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ABSTRACT

Label-efficient LiDAR-based 3D object detection is currently dominated by
weakly/semi-supervised methods. Instead of exclusively following one of them,
we propose MixSup, a more practical paradigm simultaneously utilizing mas-
sive cheap coarse labels and a limited number of accurate labels for Mixed-
grained Supervision. We start by observing that point clouds are usually tex-
tureless, making it hard to learn semantics. However, point clouds are geomet-
rically rich and scale-invariant to the distances from sensors, making it rela-
tively easy to learn the geometry of objects, such as poses and shapes. Thus,
MixSup leverages massive coarse cluster-level labels to learn semantics and a
few expensive box-level labels to learn accurate poses and shapes. We redesign
the label assignment in mainstream detectors, which allows them seamlessly in-
tegrated into MixSup, enabling practicality and universality. We validate its
effectiveness in nuScenes, Waymo Open Dataset, and KITTI, employing vari-
ous detectors. MixSup achieves up to 97.31% of fully supervised performance,
using cheap cluster annotations and only 10% box annotations. Furthermore,
we propose PointSAM based on the Segment Anything Model for automated
coarse labeling, further reducing the annotation burden. The code is available
at https://github.com/BraveGroup/PointSAM-for-MixSup.
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Figure 1: Illustration of distinct properties of point clouds compared to images. They make
semantic learning from points difficult but ease the estimation of geometry, which is the initial
motivation of MixSup.

1 INTRODUCTION

LiDAR-based 3D perception is an indispensable functionality for autonomous driving. However, the
laborious labeling procedure impedes its development in academia and industry. Therefore, many
label-efficient learning approaches have emerged for LiDAR-based 3D object detection, such as
semi-supervised learning (Zhao et al., 2020; Wang et al., 2021; Yin et al., 2022a; Liu et al., 2023a)
and weakly supervised learning (Qin et al., 2020; Meng et al., 2020; 2021; Zhang et al., 2023b; Xia
et al., 2023).

In this paper, we propose a more practical label-efficient learning paradigm for LiDAR-based 3D
object detection. Particularly, we leverage massive cheap coarse labels and a limited number of
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accurate labels for mixed-grained supervision (MixSup), instead of exclusively following one of
the previous label-efficient learning paradigms. MixSup stems from our following observations of
point clouds. (1) Texture absence: 3D point cloud lacks distinctive textures and appearances. (2)
Scale invariance: point clouds in the 3D physical world are scale-invariant to the distance from
sensors since there is no perspective projection like 2D imaging. (3) Geometric richness: consisting
of raw Euclidean coordinates, the 3D point cloud naturally contains rich geometric information. We
summarize these distinct properties in Fig. 1. These properties cut both ways. On the one hand,
the lack of textures and appearances makes it challenging to learn the categories of point clouds
and identify the approximate regions where objects are located, which are collectively referred to as
semantics. On the other hand, scale invariance and geometric richness potentially make it relatively
easy to estimate geometric attributes of objects, such as accurate poses and shapes.

Therefore, we derive the motivation of MixSup: A good detector needs massive semantic labels
for difficult semantic learning but only a few accurate labels for geometry estimation. Fortunately,
object semantic labels can be coarse and are much cheaper than geometric labels since the former
do not necessitate accurate poses and shapes. So, in particular, we opt for semantic point clusters
as coarse labels and propose MixSup aiming to simultaneously utilize cheap cluster-level labels and
accurate box-level labels. Technically, we redesign the center-based and box-based assignment in
popular detectors to ensure compatibility with cluster-level labels. In this way, almost any detector
can be integrated into MixSup. To further reduce annotation cost, we utilize the emerging Segment
Anything Model (Kirillov et al., 2023) and propose PointSAM for coarse cluster label generation,
enjoying the “freebie” from the advances of image recognition. Our contributions are listed as
follows.

1. Based on the observations of point cloud properties, we propose and verify a finding that a
good detector needs massive coarse semantic labels for difficult semantic learning but only
a few accurate geometric labels for geometry estimation.

2. We propose to adopt semantic point clusters as coarse labels and build a practical and
general paradigm MixSup to utilize massive cheap cluster labels and a few accurate box
labels for label-efficient LiDAR-based 3D object detection.

3. We leverage the Segment Anything Model and develop PointSAM for instance segmenta-
tion, achieving automated coarse labeling to further reduce the cost of cluster labels.

4. Extensive experiments on three benchmarks and various detectors demonstrate MixSup
achieves up to 97.31% performance of the fully-supervised counterpart with 10% box an-
notations and cheap cluster annotations.

2 RELATED WORK

LiDAR-based 3D Object Detection The mainstream LiDAR-based 3D detection can be roughly
categorized into point-based methods and voxel-based methods. Point-based detectors (Shi et al.,
2019; Yang et al., 2020; Shi et al., 2020b; Li et al., 2021) generally employ PointNet series (Qi et al.,
2017a;b) as the point feature extractor, following diverse architectures to predict 3D bounding boxes.
Voxel-based approaches (Zhou & Tuzel, 2018; Yan et al., 2018; Yin et al., 2021; Fan et al., 2022a;b;
Chen et al., 2023b; Wang et al., 2023a;b; Liu et al., 2023d) transform raw points into 3D voxels,
which facilitates 3D sparse convolution or transformer regimes. Besides, hybrid methods (Yang
et al., 2020; Shi et al., 2020a; 2023) are utilized to harness the benefits from both sides.

