
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

PC-AGENT: A HIERARCHICAL AGENTIC FRAME-
WORK FOR COMPLEX TASK AUTOMATION ON PC

Haowei Liu1,2∗, Xi Zhang3∗, Haiyang Xu3†, Yuyang Wanyan1,2, Junyang Wang4, Ming Yan3†,
Ji Zhang3, Chunfeng Yuan1,2†, Changsheng Xu1,2, Weiming Hu1,2,5, Fei Huang3
1MAIS, Institute of Automation, Chinese Academy of Sciences, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, China
3Alibaba Group 4Beijing Jiaotong University
5School of Information Science and Technology, ShanghaiTech University, China
liuhaowei2019@ia.ac.cn, cfyuan@nlpr.ia.ac.cn
{shuofeng.xhy, ym119608}@alibaba-inc.com

ABSTRACT

MLLM-based GUI agents can assist humans in completing various tasks on smart
devices automatically, demonstrating significant potential and application value.
Unlike smartphones, the PC scenario not only features a more complex interactive
environment with denser and more varied UI and text layouts, but also involves
more intricate intra- and inter-app workflows, thus posing greater challenges for
both perception and decision-making. To address the above issues, we propose
a hierarchical agentic framework named PC-Agent. Specifically, from the per-
ception perspective, we devise an Active Perception Module (APM) to overcome
the inadequate abilities of current MLLMs in perceiving screenshot content. The
APM integrates intention understanding and OCR to achieve fine-grained per-
ception of the content and location of target text, and utilizes the accessibility
(A11y) tree to obtain interactive element information. From the decision-making
perspective, to handle complex user instructions and interdependent subtasks
more effectively, we propose a hierarchical multi-agent collaboration architec-
ture that decomposes decision-making processes into Instruction-Subtask-Action
levels. Within this architecture, three agents (i.e., Manager, Progress and Deci-
sion) are set up for instruction decomposition, progress tracking and step-by-step
decision-making respectively. Additionally, a Reflection agent is adopted to en-
able timely bottom-up error feedback and adjustment. Alongside the PC-Agent
framework, we introduce a new benchmark PC-Eval including 8 widely used ap-
plications and 25 real-world complex instructions. Empirical results on PC-Eval
show that our PC-Agent achieves a 32% absolute improvement of task success
rate over previous state-of-the-art methods. The code is available at https:
//github.com/X-PLUG/MobileAgent/tree/main/PC-Agent.

1 INTRODUCTION

Recently, Multi-modal Large Language Models (MLLM) (Bai et al., 2023; Ye et al., 2024; Chen
et al., 2024; Li et al., 2024) have achieved impressive progress across various domains. Building
on the powerful perception and reasoning abilities of MLLMs, researchers have extended them
into multi-modal agents to assist humans in completing various tasks. In this field, graphical user
interface (GUI) agents have garnered significant attention (Wang et al., 2024a; Agashe et al., 2024;
Zhang et al., 2023; Wang & Liu, 2024), as the automation of smart devices (e.g., smartphones, PCs)
by agents holds vast application potential.

Compared to smartphones, the complexity of the PC scenario manifests in two aspects: (1) More
complex interactive environment. PC’s GUI encompasses denser and more diverse interactive el-
ements (i.e., icons and widgets), along with varied text layouts (e.g., documents in Word and code in

∗The first two authors contributed equally to this work.
†Corresponding authors.

1

https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent
https://github.com/X-PLUG/MobileAgent/tree/main/PC-Agent

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

User instruction: View the Travel Plans sent to
Howie in Outlook. Search for tourist attractions in
these destinations using Chrome. Create a new
Word document introducing the tourist attractions
you found for each destination. Calculate the
interval between 1.8 and the start day in Calculator.

Outlook Chrome Microsoft Word Calculator

Single Agent Ours

Complex Interactive Environment & Complex Instruction
Icons; Widgets;
Text…

View the Travel Plans
sent to Howie (6 steps)

Search for tourist attractions
in these destinations (6 steps)

Create a new Word document introducing the tourist
attractions you found for each destination (7 steps)

Calculate the interval between
1.8 and the start day (9 steps)

The coordinate of the start
of second paragraph?
Claude 3.5: [419, 490]

The coordinate of the
Paragraph center button ?
Claude 3.5: [644, 132]

❌

❌

Subtask SR SR

41.8%

8.0%

76.0%
56.0%

Inter-subtask
dependency

Claude-3.5 Our APM

24.0%

88.0%

Refined
Perception
Lengthy
sequence

Success Rate (SR)Grounding Acc.

(a) (b)Inter-subtask dependency

Figure 1: Illustration of the complexity of the PC scenario: (1) Complex interactive environment
with dense and diverse elements. (2) Long and complex task sequences containing intra- and inter-
software workflows. The black dotted lines denote the inter-subtask dependencies.

