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ABSTRACT

To localize an object referent, humans attend to different locations in the scene
and visual cues depending on the utterance. Existing language and vision sys-
tems often model such task-driven attention using object proposal bottlenecks: a
pre-trained detector proposes objects in the scene, and the model is trained to se-
lectively process those proposals and then predict the answer without attending
to the original image. Object detectors are typically trained on a fixed vocabu-
lary of objects and attributes that is often too restrictive for open-domain language
grounding, where the language utterance may refer to visual entities in various lev-
els of abstraction, such as a cat, the leg of a cat, or the stain on the front leg of the
chair. This paper proposes a model that reconciles language grounding and object
detection with two main contributions: i) Architectures that exhibit iterative atten-
tion across the language stream, the pixel stream, and object detection proposals.
In this way, the model learns to condition on easy-to-detect objects (e.g., “table”)
and language hints (e.g. “on the table”) to detect harder objects (e.g., “mugs”)
mentioned in the utterance. ii) Optimization objectives that treat object detection
as language grounding of a large predefined set of object categories. In this way,
cheap object annotations are used to supervise our model, which results in perfor-
mance improvements over models that are not co-trained across both referential
grounding and object detection. Our model has a much lighter computational
footprint, achieves faster convergence and has shown on par or higher perfor-
mance compared to both detection-bottlenecked and non-detection bottlenecked
language-vision models on both 2D and 3D language grounding benchmarks.

1 INTRODUCTION

Consider Figure 1. At first glance, many objects pop out, such as the chairs, the table, the shelves
or the bathroom vanity. The clock on the shelf or the bottle on the vanity though do not pop out as
salient, but they can be easily localised if someone draws our attention to them, e.g., by referencing
them. The work of Katsuki & Constantinidis (2014) distinguishes between bottom-up attention
drawn to salient parts of the scene, and top-down attention guided by the task of the agent. The goal
of this work is to develop a model that combines bottom-up attention and language-driven attention
for referential grounding on 2D images and 3D point clouds.

The ability to localize objects mentioned in an utterance is central for an intelligent agent to com-
municate, learn and be instructed by humans. As a result, there is a lot of research on models for
language grounding that fuse information across image and language streams. For ease of exposi-
tion, we group existing models into two categories based on whether they pursue or not a generic,
task-independent, visual tokenization of the scene:

i) Models that tokenize the visual scene into discrete sets of entities using generic pre-trained
high vocabulary object detectors (Fang et al., 2015; Johnson et al., 2016b; Karpathy & Fei-Fei,
2017; Fukui et al., 2016; Hu et al., 2016). Upon tokenization of the visual stream, many recent
approaches use large-scale transformer models to fuse information across both vision and language
modalities to localize referent objects or answer questions about an image or point cloud (Lu et al.,
2019; Chen et al., 2020b; Yang et al., 2021). Instead of transformer layers, neural-symbolic ap-
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Figure 1: Language-modulated detection for task-driven scene understanding in 2D (left) and
3D (right). Boxes detected by object detectors (2D Faster-RCNN detector trained on 1601 Visual
Genome classes and 3D Group-Free detector trained on 485 Scannet classes) often fail to localize
the object of interest (clock, bottle). The proposed model locates the relevant objects by attending
across image, language and box proposal streams in 2D and in 3D.

proaches (Yi et al., 2018; Mao et al., 2019) use programs of neural modules that are applied on the
extracted visual tokens, their color and shape descriptors. These latter models have been mainly
applied in simple domains, such as CLEVR (Johnson et al., 2016a) or CLEVRER (Yi et al., 2019),
where the computational graph to answer a question or find an object is well defined and an accurate
tokenization of the scene can be obtained with existing object detectors. In all of these models, the
original image is discarded upon extraction of the object proposals, i.e., the visual tokens. This is
problematic as a generic object detector typically fails to propose all relevant entities for the given
utterance bottom-up; there are simply too many entities to be proposed and is computational in-
feasible to do so. Moreover, small, occluded or rare objects are hard to detect without task-driven
guidance. In Figure 1, we can easily miss the clock on the shelf unless someone draws our attention
to it, and indeed the state-of-the-art detector misses it. Indeed, the quality of the pre-trained detector
has been found to be very crucial for the final performance of these models (Zhang et al., 2021).
The particularity of the visual domain is that relevant entities come at different levels of spatial ab-
straction which renders task-independent tokenization hard. This is in stark contrast to the language
domain where sentences are naturally tokenized into words.

ii) Models that do not tokenize the visual scene but rather apply operations directly on pixels to
extract relevant information, either end-to-end (Lu et al., 2016; Xu et al., 2015) or using modular
network architectures (Andreas et al., 2016; Hu et al., 2017; Johnson et al., 2017; Chen et al., 2021).

