cannot tell us whether
the corresponding output vectors of the randomly manipulated adversarial instances are close to the
output vector of the initial adversarial instance.

A different perspective to the classification changes shown in Figure 2 is to empirically evaluate
the local smoothness of the decision surface. If already for small random perturbation an instance
moves into another classification area, the decision boundary might be sharply twisted at that point.
If only at larger perturbations, the instances move into another class area, the decision boundary can
be assumed to be more smooth.

The second bar of each group displays the corresponding behaviour for an adversarially trained
model. Similarly to the clean model, at small perturbation radii, almost all pseudo adversarial in-
stances are classified the same as the initial adversarial instance. However, with increasing manipu-
lation, more and more noisy instances move to a third classification area. This also indicates, that for
training with noisy adversarial instances, the scatter radius should be reduced over time. Thereby,
the risk of assigning instances in a third classification area with a potentially incorrect label could
be minimized.

As a final comparison, the third bar of each group shows the corresponding classifications for pseudo
adversarial instances on an N-AT model. Here we can see that the number of pseudo adversarial
instances being classified as the initial adversarial instance is higher compared to normal adversarial
training. The number of instances moving to a third classification area is smaller as well for the
N-AT model compared to the AT model. This indicates a smoother local decision boundary when a
model is trained with N-AT compared to AT. Only for a very large perturbation radius, this changes
in favour of AT.

Having verified that applying random perturbation as a form of data augmentation in the decision
space is a valid option, our overall pseudo-code is given in Algorithm 1. Aside from the scalar
for the perturbation radius αs, we also introduce a hyperparameter to define the number of addi-
tionally created pseudo adversarial instances sk. Each additional pseudo adversarial instance only
requires the calculation of random noise and evaluation of the given loss function. Addition and
multiplication to create the pseudo adversarial instances regarding time complexity are in O (1),
while evaluating the loss function, independent from the parameters added for N-AT, can also be
considered to be in O (1). Therefore, our extension to implement N-AT adds a time complexity in
O (n) with the number of created pseudo adversarial inputs to the overall training procedure. In
Table 5 in Appendix A.3, the additional time demand for each scattered input during the different
training methods, is empirically evaluated and listed.

5

Under review as a conference paper at ICLR 2022

To even out the effect of having multiple pseudo adversarial instances, we calculate the mean loss
and add it, weighted by some factor λ, to calculate the overall loss as

Ltotal = ιLclean + κLadv + λLscatter, (5)

where ι, κ, and λ could be different weights for the different loss functions.

Algorithm 1: Noisy Adversarial Training (N-AT).
Input: Dataset D, model f , parameter θ, Loss function L, # attack steps k, # scatter instances

sk, scatter scalar αs
foreach iter ∈ number of training iteration do

foreach x ∈ minibatch B = {x1, . . . , xm} do
Lclean = L (f (x))
x′ = generateAdversarial (x)
Ladv = L (f (x′))
Noisy Adversarial Operation:
δx′,x = f (x′)− f (x)
for sk instances do

f (x′)s = f (x′) +N (0, 1) · δx′,x · αs
Ls += L (f (x′)s)

end
Lscatter = Ls

sk
Ltotal = ιLclean + κLadv + λLscatter
Optimize θ over Ltotal

end
end

4 RESULTS AND DISCUSSION

Dataset and Model: All experiments were run on the Cifar-10 dataset (Krizhevsky et al. (2009)).
For supervised learning, we did an additional set of experiments marked with +, which uses another
1 million synthetic data points based on Cifar-10, provided by Gowal et al. (2021). The authors
report an increase in adversarial robustness using the additional synthetic data. The model used for
all experiments is a ResNet-18 architecture, implemented in the provided repositories of Kim et al.
(2020) for RoCL, and Xu & Yang (2020) for AMOC. The experiments for the supervised case were
run based on the AMOC framework. More details are provided in Appendix A.2.

Hyperparameters for training: For all experiments, we used the provided hyperparameters sug-
gested by Kim et al. (2020) for RoCL, and Xu & Yang (2020) for AMOC, when applicable. More
details are provided in Appendix A.2.

Attacks: During training, the adversarial inputs were created governed by a perturbation size of
ε = 8/255 regarding `∞. Therefore, the `∞ attacks are referred to as seen, even if only for a small
perturbation size, while the `2 and `1 attacks were completely unseen during the training procedure.
For adversarial training, we used the parameters provided by the respective frameworks, listed in
Appendix A.2.

To challenge the trained models, the adversarial inputs were created over 20 iteration steps, with
a relative step size of 0.1 to the given allowed amount of perturbation. The overall evaluation was
conducted based on the respective functions in the AMOC framework, which itself draws the attacks
from the foolbox framework (Rauber et al. (2017)).