VS Code), posing significant challenges for screen perception. For example, as Figure 1 shows, the
top ribbon of Word contains a plethora of icons and widgets, yet lacks textual labels indicating their
functions. As a result, even state-of-the-art MLLMs (e.g., Claude-3.5) exhibit inadequate abilities
in perceiving and grounding icons and text on PC screens, and only achieves 24.0% accuracy on
a GUI grounding dataset in Figure 1(a). More details about the grounding dataset can be found in
Appendix A.5. (2) More complex task sequences. Compared to smartphones, PCs are generally
used in productivity scenarios that involve more intricate intra- and inter-app workflows, and require
longer and more intricate operation steps. Taking making a travel plan on PC (as in Figure 1) as
an example, it might involve multiple subtasks across four applications. As a result, on the one
hand, the lengthy operation sequences (i.e., 28 steps in total) increase the difficulty of sensing the
task progress. On the other hand, the existence of inter-subtask dependencies requires the agent to
consider the execution results of preceding subtasks when making decisions, further increasing the
decision-making difficulty. As Figure 1(b) shows, the instruction-level success rate (SR) of a single
agent (GPT-4o Hurst et al., 2024) declines drastically from 41.8% to 8% compared to subtask SR,
highlighting the challenge of completing real-world instructions on PC. To handle cross-app tasks,
the previous work UFO (Zhang et al., 2024) designs a dual-agent framework, one for application se-
lection and the other for specific control interactions. To tackle complex PC tasks, Agent-S (Agashe
et al., 2024) combines online search and local memory for experience-augmented planning. How-
ever, these methods lack fine-grained perception and operation abilities of on-screen text, which is
crucial in productivity scenarios (e.g., Word document editing). Moreover, they generally overlook
the complex dependencies between subtasks, thereby exhibiting limited abilities on realistic intra-
and inter-app complex tasks.

In this paper, we propose the PC-Agent framework to handle the complex interactive environment
and complex tasks in PC scenarios, which comprises three core designs: (1) Active Perception
Module. To enhance the fine-grained perception and operation abilities of the agent, we propose
an Active Perception Module (APM). For interactive elements, we use the accessibility tree to ex-
tract their locations and meanings. For text, we employ an MLLM-driven intention understanding
agent for target text extraction, followed by OCR to obtain precise locations. (2) Hierarchical
Multi-agent Collaboration. To improve the abilities of handling complex instructions, we adopt
a divide-and-conquer approach and propose a Hierarchical Multi-agent Collaboration architecture.
Specifically, we break down decision processes into three levels: Instruction-Subtask-Action. At
the instruction level, a Manager Agent (MA) decomposes the user instruction into parameterized
subtasks, with significantly fewer operation steps and lower decision-making difficulty. The MA
also manages inter-subtask communication to handle complex dependencies between them. At the
subtask level, a Progress Agent (PA) tracks and summarizes operation history for precise progress
awareness. At the action level, a Decision Agent (DA) makes decisions step-by-step by combining
the APM’s perception information and PA’s progress information, and interacts with the PC envi-
ronment to complete the decomposed subtasks. (3) Reflection-based Dynamic Decision-making.
Building on the above architecture, we also introduce a reflection-based dynamic decision-making
mechanism for error detection in execution results, with timely feedback and adjustments. An ad-
ditional Reflection Agent (RA) is set at the action level to observe screen changes before and after
DA decisions, assessing the correctness of this step and conveying feedback to the DA and PA. Fig-

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

a

Open the 'memo' file in 'Documents'. Check the
time and location of the meeting with John.
Search on Chrome how much time it takes to
get from the Empire State Building to this
location. Set an appropriate alarm so I can ...

User’s Complicate Instruction
Manager

Agent

Sub-task 1: Open the 'memo’ in 'Documents’,
and check time and location of the meeting,
output as {T1: T1_v, LOC: LOC_v}.

Sub-task 2: Search on Chrome ... to {LOC},
output as {T2: T2_v}

T1

LOC

3:10pm

American Museum of
Natural History

T2 10 min

Communication Hub

Sub-task 2: Search on Chrome ... To
American Museum of Natural History,
output as {T2: T2_v} Open the Chrome

Previous Action:
click the input field

Reflection Feedback: the input field
has been activated. | Successful ✅

Sub-task processProgress
Agent

Active
Perception

Module

Decision
Agent

Thought: Input field has been activated,
now I need to input the question…
Action: Type (How much time…)
Summary: I type the question.

Reflection
Agent

Update
{T2: 10 min}

Open the Chrome
Sub-task process

Active the input filed

Sub-task 2 LOC American Museum of
Natural History

✅ / ❌

Instruction Level

Subtask Level

Action Level

Sub-task 3: Set an alarm at {T2} in {D}.

Perception information:
text: Google, [1439, 581]
icon: New Tab, mark: 12,
[584, 41] ……

After the Action Before the Action

Instantiation

Figure 2: Overview of the proposed PC-Agent, which decomposes the decision-making process into
three levels. The orange lines denote the top-down decision-making decomposition, and the purple
lines represent the bottom-up reflection process.

ure 2 shows the entire process. Combining the hierarchical multi-agent collaboration architecture
with reflection-based dynamic decision-making, our PC-Agent framework can decompose com-
plex user instructions from top to bottom and provide precise feedback from bottom to top
during execution. Consequently, the four agents collaborate to alleviate the difficulty of interactive
environments and complex workflow tasks on PC.

To better evaluate the capabilities of agents on complex tasks, we present a new benchmark PC-
Eval for PC productivity environments. PC-Eval comprises 8 popular applications and 25 complex
user instructions, each consisting of several interdependent subtasks. It provides a challenging and
realistic benchmark, by emphasizing complex workflows and long-horizon decision-making. Com-
paring our PC-Agent with advanced MLLM-based single agents and existing open-source PC agents
on PC-Eval, we can find that PC-Agent achieves significant improvements in both instruction- and
subtask-level success rates, demonstrating the effectiveness of the proposed framework.

Our contributions can be summarized as follows:

(1) We propose a PC-Agent framework to overcome the limitations of existing methods in handling
complex interactive environments and complex tasks in PC scenarios. An Active Perception Module
(APM) is devised to enable PC-Agent with refined perception and operation capabilities.

(2) To tackle complex PC tasks, we propose a hierarchical multi-agent collaboration architecture
decomposing the decision process into three levels (i.e., instruction-subtask-action), and introduce a
reflection-based dynamic decision-making mechanism for timely error feedback and adjustments.