We propose a language grounding model for 2D and 3D scenes that uses tri-partite attention across
the language stream, the pixel stream and a set of object proposals obtained by a pre-trained detector
to predict the object(s) referenced in the utterance. During iterative attention, the model can propose
new objects/parts, improve existing proposals , or directly produce and refine object proposals.

Our model can thus condition conditions on easy-to-detect objects, e.g. “bathroom vanity” in Fig-
ure 1, and language hints, e.g. “on top of the bathroom vanity”, to explore the scene and detect
harder objects, e.g. “bottle”, mentioned in the utterance. At the same time, it converges faster be-
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cause it learns to exploit already detected objects without the need to learn object detection from
scratch. We call our model BEAUTY-DETR as it uses both proposals, obtained by a general pur-
pose detector “bottom-up” , i.e., without any utterance-guided modulation, and “top-down” guidance
from the input language utterance, to localize the relevant objects in the scene, and builds upon the
DETR model of Carion et al. (2020) for decoding fused features into relevant object boxes. We train
BEAUTY-DETR under object localization objectives and further disguise training data for object
detection as language grounding training examples by providing a randomized caption comprised of
a long set of category labels, from which the model should discard the irrelevant ones and localize
the ones that exist in the image. This co-training scheme results in significant gains for our ground-
ing model, especially in the 3D dataset of Achlioptas et al. (2020), where we are the first to report
results without assuming oracle 3D boxes as previous work.

The closest existing work to ours is M-DETR (Kamath et al., 2021), which recently also revisited the
paradigm of end-to-end attention between language and visual streams, bypassing object proposal
bottlenecks by constructing a sequence of tokens from both modalities and iteratively applying at-
tention layers. M-DETR achieves big leaps in performance at the computational cost of pre-training
for many epochs on several thousands of images, which is infeasible for many users without access
to large scale compute. Our model in this work i) uses direct attention on language, scene and object
proposals, therefore it can quickly pick existing proposals, refine them or add more, ii) employs
deformable attention (Zhu et al., 2021) in the visual stream, leading to a much lighter computational
footprint when it is trained on large 2D datasets, iii) exploits supervision from object detection an-
notations, alongside language grounding annotations, iv) is applied to both 2D and 3D visual input,
with state-of-the-art performance on 3D benchmarks (Achlioptas et al., 2020; Chen et al., 2020a)
and closely matching the performance of M-DETR on 2D benchmarks (Kazemzadeh et al., 2014;
Plummer et al., 2015) while converging twice as fast, showing its generality for language grounding
across input modalities. Our code is publicly available as part of our supplemental material.

2 RELATED WORK

Object detection and referential utterance grounding. Object detection is a classic computer
vision task and multiple datasets have been developed to train and evaluate detectors (Everingham
et al., 2015; Lin et al., 2014a; ImageNet, 2018). A closed set of object category labels is considered
and the detection model is tasked to localize all instances of the these object categories. While earlier
architectures rely on box proposal and classification heads over convolutional variants of image
encoders (He et al., 2017; Liu et al., 2015; Redmon et al., 2016), DETR (Carion et al., 2020) uses
transformer architectures where a set of object query vectors attend to the scene and to one another
and eventually decode objects. The recent model of d(eformable)-DETR (Zhu et al., 2021) proposes
to use deformable attention, a locally adaptive kernel that is predicted directly in each pixel location
without attention to other pixel locations, thus saving the quadratic cost of pixel-to-pixel attention,
by noting that content-based attention does not contribute significantly in performance (Zhu et al.,
2019). The works of Liu et al. (2021) and Misra et al. (2021) extend transformer encoders and
detector heads to 3D point cloud input.

Even the largest object category vocabulary, such as 9000 object categories employed by the detector
of Redmon & Farhadi (2017), cannot exhaustively capture visual entities in a scene. This is because
visual entities appear in different levels of spatial granularity; the computer screen, the stand of the
computer screen, the button on the stand of the computer screen. Most of the visual entities are
ignored, but humans attend to them when required by the task (Navalpakkam & Itti, 2005).

