Neural Circuit Synthesis with Pre-trained Language Models

FREDERIK SCHMITT, CISPA Helmholtz Center for Information Security, Germany
MATTHIAS COSLER, CISPA Helmholtz Center for Information Security, Germany
BERND FINKBEINER, CISPA Helmholtz Center for Information Security, Germany

This extended abstract reports preliminary results on fine-tuning pre-trained
language models for solving reactive synthesis problems end-to-end. In re-
cent work, hierarchical Transformer neural networks have been successfully
trained from scratch to synthesize sequential circuits directly out of formal
specifications. We improve over existing approaches by fine-tuning CodeT5
models that have been pre-trained on both natural language and program-
ming languages. Our experiments show improved generalization and sample
efficiency compared to the previous approach.

1 INTRODUCTION

Reactive synthesis is the problem of automatically constructing a
system that satisfies a formal specification (or proving that no such
system exists). Starting from the 1960s [3] it has been an active
research area as reactive synthesis simplifies the hardware design
process to specifying what a system should do instead of how it
does it. The wide usage of linear-time temporal logic (LTL) [17] to
specify requirements in formal verification makes LTL synthesis of
particular interest but at the same time suffers from an intractable
doubly exponential complexity. Algorithmic advances such as game-
based and bounded approaches lead to solvers for LTL synthesis [1, 6,
7,10, 13, 14], with their performance being compared in the annual
reactive synthesis competition SYNTCOMP [9].

Recently, algorithmic approaches have been complemented by
deep learning methods, demonstrating that deep neural networks
can be trained end-to-end to synthesize sequential circuits from for-
mal specifications [4, 21]. Deep learning methods can solve unseen
problems from the synthesis competition, out-of-distribution exam-
ples, and instances where classical tools time out. Although circuits
generated by a neural network do not necessarily satisfy a given
formal specification, they can be formally verified to guarantee cor-
rectness. Model-checking an LTL specification is computationally
much cheaper than synthesizing an LTL specification (PSPACE vs.
2-EXPTIME), making this a viable approach.

In this work, we improve over the previous deep learning ap-
proach by fine-tuning pre-trained models instead of training from
scratch. The process of fine-tuning language models has emerged as
a successful approach in natural language processing that benefits
from transfer learning and sample efficiency. We show that this
holds true for the domain of LTL synthesis. We start by describing
the previous deep learning approach to LTL synthesis in Section 2
and pre-trained language models in Section 3 before reporting ex-
periments in Section 4.

Authors’ addresses: Frederik Schmitt, frederik.schmitt@cispa.de, CISPA Helmholtz
Center for Information Security, Saarbriicken, Germany; Matthias Cosler, matthias.
cosler@cispa.de, CISPA Helmholtz Center for Information Security, Saarbriicken, Ger-
many; Bernd Finkbeiner, finkbeiner.cispa.de, CISPA Helmholtz Center for Information
Security, Saarbriicken, Germany.

2023. XXXX-XXXX/2023/5-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 NEURAL CIRCUIT SYNTHESIS

In previous work, a hierarchical Transformer neural network archi-
tecture was trained on synthesizing circuits in AIGER format [2]
from formal specifications in LTL end-to-end [21].

To account for the lack of large amounts of natural training data,
a data generation method is introduced based on benchmarks from
the synthesis competition. From the set of benchmarks, assumption
and guarantee patterns are collected and filtered to have at most
five inputs, at most five outputs, and an abstract syntax tree of size
at most 25. Given the set of specification patterns, the dataset is
generated by alternating between sampling guarantees until the
specification becomes unrealizable and sampling assumptions until
the specification becomes realizable. Stopping criteria are imple-
mented that limit the maximal number of guarantees, the maximal
number of assumptions, and the runtime of the LTL synthesis tool
Strix [14] that is used to synthesize the specifications. For compari-
son, we use the same dataset without modifications in this work.

The hierarchical Transformer architecture [11] trained on the
dataset is an extension of the standard Transformer architecture [22]
that has achieved state-of-the-art results on a wide range of natural
language processing tasks and has become a foundational architec-
ture in the field. The hierarchical version allows learning individual
representations for assumptions and guarantees in a first local step
before processing the whole specification in a following global step.
In this work, we show that we can improve over existing results
without explicitly building the hierarchical structure into the archi-
tecture when using pre-trained language models.

To evaluate performance, a syntactic and semantic accuracy is
computed, measuring whether the predicted circuit matches the
circuit in the test data (syntactic) or whether the circuit satisfies the
specification (semantic). We use the same metrics in Section 4 for
direct comparison.