Hyperparameters for N-AT: For N-AT, we found that a good number of additional inputs is
sk = 10. Introducing too many additional data points would add too much noise to the training
process and thereby reduces the overall performance. On the other hand, too few pseudo adversarial
instances would not have any impact on the overall performance. Similarly, setting the scatter radius
too small results in no effect on the results, while setting it too large, as shown in Figure 2, will move

6

Under review as a conference paper at ICLR 2022

the pseudo adversarial inputs increasingly towards and over the decision boundary of a different clas-
sification area. For supervised N-AT, we found that a surprisingly large initial αs = 2.5 decayed by
a cosine scheduler, yields the best results. Training AMOC, setting the initial αs = 0.25 decayed by
a cosine scheduler works best, respectively for RoCL an initial α0.1 decayed by a stepwise function
reducing the initial αs by 0.01 every 100 epochs.

For the weight of the scatter loss to the overall loss, we found that in supervised adversarial training
the same weight for the original adversarial loss and the scatter loss works best. Similar to AMOC
pretraining, an equal contribution of the clean, the original adversarial, and the scatter loss yields the
best results. For RoCL, a weight of λ = 0.25 for the scatter loss yields the best results, combined
with a weight of ι = κ = 1.0 for the clean and original adversarial loss.

4.1 RESULTS

A reduced version of the results for the supervised experiments is given in Table 1, where each
value represents the mean value over 5 different runs. The results for all observed attacks are given
in Table 6 in Appendix A.4. Table 7 in Appendix A.4 summarizes the results based on the pretrained
models. The upper part reports the results where only the classification head was optimized, while
the parameters of the pretrained model were frozen. The lower part, indicated by Self-supervised +
finetune, reports the results where also the parameters of the pretrained model were optimized during
training of the classification head. An N- in front of the given method indicates, that our proposed
adaptation was applied. The results for experiments run for 200 epochs are also the mean value over
5 different runs.

Method Anat

seen unseen
l∞ l2 l1

ε 8/255 16/255 32/255 0.25 0.75 7.84 16.16
LCE 93.92 0.00 0.00 0.00 8.27 0.00 15.07 0.61
AT 81.85 52.49 22.21 1.25 73.83 50.91 70.52 54.66
N-AT 76.60 53.05 26.78 2.36 69.63 52.02 67.04 54.95
L+

CE 95.04 0.00 0.00 0.00 12.42 0.04 21.75 1.84
AT+ 84.15 59.22 29.70 2.60 76.78 56.09 73.47 58.05
N-AT+ 84.20 59.80 30.49 2.81 76.89 56.86 73.61 58.81

Table 1: Results on Cifar-10 for supervised trained models with standard cross-entropy training
LCE, adversarial PGD training (AT), and our proposed Noisy Adversarial Training (N-AT). For the
experiments marked with +, 1 million additional synthetic data points based on Cifar-10 were used
for training. During training, the initial adversarial instances were created governed by `∞ with a
strength of 8/255. All experiments were run 5 times and the mean value is reported.

4.2 DISCUSSION

Taking a look at the results of the supervised methods in Table 1, we can reaffirm that additional
synthetic data increases the clean accuracy whenever used. Also, the robust accuracy against unseen
attacks increases for the clean trained model, when more input data is employed. When AT is trained
on the additional data, we can also confirm that the clean, as well as robust accuracy, improves,
as Gowal et al. (2021) reported. N-AT trained models, without the additional data, improve the
robustness regarding the seen attacks even further, yielding a relative increase of 1.07% for small,
and a relative increase of 89.26% for the largest observed perturbation. For small unseen attacks, the
robustness decreases but increases for large perturbations by the unseen attacks. For the largest `2
perturbation, we can report a relative increase of 2.18%, for the largest attack based on `1 of 0.53%.

When both, additional synthetic data in the input space, as well as N-AT to artificially increase the
observed adversarial instances in the decision space are used, we can not only even out the further
reduction in clean accuracy observed for training without the additional data, but even increase the
clean accuracy slightly, while also improving the robustness against all observed attacks.

Observing the results for AMOC when only the classification head is trained, given in Table 7 in
Appendix A.4, we can report similar behaviour. The clean accuracy is slightly reduced, while the

7

Under review as a conference paper at ICLR 2022

classification accuracy for seen attacks increases relatively between 0.04% to 46%, depending on
the attack size. Also the robustness against. Also, when AMOC is trained for 1000 epochs, the
robust accuracy for large unseen attacks increases.

For RoCL, introducing our proposed pseudo adversarial inputs into the self-supervised pretraining,
the clean accuracy relatively increases by up to 1.64%. Also, the robustness against seen attacks
increases for small and medium-sized attacks. Interestingly, the robustness for large seen attacks
only increases when N-RoCL during pretraining and N-AT for the classification head is applied.
Similar to AMOC, RoCL also becomes more robust to medium and/or large unseen attacks, when
trained with additional pseudo adversarial inputs. Particularly for the combination N-RoCL + AT,
our enhanced pretraining leads to better clean accuracy and robustness against almost all attacks
compared to standard RoCL + AT.