(3) We create a PC-Eval benchmark involving 8 commonly used PC applications to better assess the
agent’s capabilities in handling complex user instructions. Experimental results demonstrate that the
proposed PC-Agent largely outperforms previous methods in completing complex PC tasks.

2 PC-AGENT

2.1 TASK FORMULATION

Given an interactive GUI environment and a user instruction I, the GUI Agent (denoted as ρ) obtains
an observation O about the state of the environment (e.g., the current screenshot). Based on internal
reasoning and planning, it makes a decision A about the current step’s action. Through operations
such as clicking and typing, it interacts with the GUI environment and alters the environment’s
state. Since transitioning from the initial state to the target state in a GUI environment typically

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Set the last paragraph of current
document to be underlined.

Decision
Agent Select (Last Paragraph) APM

Intention
Understanding

Agent

OCR Tool

Left_top: [804, 1252]
right_bottom: [1908, 1496]

Active Perception Module (APM)

London, the
capital of
England ... and
the entire city

Drag ([804, 1252], [1908, 1496])

Subtask:

A11y
Tree

Figure 3: Illustration of the active perception module. For interactive elements, the A11y tree is
adopted to obtain the bounding boxes and functional information. For text, an intention understand-
ing agent and an OCR tool are utilized to perform precise selecting or editing.

requires multiple state transitions, this process occurs step-by-step. Each step’s decision considers
the operation history H of prior steps. The above process can be formalized as:

Ai = ρ(I,Oi,Hi), (1)

where Ai and Oi represent the action and observation in the i-th step, and Hi is the operation history
until the i-th step.

Compared to the mobile scenario, the PC scenario presents more complex interactive environments
and task sequences, increasing the complexity of I, O and H in Equation 1. This necessitates
designing an agent framework tailored for complex scenarios. To address this, we propose a PC-
Agent framework, which is depicted in Figure 2 and will be introduced in detail below.

2.2 ACTIVE PERCEPTION MODULE

MLLM-based agents struggle to accurately perceive the position and meaning of interactive ele-
ments and text. To address this and enable refined perception and operation, we propose an active
perception module (APM).

Interactive Elements. We use the pywinauto API to extract the A11y tree of the GUI interface,
filtering and parsing the coordinates and descriptions of interactive elements. Then we annotate the
elements’ bounding boxes on screenshots in an SoM (Yang et al., 2023) manner to help MLLM
understand the position and meaning of the interactive elements.

Text. Text information cannot be obtained through the A11y tree, and user instructions often vaguely
reference text, making it difficult to directly acquire the target text’s content and position informa-
tion. For instance, bold the last two paragraphs of this Word document. To overcome this issue, we
propose utilizing active perception to obtain the content and position of the target text. As shown in
Figure 3, for tasks involving refined text operations (such as selection or editing), the decision agent
will first output the Select (target text) action. Then the APM employs an MLLM-driven intention
understanding agent to determine the start and end range of the target text, followed by the use of
OCR tools to precisely locate the target text for subsequent detailed operations such as drag.

2.3 HIERARCHICAL MULTI-AGENT COLLABORATION

PC scenarios often involve intra- and inter-app workflows, increasing the complexity of user instruc-
tions. To address this, we adopt a divide-and-conquer approach, breaking down the decision-making
process into three levels: Instruction, Subtask and Action. As Figure 2 shows, based on this top-
down hierarchical decomposition, we design a multi-agent collaboration architecture.

(1) Instruction-level: A manager agent (MA) is set up for high-level task management, which
includes decomposing instructions into subtasks, communication among subtasks, and overall
progress. (2) Subtask-level: A progress agent (PA) is established to manage the progress of sub-
tasks. (3) Action-level: A decision agent (DA) is designated to complete subtasks. Given a specific
subtask, the DA makes decisions for each step iteratively, based on the perception of the environment
and the operation history provided by the PA.

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Through this hierarchical multi-agent collaboration, complex user instructions are decomposed into
several interdependent subtasks. The collaborative efforts of manager, progress and decision agents
effectively reduce the overall decision-making difficulty and improve the success rate.

2.3.1 MANAGER AGENT

In the proposed hierarchical multi-agent collaboration architecture, the LLM-driven manager agent
(MA) plays a crucial role in high-level task management:

(1) Instruction decomposition. As illustrated in Figure 2, given a complex user instruction, the
MA first decomposes it into a series of parameterized subtasks. Each subtask, once instantiated, can
be independently executed by the progress agent and decision agent, thus effectively reducing the
complexity of individual tasks.

(2) Communication among subtasks. In a PC productivity scenario, user instructions often involve
complex workflows. Therefore, the decomposed subtasks often have complex interdependencies.
Specifically, there are four types of subtasks:

• The execution result of the subtask can be used to instantiate subsequent subtasks (e.g.,
Subtask 1 in Figure 2);

• The subtask depends on the execution results of preceding subtasks for instantiation (e.g.,
Subtask 3 in Figure 2);

• The subtask both depends on preceding subtasks for instantiation and produces execution
results for subsequent subtasks (e.g., Subtask 2 in Figure 2);

• The subtask is independent of other subtasks (e.g., set an alarm at 10am in the Clock app).

As Figure 2 shows, during the whole process, the manager agent manages communication among
subtasks and complex parameter transmission relationships. It maintains a communication hub,
updates the output of successfully executed subtasks into this hub, and uses the hub to instantiate
subsequent subtasks.

(3) Overall progress management. The manager agent also updates the overall task progress based
on the execution results of subtasks reported by the progress agent.

2.3.2 PROGRESS AGENT

After the Manager Agent completes instruction decomposition and necessary inter-subtask com-
munication to instantiate parameterized subtasks, the current independently executable subtask is
handed over to the Progress Agent (PA). The PA, also driven by LLM, is responsible for track-
ing and summarizing the progress of subtasks based on the decisions of the decision agent and the
feedback from the reflection agent (will be introduced in Section 2.4). Once the current subtask is
completed, the PA feeds back the output results to the MA.