Referential object grounding (Kazemzadeh et al., 2014), the task of localizing the object(s) refer-
enced in a language utterance, was introduced to handle the limitation of generic object detectors to
reference visual entities relevant for a task yet absent from a general vocabulary. In close inspection,
object annotations of a particular category can be treated as language grounding annotations where
the referential utterance is a single word, namely, the category label itself, and this is precisely ex-
ploited by our model for co-training. Early approaches (Lu et al., 2016; Xu et al., 2015; Yang et al.,
2015) fuse information between utterance and pixel streams by creating a convolutional grid repre-
sentation of the image then use the language to directly attend on the feature map. Later works of
(Rohrbach et al., 2016; Yu et al., 2016; Fukui et al., 2016) assume given or learn to extract object
proposals and then classify these proposals as being referenced by the utterance or not. This has
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lately evolved into a pure bottom-up strategy of first extracting hundreds of salient regions using a
pretrained object detector (Anderson et al., 2018), then feeding this set of proposals into a model
that selects one of them using cross-attention with language (Lu et al., 2019; Chen et al., 2020b; Gan
et al., 2020; Li et al., 2020).

Very recent works of M-DETR (Kamath et al., 2021) and Li & Sigal (2021) bypass object proposal
bottlenecks using transformer encoders over image patch and word token sequences and observe
large improvements in performance over previous object-bottlenecked models. This performance
comes at the cost of large computation overhead due to the quadratic cost of self-attention over the
number of tokens. Our model uses tripartite attention with deformable attention on the visual stream,
as proposed in Zhu et al. (2021), to handle the computation overhead. Beyond attention on object
proposals, it also attends to the image directly.

3D Language Grounding has only recently gained popularity (Chen et al., 2020a; Achlioptas
et al., 2020). Approaches in this category resemble their 2D counterparts, but use encoders suitable
for point cloud input, such as PointNet++ (Qi et al., 2017). All approaches extract object proposals,
represent them as point features (Yang et al., 2021), segmentation masks (Yuan et al., 2021) or
pure spatial/categorical features (Roh et al., 2021), then encode the language using embeddings
(Yang et al., 2021; Roh et al., 2021) and/or scene graphs (Feng et al., 2021), to finally fuse the two
representations and score each proposal using graph networks (Huang et al., 2021) or Transformers
(Yang et al., 2021). Due to the difficulty of detecting objects in 3D point clouds, popular benchmarks
(Achlioptas et al., 2020) evaluate using ground-truth object boxes. Our model is the first to evaluate
using detected object boxes as opposed to oracle ones. Co-training of our model under both, object
detection and referential grounding objectives, gives a big boost over training for grounding alone.

3 BEAUTY-DETR

Our model builds upon attention and deformable attention architectures for object detection. We de-
scribe its architecture in Section 3.1 and its training objectives in Section 3.2. We focus on grounding
referential utterances in 2D and 3D, in which case the output of our model is 2D and 3D localization,
respectively, for the object referents.

3.1 ARCHITECTURE

The architecture of BEAUTY-DETR is depicted in Figure 2. The model encodes a language utter-
ance, an image or 3D point cloud, as well as a set of detected object box proposals, into separate
sequences of tokens, and uses cross-attention layers to fuse information across them. After encod-
ing, high scoring visual tokens are decoded to object boxes and are aligned to the corresponding
word tokens in the utterance. In this way, all objects mentioned in the utterance are grounded to
boxes in the visual scene. Please check Supplementary (Section A.1) for implementation details.

Within-modality encoding: BEAUTY-DETR can ground language in both 2D and 3D visual input.
In 2D, we encode an RGB image using a pre-trained ResNet50 backbone (He et al., 2016). The 2D
visual features are added with 2D Fourier positional encodings, same as in (Zhu et al., 2021; Jaegle
et al., 2021). These are standard sinusoidal embeddings, as introduced in Vaswani et al. (2017),
but computed in the x and y dimension separately and then concatenated. In 3D, we encode a 3D
point cloud using a PointNet++ backbone (Qi et al., 2017). The 3D visual features are added with
a learnable 3D positional encoding, same as Liu et al. (2021): we pass the coordinates of the points
through a small MLP. In both cases, the resulting visual features are flattened to form a sequence of
visual tokens, V ∈ Rnv×cv , where nv is the number of visual tokens and cv is the number of visual
feature channels.