Semi-supervised Learning in 3D Semi-supervised learning aims to reduce the annotation burden
by training models with a small amount of labeled data and a large amount of unlabeled data. In-
spired by the achievement in 2D, semi-supervised learning has been propagated into 3D domain.
SESS (Zhao et al., 2020) inherits the Mean Teacher (Tarvainen & Valpola, 2017) paradigm and en-
courages consensus between the teacher model and the student model. 3DIoUMatch (Wang et al.,
2021) focuses on improving the quality of pseudo labels with a series of handcrafted designs. Dif-
ferent from 3DIoUMatch, Proficient Teacher (Yin et al., 2022a) leverages the spatial-temporal en-
semble module and clustering-based box voting module to enhance the teacher model and obtain
the accurate pseudo labels, removing the deliberately selected thresholds. Considering the weak
augmentation in the teacher-student framework, HSSDA (Liu et al., 2023a) proposes shuffle data
augmentation to strengthen the training of the student model.
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Weakly Supervised Learning Weakly supervised learning employs inexpensive weak labels to
mitigate the burden of annotation costs. Especially for outdoor scenes, the emerged methodologies
mainly leverage weak annotations including click-level (Meng et al., 2020; 2021; Liu et al., 2022;
2023b; Zhang et al., 2023b), scribble-level (Unal et al., 2022) and image-level (Qin et al., 2020).
Albeit these works achieve promising performance, they inevitably involve intricate training regimes
or elaborate network architecture. In this paper, we find utilizing a few accurate labels can estimate
good geometry. So it might be more practical to introduce some accurate labels instead of following
a purely weakly-supervised setting.

3 PILOT STUDY: WHAT REALLY MATTERS FOR LABEL EFFICIENCY
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Figure 2: Illustration of the pilot study. We de-
velop a well-classified dataset to factor out the
classification and only focus on the influence of
varying data amounts on geometry estimation.

In Sec. 1, we argue that a good detector needs
massive coarse labels for semantic learning but
only a few accurate labels for geometry estima-
tion. Here we conduct a pilot study to confirm
the validity of our claim.

We utilize predictions from a pre-trained detec-
tor (Fan et al., 2022b) to crop point cloud re-
gions. Thus these regions are well-classified
and we only need to focus on the objects’ ge-
ometry estimation in the cropped regions. Be-
fore cropping, we introduce strong noise to the
proposals to avoid geometry information leak-
age. In particular, we expand the proposals
by 2 meters in all three dimensions, randomly
shift them 0.2 ∼ 0.5 meters, and rotate them
−45◦ ∼ 45◦. In this way, we build a well-
classified dataset that comprises the cropped noisy regions. Finally, we train a sparse convolution
based detector with different portions of the well-classified dataset. The illustration of the pilot study
is shown in Fig. 2.

Table 1: Performances with varying data amounts on the well-classified dataset.

Data amount
Vehicle 3D L2 AP / APH Pedestrian 3D L2 AP / APH Cyclist 3D L2 AP / APH

IoU = 0.7 IoU = 0.5 IoU = 0.5 IoU = 0.3 IoU = 0.5 IoU = 0.3

100% 64.19 / 63.74 81.70 / 80.86 65.23 / 58.02 76.77 / 67.65 67.04 / 65.99 70.94 / 69.71
20% 64.02 / 63.54 81.60 / 80.74 65.00 / 58.04 76.56 / 67.68 66.89 / 65.85 71.09 / 69.88
10% 63.37 / 62.89 81.50 / 80.60 64.78 / 57.96 76.56 / 67.81 66.26 / 65.14 70.55 / 69.24
5% 63.38 / 62.90 81.45 / 80.54 64.11 / 56.73 76.16 / 66.76 65.38 / 64.21 70.49 / 69.12
1% 56.40 / 55.75 79.01 / 77.51 57.92 / 50.26 73.06 / 62.63 55.85 / 54.63 60.18 / 58.70

The results in Table 1 show that performance with data amounts from 5% to 100% are quite simi-
lar. This phenomenon suggests that LiDAR-based detectors indeed only need a very limited number
of accurate labels for geometry estimation. Additionally, we explore the impact of varying data
amounts on the 3D detector’s semantic learning in Appendix A.2, supporting our claim that massive
data is only necessary for semantic learning. Fortunately, semantic annotations are relatively cheap
and do not necessitate accurate geometry. So in the rest of this paper, we delve into the utiliza-
tion of massive cheap coarse labels for semantic learning and limited accurate labels for geometric
estimation.

4 METHOD

In this section, we first propose utilizing cluster-level labels and compare them with prior coarse
center-level labels (Sec. 4.1) and how to integrate the coarse labels into MixSup for general use
(Sec. 4.2). Then, we elaborate on how to obtain the coarse labels with PointSAM to further release
the annotation burden (Sec. 4.3).
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Figure 3: Overview of MixSup. The massive cluster-level labels serve for semantic learning and a
few box labels are used to learn geometry attributes. We redesign the label assignment to integrate
various detectors into MixSup.

4.1 CLUSTER-LEVEL COARSE LABEL

Obtaining precise 3D bounding boxes is a demanding and time-consuming undertaking, necessitat-
ing meticulous fine-tuning to meet the need for high-level accuracy. A line of work has emerged to
acquire cheaper coarse labels, such as center-level labels (Meng et al., 2020; 2021). They click the
center of objects on the Bird’s Eye View to obtain center-level labels. Although straightforward, a
single center point provides very limited information about an object and makes it inconvenient to
adopt various types of detectors. In addition, it is also non-trivial for annotators to make an accurate
center click.

Henceforth, we introduce clusters serving as better coarse labels. The acquisition of cluster labels is
quite simple. Basically, annotators could follow this protocol: Making three coarse clicks around an
object in Birds Eye’s View. Then the three click points form a parallelogram serving as three corners
of the parallelogram. The points inside the parallelogram form a coarse cluster. We emphasize the
labeling of clusters is very efficient since it only needs three coarse clicks around the object corners
instead of an accurate click in an exact object center. In Sec. 5.3, we empirically find the average
labeling cost of a cluster is only around 14% of an accurate box. We provide a simple illustration of
the labeling protocol in Appendix D.1.