When during training of the classification head also the parameters of the pretrained models are fine-
tuned, we observe an increase in clean, as well as robust accuracy for AMOC, too. In particular, for
the combination N-AMOC + N-AF, compared to AMOC + N-AF, we observe that the performance
increases against almost all attacks. If we assume AMOC + AF as the reported baseline, N-AMOC
+ N-AF relatively increase the robustness against all seen attacks between 0.47% and 17.96%, as
well as against medium and large unseen attacks between 0.21% and 0.38%.

To further investigate why noisy adversarial training is sometimes weaker regarding unseen attacks,
we calculated the perturbation size of successful `2 and `1 governed attacks regarding `∞. The
resulting distributions are given in Figure 3 in Appendix A.5, where the x-axis indicates the pertur-
bation size regarding `∞, and the y-axis shows the frequency of successful attacks. We recommend
viewing the figures digitally to zoom in further. The distribution of manipulation sizes based on
attacks controlled by `2 is given in blue (legend top), while the values for `1-attacks are shown in
orange (legend middle), and for `∞-attacks in green (legend bottom). The grey vertical line gives a
landmark of a perturbation of `∞ = 8/255, which is the perturbation size seen during adversarial
and noisy adversarial training. The top row of each pair shows the corresponding distributions for
small perturbation size, while the bottom row shows the respective distribution for large perturbation
size.

The left pair shows the results when the attacked model was trained on clean data only. We can see
that the applied manipulation of attacks governed by `2 and `1 is generally lower than the adversarial
manipulation applied by the corresponding `∞-attack. This could explain why even models trained
on clean samples are, to some extend, robust against `2 and `1 controlled attacks.

The second and third columns show the resulting perturbation size distributions for attacks on an
adversarial trained network, resp. noisy adversarial trained model. Here we can see that the per-
turbation of `2- and `1-attacks is larger regarding `∞ than the perturbation of the corresponding
`∞-attack, especially for a small perturbation size. Since during training both models have seen
adversarial samples of the perturbation size `∞ = 8/255, this indicates why both also become more
robust, but not perfect, against `2- and `1-attacks in general, but probably not why N-AT performs
worse than standard AT on unseen attacks.

To further investigate the reason why N-AT might be worse regarding small perturbations by `2- and
`1-attacks compared to AT, we also tracked the applied perturbation on a pixel level. The resulting
perturbations, exemplary for the blue color channel of the observed input, are shown in Figure 4 in
Appendix A.5 for a standard trained model, in Figure 5 for an AT trained model, and in Figure 6
for a noisy adversarial trained model. The visualization indicates whether the pixel value of the
adversarial input was increased (red) or decreased (blue), regarding the pixel value of the original
input.

In all cases, we observe that `2 and `1 governed attacks tend to only slightly perturb the vast majority
of pixel values while selecting a handful of pixels that are heavily perturbed. This is because the
overall perturbation radius for `2 and `1 is calculated over all pixels. Those attacks tend to spend
their perturbation budget on the pixels, which seem to have the most impact on the classification.
When the attack has the freedom to perturb each pixel independently, as is the case for `∞-attacks,
the overall perturbation is larger. This also underlines the observation that clean trained models are
more robust to `2- and `1-attacks while being completely defenceless against attacks controlled by
`∞. Particularly, when including additional input data during training, which introduces a larger
variety of pixel value combinations.

8

Under review as a conference paper at ICLR 2022

Still, the question, why N-AT is less robust against small perturbation by `2- and `1-attacks than
AT, is not answered. During training, we artificially increase the number of adversarial output
vectors by sampling around the initial adversarial output vector, which itself was created based on
an `∞ attack. Since the initial adversarial instance was created based on a certain distribution of
manipulations, which is very large for each pixel, we hypothesize that N-AT might overfit to the
observed perturbations, or more precisely, the resulting adversarial output vector representations. In
particular, since Cifar-10 includes only 50,000 samples.

This assumption is supported by the results for the supervised trained models, reported in Table 6
in Appendix A.4, which used the additional 1 million samples for training. This additional data
seem to prevent N-AT from overfitting to the observed adversarial perturbation, as the variability in
the input data, and thereby the variability in the pseudo adversarial inputs, increases. This results
in higher robustness to unseen attacks, compared to standard AT. Another future step to prevent
the potential overfitting would be to further investigate the manipulation distributions of `2- and
`1-attacks, and in particular the distribution of their respective output vectors in the decision space.
The gained insights could help to apply more sophisticated data augmentation in the decision space
than the simple conditioned random noise we use here. Also, observing the distribution of clean
sample output vectors could help to prevent pseudo adversarial inputs from jumping into a third
classification area, as shown in Figure 2.