The input visual scene is fed to a general purpose detector to obtain a set of object proposals. Fol-
lowing prior literature we use Faster-RCNN (Ren et al., 2015) for RGB images, pre-trained on a
vocabulary of 1601 object categories on Visual Genome (Krishna et al., 2016), and Group-Free de-
tector (Liu et al., 2021) for 3D point clouds pre-trained on a vocabulary of 485 object categories in
ScanNet (Dai et al., 2017). The detected 2D and 3D box proposals that surpass a detection thresh-
old (0.50 in 2D and 0.25 in 3D) are featurized by mapping their spatial coordinates and categorical
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Figure 2: BEAUTY-DETR architecture. The input to our model is a 2D or 3D scene and a language
utterance; our goal is to localize in the scene the objects that are mentioned in the utterance. The
visual scene and the utterance are encoded into a sequence of tokens each using a ResNet50 (or
PointNet++ in case of 3D) and RoBERTa pre-trained visual and language encoders, respectively. A
pre-trained object detector extracts object box proposals that are featurized using their spatial and
categorical information. At each encoder layer, visual and language tokens cross-attend and then the
visual tokens attend to the detected boxes. At the end of the encoder, visual tokens are mapped to
confidence scores and high-scoring tokens instantiate query vectors that will decode relevant objects.
The query vectors self-attend and then attend to the encoded language tokens, detected boxes and
the visual tokens. Each query eventually predicts a bounding box for an object and a span in the
language utterance that the box refers to.

class information to an embedding vector each, and concatenated to form an object token. Let
O ∈ Rno×co denote the object token sequence.

The words of the input utterance are encoded using a pre-trained RoBERTa (Liu et al., 2019) back-
bone, a carefully optimized version of BERT (Devlin et al., 2019) pre-trained for masked token
prediction. This maps the utterance to a sequence of word tokens L ∈ Rn`×c` .

All visual, word and object tokens are mapped using (different per modality) multilayer perceptrons
(MLPs) to the same length feature vectors.

Cross-modality Encoder: The three modalities interact through a sequence of NE multi-modality
encoding layers comprised of self- and cross-attention operations (Lu et al., 2019). In each encoding
layer, visual and language tokens cross-attend to one another and are updated using standard key-
value attention. Then, the resulting language-conditioned visual tokens attend to the object tokens.
In 2D images, we found it beneficial to have self-attention layers in the language and image streams
using attention and deformable attention, respectively. These self-attention operations did not help
in the 3D domain where the encoding layers only include cross-attention updates. We hypothesize
this is due to the much smaller number of training examples available in the 3D language grounding
datasets, in comparison to 2D one.

Decoder The contextualized visual tokens from the last multi-modality encoding layer are used to
predict confidence scores, one per token. The top-K highest scoring tokens are each fed into an
MLP to predict a vector which stands for an object query that will decode a box center and size
relative to the location of the corresponding visual token. Positional encodings of the predicted box
are used as positional embeddings of object query vectors. The object query vectors are updated
in a residual manner through ND decoder layers. In each decoder layer, we employ four types
of attention operations. First, the object queries self-attend to one another to contextually refine
their estimates. Second, the queries attend to the contextualized word embeddings to condition
on the utterance. Next, the queries attend to the object proposals and then in the image or point
cloud features. This way, the queries are guided by language, can select or discard the existing box
proposals, and then can condition on these high-objectness areas to explore the scene as needed. At
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the end of each decoding layer, there is a prediction head that predicts a box center displacement,
height and width vector, and a token span for each object query that localizes the corresponding
object box and aligns it with the language input. The positional embeddings of this predicted box is
used as query positional embeddings for the next decoder layers, while the object query itself is just
residually updated.

3.2 SUPERVISION

We supervise the outputs of all prediction heads in each layer of the decoder. Following DETR
(Carion et al., 2020), we use Hungarian matching to assign a subset of queries to the ground-truth
objects based on intersection-over-union between predicted and ground-truth boxes. For the queries
that are matched to a ground-truth box, we use the L1 regression loss and generalized IoU (gIoU)
loss (Rezatofighi et al., 2019) for the bounding box predictions.