4.2 COARSE LABEL ASSIGNMENT

In this subsection, we demonstrate how to integrate coarse cluster-level labels and box labels into
different types of detectors for mixed-grained supervision, as illustrated in Fig. 3. The most relevant
part to the labels in a detector is the label assignment module, responsible for properly assigning
labels to the detector to provide classification and regression supervision. Thus, MixSup only needs
to redesign the label assignments for cluster-level labels to ensure the generality. We categorize
these assignments into two types: center-based assignment and box-based assignment.

Center-based Assignment and Inconsistency Removal The center-based assignment is widely
adopted in numerous detectors. For them, we substitute the original object centers with the cluster
centers c̄, which is defined in Eq. 1. The substitution inevitably leads to the inconsistency between
the true object center (of accurate boxes) and the cluster center. To resolve the inconsistency, for
box labels, we also use its inside cluster center as the classification supervision. As for regression
supervision, it is only attained from a few box labels.

c̄ = {minx+maxx

2
,
miny +maxy

2
,
min z+max z

2
}, (1)

where x,y, z indicate the coordinate set of points in a cluster.

Point Cluster in Proposal

Cluster-level Label

Proposal

Figure 4: Illustration of Box-cluster
IoU.

Box-based Assignment Box-based assignment is the
procedure of assigning labels to pre-defined anchors or
proposals. For example, anchor-based methods consider
anchors that have a high intersection over union (IoU)
with box labels as positive. Similarly, two-stage meth-
ods select proposals having proper IoU with box labels
for refinement and confidence learning. Below we only
focus on assigning cluster-level labels to proposals, as the
design for anchors is the same.
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In order to implement box-based assignment, we first define box-cluster IoU, which is defined as the
point-level IoU between point clusters in proposals and cluster-level labels. As depicted in Fig. 4,
the gray dots represent the point cluster in the box, while the dots outlined in green denote the
cluster-level label. The box-cluster IoU is computed as the ratio of the gray dots with green outlines
to all the dots in the figure. With box-cluster IoU, we can assign cluster-level labels to proposals to
train any anchor-based detectors and two-stage detectors.

Ambiguity of Box-based Assignment It is worthwhile to note that the box-cluster IoU is es-
sentially ambiguous. In particular, slight perturbations of bounding boxes can result in significant
changes in the ordinary box IoU. However, slight perturbations on bounding boxes usually do not
change the internal cluster, so box-cluster IoU may remain unchanged. Fortunately, we only rely on
box-cluster IoU for semantic assignment instead of the geometric label assignment, and the former
does not necessitate accurate IoU. In Sec. 5.5, we quantitatively demonstrate the adverse effect of
the ambiguity is negligible.

4.3 POINTSAM FOR COARSE LABEL GENERATION
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Figure 5: Overall of PointSAM.

The utilization of cluster-level labels
has greatly decreased the demand for
human annotation. To further reduce
the annotation burden of coarse la-
bels, we propose PointSAM for au-
tomated coarse labeling, resorting to
the mighty SAM (Kirillov et al.,
2023) to generate coarse cluster-level
labels. PointSAM is illustrated in
Fig. 5, which comprises two mod-
ules: (1) SAM-based 3D Instance
Segmentation: We use SAM to infer
over-segmented masks and map them
to 3D point clouds. (2) Separability-
Aware Refinement: Since SAM’s over-segmentation and imprecise point-pixel projection, we pro-
pose SAR to mitigate the issues to enhance the quality of segmentation.
SAM-assisted 3D Instance Segmentation We first utilize a pre-trained semantic segmentation
model to generate 2D semantic mask. We then project 3D points into the 2D semantic mask. The
points mapped into 2D foreground semantic masks serve as prompts for SAM to generate 2D over-
segment masks, which significantly improves inference speed. For each mask generated by SAM,
the semantic label is assigned based on the category with the highest pixel count within the mask.
By the 3D-2D projection, we obtain initial 3D instance masks.
Separability-Aware Refinement (SAR) Nonetheless, the over-segmentation of SAM and projec-
tion errors lead to mediocre segmentation quality. For example, there might be some points belong-
ing to the same objects are assigned with different mask IDs or two far apart clusters in the same
direction may be assigned the same mask ID. Fortunately, these issues can be alleviated by lever-
aging the spatial separability property inherent to point clouds. Specifically, we employ connected
components labeling (CCL) on the foreground points. After performing CCL, we obtain multi-
ple components. We split those masks which are across multiple components and then merge those
masks belonging to a single component. A simple illustration of SAR can be found in Appendix C.2.
We explore the resistance of SAR to inaccurate calibration in Appendix C.3. The comparison be-
tween PointSAM and other SAM-based methods for 3D tasks is presented in Appendix C.4.

4.4 TRAINING LOSS

During training stage, coarse cluster labels only contribute to classification (or confidence) Lcls

and accurate box labels only contribute to regression Lreg . Based on label assignment, we denote
positive samples assigned with accurate labels as Sa, positive samples assigned with coarse labels
as Sc, and negative samples as Sn. The loss function for MixSup can be formulated as Eq. 2.

L =
1

|Sa ∪ Sc ∪ Sn|
∑

Sa∪Sc∪Sn

Lcls +
1

|Sa|
∑
Sa

Lreg. (2)
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4.5 DISCUSSION: COMPARING MIXSUP WITH OTHER LABEL-EFFICIENT METHODS

MixSup and other label-efficient learning settings such as semi/weakly/self-supervised frameworks
serve the same purpose of improving label efficiency. However, they are quite different in terms of
design philosophy. For example, weakly supervised methods focus on how to utilize a certain type
of weak labels. Popular semi-supervised methods design training schemes such as self-training to
generate high-quality pseudo labels. MixSup follows a more practical philosophy to utilize different
types of supervision and tries to integrate them into popular detectors for generality.

Thanks to such essential differences, MixSup can seamlessly collaborate with other settings for
better performance. To demonstrate the potential, in Sec. 5.5, we establish a simple baseline to
utilize the self-training technique brought from semi-supervised learning. We will pursue a more
effective combination of MixSup and other label-efficient methods in future work.