The purpose of setting up an independent PA between the MA and DA is twofold:

(1) It achieves more precise progress tracking by divide-and-conquer. PA tracks the progress of
each subtask individually. This avoids summarizing the entire instruction-level history, which can be
lengthy and cumbersome. (2) It facilitates decision-making by providing the decision agent with
a clearer understanding of the operation history and which parts of the subtask remain incomplete.
This avoids interference from lengthy history information in the decision-making process.

Specifically, the input for the PA at the i-th step includes four parts: (1) the current subtask T
assigned by the MA; (2) the previous task progress T Pi−1; (3) the action Ai output by the i-th
step’s DA; and (4) the reflection Ri after executing the i-th step’s action. Based on this information,
the PA outputs the updated progress T Pi. The above process can be formalized as:

T Pi = PA(T , T Pi−1,Ai,Ri). (2)

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

2.3.3 DECISION AGENT

Driven by MLLM, the Decision Agent (DA) is the core agent within the entire PC-Agent framework
that generates action decisions and directly interacts with the environment. Given a subtask T ,
at each step, DA first obtains an observation Oi of the current environment using the perception
module. It then combines this with the progress information T Pi−1 output by PA in the previous
step, and the reflection information Ri−1 output by RA, to generate the decision for the current step
Ai. This process can be formalized as:

Ai = DA(T ,Oi, T Pi−1,Ri−1). (3)

Here, decisions are generated in a Chain-of-Thought (Wei et al., 2022) manner. An inner monologue
for the current step is first generated, followed by the corresponding action decision. This approach
not only aids the MLLM in making better decisions but also helps the RA to judge whether the
execution results meet expectations.

After obtaining the decision for the current step, we convert the decision information into a specific
action type and corresponding parameters, and then use pyautogui to execute the corresponding
keyboard and mouse operations. To simplify operations and make decisions easy to parse, we define
a constrained action space, which includes click, double click, type, select, drag, scroll, shortcut and
stop (detailed in Appendix A.3). This constrained action space ensures that the DA can effectively
generate and execute decisions, leading to efficient and accurate task completion.

2.4 REFLECTION-BASED DYNAMIC DECISION-MAKING

Due to factors such as hallucinations and limited reasoning capabilities, even the most advanced
MLLMs (e.g., GPT-4o Hurst et al., 2024, claude-3.5 Anthropic, 2024) find it challenging to avoid
errors in perception and decision-making. This issue becomes more pronounced with long operation
sequences required by tasks, as a single error in any step can lead to the failure of the entire task.

To detect potential errors in execution results and provide timely feedback and adjustments, we de-
sign a reflection-based dynamic decision-making mechanism. Built on the hierarchical architecture
introduced in Section 2.3, the dynamic decision-making mechanism operates in a bottom-up manner
with the Reflection Agent at its core.

2.4.1 REFLECTION AGENT

In the action-level of the hierarchical architecture, we set up a reflection agent (RA) parallel to the
decision agent (DA). After the DA makes a decision and executes the corresponding action, the
RA observes the change in the system’s state before and after the action to determine whether the
outcome of this step meets expectations. This process can be formalized as:

Ri = RA(T ,Ai,Oi−1,Oi). (4)

Depending on the execution results, the RA makes three types of judgments:

(1) The execution of the action resulted in changes to the screenshot that did not meet expecta-
tions. This may be due to incorrect action type or position parameters in DA’s decision, requiring
replanning to correct the mistake.

(2) No effective response was produced on the screenshot after executing the action. This might be
because the action was executed on a position with no interactive elements, or the element (such as
an input box) was not yet activated, necessitating an adjustment in the action execution position.

(3) The action execution produced the correct result, allowing the DA to proceed with the next
decision based on this.

In the first two scenarios, the RA’s output will be fed back to the next step’s DA, enabling the DA
to produce decisions based on reflection information to correct errors or avoid repeating ineffective
actions. The RA’s reflection information will also be fed back to the progress agent (PA), allowing
the PA to detect errors and achieve more accurate progress tracking.

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 1: Examples of complex instructions in PC-Eval.

Applications Instruction Steps

File Explorer
Notepad
Clock
Calculator

In the Notepad app, open the ’travel plan’ file in ’Documents’, and check the
time and location of the travel plans. Add the travel destination to the World
Clock list on the Clock app. Calculate the interval between February 18 and the
start time of the travel on the Calculator.

20

Chrome
Excel

Search on Chrome for the total population of China, the United States, and In-
dia in 2024 respectively. Create a new spreadsheet in Excel, write the three
countries’ names in column A in descending order of population, and the cor-
responding populations in column B.

23

File Explorer
Word

Open the ’test doc1’ file in ’Documents’ in File Explorer, set the title to be bold,
and set the line spacing of the first two paragraphs to 1.5x in Word.

8

3 EXPERIMENTS

3.1 PC-EVAL

Existing benchmarks in real computer environments (e.g., OSWorld Xie et al., 2024 and Win-
dowsAgentArena Bonatti et al., 2024) involve relatively basic tasks that don’t align with practical
workflow requirements, such as Open Paint and draw a red circle. To better evaluate the capabil-
ities of agents on complex PC tasks, we propose a new benchmark PC-Eval, which consists of 25
complex instructions involving 8 commonly used PC applications (i.e., Chrome, Microsoft Word,
Microsoft Excel, Notepad, Clock, Calculator, Outlook, and File Explorer). Each instruction com-
prises several interdependent subtasks, and emphasizes precise operations, practical workflows, and
long-horizon. Three annotators with AI education backgrounds annotated and checked these in-
structions to ensure they are realistic and challenging. Table 1 shows three example instructions,
with the complete list available in the Appendix A.4. Since different subtasks correspond to dif-
ferent pages and success criteria, creating separate scripts for automatic evaluation of each subtask
would be prohibitively costly. Therefore, we employ human evaluation in this study, and we adopt
the following two metrics for evaluation:

• Success Rate (SR): The success rate metric refers to the proportion of successfully com-
pleted instructions by the agents.