We align detected object boxes to spans in the input utterance in a similar way to M-DETR (Kamath
et al., 2021) using two objectives: i) soft token prediction for each object query that corresponds to
a softmax over 256 word positions, each one corresponding to a token in the input utterance, where
each query is supervised to predict a uniform distribution over all token positions that correspond
to the object it is matched with and ii) contrastive matching between query embedding and word
embedding vectors that ensures that the inner product of the ground-truth word-box pair embeddings
scores higher than the inner product of non-corresponding word-box pairs. The query vectors that
are not matched upon Hungarian matching with any ground-truth object box are set to predict “no
span” and they take part in the contrastive losses as negatives. We ask the model to decode not only
the “target” referent object, but also all other object mentions in the utterance, when such annotations
are available. This provides denser supervision than supervising the target referent alone.

Co-training with object detection annotations Though language grounding models have effec-
tively used supervision from multiple referential, caption description and question answering tasks,
as is the case for example for the VilBERT model of Lu et al., object detection annotations have
not been considered during such co-training. Yet, object detection is an instance of referential lan-
guage grounding in which the utterance is a single word, namely, the object category label. Existing
language and vision models only implicitly learn to ground single word utterances.

We cast object detection as the grounding of referential utterances comprised of a sequence of object
category labels, as shown in Figure 2. Specifically, given a vocabulary of object category labels, we
randomly sample a fixed number of them—some appear in the visual scene and some do not—and
generate synthetic utterances by sequencing the sampled category labels, e.g., “Dog. Cat. Person.
Cake”. Then, we treat these utterances as the ones to be grounded: the task is to localize all object
instances of the category labels mentioned in the utterance if they appear in the scene. The sam-
pling of negative labels category labels (labels for which there are no instances present) operates as
negative training: when presented with a caption that erroneously mentions an object, the model is
trained to avoid grounding of wrong labels.

4 EXPERIMENTS

We test BEAUTY-DETR on language grounding in 2D and 3D scenes. Our experiments aim to
answer the following questions: (i) How does BEAUTY-DETR perform compared to the state-of-
the-art in 2D and 3D grounding of referential expressions? (ii) How do different components of our
model affect performance, for example, the inclusion of the object proposal stream and the inclusion
of synthetic utterances from object detection annotations?

For language grounding in 3D scenes, we test the 3D version of BEAUTY-DETR on SR3D/NR3D
(Achlioptas et al., 2020) and ScanRefer (Chen et al., 2020a) benchmarks. All three benchmarks
contain pairs of 3D point clouds of indoor scenes from ScanNet (Dai et al., 2017) and corresponding
language referential expressions, and the task is to localize in 3D the objects referenced in the utter-
ance. The utterances in SR3D are shorter and synthetic, e.g. “Choose the couch that is underneath
the picture”, while utterances in NR3D and ScanRefer contain natural utterances that are longer and
noisier, e.g. “From the set of chairs against the wall, the chair farthest from the red wall, in the
group of chairs that is closer to the red wall”. For fair comparison against previous methods, we
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SR3D NR3D ScanRefer
Method Acc. (Det) Acc. (GT) Acc. (Det) Acc. (Det)
ReferIt3DNet (Achlioptas et al., 2020) 27.7† 39.8 24.0† 26.4
ScanRefer (Chen et al., 2020a) - - - 35.5
TGNN (Huang et al., 2021) - 45.0 - 37.4
InstanceRefer (Yuan et al., 2021) 31.5‡ 48.0 29.9‡ 40.2
FFL-3DOG (Feng et al., 2021) - - - 41.3
LanguageRefer (Roh et al., 2021) 39.5† 56.0 28.6† -
TransRefer3D (He et al., 2021) - 57.4 - -
SAT-2D (Yang et al., 2021)∗ 35.4† 57.9 31.7† 44.5
BEAUTY-DETR (ours) 48.5 60.4 34.1 46.4

Table 1: Results on language grounding in 3D point clouds. We evaluate top-1 accuracy using
ground-truth (GT) or detected (Det) boxes under 0.25 threshold. ∗ denotes method uses extra 2D
image features. † denotes evaluation with detected boxes using the authors’ code and checkpoints. ‡
denotes re-training using the authors’ code.