5 EXPERIMENTS

5.1 DATASET

nuScenes nuScenes (Caesar et al., 2020) is a popular dataset for autonomous driving research. It
requires 10 object classes, so it is an ideal testbed to evaluate semantic learning with massive coarse
labels. Since nuScenes also contains a panoptic segmentation benchmark (Fong et al., 2022), we use
it to validate the effectiveness of PointSAM and evaluate the quality.

Waymo Open Dataset (WOD) Waymo Open Dataset (Sun et al., 2020) is a widely recognized
dataset utilized for 3D object detection. The evaluation metric for WOD is 3D IoU-based mean
Average Precision. We set the IoU thresholds of 0.7 for vehicles and 0.5 for pedestrians and cyclists,
following official guidelines. Such strict metric makes it a challenging benchmark for MixSup, since
it only relies on a limited number of accurate box-level labels for geometry estimation.

KITTI KITTI (Geiger et al., 2012) is one of the earliest datasets for 3D detection evaluation.
Due to the occlusion and truncation levels of objects, the evaluation is reported with three difficulty
levels: easy, moderate, and hard. Here we present the results in terms of the mean Average Precision
(mAP) with 11 recall positions under moderate difficulty. IoU thresholds for Car, Pedestrian, and
Cyclist are set as 0.7, 0.5, and 0.5, respectively.

5.2 IMPLEMENTATION DETAILS

To demonstrate the versatility of our method, we integrate four prominent detectors into MixSup.
These include an anchor-based detector SECOND (Yan et al., 2018), an anchor-free detector Cen-
terPoint (Yin et al., 2021), a two-stage detector PV-RCNN (Shi et al., 2020a), and an emerging fully
sparse detector FSD (Fan et al., 2022b; 2023b). Notably, SECOND, PV-RCNN, and FSD leverage
box-based assignment, while CenterPoint adopts center-based assignment.

We randomly choose 10% and 1% of ground truth boxes to serve as box-level labels. However, in
Waymo Open Dataset, since the Cyclist class is very rare, we give it more possibility to be selected.
This is essentially another superiority of MixSup: we can flexibly adjust the budget as needed instead
of following frame-by-frame selection in conventional methods. These selected labels also function
as the database for CopyPaste augmentation, as opposed to the default database copied from fully
labeled frames. The implementation of MixSup is based popular codebases MMDetection3D (Con-
tributors, 2020) and OpenPCDet (Team, 2020). The training schedule and hyperparameters are all
the same as the fully-supervised training, and all experiments are conducted in 8 RTX 3090 GPUs.

In PointSAM, we solely employ the semantic segmentation head of HTC (Chen et al., 2019), pre-
trained on nuImages, to obtain semantics. Notably, due to the negligible overlap in image data
between nuImages and nuScenes, there is no data leakage during the process of PointSAM.

5.3 LABELING PROTOCOL AND COST ANALYSIS

We ask experienced annotators to label 100 frames from different sequences of nuScenes. They
follow this protocol: Making three coarse clicks around and object in Bird Eye’s View, and the three
click points are regarded as three corners of a parallelogram. The points inside the parallelogram
form a coarse cluster. We provide a simple illustration in Appendix D.1. The annotators time the
whole process. The average time cost of a coarse cluster label is only 14% of an accurate box
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Table 2: Performances on WOD and nuScenes validation split. †: Using coarse cluster labels and
10% accurate box labels. The percentage in parentheses indicates the performance ratio to the fully
supervised counterpart.

WOD (L2 APH) nuScenes
Detector Mean Vehicle Pedestrian Cyclist mAP NDS

CenterPoint (100% frames) 64.66 65.04 61.20 67.73 62.41 68.20
CenterPoint (10% frames) 51.64 55.39 49.07 50.46 42.19 55.38
CenterPoint (MixSup) † 62.34 (96.41%) 61.83 (95.06%) 57.72 (94.31%) 67.46 (99.60%) 60.73 (97.31%) 66.46 (97.45%)

label. In experiments, we obtain clusters by using noisy GT boxes to crop the inside points. The
GT boxes are randomly expanded 0% to 10% in each dimension to mimic the potential noise in
coarse labeling. To clearly demonstrate the cost of annotation requirement of MixSup, we unify the
annotation costs of box-level and cluster-level labels as Eq. 3.

cost = (Nb + 0.14Nc)/Nt, (3)

where Nb, Nc represent the number of box-level labels and cluster-level labels, and Nt denotes the
total number of labels in training set.

5.4 MAIN RESULTS

Table 3: Performances on KITTI validation split with mod-
erate difficulty. Notations have the same meanings as those
in Table 2.

Detector Car Pedestrian Cyclist

SECOND (100% frames) 78.62 52.98 67.15
SECOND (MixSup) † 74.85 (95.20%) 50.18 (94.71%) 61.46 (91.53%)

PV-RCNN (100% frames) 83.61 57.90 70.47
PV-RCNN (MixSup) † 76.09 (91.01%) 54.33 (93.83%) 65.67 (93.19%)

Performance on mainstream
datasets. We first showcase the
main results of MixSup in Table 2
(WOD and nuScenes), and Table 3
(KITTI). In particular, SECOND and
PV-RCNN exhibit performance up to
95.20% of fully-supervised methods,
demonstrating the effectiveness of
box-based assignment for cluster-
level labels. CenterPoint achieves
performance levels between 94.31% and 99.60% of fully supervised performance, validating the
feasibility of center-based assignment.

Table 4: Comparison with other weakly-supervised learning
on KITTI validation split (Car).

