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ABSTRACT

Neural Ordinary Differential Equations (NODEs), a framework of continuous-
depth neural networks, have been widely applied, showing exceptional efficacy in
coping with some representative datasets. Recently, an augmented framework has
been successfully developed for conquering some limitations emergent in applica-
tion of the original framework. Here we propose a new class of continuous-depth
neural networks with delay, named as Neural Delay Differential Equations (ND-
DEs), and, for computing the corresponding gradients, we use the adjoint sensi-
tivity method to obtain the delayed dynamics of the adjoint. Since the differential
equations with delays are usually seen as dynamical systems of infinite dimension
possessing more fruitful dynamics, the NDDEs, compared to the NODEs, own a
stronger capacity of nonlinear representations. Indeed, we analytically validate
that the NDDEs are of universal approximators, and further articulate an exten-
sion of the NDDEs, where the initial function of the NDDEs is supposed to satisfy
ODEs. More importantly, we use several illustrative examples to demonstrate the
outstanding capacities of the NDDEs and the NDDEs with ODEs’ initial value.
Specifically, (1) we successfully model the delayed dynamics where the trajec-
tories in the lower-dimensional phase space could be mutually intersected, while
the traditional NODEs without any argumentation are not directly applicable for
such modeling, and (2) we achieve lower loss and higher accuracy not only for
the data produced synthetically by complex models but also for the real-world
image datasets, i.e., CIFAR10, MNIST, and SVHN. Our results on the NDDEs
reveal that appropriately articulating the elements of dynamical systems into the
network design is truly beneficial to promoting the network performance.

1 INTRODUCTION

A series of recent works have revealed a close connection between neural networks and dynamical
systems (E, 2017; Li et al., 2017; Haber & Ruthotto, 2017; Chang et al., 2017; Li & Hao, 2018; Lu
et al., 2018; E et al., 2019; Chang et al., 2019; Ruthotto & Haber, 2019; Zhang et al., 2019a; Pathak
et al., 2018; Fang et al., 2018; Zhu et al., 2019; Tang et al., 2020). On one hand, the deep neural
networks can be used to solve the ordinary/partial differential equations that cannot be easily com-
puted using the traditional algorithms. On the other hand, the elements of the dynamical systems
can be useful for establishing novel and efficient frameworks of neural networks. Typical examples
include the Neural Ordinary Differential Equations (NODEs), where the infinitesimal time of ordi-
nary differential equations is regarded as the “depth” of a considered neural network (Chen et al.,
2018).

Though the advantages of the NODEs were demonstrated through modeling continuous-time
datasets and continuous normalizing flows with constant memory cost (Chen et al., 2018), the lim-
ited capability of representation for some functions were also studied (Dupont et al., 2019). Indeed,
the NODEs cannot be directly used to describe the dynamical systems where the trajectories in the
lower-dimensional phase space are mutually intersected. Also, the NODEs cannot model only a
few variables from some physical or/and physiological systems where the effect of time delay is

∗http://homepage.fudan.edu.cn/weilin, To whom correspondence should be addressed: Q.Z., Y.G., and W.L.

1



Published as a conference paper at ICLR 2021

inevitably present. From a view point of dynamical systems theory, all these are attributed to the
characteristic of finite-dimension for the NODEs.

In this article, we propose a novel framework of continuous-depth neural networks with delay,
named as Neural Delay Differential Equations (NDDEs). We apply the adjoint sensitivity method to
compute the corresponding gradients, where the obtained adjoint systems are also in a form of delay
differential equations. The main virtues of the NDDEs include:

• feasible and computable algorithms for computing the gradients of the loss function based
on the adjoint systems,

• representation capability of the vector fields which allow the intersection of the trajectories
in the lower-dimensional phase space, and

• accurate reconstruction of the complex dynamical systems with effects of time delays based
on the observed time-series data.