Val Test Training Training
Method R@1 R@5 R@10 R@1 R@5 R@10 Epochs GPU hours Parameters
VisualBERT (Li et al., 2019) 70.4 84.5 86.3 71.3 85.0 86.5 - - -
M-DETR (Kamath et al., 2021) 82.5 92.9 94.9 83.4 93.5 95.3 40 + 0 5480 185M
BEAUTY-DETR (ours) 81.2 90.8 92.6 81.3 91.1 92.8 13 + 1 2920 176M

Table 2: Results on language grounding in Flickr30k 2D images using Recall@k metric and com-
putational efficiency. All training times are computed using same V100 GPU machines. Training
epochs and GPU Hours are written as x+ y where x = number of pre-training epochs or GPU hours
and y = number of fine-tuning epochs or GPU Hours.

separately train BEAUTY-DETR on each of SR3D, NR3D and ScanRefer, extended with ScanNet
object detection annotations. SR3D provides annotations for all objects mentioned in the utterance,
so during training we supervise localization of all object mentioned.

For language grounding in 2D scenes, we test the 2D version of BEAUTY-DETR on Flickr30k
(Plummer et al., 2015) and RefCOCO (Kazemzadeh et al., 2014). We first apply the pre-training
strategy of M-DETR, extended with object detection annotations from MS-COCO dataset (Lin et al.,
2014b). Since pre-training is computationally expensive due to the size of the combined datasets, we
do our ablations on RefCOCO without pre-training and use the best design choices for pre-training.
We pretrain on combined annotations from Flickr30k (Plummer et al., 2015), MS COCO (Lin et al.,
2014a), and Visual Genome Krishna et al. (2016). After pretraining, we finetune for 1 epoch on
Flickr30k and 2 epochs on RefCOCO.

4.1 RESULTS ON 3D AND 2D BENCHMARKS

3D Language Grounding We compare BEAUTY-DETR to other state-of-the-art 3D language
grounding approaches in Table 1. All previous methods that have been tested in SR3D or NR3D use
ground-truth 3D object boxes (without labels). By design, our model does not assume oracle boxes
since it directly attends to visual features and detected objects to find more objects. We thus re-train
all previous models using their publicly available code, providing the same 3D object proposals we
use in BEAUTY-DETR , obtained by Group-Free object detector trained to detect 485 categories
in ScanNet (Section Det in Table-1). Additionally, we also evaluate with ground truth boxes (de-
noted section Det in Table 1) on SR3D to compare against prior work directly. The metric used
is top-1 accuracy, which measures the percentage of times we can find the target box with an IoU
higher than 0.25. Under all different protocols, BEAUTY-DETR outperforms existing approaches
by a large margin, including the recent SAT-2D (Yang et al., 2021) that uses additional 2D image
features during training. The margins are larger on the Det setup, since competing models fail when
the referenced object is not detected. In NR3D and ScanRefer the gains for our model are smaller in
comparison to SR3D since language is very complex and the language hints are harder to interpret
to improve localization of object referents. We show qualitative results in Figure 3. As we show,
BEAUTY-DETR both refines existing object proposals in the proposal stream, as well as proposes
object boxes when they are not there by the detector. Failures of our model are included in the
Appendix.
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Method val testA testB Training Epochs Training GPU Hours Parameters
UNITER L (Chen et al., 2020b) 81.41 87.04 74.17 - - -
VILLA L (Gan et al., 2020) 82.39 87.48 74.84 - - -
M-DETR (Kamath et al., 2021) 86.75 89.58 81.41 40 + 5 5480 + 90 185M
BEAUTY-DETR (ours) 85.1 88.3 80.7 13 + 2 2912 176M

Table 3: Results on language grounding in 2D RefCOCO Dataset on accuracy metric using
standard val/testA/testB splits. All training times are computed using same V100 GPU machines.
Training epochs and GPU Hours are written as x + y where x = number of pre-training epochs or
GPU hours and y = number of fine-tuning epochs or GPU Hours.

RefCOCO (2D) SR3D (3D)
Method Accuracy Method Accuracy
BD-no-boxes 76.25 BD-no-condition 33.8
BD-no-det 76.95 BD-no-det 44.5
BEAUTY-DETR 79.4 BD-no-class 44.2

Table 4: Ablation of design choices for our model on 2D RefCOCO dataset and 3D SR3D
datasets: Note that in these results our model is trained only on RefCOCO and not pre-trained on
multiple datasets.