Label-efficient method Annotation Easy Moderate Hard

WS3D (Meng et al., 2020) 534 boxes + weak labels 84.04 75.10 73.29
WS3D (Meng et al., 2021) 534 boxes + weak labels 85.04 75.94 74.38
MixSup (ours) 534 boxes + weak labels 86.37 76.20 72.36

Comparison with other label-
efficient frameworks. Besides
MixSup, there are several other
label-efficient frameworks such
as semi-supervised learning and
self-supervised learning. Due to their
different settings, an absolute fair
comparison cannot be established
among these methods. However, in order to gain an intuitive understanding of performance, we
list their performances in Table 4, 5. The results suggest that MixSup is an effective paradigm,
achieving better or on-par performance, compared with semi/self-supervised settings. We empha-
size that MixSup and these methods are complementary and compatible with each other, which will
be briefly demonstrated in Sec. 5.5.

5.5 PERFORMANCE ANALYSIS

Comparison with handcrafted box fitting. Fitting pseudo box-level labels from cluster-level la-
bels, such as L-shape fitting (Zhang et al., 2017), presents a trivial option for incorporating coarse
labels into training. However, these methods cannot distinguish length and width, and are also con-
fusing with a certain heading θ and a heading θ + π. Therefore, we ignore the shape and heading
supervision during the training. The results in Table 6 manifest box fitting is sub-optimal, partic-
ularly for large objects like Car and Truck. This is due to the fact that the point clusters of these
large objects are more prone to displaying incomplete object parts. Consequently, the pseudo boxes
derived from these clusters exhibit unreliable sizes.

Integration with simple self-training. As we discussed in Sec. 4.5, MixSup can collaborate with
semi-supervised methods. Deliberately designing the semi-supervised training scheme is out of

7



Published as a conference paper at ICLR 2024

Table 5: Comparison with other label-efficient detectors on Waymo Open Dataset validation split
(L2 mAPH). †: The annotation cost contains both box labels and cluster labels, defined by Eq. 3.
∗: From ProficientTeacher (Yin et al., 2022a). §: From MV-JAR (Xu et al., 2023). ¶: From HS-
DDA (Liu et al., 2023a).

Detector Label-efficient method Annotation Mean Vehicle Pedestrian Cyclist

SECOND - all frames 57.23 63.33 51.31 57.05
SECOND∗ - 10% frames 49.11 56.81 41.91 48.62
SECOND∗ FixMatch (Sohn et al., 2020) 10% frames 51.45 58.37 44.23 51.75
SECOND∗ ProficientTeacher (Yin et al., 2022a) 10% frames 54.16 59.36 46.97 56.15
SECOND MixSup (ours) 10% annotation cost † 54.23 55.02 49.61 58.06

SST - all frames 65.54 64.56 64.89 67.17
SST§ - 10% frames 50.46 54.37 50.71 46.29
SST§ PointContrast (Xie et al., 2020) 10% frames 49.94 54.30 50.12 45.39
SST§ ProposalContrast (Yin et al., 2022b) 10% frames 50.13 54.71 50.39 45.28
SST§ MV-JAR (Xu et al., 2023) 10% frames 54.06 58.00 54.66 49.52
SST MixSup (ours) 10% annotation cost † 60.74 59.10 60.00 63.13

PV-RCNN - all frames 67.06 68.98 64.42 67.79
PV-RCNN¶ - 1% frames 20.90 43.30 15.90 2.90
PV-RCNN¶ HSDDA (Liu et al., 2023a) 1% frames 28.27 47.30 17.50 20.00
PV-RCNN MixSup (ours) 1% annotation cost † 56.58 55.46 52.02 62.25

Table 6: Comparison with handcrafted box fitting on nuScenes. We adopt CenterPoint as the base
detector, conducting training for 10 epochs. †: Ignore the shape and heading supervision for fitted
pseudo boxes. ‡: Ignore the heading supervision for pseudo boxes.

Label Format mAP NDS Car Truck C.V. Bus Trailer Bar. Mot. Byc. Ped. T.C.

MixSup (cluster-level) 59.48 64.97 82.35 53.65 19.17 67.25 36.87 66.48 64.79 53.45 83.46 67.29
MixSup (fitted pseudo boxes†) 55.75 62.33 63.72 45.04 19.51 65.80 21.42 67.57 65.09 56.87 84.24 68.25
MixSup (fitted pseudo boxes‡) 56.22 60.54 65.39 44.85 20.74 67.23 25.45 63.91 66.47 56.90 83.70 67.54

the scope of this paper. For simplicity and generality, we establish a simple self-training base-
line to verify our claim, which is one of the most common techniques in semi-supervised learning.

Table 7: Integration with simple self-training on
KITTI validation split with moderate difficulty.

Detector Car Pedestrian Cyclist

SECOND (100% frames) 78.62 52.98 67.15
SECOND (MixSup) 74.85 50.18 61.46
Above + self-training 77.46 56.89 64.40

PV-RCNN (100% frames) 83.61 57.90 70.47
PV-RCNN (MixSup) 76.09 54.33 65.67
Above + self-training 78.87 61.03 70.91

In particular, we first use a trained MixSup
detector to generate pseudo boxes in the train-
ing set, and pseudo boxes with scores higher
than 0.7 are utilized to replace corresponding
coarse cluster labels. Then the updated label
set is adopted to train a new detector. As shown
in Table 7, the simple self-training strategy
consistently improves the performance, indicat-
ing MixSup is compatible with semi-supervised
training schemes. We will delve into the combi-
nation of MixSup and semi-supervised frame-
work in future work.

Roadmap from coarse clusters to accurate boxes. To better understand the gap and differences
between MixSup and fully supervised detectors. We incrementally incorporate additional supervi-
sory information for cluster-level labels. Specifically, we sequentially augment the 90% original
cluster-level labels with objects’ center coordinates, shape dimensions, and heading step by step.
We employ CenterPoint as the fundamental detector and conduct experiments on nuScenens for 10
epochs. The noteworthy enhancements, as detailed in Table 8, are primarily observed in large ob-
jects, like Car and Truck. This can be attributed to the fact that the centers of these large-size cluster
labels exhibit a more significant deviation from their true box centers.