5 CONCLUSION

Using data augmentation and larger datasets have shown to be supporting and sometimes even essen-
tial (Riquelme et al. (2021)) to achieve better classification results and better generalisation. Starting
from simple data augmentation methods (Krizhevsky et al. (2012)), the search for optimal data aug-
mentation continues with modern data-driven approaches (Cubuk et al. (2020)). Another branch of
research looks at how to create better and more realistic data based on a given distribution, e.g. Ho
et al. (2020).

However, using these techniques does not yield robustness against adversarial manipulations. In-
stead, techniques like adversarial training are necessary to harden neural networks against unfore-
seen perturbations, which can fool the classification.

Contrary to clean inputs, which stem from the input space, adversarial inputs are created in and
defined by the decision space. Therefore, we proposed to combine adversarial training with data
augmentation in the decision space, referring to as Noisy Adversarial Training (N-AT), to artifi-
cially increase the observed number of adversarial instances. We show, that already applying simply
conditioned random noise to the output vectors of adversarial inputs can increase the robustness, and
in some cases even the clean accuracy.

Extending standard Adversarial Training (AT) (Madry et al. (2017)) to N-AT, increases the robust-
ness against seen attacks relative to AT by 1% for small perturbations, and up to 89.26% for a larger
attack radius. Also, for large unseen attacks, the robustness increases using N-AT. In particular,
when using additional input data and N-AT to artificially enrich the number of observed adversar-
ial inputs, the robustness against all observed attacks, as well as the clean accuracy is increased.
Similar observations are made for self-supervised adversarial training methods. We show, that their
adversarial, as well as in some cases the clean accuracy increases, extending the given method by
N-AT.

On further investigation, why N-AT does not always improve the robust accuracy, in particular for
small and medium unseen attacks, we hypothesize that the proposed method in its current form over-
fitted to the manipulation distribution introduced by the `∞-attacks used during training. Therefore,
we propose to further investigate and map the decision space. Evaluating the distribution of ad-
versarial and clean output vectors can yield insights into more suitable data augmentation methods
in the decision space. These insights could increase the robustness, as well as the clean accuracy,
further.

REPRODUCIBILITY STATEMENT

In order to make our results reproducible, we listed all used parameters and changes we applied for
training in the Appendix A.2, and cited the corresponding papers on which our method is build

9

Under review as a conference paper at ICLR 2022

on (Kim et al. (2020); He et al. (2020)) which provide publically available github repositories
themselves (https://github.com/Kim-Minseon/RoCL, https://github.com/MTandHJ/amoc). For the
review process, we uploaded our code as supplementary data, and will make it publically available
afterwards.

REFERENCES

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In International conference on machine learning, pp. 284–293. PMLR, 2018.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Calian, Timothy Mann,
and London DeepMind. Doing more with less: Improving robustness using generated data. 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning.
arXiv preprint arXiv:2006.07589, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Anurag Ranjan, Joel Janai, Andreas Geiger, and Michael J Black. Attacking optical flow. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2404–2413, 2019.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models. arXiv preprint arXiv:1707.04131, 2017.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
arXiv preprint arXiv:2106.05974, 2021.

Pedro Tabacof and Eduardo Valle. Exploring the space of adversarial images. In 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 426–433. IEEE, 2016.

10

Under review as a conference paper at ICLR 2022

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In 31st Conference on Neural Information Processing Systems (NIPS),
volume 30, pp. 1–18, 2017.

Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchical multi-scale attention for semantic
segmentation. arXiv preprint arXiv:2005.10821, 2020.

Nils Worzyk, Hendrik Kahlen, and Oliver Kramer. Physical adversarial attacks by projecting per-
turbations. In International Conference on Artificial Neural Networks, pp. 649–659. Springer,
2019.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and Quoc V Le. Adversarial
examples improve image recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 819–828, 2020.

Cong Xu and Min Yang. Adversarial momentum-contrastive pre-training. arXiv preprint
arXiv:2012.13154, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
arXiv preprint arXiv:2106.04560, 2021.

A APPENDIX

A.1 OPTIMIZATION PROBLEMS AND LOSS FUNCTIONS

In Table 2 the respective loss functions and optimization problems used in training AMOC and
RoCL are listed, with the explanation of the used symbols in the caption.