2D Language Grounding In 2D, we compare our BEAUTY-DETR with other state-of-the-art
approaches on Flickr30k entities (Table-2) and RefCOCO (Table-3). On Flickr30k, we report
top-1, top-5 and top-10 recall, following prior literature. Our 2D BEAUTY-DETR performs
on par with state-of-the-art M-DETR under the same validation protocols. However,
BEAUTY-DETR converges much faster, namely in 13 vs 40 pre-training epochs, dramatically re-
ducing the cost of pre-training. We summarize these results in Table-2. On RefCOCO, we report
top-1 accuracy on the standart val/testA/testB split provided by the dataset. The results in Table-3
indicate that our model trains two times faster than M-DETR while getting comparable performance.
We include qualitative results for our model in the Appendix.

4.2 ABLATIVE ANALYSIS

In this section, we compare BEAUTY-DETR with the following variants: i) BD-no-boxes , a model
identical to BEAUTY-DETR but without detected box proposals as input, ii) BD-box-only , a model
identical to BEAUTY-DETR trained to select one of the input detected boxes as the answer, without
attending to the visual features. We use the same detector as BEAUTY-DETR . iii) BD-no-det , a
model identical to BEAUTY-DETR without co-training with object detection annotations, iv) BD-
no-class , identical to BEAUTY-DETR but not considering the box proposals’ classes, which is what
previous works usually do (Lu et al., 2019), v) BD-no-condition , a variant where the queries are
not conditioned on the contextualized visual tokens but are scene independent learned vectors, as in
Kamath et al. (2021); Carion et al. (2020).

BEAUTY-DETR outperforms BD-box-only by 6.6% in absolute accuracy, as seen in Table 5; we
split the test set of SR3D in two splits depending on whether the detector successfully detects the
target object (a detected box is considered successful when it has higher than 0.25 IoU with the
groundtruth 3D box). To further stress on this result, we measure the pretrained detector’s recall, as
the percentage of times any detected box is successful. We found this to be 69.2%, which suggests
that 30.8% of the times any box-bottlenecked model will for sure fail. On the contrary, as can be

Overall Detected Missed
Acc. Recall Acc. Recall Acc. Recall Epochs

BD-box-only 41.9 69.2 60.5 100.0 0.0 0.0 20
BD-no-boxes 46.7 81.7 57.5 93.1 22.4 56.4 70
BEAUTY-DETR 48.5 82.5 62.9 95.8 16.1 52.8 30

Table 5: Performance Analysis on SR3D. Accuracy on SR3D for our model and ablative variants
depending on whether the detector did (3rd column) or failed (4th column) to detect the target. We
mention the number of training epochs needed for each model to converge to optimal performance
in the validation set.
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Figure 3: Qualitative results of BEAUTY-DETR in the SR3D benchmark. Predictions for the
target are shown in green and for other mentioned objects in orange. The detected proposals appear
in blue. (a) The BD-no-boxes variant (red box) fails to exploit the information given by the detector,
but BEAUTY-DETR succeeds. (b) The detector misses the “shoes” so the BD-box-only variant fails.
(c) The detector is successful in finding the “dustbin”, still BEAUTY-DETR refines the box to get a
more accurate bounding box.

seen in Table 5, BEAUTY-DETR can still work in 16.1% of the cases where an object detector fails
as also shown in Figure 3b.

BEAUTY-DETR outperforms BD-no-boxes by 1.8% in absolute accuracy while converging in less
than half the number of training epochs, 30 vs 70 (Table 5). Interestingly, the BD-no-boxes is
slightly more robust than BEAUTY-DETR when the target box is not detected by the pre-trained
detector. We hypothesize that this happens because BEAUTY-DETR learns to rely on box proposals
and thus inherit its mistakes as well. However, when the object is detected, BEAUTY-DETR does
better, which indicates the benefit of keeping the box proposals and thus the overall gain of
BEAUTY-DETR over BD-no-boxes . Similar to 3D, we observe that BEAUTY-DETR is slightly
better than BD-no-boxes and converges faster (13 epochs for BD-no-boxes vs 11 epochs for
BEAUTY-DETR ).

BEAUTY-DETR outperforms BD-no-det in SR3D by 4% in absolute accuracy and by 3% in Ref-
COCO, showing the importance of co-training with object detection annotations.

Replacing our scene-conditioned query generation with scene independent learned query vectors
as in Kamath et al. (2021); Carion et al. (2020) causes a significant performance drop of 14.7%
(BD-no-condition in Table 4).

Finally, compared to BD-no-class , the full BEAUTY-DETR model still has a great advantage, show-
ing that, contrary to what detection-based approaches do, discarding class labels—that are easy and
cheap to obtain from a pre-trained detector— leads to suboptimal performance.