The ambiguity of box-cluster IoU. As mentioned in Sec. 4.2, the proposed box-based as-
signment relies on box-cluster IoU, which is inherently more ambiguous compared to the IoU
between the proposal and the box-level labels. To demystify the effect of such ambiguity,
we establish the following oracle experiment: Based on FSD, a state-of-the-art two-stage de-
tector, we adopt standard box-to-box IoU for the matching between proposal and GTs dur-
ing the label assignment of the second stage. The learning scheme after the matching is the
same as MixSup, where only 10% of proposals are supervised by accurate poses and shapes.
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Table 8: Roadmap from coarse cluster labels to accurate box labels on nuScenes. We adopt Center-
Point as the base detector, conducting training for 10 epochs. †: This setting is equivalent to the fully
supervised baseline, while its performance is slightly worse due to the shorter training schedule.

Supervision mAP NDS Car Truck C.V. Bus Trailer Bar. Mot. Byc. Ped. T.C.

MixSup 59.48 64.97 82.35 53.65 19.17 67.25 36.87 66.48 64.79 53.45 83.46 67.29
MixSup + Center 60.49 65.89 83.85 57.00 19.66 69.09 37.98 66.30 65.29 53.86 83.84 68.00
MixSup + Center + Shape 60.79 66.27 83.80 56.93 21.30 70.01 37.44 67.35 64.93 54.11 83.82 68.17
MixSup + Center + Shape + Heading † 60.95 66.31 83.79 57.20 21.75 69.09 36.99 66.90 66.96 54.24 84.12 68.44

Table 11: Performances with generated labels by PointSAM on nuScenes validation split. ∗: Using
labels from PointSAM. †: Removing false positive clusters. ‡: Adding false negatives based on †.

Detector mAP NDS Car Truck C.V. Bus Trailer Bar. Mot. Byc. Ped. T.C.

CenterPoint (10% frames) 42.19 55.38 77.18 38.18 3.60 42.17 9.12 59.29 36.31 20.54 78.97 56.57
CenterPoint (MixSup)∗ 49.49 58.65 64.63 41.71 15.61 57.57 28.19 43.56 62.28 51.42 75.07 54.87
CenterPoint (MixSup†) 53.09 60.93 70.81 43.66 15.66 62.05 30.40 59.92 63.37 48.80 77.27 59.00
CenterPoint (MixSup‡) 58.30 64.21 80.33 50.74 20.59 65.38 36.11 65.52 62.45 51.92 82.06 67.89

Table 9: Oracle study to understand the ambi-
guity in box-based assignment, on Waymo Open
Dataset validation split (L2 mAPH).

IoU type Mean Vehicle Pedestrian Cyclist

cluster-to-box 68.57 66.08 66.53 73.09
box-to-box (oracle) 68.96 67.17 66.75 72.95

As can be seen from Table 9, there is no sig-
nificant performance boost in the oracle experi-
ments, demonstrating that MixSup does not ne-
cessitate precise IoU measurements. The per-
formance is especially robust for small objects
like Pedestrian and Cyclist, indicating the box-
cluster IoU is sufficient in semantics learning
even if it is a little ambiguous.

5.6 ANALYSIS OF POINTSAM

Table 10: Panoptic segmentation performance for
thing classes on nuScenes validation split.

Methods PQ SQ RQ

GP-S3Net (Razani et al., 2021) 56.0 85.3 65.2
SMAC-Seg (Li et al., 2022) 65.2 87.1 74.2
Panoptic-PolarNet (Zhou et al., 2021) 59.2 84.1 70.3
SCAN (Xu et al., 2022) 60.6 85.7 70.2
CFNet (Li et al., 2023) 74.8 89.8 82.9

PointSAM (Ours) 63.7 82.6 76.9

Quantitative Analysis We perform
PointSAM for automated coarse labeling
on nuScenes and compare the labels with prior
arts on LiDAR-based panoptic segmentation
benchmark (Fong et al., 2022). As PointSAM
disregards background, we only report the
performance for foreground thing classes,
in Table 10. Thanks to the mighty SAM,
PointSAM is on par with the recent fully
supervised panoptic segmentation models
without any 3D annotations.

Human Rectification Although SAM usually generates high-quality clusters, there are inevitable
false-positive clusters and false negatives due to the errors of 3D-2D projection in nuScenes. These
errors cannot be completely fixed due to imprecise calibration of sensors. We provide the analysis
of these bad cases in Appendix C.1. Thus, we manually correct the false positive labels and false
negatives, according to the labeling protocol in Sec. 4.1. The human rectification leads to significant
results in Table 11, at a cost of 50% annotation burden of all coarse labels.

6 CONCLUSION AND FUTURE WORK

Based on the unique properties of point clouds, we first verify that a good LiDAR-based detector
needs massive coarse labels for semantic learning but only a few accurate labels for geometry estima-
tion. We then propose a general label-efficient LiDAR-based framework MixSup to utilize massive
cheap cluster labels and a few accurate box labels. In addition, we develop PointSAM to further
reduce the annotation burden. The effectiveness is validated in three mainstream benchmarks.

MixSup has great potential to collaborate with well-studied semi-supervised methods. We have
shown the potential with a simple attempt and will delve into the relevant investigation in the future.
Moreover, the emerging auto-labeling methods, such as (Yang et al., 2021; Qi et al., 2021; Fan
et al., 2023a; Ma et al., 2023), present a compelling way to generate massive coarse labels. These
automatic labelers can be utilized to further improve the performance of MixSup.
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A PILOT STUDY

A.1 WELL-CLASSIFIED DATASET

As discussed in Sec. 3, we showcase some samples from the well-classified dataset in Fig. 6. In the
study, we utilize a pre-trained FSD (Fan et al., 2022b; 2023b) for region cropping. Each region is
deliberately introduced with strong noise against leakage of geometry information.

