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ABSTRACT

Many state-of-the-art large language models exceed tens of billions of parame-
ters. To compress these models, several prior works have proposed quantizing the
weights and activations of these models, using techniques like GPTQ and QuIP.
An important reference for quantized language models is their ability to recover
performance metrics such as accuracy after quantization; that is, the quantized
language models should be as accurate as the original base models. It remains,
however, unclear, which evaluations are most needed to assess recovery. If, for
instance, recovery across all tasks is strongly linear (i.e. recovery on task A is a
linear function of recovery on task B), then there should exist a dense subset of
(independent) evaluations that are most necessary. In this paper, we examine the
trends in recovery across pairs of tasks and metrics. Drawing from prior works
which have shown that in-distribution and out-of-distribution accuracy often ex-
hibit a strong linear relationship, we show that this relationship holds for recovery
of accuracy as well.

1 INTRODUCTION

Post-training quantization (PTQ) has emerged as a popular method to improve the memory footprint
and scalability of large language models (LLMs) while maintaining performance (Frantar et al.,
2022; Chee et al., 2024; Huang et al., 2024). Typically, performance is measured by evaluating both
the base and quantized LLM on a suite of benchmark tasks and assessing the quantized model’s
ability to recover baseline performance metrics (Kurtic et al., 2024; Hong et al., 2024). These eval-
uations ideally cover a large array of tasks and metrics, such as multiple choice accuracy, calibration
error, and safety of generations (Xu et al., 2024).

Running such extensive evaluations, however, is time-consuming and expensive. For instance, run-
ning MosaicML’s EvalGauntlet on both the LLama-3.1-8B base and it’s 4-bit quantized version
requires several GPU hours.

Prior work in classification settings has shown that performance (e.g. accuracy) across tasks is often
linearly correlated, even between in-distribution (ID) and out-of-distribution (OOD) tasks, a phe-
nomenon known as accuracy-on-the-line (Miller et al., 2021; Santurkar et al., 2020; Sanyal et al.,
2024; Cohen-Wang et al., 2024; Mania & Sra, 2020). Several works have extended this empiri-
cal observation to other metrics as well, including pairwise agreement (Baek et al., 2022; Saxena
et al., 2024; Kim et al., 2024), pairwise disagreement Deng et al. (2022), and model invariance and
generalization Lee et al. (2023). Others have noted that ID and OOD performance don’t always
correlate linearly, for instance when comparing model performance across subpopulations (Liang
et al., 2023).

We investigate whether such a relationship exists for recovery of performance in quantized language
models. There are two key reasons to study this relationship:

1. Understanding evaluations: The relationship in the recovery of performance, both across
tasks (e.g. question-answering, multiple choice, etc.) and metrics (accuracy, calibration,
etc.) is poorly understood. Investigating these relationships provides a basis for generating
new tasks and metrics which current evaluations fail to cover.
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2. Evaluation efficiency: For generative models, one can always generate new evaluations,
but these evaluations may be redundant. Analyzing the quantization recovery relationship
across tasks can find a core subset of tasks that “covers” all key evaluations. For instance, if
recovery on one task exactly predicts recovery on all other tasks (e.g. linear relationship),
then one evaluation is sufficient to measure recovery.

We empirically show with evaluations across 24 tasks that several state-of-the-art LLMs exhibit
strong correlation in recoveries across benchmark datasets and metrics, showing that (a) accuracy
recovery generally follows a strongly linear relationship across all tasks and quantization levels, and
(b) this relationship seems to break down when evaluating non-accuracy metrics.

2 ANALYSIS

We compress four widely-used, open-source LLMs—Llama-3.1-8B-Instruct,
Qwen2.5-7B-Instruct, Falcon-3-7B-Instruct, and
Mistral-7b-instruct-v0.3 using the GPTQ framework (Frantar et al., 2022) at four
distinct bitwidth configurations: W8A8, W4A16, W3A16, and W2A16. Here, WxAy refers to x-bit
weight and y-bit activation quantization respectively. We follow standard hyperparameter settings
for GPTQ and quantize each model separately at each bitwidth setting.