2 RELATED WORKS

NODEs Inspired by the residual neural networks (He et al., 2016) and the other analogous frame-
works, the NODEs were established, which can be represented by multiple residual blocks as

ht+1 = ht + f(ht;wt);

where ht is the hidden state of the t-th layer, f(ht;wt) is a differential function preserving the
dimension of ht, and wt is the parameter pending for learning. The evolution of ht can be viewed
as the special case of the following equation

ht+�t = ht + �t · f(ht;wt)

with �t = 1. As suggested in (Chen et al., 2018), all the parameters wt are unified into w for
achieving parameter efficiency of the NODEs. This unified operation was also employed in the other
neural networks, such as the recurrent neural networks (RNNs) (Rumelhart et al., 1986; Elman,
1990) and the ALBERT (Lan et al., 2019). Letting �t → 0 and using the unified parameter w
instead of wt, we obtain the continuous evolution of the hidden state ht as

lim
�t→0

ht+�t − ht
�t

=
dht
dt

= f(ht; t;w);

which is in the form of ordinary differential equations. Actually, the NODEs can act as a feature
extraction, mapping an input to a point in the feature space by computing the forward path of a
NODE as:

h(T ) = h(0) +

Z T

0

f(ht; t;w)dt; h(0) = input;

where h(0) = input is the original data point or its transformation, and T is the integration time
(assuming that the system starts at t = 0).

Under a predefined loss function L(h(T )), (Chen et al., 2018) employed the adjoint sensitivity
method to compute the memory-efficient gradients of the parameters along with the ODE solvers.
More precisely, they defined the adjoint variable, �(t) = @L(h(T ))

@h(t) , whose dynamics is another
ODE, i.e.,

d�(t)

dt
= −�(t)>

@f(ht; t;w)

@ht
: (1)

The gradients are computed by an integral as:

dL

dw
=

Z 0

T

−�(t)>
@f(ht; t;w)

@w
dt: (2)

(Chen et al., 2018) calculated the gradients by calling an ODE solver with extended ODEs (i.e.,
concatenating the original state, the adjoint, and the other partial derivatives for the parameters
at each time point into a single vector). Notably, for the regression task of the time series, the
loss function probably depend on the state at multiple observational times, such as the form of
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L(h(t0); h(t1); :::; h(tn )) . Under such a case, we must update the adjoint state instantly by adding
the partial derivative of the loss at each observational time point.

As emphasized in (Dupont et al., 2019), the �ow of the NODEs cannot represent some functions
omnipresently emergent in applications. Typical examples include the following two-valued func-
tion with one argument:g1-D(1) = � 1 andg1-D(� 1) = 1 . Our framework desires to conquer the
representation limitation observed in applying the NODEs.

Optimal control As mentioned above, a closed connection between deep neural networks and dy-
namical systems have been emphasized in the literature and, correspondingly, theories, methods and
tools of dynamical systems have been employed, e.g. the theory of optimal control (E, 2017; Li
et al., 2017; Haber & Ruthotto, 2017; Chang et al., 2017; Li & Hao, 2018; E et al., 2019; Chang
et al., 2019; Ruthotto & Haber, 2019; Zhang et al., 2019a). Generally, we model a typical task using
a deep neural network and then train the network parameters such that the given loss function can be
reduced by some learning algorithm. In fact, training a network can be seen as solving an optimal
control problem on difference or differential equations (E et al., 2019). The parameters act as a
controller with a goal of �nding an optimal control to minimize/maximize some objective function.
Clearly, the framework of the NODEs can be formulated as a typical problem of optimal control on
ODEs. Additionally, the framework of NODEs has been generalized to the other dynamical sys-
tems, such as the Partial Differential Equations (PDEs) (Han et al., 2018; Long et al., 2018; 2019;
Ruthotto & Haber, 2019; Sun et al., 2020) and the Stochastic Differential Equations (SDEs) (Lu
et al., 2018; Sun et al., 2018; Liu et al., 2019), where the theory of optimal control has been com-
pletely established. It is worthwhile to mention that the optimal control theory is tightly connected
with and bene�ts from the method of the classical calculus of variations (Liberzon, 2011). We also
will transform our framework into an optimal control problem, and �nally solve it using the method
of the calculus of variations.

3 THE FRAMEWORK OFNDDES

3.1 FORMULATION OF NDDES

Figure 2: (Right) Two continuous trajectories gen-
erated by the DDEs are intersected, mapping -1
(resp., 1) to 1 (resp., -1), while (Left) the ODEs
cannot represent such mapping.