Vehicle Pedestrian Cyclist

Figure 6: Samples from the well-classified dataset. Green bounding boxes represent the ground
truth, while the presence of abundant background points underscores the strong noise we have in-
troduced.

A.2 EXPLORATION ON SEMANTIC LEARNING IN PILOT STUDY

We conduct an experiment to explore the impact of different data amounts on the 3D detector’s
semantic learning. Specifically, we decrease the data amount (the number of training frames) from
100% to 10% in Waymo and train a popular detector CenterPoint (Yin et al., 2021). Such a decrease
in data amount has a negative impact on both geometry learning and semantic learning. To mitigate
the impact on geometry learning and only focus on semantic learning, we aggressively relax the IoU
thresholds in evaluation from 0.7 / 0.5 / 0.5 to 0.5 / 0.25 / 0.25 for Vehicle / Pedestrian / Cyclist to
mitigate the negative impact introduced by degradation of geometry estimation.

Table 12: Performances with varying data amounts and IoU thresholds on Waymo Open Dataset
validation split.

Data amount IoU thresholds Vehicle L2 AP / APH Pedestrian L2 AP / APH Cyclist L2 AP / APH

100% 0.7 / 0.5 / 0.5 (normal) 65.42 / 64.92 66.49 / 60.53 66.49 / 60.53
10% 0.7 / 0.5 / 0.5 (normal) 55.92 / 55.39 56.97 / 49.07 51.52 / 50.46
Performance Gap - 9.50 / 9.53 9.52 / 11.46 17.76 / 17.66

100% 0.5 / 0.25 / 0.25 (relaxed) 87.15 / 86.20 82.99 / 74.62 74.01 / 72.70
10% 0.5 / 0.25 / 0.25 (relaxed) 81.99 / 80.67 73.61 / 62.14 56.50 / 55.20
Performance Gap - 5.16 / 5.53 9.38 / 12.48 17.51 / 17.50

As shown in Table 12, there are huge performance gaps between using 100% data and using 10%
data under the normal IoU thresholds. Obviously, here these gaps are caused by the degradation of
both semantic learning and geometry estimation.

However, there are still significant gaps between using 100% data and using 10% data under the
relaxed IoU thresholds. Especially, for Pedestrian and Cyclist, the gaps (between 10% and 100%)
do not even get smaller after we relax the IoU thresholds. Thus, the performance gaps between
100% data and 10% data should be mainly caused by the degradation of semantic learning. In other
words, semantic learning is sensitive to the data amount.

From another point of view, in the pilot study in Sec. 3, we have decreased the data amount of
well-classified patches from 100% to 10% to reveal the impact on geometry estimation, as shown
in Table 1. Compared with the aforementioned performance change caused by semantic learning
degradation, the performance change in Table 1 is negligible. Thus, we draw the conclusion that
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“LiDAR-based detectors indeed only need a very limited number of accurate labels for geometry
estimation. Massive data is only necessary for semantic learning”.

B DISCUSSION ON WEAKLY-SUPERVISED LEARNING

Since there is limited research on weakly-supervised learning for LiDAR-based 3D object detection,
we take WS3D (Meng et al., 2020; 2021), one of the closest work to MixSup, as an example for
discussion and comparison, while the direct comparison on the performance is shown in Table 4.

In terms of implementation, WS3D has a specifically designed detection pipeline and cannot be
generalized to other detectors. In contrast, MixSup can be integrated with various detectors. Ad-
ditionally, the coarse cluster-level labels proposed in Sec. 4.1 can be obtained through foundational
models such as SAM, as we demonstrated in PointSAM (Sec.4.3), further reducing the annotation
burden.

From the perspective of labeling protocol, WS3D requires annotators to click object centers in the
BEV perspective, which are used to supervise the center prediction. However, we demonstrate that
such center-click labeling protocol has some limitations as follows.

• For the inevitable instances with very partial point clouds, accurately clicking the center
is challenging. Conversely, MixSup’s cluster-level label only requires clicking around the
visible part of an object with three points, ensuring that the generated parallelogram en-
compasses the partial point clouds.

• Some methods need more than centers, such as the recent state-of-the-art FSD (Fan et al.,
2022b). It adopts a segmentation network in the first stage to obtain foreground points,
requiring point-level supervision. To clearly show the effectiveness of MixSup, we com-
plement the performance on Waymo validation split with L2 APH using FSD as the base
detector in Table 13.

Table 13: Performances on WOD validation split. †: Using coarse cluster labels and 10% accurate
box labels. The percentage in parentheses indicates the performance ratio to the fully supervised
counterpart.

WOD (L2 APH)
Detector Mean Vehicle Pedestrian Cyclist

FSD (100% frames) 71.27 70.09 69.79 73.93
FSD (MixSup) † 68.57 (96.21%) 66.08 (94.28%) 66.53 (95.33%) 73.09 (98.86%)

C POINTSAM

C.1 QUALITATIVE ANALYSIS

We list the visualization of generated coarse labels in Fig. 7. As depicted in subfigures (a) and
(b), PointSAM demonstrates the capability to generate high-quality cluster-level labels. However,
due to low-quality segmentation in extreme situations or 3D-2D projection errors, it is inevitable
to arise false-positive clusters and false negatives, as shown in subfigures (c) and (d). In particular,
subfigure (c) showcases an extreme case of nighttime driving, where SAM fails to provide effective
segmentation masks, resulting in untrustworthy cluster labels. Subfigure (d) exemplifies a case of
incorrect projection, where background points are erroneously projected to the foreground labels.

C.2 SEPARABILITY-AWARE REFINEMENT (SAR)

A simple illustration of SAR is shown in Fig. 8. For those masks across multiple components, we
initially analyze each mask’s number in each component and retain the one with the highest count. It
ensures that each mask is associated with only one component. Subsequently, we merge the masks
that belong to a single component and output the final segmentation masks.
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Figure 7: Visualization of generated labels through PointSAM. Subfigures (a) and (b) depict ac-
curately generated samples, while subfigures (c) and (d) illustrate samples containing false-positive
clusters in red circles and false negatives in yellow circles.
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Figure 8: Illustration of Separability-Aware Refinement (SAR). In SAR, ! denotes retaining
the mask and% denotes to regard these points as background.