We evaluate both base and quantized models on 24 tasks drawn from MosaicML’s EvalGauntlet,
spanning five categories of large language model evaluations: (i) World Knowledge, (ii) Language
Understanding, (iii) Symbolic Problem Solving, (iv) Reading Comprehension, and
(v) Commonsense Reasoning. Across these tasks, we primarily assess performance via standard
accuracy-based metrics. We additionally evaluate whether a “core” subset of tasks can reliably
predict quantization recovery on the full set. To that end, we measure and compare performance
recovery for each quantized model, then investigate how strongly recovery on a small number of
tasks correlates with overall recovery across all tasks.

In addition, we also evaluate our models’ abilities to recover non-accuracy based metrics such as
calibration. We evaluate calibration on four open-sourced multiple choice datasets available on
HuggingFace: OpenbookQA (Mihaylov et al., 2018), CosmosQA (Huang et al., 2019), MMLU
(Hendrycks et al., 2020), and MMLU-Pro (Wang et al., 2024) using three models from the Llama-3
suite (Dubey et al., 2024).

2.1 RESULTS

Recovery of Accuracy We show that recovery of accuracy across various benchmark tasks is
highly correlated, with a strong linear fit in most cases. We analyze recovery on every pair of 24
tasks drawn from EvalGauntlet, resulting in 276 total pairwise comparisons.

On average, tasks in this evaluation set were highly correlated in accuracy recovery (mean pairwise
R2 = 0.84, median R2 = 0.92). We evaluate the slope (of the line of best fit) and correlation
(measured by R2) for each pair of tasks in EvalGauntlet, similar to the plots shown in Figure 1
(except disaggregated to not be just within categories). The overall distribution of pairwise
correlations across tasks, shown in Figure 2, suggests that most pairs of tasks are strongly
correlated, with a small subset that are independent of other evaluations. This independent subset
includes symbolic problem solving tasks (e.g, mathematical reasoning tasks) (Zhong et al., 2023).

To further investigate these correlations and how they change with quantization levels, we
aggregate our suite of 24 tasks into five categories – commonsense reasoning, language
understanding, symbolic problem solving, world knowledge, and reading comprehension –
using the categories defined in EvalGauntlet. As shown in Figure 1, most pairs of categories exhibit
a strong linear relationship in their recovery of accuracy, with smaller (2-bit) models having
significantly poorer recovery than larger ones, which often have recovery close to 1. We again
observe that symbolic problem solving tasks, which include various mathematical and analytical
reasoning questions, are least correlated in recovery to other tasks. In particular, the least correlated
task in our evaluation suite is AGIEvalLSAT Arithmetic Reasoning (mean R2 = 0.018) and most
correlated is HellaSwag (mean R2 = 0.905).
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Moreover, the slope of the category-to-category linear fit is always bounded between 0.5 and 2 after
aggregation 1.
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Figure 1: Across all categories of tasks in EvalGauntlet, we see strong linear trends in recovery.
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Figure 2: Slope and R2 distribution of the best-fit line of the pairwise task-recovery plots evaluated
across all 24 tasks. Majority of the tasks have high coefficient of determination, indicating the linear
trend of performance recovery.

1The original accuracy-on-the-line papers use probit scaling before estimating their linear fits, to account
for the fact that accuracies are bounded in [0, 1]. Given that recovery can be > 1, we do not use this rescaling.
We additionally tried logit-scaling our plots, which maintained the linear relationship (see Appendix A.5.
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Figure 3: Quantizing models often improves calibration error. The base model tends to be overcon-
fident at all confidence levels (left), which is partially mitigated after quantizing to 4 bits (middle).
This is evident in the entropy distribution among the multiple choice options, where we see that the
quantized model has greater entropy (right).

Recovery of Additional Metrics The strong linear trend in recovery of accuracy fails to hold for
other metrics, such as calibration and entropy. The 5 shows the trends in calibration recovery across
relevant benchmark datasets.