Contrastive loss
Lcon,θ (x, {xpos}, {xneg})

:= − log

∑
{f(x)pos}

exp(sim(f(x),{f(x)pos})/τ)∑
{f(x)pos}

exp(sim(f(x),{f(x)pos})/τ)+
∑

{f(x)neg}
exp(sim(f(x),{f(x)neg})/τ)

RoCL arg min
θ

Ex∼D
[
maxδ∈B(t1(x),ε) Lcon,θ

(
t1 (x) + δ, {t2 (x)}, {t1 (x)neg}

)]
MoCo Loss LNCE = − log

exp(q·kpos/τ)
exp(q·kpos/τ)+

∑
kneg∈M exp(q·kneg/τ)

AMOC minθq,θk Ex∈DEt1,t2∈T max‖δ‖,‖δ′‖≤ε L (t1 (x) + δ, t2 (x) + δ′,Mclean,Madv)

AMOC ACC LACC = LNCE (fq (t1 (x) + δ; BNadv) , fk (t2 (x) ; BNclean) ,Mclean)

Table 2: Loss functions and optimization problems defined for the used self-supervised adversarial
training methods. In all formulations x is a given clean sample, f indicates the observed model, and
δ is the adversarial perturbation. Also t1 and t2 define two different random transformation, while
τ is some temperature hyperparameter. The contrastive loss is used within the RoCL framework,
based on SimCLR, where xpos and xneg give the positive and negative samples, respectively. The
similarity sim between two output vectors is calculated as the cosine similarity. For the MoCo Loss,
q and k represent the query and key encoder, respectively, andM is the used memory bank. While
standard MoCo only defines one memory bank, within the AMOC framework the authors use two
memory banksMclean andMadv to store the clean and adversarial historical samples. AMOC ACC
is one specific loss function within the overall AMOC framework, for which the authors report good
results, and which is therefore used in this study.

11

Under review as a conference paper at ICLR 2022

A.2 TRAINING PARAMETERS

In Table 3 all necessary hyperparameter for training the AMOC models are given, as well as for the
supervised models/classification heads with clean, i.e., LCE, and adversarial, i.e., AT, samples. The
explanation for the certain abbreviations, e.g., which transformation are used under the term simclr,
are explained in the caption. The same applies for the comprehensive list of hyperparameters for
training RoCL and the respective classification heads, given in Table 4.

Further details:

• All experiments were run on NVIDIA GeForce GTX 1080.
• For RoCL training, we were not able to use the suggested batch size of 256 per GPU with

our hardware.
• For RoCL we changed the projector to consist of 2, instead of 1, linear layers, followed by

a normalization layer.
• Finetuning RoCL with only adversarial inputs led in our experiments to a classification

accuracy of 10%. Using additional clean samples, we achieved a robust accuracy around
30%, which is 10% lower than the reported values, and would not be comparable to stan-
dard adversarial training. Therefore, RoCL + AF was excluded from our experiments.

A.3 ADDITIONAL TIME DEMAND

In Table 5 the time required for one epoch of the indicated adversarial training method is listed.
Further down, we split the time demand into the creation of the initial adversarial instance, which
already takes up between 40.97 to 66.92% of the overall time. Calculating δx′,x is only required
once. Because for AT, the output vector of the clean sample is not calculated during training, the
proportional time requirement is comparable high to the unsupervised methods, where the output
vector is already calculated independent of our adaptation. Creating each pseudo adversarial input
only adds a small portion, between0.2 to 0.52% to the overall time demand per epoch. For RoCL
the evaluation of the loss function furthermore takes up 84.96% of the time to create one pseudo
adversarial instance. We explain this comparable large time demand by the fact that the RoCL
framework implements the loss function itself, while AMOC uses the cross entropy loss provided
by pytorch and does very limited own computation in context of the loss evaluation.

A.4 ADDITIONAL RESULT FOR THE SUPERVISED THE SELF-SUPERVISED MODELS

A.5 DIFFERENCES BETWEEN THE ATTACKS

12

Under review as a conference paper at ICLR 2022

AMOC 200 AMOC 1000 AT head AT LCE head LCE

GPU 1 1 1 1 1 1
optimizer sgd sgd sgd sgd sgd sgd
momentum 0.9 0.9 0.9 0.9 0.9 0.9
weight decay 5e-4 5e-4 5e-4 5e-4 2e-4 2e-4
learning rate 0.1 0.1 0.1 0.1 0.1 0.1
- decay cosine cosine FC TOTAL FC TOTAL
epochs 200 1000 25 40 25 40
warmup epochs 10 10
batch size 256 256 128 128 128 128
transform simclr simclr default default default default
attack:
type `∞ `∞ `∞ `∞
ε 8/255 8/255 8/255 8/255
step size 2/255 2/255 2/255 2/255
steps 5 5 10 10
attack weight κ 0.5 0.5 1.0 1.0
scatter operation:
sk 10 10 10 10
αs 0.25 0.25 2.5 2.5
scatter decay cosine cosine cosine cosine
scatter weight λ 0.5 0.5 1.0 1.0
MoCo specific:
dim mlp 512 512
dim head 128 128
τ 0.2 0.2
samples inMclean 32768 32768
samples inMadv 32768 32768
key encoder
momentum 0.999 0.999