C.3 RESISTANCE OF SAR TO INACCURATE CALIBRATION

Table 14: Performances with noisy cal-
ibration.

Noise (cm) w/ SAR PQ SQ RQ

0 % 44.9 74.6 59.8
−5 ∼ 5 % 43.8 74.6 58.3
−10 ∼ 10 % 41.4 74.5 55.2
0 ! 63.7 82.6 76.9
−5 ∼ 5 ! 62.8 82.3 76.1
−10 ∼ 10 ! 60.6 81.4 74.3

Throughout the experiment, we identified inherent inac-
curacies in the calibration of nuScenes, leading to dis-
crepancies in the pixel-point projection of foreground ob-
jects. Hereby, we introduce SAR module to mitigate the
degradation in segmentation caused by projection error.

To further investigate the impact of projection discrepan-
cies on PointSAM, we introduced random noise to each
camera’s position. The performance for foreground ob-
jects on nuScenes val split panoptic segmentation is sum-
marized in Table 14. The results indicate that SAR-
derived coarse instance masks exhibit a certain degree of
resistance to calibration inaccuracies, attributed to the refinement introduced by the SAR module.

C.4 DISCUSSION ON SAM-BASED METHODS

To the best of our knowledge, PointSAM is the first initiative harnessing SAM for instance seg-
mentation in outdoor scenes. Notably, PointSAM achieves performance on par with the recent fully
supervised panoptic segmentation models without the need for any 3D annotations as shown in Ta-
ble 10. Moreover, our PointSAM innovatively leverages the inherent spatial separability of point
clouds to refine instance segmentation, enabling the mitigation of the projection error.

In terms of other SAM-based works, taking SAM3D for detection (Zhang et al., 2023a), SAM3D
for instance segmentation (Yang et al., 2023b), Seal (Liu et al., 2023c), and Label-free Scene Un-
derstanding (Chen et al., 2023a) as examples, SAM3D for detection (Yang et al., 2023a) is an early
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exploratory work that innovatively applies SAM to LiDAR-based 3D object detection. However,
it has some limitations, such as being confined to detecting only vehicles and impractical perfor-
mance. SAM3D for instance segmentation (Yang et al., 2023b) focuses on multi-view merging in
indoor scenes, while PointSAM pays attention to refining based on the spatial separability in out-
door scenes. Moreover, we integrate semantics to enrich the information for instance masks. The
latter two works (Liu et al., 2023c; Chen et al., 2023a) both focus on pretraining via pixel-point
projection for semantic segmentation and have achieved remarkable results. However, they cannot
handle instance segmentation.

It is crucial to emphasize that PointSAM is proposed to provide coarse labels for MixSup. Thus, we
are delighted to see these exceptional works playing a similar role and potentially integrating with
MixSup.

D MANUALLY LABELING

D.1 LABELING PROTOCOL

We outline the labeling protocol for cluster-level labels in Fig. 9. As described in Sec. 4.1, we can
annotate a cluster with just three clicks, which is significantly more efficient compared to annotating
box-level labels.

Raw Point Clouds Annotator Clicking Parallelogram Forming Cluster-level Labels

Figure 9: Illustration of labeling protocol for cluster-level labels. Note the annotator clicking can
be very fast and they do not need to click the exact corners.

D.2 NOISE IN HUMAN-ANNOTATED COARSE LABEL

To delve into the impact of the noise introduced by annotations on our experiments, we first evaluate
the similarity between human-annotated coarse labels (100-frame subset) with ground-truth labels,
which is 81.22% in terms of segmentation mIoU. Then we add stronger noise to ground-truth
labels to simulate more rigorous coarse labels, controlling coarse labels possessing 80% to 82%
mIoU with ground-truth labels, just like human-annotated coarse labels. In particular, we use the
following two noises:

• Noise 1⃝: Randomly shift center locations −0.1 ∼ 0.1 meters and expand 0% ∼ 50% in
each dimension. It possesses 81.91% mIoU with ground-truth labels.

• Noise 2⃝: Randomly shift center locations −0.2 ∼ 0.2 meters, expand 0% ∼ 20% in each
dimension, and rotate −15◦ ∼ 15◦ in heading. It possesses 80.60% mIoU with ground-
truth label.

We then conduct experiments on nuScenes using such noisy coarse labels. As shown in Table 15,
performance with noise 1⃝, 2⃝ is similar to the performance with default noise 0⃝. Thus, our
experiments conducted with default noise are reliable and won’t introduce significant deviations
from the manually annotated coarse labels.

E LIMITATIONS AND SOCIAL IMPACT

Regarding the limitations of MixSup, as a novel label-efficient paradigm, it is orthogonal to other
label-efficient methods. Our work has not explored integration with semi-supervised methods, pro-
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Table 15: Comparison with different noisy coarse labels on nuScenes. Noise 0⃝: Default noise
introduced by randomly expanding 0% ∼ 10% in each dimension.

Detector Noise mAP NDS

CenterPoint (100%) - 62.41 68.20
CenterPoint (MixSup) Noise 0⃝ 60.73 66.46
CenterPoint (MixSup) Noise 1⃝ 60.23 65.99
CenterPoint (MixSup) Noise 2⃝ 60.21 66.28

viding an avenue for potential performance enhancements. Moreover, our proposed PointSAM,
when combined with other exceptional 3D segmentation models, could yield higher-quality coarse
labels. We believe MixSup holds significant promise in reducing annotation costs for the commu-
nity, contributing to the conservation of both human and environmental resources. However, due to
the cost savings in annotation come with a certain performance trade-off, practical deployment may
raise risks of compromising driving safety. Thus, these will be a focus of our future research.
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