3 PRE-TRAINED LANGUAGE MODELS

Transfer learning has become a powerful technique in natural lan-
guage processing (NLP). First, a model is pre-trained on a more gen-
eral data-rich task before being fine-tuned on a specific downstream
task. The pre-trained model acts as a powerful weight initialization
for the downstream task training (fine-tuning). Transfer learning
often requires less training data on the downstream task result-
ing in faster training. Additionally, such models often show better
generalization capabilities compared to regularly trained models.
Widely used general-purpose language models for transfer learn-
ing are GPT-2 [18], BERT [5], RoBERTa [12], and T5 [19]. While
GPT-2 is a decoder-only Transformer model, BERT and RoBERTa
are encoder-only Transformer models, and T5 is an encoder-decoder
Transformer model. Following the success of such general-purpose
language models on natural language, pre-training methods have

, Vol. 1, No. 1, Article . Publication date: May 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2« Schmitt, Cosler, Finkbeiner

Table 1. Accuracy reported on test data, SYNTCOMP benchmarks, timeouts, and smart home benchmarks for different beam sizes. For the test data we show

the syntactic accuracy in parenthesis.

Dataset Model Beam Size 1 Beam Size 4 Beam Size 8 Beam Size 16
Testser Transformer[21] 53.6 (3L1) 704 (39.0) 758 (419) 79.9 (44.5)
CodeT5 58.9 (33.3) 75.6 (36.7) 80.5 (36.6) 83.6 (39.5)
Transformer [21] 51.9 60.0 63.6 66.8
SYNTCOMP CodeT5 50.3 60.7 66.2 71.0
Timeouts Transformer [21] 11.7 21.1 25.9 30.1
CodeT5 124 22.6 29.5 34.4
Smart Home Transformer [21] 22.9 31.4 44.8 40.0
CodeT5 31.8 40.9 36.4 54.5

been successfully applied to programming languages. Prominent
examples include CodeBert [8], CodeGen [15], and CodeT5 [23].

In this work, we base our fine-tuning on the LTL synthesis task on
the pre-trained CodeT5 model class. Following the T5 architecture,
CodeT5 is, in contrast to other mentioned NLP and code models, an
encoder-decoder model, leveraging the duality of code and natural
language. CodeT5 has been trained on code from various program-
ming languages with accompanying documentation using multiple
pre-training tasks. These tasks are designed to learn code structure
as symbolic data, the importance of identifiers, and the bidirectional
conversion of code and natural language. Both the encoder and
decoder are trained on language data as well as on code data. A
comprehensive set of open-source pre-trained models for NLP and
code, including the model used in this work, is available through
the popular HuggingFace Transformer library [24].

4 EXPERIMENTS

In the following, we report details on fine-tuning CodeT5 on the
LTL synthesis task and the results of our experiments.

4.1 Representation

The previously introduced dataset consists of pairs of decomposed
LTL specifications and circuits. More specifically, the circuits con-
tain the realizability information and the circuit in AIGER format
that satisfies the specification or represents a counter-strategy if the
specification is unrealizable. For fine-tuning CodeT5, we represent
the LTL specification as a single LTL formula in prefix notation. In
contrast to previous work, we do not consider the decomposition
when representing the specification and use a standard positional
encoding instead of a tree positional encoding. The training target is
formed from a string stating whether the specification is realizable
concatenated with a string representing the AIGER circuit. We do
not use any additional natural language prompting. To split the tex-
tual representations into individual tokens we rely on the RoOBERTa
tokenizer that was used to pre-train the CodeT5 model [23].

4.2 Training Details

We fine-tune the small version of the open-source CodeT5 model
with about 60 million parameters. We train on an NVIDIA DGX
A100 system for 20 000 training steps which takes about 7 hours.
The batch size is set to 128 and the learning rate starts at 0.0005 and

, Vol. 1, No. 1, Article . Publication date: May 2023.

linearly decreases throughout the training. We use PyTorch [16], the
HuggingFace transformers library [24], and the ML2 framework [20]
to implement and evaluate the experiments.

4.3 Results

We evaluated the fine-tuned model on the same four datasets as in
previous work [21]. Testset contains held-out instances obtained
by the data generation method, SYNTCOMP consists of synthesis com-
petition benchmarks from 2020, Timeouts is a set of generated
specifications on which Strix timed out (< 120s), and Smart Home
is an out-of-distribution (OOD) benchmark consisting of specifica-
tions for smart homes. For SYNTCOMP and Smart Home, we apply the
same size restrictions as in previous work. The results are shown
in Table 1. While previous work [21] highlighted the importance
of the hierarchical Transformer architecture and a tree positional
encoding for a better representation of the specification structure,
this work shows that a standard pre-trained Transformer architec-
ture, can match and exceed the results of task-specific architectures.
Across all four datasets we observe improved results for beam size
16, which gives the best result on the respective datasets. The results
support that the fine-tuned CodeT5 model generalizes better on un-
seen specifications. At the same time, the model is more sample
efficient as it is only trained for 20 000 steps with a batch size of
128, whereas models in previous work have been trained for at least
30 000 steps with a batch size of 256.