Table 3: Full list of parameters for training AMOC, as well as the supervised models/classification
heads with clean, i.e., LCE, and adversarial, i.e., AT, samples. FC is implemented to decaying the
learning rate by a factor of 10 at epochs 10 and 15, while TOTAL reduces the learning rate by a
factor of 10 at epochs 30 and 35. A default transformation is implemented as padding by 4, random
resized cropping to 32, random horizontal flipping. SimCLR as transformation is composed of:
random cropping of size 32, applying color jitter with a strength of 0.4 to the brightness, contrast,
and saturation, while the hue is perturbed with strength 0.1, all with a probability of 0.8, random
grayscale with a probability of 0.2, applying gaussian blur with a probability of 0.5, and random
horizontal flipping. All inputs are converted to tensors, i.e., to the range [0, 1].

13

Under review as a conference paper at ICLR 2022

RoCL AT head LCE head
GPU 2 1 1
base optimizer SGD SGD SGD
- momentum 0.9 0.9 0.9
- weight decay 1e-6 5e-4 5e-4
- learning rate 0.1 0.2 0.2
optimizer LARS
- eps 1e-8
- trust coeff 0.001
learning rate
decay cosine

warmup GradualWarmUp
- lr multiplier 15
- warumup epochs 10
epochs 1000 150 150
batch size 128 per GPU 128 128
transform simclr simclr simclr
attack:
type `∞ `∞
ε 0.0314 (≈ 8/255) 0.0314 (≈ 8/255)
step size 0.007 (≈ 2/255) 0.007 (≈ 2/255)
steps 7 10
attack weight κ 1.0 1.0
scatter operation:
sk 10 10
αs 0.1 2.5
scatter decay stepwise cosine
scatter weight λ 0.25 1.0
RoCL specific:
τ 0.5
λRoCL 256

Table 4: Full list of parameters for training RoCL, as well as the supervised classification heads
with clean, i.e., LCE, and adversarial, i.e., AT, samples. To train RoCL Kim et al. (2020) use the
LARS You et al. (2017) optimizer based on SGD with the given parameters. The initial learning
rate is increased during the first 10 epochs by an overall factor of 15. Afterwards the learning rate is
decayed by a cosine scheduler. Their input transformation is composed of: applying color jitter with
a strength of 0.4 to the brightness, contrast, and saturation, while the hue is perturbed with strength
0.1, all with a probability of 0.8, random grayscale with a probability of 0.2, random horizontal
flipping, and random resized cropping of size 32. All inputs are converted to tensors, i.e., to the
range [0, 1].

14

Under review as a conference paper at ICLR 2022

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0

20
00

40
00

60
00

80
00

10
00

0

Frequency

lin
f_

fro
m

_l2
lin

f_
fro

m
_l1

lin
f_

fro
m

_li
nf

Sm
al

lP
er

tu
rb

at
io

n
fo

rL
C

E

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0

10
00

20
00

30
00

40
00

Frequency

lin
f_

fro
m

_l2
lin

f_
fro

m
_l1

lin
f_

fro
m

_li
nf

Sm
al

lP
er

tu
rb

at
io

n
fo

rA
T

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0

10
00

20
00

30
00

40
00

Frequency

lin
f_

fro
m

_l2
lin

f_
fro

m
_l1

lin
f_

fro
m

_li
nf

Sm
al

lP
er

tu
rb

at
io

n
fo

rN
-A

T

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0

20
00

40
00

60
00

80
00

10
00

0

Frequency

lin
f_

fro
m

_l2
lin

f_
fro

m
_l1

lin
f_

fro
m

_li
nf

L
ar

ge
Pe

rt
ur

ba
tio

n
fo

rL
C

E

0.
4

0.
2

0.
0

0.
2

0.
4

0.
6

0

20
00

40
00

60
00

80
00

10
00

0
Frequency

lin
f_

fro
m

_l2
lin

f_
fro

m
_l1

lin
f_

fro
m

_li
nf

L
ar

ge
Pe

rt
ur

ba
tio

n
fo

rA
T

0.
4

0.
2

0.
0

0.
2

0.
4

0.
6

0

20
00

40
00

60
00

80
00

10
00

0

Frequency

lin
f_

fro
m

_l2
lin

f_
fro

m
_l1

lin
f_

fro
m

_li
nf

L
ar

ge
Pe

rt
ur

ba
tio

n
fo

rN
-A

T

Fi
gu

re
3:

D
is

tr
ib

ut
io

n
of

pe
rt

ur
ba

tio
n

si
ze

,m
ea

su
re

d
re

ga
rd

in
g
` ∞

,f
or

at
ta

ck
s

go
ve

rn
ed

by
` 2

(b
lu

e)
,`

1
(o

ra
ng

e)
,a

nd
` ∞

(g
re

en
)o

n
th

e
in

di
ca

te
d

tr
ai

ne
d

m
od

el
.