In particular, we observe that base models are often (very) overconfident and that quantizing mildly
corrects this overconfidence. For instance, as shown in Figure 3 with Llama-3.1-8B-Instruct, the
token-level entropy increases post-quantization, which in turn corrects overconfidence in the base
model.

3 DISCUSSION AND FUTURE WORK

Here we showed preliminary evidence that performance recovery post-quantization follows a
strongly linear trend, especially in the recovery of accuracy. In the future, we hope to extend these
results to find a robust subset of evaluations that “covers” all evaluations needed to assess recovery.
This includes both extending to new tasks and, more importantly, new metrics, such as perplexity
and the proportion of answers which flip after quantization, some of which may be poorly
correlated with accuracy (Dutta et al., 2024). A second direction of future work is to analyze the
bit-level trends in recovery, i.e. analyzing the scaling of recovery against quantization-level across
our dense subset.

REFERENCES

Christina Baek, Yiding Jiang, Aditi Raghunathan, and J Zico Kolter. Agreement-on-the-line:
Predicting the performance of neural networks under distribution shift. Advances in Neural
Information Processing Systems, 35:19274–19289, 2022.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

Benjamin Cohen-Wang, Joshua Vendrow, and Aleksander Madry. Ask your distribution shift if
pre-training is right for you. arXiv preprint arXiv:2403.00194, 2024.

Weijian Deng, Stephen Gould, and Liang Zheng. On the strong correlation between model
invariance and generalization. Advances in Neural Information Processing Systems, 35:
28052–28067, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Abhinav Dutta, Sanjeev Krishnan, Nipun Kwatra, and Ramachandran Ramjee. Accuracy is not all
you need. arXiv preprint arXiv:2407.09141, 2024.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR SLLM Workshop 2025

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Junyuan Hong, Jinhao Duan, Chenhui Zhang, Zhangheng Li, Chulin Xie, Kelsey Lieberman, James
Diffenderfer, Brian Bartoldson, Ajay Jaiswal, Kaidi Xu, et al. Decoding compressed trust:
Scrutinizing the trustworthiness of efficient llms under compression. arXiv preprint
arXiv:2403.15447, 2024.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Cosmos qa: Machine reading
comprehension with contextual commonsense reasoning. arXiv preprint arXiv:1909.00277,
2019.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele
Magno, and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv
preprint arXiv:2402.04291, 2024.

Eungyeup Kim, Mingjie Sun, Christina Baek, Aditi Raghunathan, and J Zico Kolter. Test-time
adaptation induces stronger accuracy and agreement-on-the-line. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Eldar Kurtic, Alexandre Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. ” give me bf16
or give me death”? accuracy-performance trade-offs in llm quantization. arXiv preprint
arXiv:2411.02355, 2024.

Donghwan Lee, Behrad Moniri, Xinmeng Huang, Edgar Dobriban, and Hamed Hassani.
Demystifying disagreement-on-the-line in high dimensions. In International Conference on
Machine Learning, pp. 19053–19093. PMLR, 2023.

Weixin Liang, Yining Mao, Yongchan Kwon, Xinyu Yang, and James Zou. Accuracy on the curve:
On the nonlinear correlation of ml performance between data subpopulations. In International
Conference on Machine Learning, pp. 20706–20724. PMLR, 2023.

Horia Mania and Suvrit Sra. Why do classifier accuracies show linear trends under distribution
shift? arXiv preprint arXiv:2012.15483, 2020.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar,
Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation
between out-of-distribution and in-distribution generalization. In International conference on
machine learning, pp. 7721–7735. PMLR, 2021.

Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. Breeds: Benchmarks for
subpopulation shift. arXiv preprint arXiv:2008.04859, 2020.

Amartya Sanyal, Yaxi Hu, Yaodong Yu, Yian Ma, Yixin Wang, and Bernhard Schölkopf. Accuracy
on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation. arXiv
preprint arXiv:2406.19049, 2024.