5 CONCLUSION

We present BEAUTY-DETR , a model of modulated object detection in referential grounding, that
attends to object proposals, language and pixel streams for localizing visual evidence to ground
a language utterance. We co-train the model using both object box category annotations as well as
referential utterances. The performance of our model in 2D datasets closely matches the current (and
very recent) state-of-the-art while converging significantly faster, and surpasses the state-of-the-art
in 3D language grounding benchmarks. BEAUTY-DETR is also the first model in 3D referential
grounding that operates on the realistic setup of not having oracle object proposals available to
select from, but rather detect them from the input 3D point cloud. Our extensive ablations highlight
the importance of attending to bottom-up proposals without discarding the original image, and co-
training with object category box annotations already available in object detection benchmarks.

9
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6 REPRODUCIBILITY STATEMENT

We submit our code in the supplementary material to make our method reproducible. Additionally
we also provide implementation details in the supplementary. We will also open-source our pre-
trained checkpoints.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We report here architecture choices as well as training hyperparameters. We implement
BEAUTY-DETR in PyTorch. For the 2D version, the image is encoded using ResNet-50 (He et al.,
2016) pretrained on ImageNet (Deng et al., 2009). We use multi-scale features as in Zhu et al.
(2021). The feature maps of the different scales are flattened and concatenated in the spatial dimen-
sion, leading to 17821 visual tokens. The feature dimension of each token is 256. To obtain the box
proposals, we use the detector of Anderson et al. (2018) trained on 1601 classes of Visual Genome
(Krishna et al., 2016). The detected boxes are encoded using their spatial and categorical features.
Specifically, we compute the 2D Fourier features of each box and feed them to an MLP, then we con-
catenate this vector with a learnable semantic class embedding and feed to another MLP to obtain
the box embeddings. To form queries, we rank visual tokens based on their confidence score and
keep the 300 most confidence ones. This confidence layer is supervised using Focal Loss (Lin et al.,
2017): we assign a positive objectness scores to every point that lies inside a ground-truth answer
box. We set NE = 6 and ND = 6. All attention layers to the visual stream are implemented with
deformable attention (Zhu et al., 2021), attention to other the language stream or detected boxes is
the standard attention of Vaswani et al. (2017) and Lu et al. (2019).

For the 3D version, the point cloud is encoded with PointNet++ (Qi et al., 2017) using the same
hyperparameters as in (Liu et al., 2021), pre-trained on ScanNet (Dai et al., 2017). We use the last
layer’s features, resulting in 1024 visual tokens. In the cross-modality encoder, instead of allowing
the visual features to attend to the box features, we directly concatenated the box features to the input
point cloud. Specifically, for all the points that lie inside a box, we concatenate this box’s features
directly to their point features (xyz and color). If a point lies inside multiple boxes, we randomly
sample one box’s features. Points that do not lie inside inside any box are padded with zeros. This
is computationally cheaper than cross-attending visual features to box features and works well in
3D since the objects do not intersect. In 2D, however, it does not work well since the objects and
thus their boxes overlap a lot and hence usually a pixel falls inside multiple boxes. In decoder, the
queries are formed from the top 256 most confident visual tokens similar to the 2D version. We set
NE = 3 with no self-attention layers, ND = 6. All attention layers are implemented using standard
self-/cross-attention.

For the 2D model we use a learning rate of 1e−6 for Resnet50 visual encoder, 5e−6 for RoBERTa
text encoder and 1e−5 for rest of the layers. We pre-train on 4 V100s with a batch size of 1, and
finetune on RefCOCO with a batch size of 3 on 4 V100s. For the 3D, we use a learning rate of 1e−5
for RoBERTa and 1e−4 for all other layers. We are able to fit a batch size of 6 on a single GPU of
12GB. We will release pre-trained checkpoints for both 2D and 3D.

A.2 QUALITATIVE RESULTS

We show qualitative results of the 2D version of BEAUTY-DETR on RefCOCO in Figure 4. We
also show failure cases on SR3D in Figure 5.
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Figure 4: Qualitative results of BEAUTY-DETR on RefCOCO. Our model is robust even in cases
the detector has not captured the correct answer.

Figure 5: Failure cases of BEAUTY-DETR on SR3D. Our predictions with red, ground-truth with
green. Even if the box is there, still our model can fail, proving that ranking the correct boxes over
other proposals remains a hard problem.
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