T
he

gr
ay

lin
e

in
di

ca
te

s
a

pe
rt

ur
ba

tio
n

si
ze

of
` ∞

=
8/

2
5
5

,g
iv

in
g

a
la

nd
m

ar
k

fo
rs

ee
n

ad
ve

rs
ar

ia
li

np
ut

s
du

ri
ng

ad
ve

rs
ar

ia
lt

ra
in

in
g.

15

Under review as a conference paper at ICLR 2022

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.020

0.015

0.010

0.005

0.000

0.005

0.010

0.015

(a) Small Perturbation by `2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.06

0.04

0.02

0.00

0.02

0.04

(b) Large Perturbation by `2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.015

0.010

0.005

0.000

0.005

0.010

0.015

(c) Small Perturbation by `1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

(d) Large Perturbation by `1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.03

0.02

0.01

0.00

0.01

0.02

0.03

(e) Small Perturbation by `∞

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.10

0.05

0.00

0.05

0.10

(f) Large Perturbation by `∞

Figure 4: Perturbation for each pixel governed by `2 (top), `1 (middle), and `∞ (bottom), measured
regarding `∞ on a LCE trained model.

16

Under review as a conference paper at ICLR 2022

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

(a) Small Perturbation by `2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.10

0.05

0.00

0.05

0.10

(b) Large Perturbation by `2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.02

0.01

0.00

0.01

0.02

0.03

0.04

(c) Small Perturbation by `1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

(d) Large Perturbation by `1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.03

0.02

0.01

0.00

0.01

0.02

0.03

(e) Small Perturbation by `∞

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.10

0.05

0.00

0.05

0.10

(f) Large Perturbation by `∞

Figure 5: Perturbation for each pixel governed by `2 (top), `1 (middle), and `∞ (bottom), measured
regarding `∞ on a PGD adversarial trained model.

17

Under review as a conference paper at ICLR 2022

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.03

0.02

0.01

0.00

0.01

0.02

(a) Small Perturbation by `2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.15

0.10

0.05

0.00

0.05

0.10

(b) Large Perturbation by `2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(c) Small Perturbation by `1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.10

0.05

0.00

0.05

0.10

0.15

(d) Large Perturbation by `1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30 0.03

0.02

0.01

0.00

0.01

0.02

0.03

(e) Small Perturbation by `∞

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

0.10

0.05

0.00

0.05

0.10

(f) Large Perturbation by `∞

Figure 6: Perturbation for each pixel governed by `2 (top), `1 (middle), and `∞ (bottom), measured
regarding `∞ on our proposed noisy adversarial trained model.

18

Under review as a conference paper at ICLR 2022

operation mean in ms std in ms % of overall time
AT:
overall time per epoch 777.55 30.37
create initial adversarial input 429.14 16.61 55.19
calculate δx′,x 43.65 4.03 5.61
create one pseudo adversarial input 1.56 3.68 0.20
calculate the loss within scattering 0.09 0.02 0.01
AMOC:
overall time per epoch 1180.50 59.58
create initial adversarial input 483.61 26.72 40.97
calculate δx′,x 0.10 0.01 0.01
create one pseudo adversarial input 3.65 7.23 0.31
calculate the loss within scattering 0.26 0.19 0.02
RoCL:
overall time per epoch 1342.06 52.27
create initial adversarial input 898.09 35.55 66.92
calculate δx′,x 0.81 0.14 0.06
create one pseudo adversarial input 7.04 1.25 0.52
calculate the loss within scattering 5.98 1.22 0.45

Table 5: Time demand for different operations during N-AT given in ms. For each method we list
the overall mean time and standard deviation for one epoch, as well as the time required to calculate
the initial adversarial input. The overall scatter operation is split into calculating δx′,x, which is only
performed once, and the creation of one pseudo adversarial input. In particular, we also list the time
required to evaluate the loss function for the created pseudo adversarial instance.

Method Anat

seen unseen
l∞ l2 l1

ε 8/255 16/255 32/255 0.25 0.5 0.75 7.84 12 16.16
LCE 93.92 0.00 0.00 0.00 8.27 0.17 0.00 15.07 3.37 0.61
AT 81.85 52.49 22.21 1.25 73.83 63.11 50.91 70.52 62.95 54.66
N-AT 76.60 53.05 26.78 2.36 69.63 61.56 52.02 67.04 61.37 54.95
L+

CE 95.04 0.00 0.00 0.00 12.42 0.58 0.04 21.75 6.21 1.84
AT+ 84.15 59.22 29.70 2.60 76.78 67.51 56.09 73.47 66.06 58.05
N-AT+ 84.20 59.80 30.49 2.81 76.89 68.08 56.86 73.61 66.75 58.81

Table 6: Results on Cifar-10 for supervised trained models with standard cross entropy training
LCE, adversarial PGD training (AT), and our proposed Noisy Adversarial Training (N-AT). For the
experiments marked with +, 1 million additional synthetic data points based on Cifar-10 were used
for training. During training, the initial adversarial instances were created governed by `∞ with a
strength of 8/255. All experiments were run 5 times and the mean value is reported.