Rahul Saxena, Taeyoun Kim, Aman Mehra, Christina Baek, Zico Kolter, and Aditi Raghunathan.
Predicting the performance of foundation models via agreement-on-the-line. arXiv preprint
arXiv:2404.01542, 2024.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR SLLM Workshop 2025

Zhichao Xu, Ashim Gupta, Tao Li, Oliver Bentham, and Vivek Srikumar. Beyond perplexity:
Multi-dimensional safety evaluation of llm compression. arXiv preprint arXiv:2407.04965,
2024.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models. arXiv preprint arXiv:2304.06364, 2023.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR SLLM Workshop 2025

A APPENDIX

A.1 HIGH CORRELATION BETWEEN TASKS OF SAME CATEGORIES

In Figure 4, we show heatmaps illustrating correlation of quantization recovery for tasks within
each of the five evaluation categories (e.g., World Knowledge, Language Understanding). We
observe that tasks within a single category exhibit consistently high correlations, mirroring the
strong cross-category correlations described in the main text.
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Figure 4: Correlation heatmaps by category, demonstrating that tasks within the same category
exhibit high accuracy recovery correlations. Only in Symbolic Problem Solving do the tasks show
notably weaker correlations compared to the other categories.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR SLLM Workshop 2025

A.2 CALIBRATION RECOVERY IS NOT FULLY CORRELATED WITH ACCURACY RECOVERY
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Figure 5: The linear trends we observe in recovery of accuracy across tasks do not hold across
metrics, for instance between accuracy and calibration on the same task.

To calculate recovery of calibration, we use the following equation:

RecoveryECE =
ECEbase

ECEquantized

We flip the equation relative to the accuracy recovery since a lower calibration error is better.
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A.3 TASKS IN MOSAICEVAL GAUNTLET V0.3

Category Task N-shot

Common sense reasoning tasks

copa 0
social iqa 3
commonsense qa 0
piqa 0
openbookqa 10
bigbench strange stories multiple choice 0
bigbench strategyqa multiple choice 0

Reading comprehension tasks

boolq 0
coqa 0
agieval lsat rc 5
agieval lsat lr 5
agieval sat en 5

Symbolic problem solving tasks

bigbench elementary math qa multiple choice 1
bigbench operators generate until 3
gsm8k 0
agieval lsat ar 5

World knowledge tasks

arc easy 3
arc challenge 3
mmlu 5
triviaqa 3

Language understanding tasks

lambada openai 0
hellaswag 0
wsc273 3
winogrande 5

Table 1: Categories, tasks, and their respective N-shot values in EvalGauntlet.
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A.4 ACCURACY RECOVERY TREND BETWEEN TASKS IN DIFFERENT CATEGORIES

Figures 6-10 shows pairwise comparisons of quantization recovery across tasks within and across
the five major categories in our evaluation suite. Overall, we observe near-linear correlations in
many of these task pairs (e.g., reading comprehension tasks), while more diverse tasks (e.g.,
symbolic problem solving) exhibit weaker correlations. These findings indicate that some tasks can
serve as strong proxies for others when assessing performance recovery, but not all categories share
equally strong relationships.
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Figure 6: Accuracy recovery in reading comprehension tasks.
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Figure 7: Accuracy recovery in commonsense reasoning tasks.
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Figure 8: Accuracy recovery in world knowledge tasks.
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Figure 9: Accuracy recovery in symbolic problem solving tasks.
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Figure 10: Accuracy recovery in language understanding tasks.
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Figure 11: Logit-scaling recovery metrics preserves most linear trends.

A.5 LOGIT-SCALING PRESERVES LINEAR TRENDS IN RECOVERY

The original accuracy-on-the-line works applied probit scaling to the raw accuracies before fitting a
best fit line, as accuracies range in [0, 1]. Probit scaling rescales the raw accuracies using the
inverse Gaussian CDF, i.e. Accrescaled— = Φ−1(Accoriginal), which stabilizes the linear fits. Probit
scaling is not applicable to our setting, as recovery can exceed 1 if the quantized model is more
accurate than the base model. Instead, we apply logit scaling to our recoveries, where we defined

Acclogit-scaled = logit(Accquantized)− logit(Accbase)

This does not substantially improve the linear fits, and we leave it as future work to find the best
rescaling in which the linear trends stabilize.
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