• Subtask Success Rate (SSR): To comprehensively evaluate the ability of agents, we anno-
tated the subtasks of the PC-Eval instructions, and calculate the success rate of the subtasks
completed by the agents.

3.2 RESULTS

Experimental setup. In the experiments, unless otherwise specified, we use GPT-4o as the foun-
dation model for the manager, progress, decision and reflection agents within our PC-Agent frame-
work. And we use the OpenOCR tool for OCR in the APM. We compare the proposed PC-Agent
with a wide range of single- and multi-agent methods, including advanced MLLMs such as GPT-
4o (Hurst et al., 2024), Gemini-2.0 (Team et al., 2023), Claude-3.5 (Anthropic, 2024), Qwen2.5-VL
72B (Team, 2025), as well as existing PC agent methods such as UFO (Zhang et al., 2024) and
Agent-S (Agashe et al., 2024). To ensure as fair a comparison as possible, for MLLMs, we set the
same action space via prompting, enabling them to operate as a single decision agent. As for UFO
and Agent-S, we also adopt GPT-4o as their foundation model.

Results of single agents. Table 2 presents the performance comparison of PC-Agent against other
methods on PC-Eval. It can be seen that those MLLM-based single agents have almost failed on
all the instructions. Even the best-performing Qwen2.5-VL achieves merely a 12% success rate.
This result indicates that relying solely on the abilities of a single decision agent to fulfill complex
user instructions on PC is extremely challenging for the current MLLMs. Meanwhile, the success
rate of these models is significantly lower than the subtask success rate. This verifies that, due to
the lengthy operation sequences and complex dependencies between subtasks, completing the entire
instruction is far more difficult than completing individual subtasks.

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 2: Dynamic evaluation results on the PC-Eval benchmark.

Model Type Subtask Success Rate (%) ↑ Success Rate (%) ↑
Claude-3.5

Single-Agent

15.2% 0.0%
Gemini-2.0 35.4% 0.0%
GPT-4o 41.8% 8.0%
Qwen2.5-VL 46.8% 12.0%

UFO (Zhang et al., 2024)
Multi-Agent

43.0% 12.0%
Agent-S (Agashe et al., 2024) 55.7% 24.0%
PC-Agent (Ours) 76.0% 56.0%

Table 3: The results of the ablation study on the APM module, Manager agent and Reflection Agent.

Ablation study Subtask Success Rate Success Rate
APM Manager Agent Reflection Agent

✓ ✓ 58.2% 20.0%
✓ ✓ 50.6% 12.0%
✓ ✓ 48.1% 12.0%

✓ ✓ ✓ 76.0% 56.0%

Results of multi-agent methods. UFO and Agent-S are two agent frameworks tailored for PC
scenarios. However, on PC-Eval, UFO only achieves a slight advantage over the single agent using
GPT-4o. While Agent-S shows an improvement in SSR over single agents, its instruction-level SR
remains low. A detailed analysis reveals their problems in both perception and decision-making:
(1) Existing methods have limited fine-grained perception and operation abilities. For instance, in
Excel scenarios such as the one shown in Figure 4, UFO may input multiple pieces of information
into the same cell. In Word scenarios such as the one shown in Figure 6, both UFO and Agent-S are
unable to perform editing operations (e.g., “underline the last paragraph”). (2) Existing methods
are insufficient in handling the dependency between subtasks in complex instructions, especially in
scenarios where the execution of later subtasks depends on the results of earlier ones. For example,
in the instruction “... and write down the translation of the content”, Agent-S would directly write
down the text “The translation of the content”, rather than the translated content obtained earlier.

In contrast, our proposed APM enables the PC-Agent to have refined operation abilities. Addition-
ally, through hierarchical multi-agent collaboration, PC-Agent achieves effective instruction decom-
position, inter-subtask communication, progress management, and error reflection, which signifi-
cantly improves the performance on complex tasks. As a result, our PC-Agent largely outperforms
all previous methods, surpassing UFO and Agent-S by 44% and 32% respectively in terms of SR.
Certainly, the fact that PC-Agent is currently unable to complete some of the instructions in PC-Eval
highlights the challenges of PC-Eval and the necessity for further research on complex PC tasks.

3.3 ABLATION STUDY

Table 3 shows the results of the ablation study on different components of the PC-Agent framework.
From the ablation results we can conclude:

(1) The active perception module has a significant impact on PC-Agent’s performance. Com-
paring the first and fourth lines, it can be seen that after removing APM, the SSR decreases by nearly
20%, while the SR decreases drastically by over 30%. On the one hand, without APM, the Decision
Agent is unable to grasp the meaning of interactive elements and thus makes more errors. On the
other hand, the PC-Agent loses the ability to precisely perceive and manipulate the referred text. As
a result, the instruction completion rate has significantly declined.

(2) The manager agent effectively improves PC-Agent’s abilities in complex workflow sce-
narios. Comparing the second and fourth lines, it can be seen that removing MA causes SR to
significantly decline to 12%. This is because without MA, a complex instruction will be treated

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Task Instruction: Search on Chrome for the current stock prices of Nvidia, Apple, and Microsoft
respect-tively. Create a new spreadsheet in Excel, write the company names in column A and the
corresponding stock prices in column B, and save the file.