19

Under review as a conference paper at ICLR 2022

Method Anat

seen unseen
l∞ l2 l1

ε 8/255 16/255 32/255 0.25 0.5 0.75 7.84 12 16.16
Self-supervised:
200 epochs:
AMOC + LCE 79.03 36.61 7.46 0.05 67.93 54.82 41.53 66.27 58.53 50.74
N-AMOC + LCE 78.88 37.09 8.15 0.05 67.64 54.58 41.37 65.77 57.91 50.19
AMOC + AT 74.79 43.97 14.53 0.19 67.10 58.10 48.09 66.03 60.78 54.92
N-AMOC + AT 74.58 44.57 15.45 0.26 66.88 57.93 48.21 65.72 60.43 54.64
AMOC + N-AT 74.32 44.08 15.15 0.24 66.63 57.92 48.21 65.62 60.78 54.82
N-AMOC + N-AT 74.25 44.59 15.85 0.28 66.64 57.75 48.18 65.49 60.21 54.44
1000 epochs:
AMOC + LCE 86.52 44.91 11.46 0.11 77.04 63.59 50.39 75.47 68.27 59.75
N-AMOC + LCE 85.90 45.17 12.02 0.14 76.78 64.29 50.99 75.38 68.64 60.97
AMOC + AT 84.48 50.87 16.85 0.26 77.07 67.28 56.00 76.14 70.45 64.43
N-AMOC + AT 83.80 50.89 17.81 0.38 76.35 66.79 56.16 75.44 69.78 64.29
AMOC + N-AT 83.88 51.00 17.46 0.33 76.44 66.41 55.77 75.51 69.87 63.67
N-AMOC + N-AT 83.40 51.08 18.47 0.37 75.97 66.45 56.11 75.15 69.48 63.83
RoCL + LCE 83.69 38.49 8.73 0.66 65.98 61.12 44.47 68.03 67.59 60.42
N-RoCL + LCE 85.06 40.44 9.54 0.63 65.37 62.86 47.42 66.42 66.63 63.67
RoCL + AT 79.65 47.35 16.33 0.36 67.33 65.18 53.38 68.20 68.17 65.58
N-RoCL + AT 79.69 49.36 17.41 0.33 67.58 66.15 54.64 68.21 68.54 66.68
RoCL + N-AT 78.63 47.31 16.29 0.25 68.34 64.92 53.04 68.92 69.27 65.34
N-RoCL + N-AT 79.69 49.33 17.22 0.38 67.59 66.03 54.47 68.38 68.43 66.73
Self-supervised
+ finetune
200 epochs:
AMOC + AF 82.87 52.60 22.11 1.11 74.65 63.56 50.77 71.20 63.32 54.81
N-AMOC + AF 83.29 52.98 21.69 1.14 74.84 63.80 50.96 71.28 63.33 54.73
AMOC + N-AF 82.19 52.73 22.23 1.28 73.71 63.51 51.04 70.43 63.05 54.62
N-AMOC + N-AF 82.60 52.98 22.34 1.26 74.28 63.51 50.92 70.81 63.05 54.40
1000 epochs:
AMOC + AF 83.28 52.82 22.04 1.12 74.95 63.87 51.38 71.79 63.83 55.13
N-AMOC + AF 84.00 53.08 21.74 1.09 75.44 64.65 51.20 71.95 64.20 55.33
AMOC + N-AF 81.85 52.62 22.51 1.38 73.77 63.21 50.99 70.82 63.16 54.55
N-AMOC + N-AF 82.76 53.07 22.17 1.32 74.63 64.11 51.49 71.17 63.83 55.30

Table 7: Results on Cifar-10 for self-supervised trained models. In the first part, the classification
head was trained without adapting the pretrained features. In the second part, the parameters of
the pretrained model were also adapted during training the classification head. LCE, AT, and N-AT
define, whether the classification head, and in case of finetuning the pretrained models, were trained
on clean, adversarial, or with addition of pseudo adversarial inputs, respectively. An N- before the
given self-supervised method indicates, that our proposed extension was applied. During training,
the initial adversarial instances were created governed by `∞ with a strength of 8/255.

20

	Introduction
	Background
	Supervised Adversarial Training
	Self-supervised Adversarial Training

	Method
	Results and Discussion
	Results
	Discussion

	Conclusion
	Appendix
	Optimization problems and loss functions
	Training parameters
	Additional time demand
	Additional Result for the supervised the self-supervised models
	Differences between the attacks