In this section, we establish a framework of
continuous-depth neural networks. To this end,
we �rst introduce the concept of delay defer-
ential equations (DDEs). The DDEs are always
written in a form where the derivative of a given
variable at timet is affected not only by the cur-
rent state of this variable but also the states at
some previous time instants or time durations
(Erneux, 2009). Such kind of delayed dynamics play an important role in description of the com-
plex phenomena emergent in many real-world systems, such as physical, chemical, ecological, and

Figure 1: Sketchy diagrams of the NODEs and the NDDES, respectively, with the initial valueh(0)
and the initial function� (t). The NODEs and the NDDEs act as the feature extractors, and the
following layer processes the features with a prede�ned loss function.
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physiological systems. In this article, we consider a system of DDE with a single time delay:
�

dh t
dt = f (h t ; h t � � ; t; w ); t > = 0 ;

h(t) = � (t); t < = 0 ;

where the positive constant� is the time delay andh(t) = � (t) is theinitial functionbefore the time
t = 0 . Clearly, in the initial problem of ODEs, we only need to initialize the state of the variable at
t = 0 while we initialize the DDEs using a continuous function. Here, to highlight the difference
between ODEs and DDEs, we provide a simple example:

�
dx t
dt = � 2x t � � ; t > = 0 ;

x(t) = x0; t < = 0 :

where� = 1 (with time delay) or� = 0 (without time delay). As shown in Figure2, the DDE �ow
can map -1 to 1 and 1 to -1; nevertheless, this cannot be made for the ODE whose trajectories are
not intersected with each other in thet-x space in Figure 2.

3.2 ADJOINT METHOD FORNDDES

Assume that the forward pass of DDEs is complete. Then, we need to compute the gradients in a
reverse-mode differentiation by using the adjoint sensitivity method (Chen et al., 2018; Pontryagin
et al., 1962). We consider an augmented variable, named asadjoint and de�ned as

� (t) =
@L(h(T))

@h(t)
; (3)

whereL(�) is the loss function pending for optimization. Notably, the resulted system for the adjoint
is in a form of DDE as well.

Theorem 1 (Adjoint method for NDDEs). Consider the loss functionL(�). Then, the dynamics of
adjoint can be written as

8
>><

>>:

d� (t)
dt

= � � (t)> @f(h t ; h t � � ; t; w )
@h t

� � (t + � )> @f(h t + � ; h t ; t; w )
@h t

� [0;T � � ](t); t < = T

� (T) =
@L(h(T))

@h(T)
;

(4)
where� [0;T � � ](�) is a typical characteristic function.

We provide two ways to prove Theorem 1, which are, respectively, shown in Appendix. Usingh(t)
and� (t), we compute the gradients with respect to the parametersw as:

dL
dw

=
Z 0

T
� � (t)> @f(h t ; h t � � ; t; w )

@w
dt: (5)

Clearly, when the delay� approaches zero, the adjoint dynamics degenerate as the conventional case
of the NODEs (Chen et al., 2018).

We solve the forward pass ofh and backward pass forh, � and dL
dw by a piece-wise ODE solver,

which is shown in Algorithm 1. For simplicity, we denote byf (t) andg(t) the vector �led ofh
and� , respectively. Moreover, in this paper, we only consider the initial function� (t) as a constant
function, i.e.,� (t) = h0. Assume thatT = n � � and denotef k (t) = f (k � � + t), gk (t) = g(k � � + t)
and� k (t) = � (k � � + t).

In the traditional framework of the NODEs, we can calculate the gradients of the loss function and
recompute the hidden states by solving another augmented ODEs in a reversal time duration. How-
ever, to achieve the reverse-mode of the NDDEs in Algorithm 1, we need to store the checkpoints
of the forward hidden statesh(i � � ) for i = 0 ; 1; :::; n, which, together with the adjoint� (t), can
help us to recomputeh(t) backwards in every time periods. The main idea of the Algorithm 1 is to
convert the DDEs as a piece-wise ODEs such that one can naturally employ the framework of the
NODEs to solve it. The complexity of Algorithm 1 is analyzed in Appendix.
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