2. “Search for ‘Apple current stock price’
on Chrome and output
{'Apple_stock_price’: 222.78'}

1. Search for 'Nvidia current stock price' on Chrome and output {'Nvidia_stock_price': ‘142.62'}

4. Create a new spreadsheet in Excel, write 'Nvidia' in cell A1 and {Nvidia_stock_price} in cell B1, 'Apple' in cell A2 and {Apple_stock_price} in cell B2,

‘Microsoft’ in cell A3 and {Microsoft_stock_price} in cell B3, then save the file.

Open App Chrome

Replace (1415, 126)
['Apple current stock price']

Open App Excel

Shortcut
(Command + S)

Stop

Type

Click Type
Click Type Click

Type

Nvidia_stock_price
142.62 USD

Communication Hub
Apple_stock_price

222.78 USD
Microsoft_stock_price

444.06 USD

3. Search for 'Microsoft current stock
price' on Chrome and output
{'Microsoft_stock_price': ‘444.06'}

Tell

Click

Nvidia_stock_price: 142.62 USD Apple_stock_price: 222.78 USD Microsoft_stock_price: 222.78 USD

Click

Figure 4: A case of searching for information multiple times and build an Excel sheet accordingly.

as a single task for PA and DA to execute. The lengthy operation sequences and complex depen-
dency between the subtasks pose great challenges to progress tracking and also interfere with DA’s
decision-making.

(3) The reflection-based dynamic decision-making mechanism helps the model recover from
errors. Comparing the third and fourth lines, it can be seen that removing RA leads to a very sig-
nificant performance decrease (i.e., 27.9% in SSR and 44.0% in SR). This is because during the
execution of complex instructions, errors in perception and decision-making are inevitable. Remov-
ing RA causes the model to lack awareness and timely correction of errors, which predisposes it to
getting stuck in meaningless repetition or incorrect steps.

3.4 CASE STUDY

Figure 4 illustrates a complete operation process of our PC-Agent framework. Given a complex user
instruction, the Manager Agent first breaks it down into four subtasks. For the first three subtasks,
when each is successfully executed, the corresponding search result is updated in the communication
hub. Then the MA uses the hub to instantiate the fourth subtask, which reduces the difficulty of
the long-horizon decision-making process. Besides, the precise click and type operations in Excel
demonstrate the effectiveness of our proposed APM in perceiving complex screen elements. We also
provide a case study on reflection-based dynamic decision-making. See Appendix A.2 for details.

4 RELATED WORK

Recent advances in MLLMs (Hurst et al., 2024; Liu et al., 2024; Wang et al., 2024b) have inspired
research to extend these models to intelligent agents in various domains. Among these, there’s sig-
nificant focus on GUI Agents for task automation on smart devices. Currently, research in this field
is more concentrated on the Mobile (Zhang et al., 2023; Wang et al., 2024a; Hong et al., 2024) and
Web (Gur et al., 2023; Zheng et al., 2024) scenarios. In the PC scenario, Cradle (Tan et al., 2024)
focuses on employing MLLM’s reasoning abilities to realize operations in AAA games, while PC
Agent (He et al., 2024) aims to enable agents to create and modify PowerPoint presentations. De-
spite the notable progress, their versatility remains relatively limited. To handle cross-app tasks,
UFO (Zhang et al., 2024) designs a dual-agent framework, where one agent is responsible for ap-
plication selection, and the other agent handles the specific control interactions. To inject PC task
knowledge into decision-making, Agent-S (Agashe et al., 2024) combines online search and local
memory for experience-augmented planning. Compared to previous methods, our PC-Agent fo-
cuses on complex PC tasks. We achieve more refined perception and operation (e.g., editing Word
documents) via the devised APM. And the proposed hierarchical framework realizes a divide-and-
conquer pipeline for complex instructions, which effectively addresses the inter-subtask dependen-
cies and significantly improves performance on complex tasks.

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

5 CONCLUSION

In this work, we proposed a PC-Agent framework to handle complex interactive environments and
tasks in PC scenarios. An Active Perception Module was devised for refined perception and opera-
tion capabilities. And we proposed a hierarchical multi-agent collaboration architecture to decom-
pose the decision-making process into three levels, and adopted reflection-based dynamic decision-
making for timely error feedback and adjustments. We created a PC-Eval benchmark of realistic and
complex user instructions. Experimental results demonstrate that the proposed PC-Agent exhibits
superior performance over previous methods in completing complex PC tasks.

ACKNOWLEDGEMENT

This work is supported by Beijing Natural Science Foundation (L243015, L223003), the National
Key Research and Development Program of China (No. 2020AAA0105802), the Natural Science
Foundation of China (No. 62036011, 62192782), the Project of Beijing Science and Technology
Committee (No. Z231100005923046).

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An
open agentic framework that uses computers like a human. arXiv preprint arXiv:2410.08164,
2024.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/ 3-5-models-and-computer-use.,
2024.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

Yanheng He, Jiahe Jin, Shijie Xia, Jiadi Su, Runze Fan, Haoyang Zou, Xiangkun Hu, and Pengfei
Liu. Pc agent: While you sleep, ai works–a cognitive journey into digital world. arXiv preprint
arXiv:2412.17589, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024.

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Gang Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, et al. Cradle: Empowering foundation agents towards general
computer control. In NeurIPS 2024 Workshop on Open-World Agents, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Qwen Team. Qwen 2.5 vl. https://qwenlm.github.io/blog/qwen2.5-vl., 2025.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Xiaoqiang Wang and Bang Liu. Oscar: Operating system control via state-aware reasoning and
re-planning. arXiv preprint arXiv:2410.18963, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, and Fei
Huang. mplug-owl2: Revolutionizing multi-modal large language model with modality collabo-
ration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13040–13051, 2024.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. UFO: A UI-Focused Agent for Windows
OS Interaction. arXiv preprint arXiv:2402.07939, 2024.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

A APPENDIX

A.1 ABLATION ON FOUNDATION MODELS

Table 4 compares the performance of different MLLMs. Here we introduce two metrics besides SR
and SSR to compare the results of using different MLLMs as the foundation model:

• Recovery Rate: It measures the proportion of instructions where recovery occurred. The
recovery behavior indicates that the agent detects an error and corrects it via reflection (no
matter whether the instruction is ultimately completed).

11

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 4: Performance results of PC-Agent with different foundation models on PC-Eval.

Model Subtask SR (%) ↑ Success Rate (%) ↑ Recovery Rate (%) ↑ Manager SR (%) ↑
Qwen2.5-VL 32.9% 12.0% 40.0% 88.0%
Gemini-2.0 55.7% 28.0% 24.0% 84.0%
Claude-3.5 63.3% 40.0% 48.0% 88.0%

GPT-4o 76.0% 56.0% 64.0% 96.0%

Task Instruction: Search on Chrome for the dates of International Labour Day and American Independence Day in 2025 respectively, and
calculate the interval bet-ween the two dates using the Calculator app.

Decision: Click (110, 126)
Reflection: By comparing the before and after screenshots, it seems the search bar
change wasn‘t executed as expected because the after screenshot does not reflect a
new search page for the desired search term \“American Independence Day 2025 date.

Open App Chrome

1 Start

Decision: Shortcut (command, t)
Reflection: The after screenshot shows a new Chrome tab being opened, which
indicates that the shortcut was successfully executed. This aligns with the operation
thought since opening a new tab gives the user a fresh interface to start the search for
"American Independence Day 2025 date.

6 Reflect 😄 # 25 Finish# 5 Wrong Decision 😭 # 7 Recorrect 😄

Shortcut
(Command + T)

Type

❌

4 Wrong Decision

Error Recover!

Figure 5: A case of reflection when performing multiple successive searches in Chrome.

• Manager SR: It assesses the ability of the Manager Agent to correctly decompose the user
instructions.

From the table, we can observe that both the SSR and SR of the PC-Agent driven by GPT-4o are sig-
nificantly better than the results using Gemini-2.0, Claude-3.5 and Qwen2.5-VL. And GPT-4o leads
Gemini-2.0 by 40% in terms of the Recovery Rate. It may be benefit from the better perception and
reasoning abilities of GPT-4o. Besides, it is worth noting that, compared to the single agent using
Qwen2.5-VL, the SSR and SR of the PC-Agent using Qwen2.5-VL actually decreased. Detailed
analysis reveals that this is due to Qwen2.5-VL’s limited textual ability to follow the format of the
output action and unsatisfactory ability to judge whether the task is completed. And the latter issue
becomes more severe after the instruction is decomposed into subtasks. In conclusion, the result in
Table 4 highlights that the abilities of MLLMs are the foundation of the framework’s effectiveness.

A.2 MORE CASE STUDY

Figure 5 shows an example within the PC-Agent framework where the proposed reflection mecha-
nism prevents repetitive invalid operations. As can be seen, after the Decision Agent (DA) clicked
the forward button of the Chrome browser without producing a valid response, the Reflection Agent
detected this error and fed it back to the DA. Based on this feedback, the DA reconsidered in the
next step and executed the correct operation (i.e., use the Shortcut Command + T to open a new tab).

A.3 ACTION SPACE

We define the action space as follows:

• Open App (name): Open a specific app using the system’s search function.

• Click (x, y): Click the mouse at position (x, y).

• Double Click (x, y): Click the mouse twice at position (x, y).

• Select (text): Acquire the content and position of the target text by invoking the active
perception module (APM).

• Type (x, y) [text]: Input text content at position (x, y).

• Drag (x1, y1) (x2, y2): Select a specific area of text content by dragging.

• Scroll (x, y) (value): Scroll the page up or down at position (x, y).

12

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Task Instruction: Open the 'test_doc2' file in 'Documents' in File Explorer, set the title to be centered, and set the last paragraph to be underlined in Word.

Open App Home

Double Click

Double Click

Stop

Drag

1. Open the ‘test_doc2’ file in the ‘Documents’ Folder 2. Center the title in the ‘test_doc2’ 3. Underline the last paragraph in the ‘test_doc2’

clickclick

Figure 6: A case of refined text editing operations in the Word application.

• Shortcut (key list): Use shortcut keys, such as saving through ctrl+s.
• Stop: All the requirements have been met, end the current process.

A.4 INSTRUCTIONS IN PC-EVAL

We show the complete instruction list of PC-Eval as follows:

• In the Notepad app, open the ‘memo’ file in ‘Documents’, and check the second event in
the morning. Set an alarm 1 hour before this event in the Clock app.

• In the Notepad app, open the ‘memo’ file in ‘Documents’, and check the location of the
meeting with John. Search on Chrome how much time it takes to get from the Empire State
Building to this location.

• In the Notepad app, open the ‘memo’ file in ‘Documents’, and check the time and location
of the meeting with John. Search on Chrome how much time it takes to get from the Empire
State Building to this location, and set an appropriate alarm on the Clock app so that I can
leave the Empire State Building in time to arrive at the meeting location punctually.

• In the Notepad app, open the ‘travel plan’ file in ‘Documents’, and check the travel des-
tination. Use Chrome to search if the traffic at the destination drives on the left or the
right.

• Search on Chrome for the dates of International Labour Day and American Independence
Day in 2025 respectively, and calculate the interval between the two dates using the Calcu-
lator app.

• Open the ‘travel plan2’ file in ‘Documents’ in the Notepad app, and check the three candi-
date destinations for the travel plan. Search on Chrome for the flight time from Beijing to
each destination, and tell me which candidate destination has the shortest flight time.

• Search on Chrome for the current stock prices of Nvidia, Apple, and Microsoft respec-
tively. Create a new spreadsheet in Excel, write the company names in column A and the
corresponding stock prices in column B.

• Search on Chrome for the total population of China, the United States, and India in 2024
respectively. Create a new spreadsheet in Excel, write the three countries’ names in column
A in descending order of population, and the corresponding population numbers in column
B.

• Create a new document in Word. Write down two paragraphs introducing Alibaba and
OpenAI respectively. Save the document as ‘TechCompanies’.

• Search for the paper ‘Attention is all you need’ on Chrome, download the paper and record
its abstract. Create a new document in Word, write down the abstract of the paper, and save
it as ‘Transformer’.

• Search for the ratings of ‘Interstellar’ and ‘12 Angry Men’ on imdb.com on Chrome. Open
the ‘movie rate’ excel file in ‘Documents’ in File Explorer, and fill in the corresponding
movie ratings.

• Open the ‘test doc1’ file in ‘Documents’ in File Explorer, set the title to be bold, and set
the line spacing of the first two paragraphs to 1.5x in Word.

• Open the ‘test doc2’ file in ‘Documents’ in File Explorer, set the title to be centered, and
set the last paragraph to be underlined in Word.

• Open the ‘test doc3’ file in ‘Documents’ in File Explorer, write down the translation of the
content below the main text.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

• Access https://arxiv.org/ in Chrome, search for papers related to ‘multimodal agent’, and
download the first paper.

• Read the sent mail ‘Travel’ to Howie in Outlook, record the departure, destination and start
date of the journey. Search for a one-way flight on booking.com on Chrome.

• Search in Chrome for the IMDb ratings of ‘Leon: The Professional’, ‘The Shawshank
Redemption’, and ‘2001: A Space Odyssey’. Record them in a new .txt file using Notepad,
sorted from highest to lowest.

• Check the sent mail ‘Code’ to Howie in Outlook, download the attachment ‘homework.py’
and open it in Visual Studio Code. Fix the error in this python code.

• Create a new Python file in Visual Studio Code, write a function that takes a list as input
and outputs the k-th largest number in the list. Send this code file to Howie via Outlook.

• Search for tourist attractions in Tokyo and Kyoto respectively in Chrome, and record the
information in a new Word document.

• Open the ‘test doc3’ file located in ’Documents’ in File Explorer, note its Chinese content,
create a new Word document, and write down the English translation of the Chinese content
from test doc3.

• Open the ‘test doc1’ file located in ’Documents’ in File Explorer, increase the font size of
the title by one level.

• In the Notepad app, open the ‘travel plan’ file in ’Documents’, and check the time and
location of the travel plans. Add the travel destination to the World Clock list on the Clock
app. Calculate the interval between February 18 and the start time of the travel on the
Calculator.

• Search on Chrome for the total population of China, the United States, and India in 2024
respectively. Create a new spreadsheet in Excel, write the three countries’ names in column
A in descending order of population, and the corresponding populations in column B.

• Open the ‘test doc1’ file in ‘Documents’ in File Explorer, set the title to be bold, and set
the line spacing of the first two paragraphs to 1.5x in Word.

• Compare the prices of Amazon, Walmart, and Best Buy for a new Nintendo Switch console
in Chrome, and write the site with the cheapest price and the price on Notepad.

• Read the mail ‘Travel’ in Outlook, record the departure, destination and date of the journey.
Search for a round-trip flight on booking.com on Chrome.

A.5 OUR GUI GROUNDING DATASET

On the webpage of Booking.com:

• Click to book flights

• Click to select one-way

• Click to select departure location

• Click to select destination

• Click to select date

• Click to select March 21st

• Click to select April 1st

• Click to select previous month

• Click to select next month

On the Excel page:

• Click to select A3

• Click to select E5

• Click to select top align

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Figure 7: Example screenshots from the GUI grounding dataset we built for commonly used appli-
cations in PC scenarios.

• Click to select bottom align

• Click to select left align

• Click to select right align

• Click to save

• Click to change file name

• Click to change save location

On the File Explorer page:

• Click the Downloads folder

• Click the Documents folder

• Click the Pictures folder

• Click the Music folder

On the Outlook page:

• Click to view inbox

• Click to view spam/junk email

• Click to view sent emails

• Click to view the Travel email sent to Howie

• Click to view the Code email sent to Howie

• Click to search

• Click to create a new email

• Click to mark as read

On the Chrome page:

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

• Click the search bar
• Click the search box
• Click to open a new tab
• Click to bookmark
• Click settings
• Click refresh
• Click to switch to Booking.com tab

On the Word page:

• Click for bold
• Click for italic
• Click to add underline
• Click to change text color
• Click to center text
• Click to increase font size
• Click to decrease font size
• Click to adjust line spacing
• Click the top-left corner of the title
• Click the bottom-right corner of the title
• Click the top-left corner of the second-to-last paragraph
• Click the bottom-right corner of the second-to-last paragraph
• Click the bottom-right corner of the last line

16

	Introduction
	PC-Agent
	Task Formulation
	Active Perception Module
	Hierarchical Multi-agent Collaboration
	Manager Agent
	Progress Agent
	Decision Agent

	Reflection-based Dynamic Decision-making
	Reflection Agent

	Experiments
	PC-Eval
	Results
	Ablation Study
	Case Study

	Related Work
	Conclusion
	Appendix
	Ablation on Foundation Models
	More Case Study
	Action Space
	Instructions in PC-Eval
	Our GUI Grounding Dataset