5 CONCLUSION

We reported new experiments on fine-tuning pre-trained language
models on synthesizing circuits from formal specifications in LTL.
Compared to previous work that trains deep neural networks from
scratch, our results show improved generalization on unseen specifi-
cations and improved sample efficiency. The experiments constitute
two conclusions. (1) Pre-trained models could play an essential
role in developing novel algorithms for LTL synthesis that integrate
deep learning. Our evaluation shows improved performance on both
practical synthesis benchmarks and benchmarks where algorithmic
approaches fail. (2) Pre-training can compensate for not explicitly
representing the structure of formal languages. When training deep
neural networks from scratch, representing the decomposable tree
structure of LTL specifications has been shown to be important. This
encourages research in methods that incorporate both pre-training
and representation of structure.

REFERENCES

[1]
[2]
(3]
[4]
[5]

[6]

[7

—

8

=

[9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

R. Abraham. 2021. Symbolic LTL Reactive Synthesis. http://essay.utwente.nl/
87386/

Armin Biere. 2007. The AIGER and-inverter graph (AIG) format version 20071012.
(2007).

Alonzo Church. 1964. Logic, arithmetic, and automata. (1964).

Matthias Cosler, Frederik Schmitt, Christopher Hahn, and Bernd Finkbeiner. [n. d.].
Iterative Circuit Repair Against Formal Specifications. In The Eleventh International
Conference on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin,
Alexandre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, An-
toine Martin, Jérome Dubois, Clément Gillard, and Henrich Lauko. 2022. From
Spot 2.0 to Spot 2.10: What’s New?. In Proceedings of the 34th International Confer-
ence on Computer Aided Verification (CAV’22) (Lecture Notes in Computer Science,
Vol. 13372). Springer, 174-187.

Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. 2017. BoSy: An Ex-
perimentation Framework for Bounded Synthesis. In Computer Aided Verification
(Lecture Notes in Computer Science), Rupak Majumdar and Viktor Kuncak (Eds.).
Springer International Publishing, Cham, 325-332.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

Swen Jacobs, Guillermo A. Perez, Remco Abraham, Veronique Bruyere, Michael
Cadilhac, Maximilien Colange, Charly Delfosse, Tom van Dijk, Alexandre Duret-
Lutz, Peter Faymonville, Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Michael
Luttenberger, Klara Meyer, Thibaud Michaud, Adrien Pommellet, Florian Renkin,
Philipp Schlehuber-Caissier, Mouhammad Sakr, Salomon Sickert, Gaetan Staquet,
Clement Tamines, Leander Tentrup, and Adam Walker. 2022. The Reactive Syn-
thesis Competition (SYNTCOMP): 2018-2021. https://doi.org/10.48550/arXiv.
2206.00251

Ayrat Khalimov. 2021. Game-based bounded synthesis via BDDs. https://github.
com/5nizza/sdf-hoa

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C Paulson. 2021. IsarStep: a Bench-
mark for High-level Mathematical Reasoning. In International Conference on
Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. 2020. Practical
synthesis of reactive systems from LTL specifications via parity games. Acta
Informatica 57, 1-2 (2020), 3-36. https://doi.org/10.1007/s00236-019-00349-3
Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. 2018. Strix: Explicit
Reactive Synthesis Strikes Back!. In Computer Aided Verification (Lecture Notes
in Computer Science), Hana Chockler and Georg Weissenbacher (Eds.). Springer
International Publishing, Cham, 578-586.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An open large language
model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). ieee, 46-57.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog 1,
8(2019), 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter] Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. The Journal of Machine Learning
Research 21, 1 (2020), 5485-5551.

Frederik Schmitt, Matthias Cosler, and Christopher Hahn. 2023. ML2 - Machine
Learning for Mathematics and Logics. https://github.com/reactive-systems/ml2
Frederik Schmitt, Christopher Hahn, Markus N Rabe, and Bernd Finkbeiner. 2021.
Neural circuit synthesis from specification patterns. Advances in Neural Informa-
tion Processing Systems 34 (2021), 15408—-15420.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is

[23

[24

Neural Circuit Synthesis with Pre-trained Language Models « 3

All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998-6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen
Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. 2020. Transformers: State-of-the-Art Natural Language Processing.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Association for Computational Linguistics,
Online, 38-45. https://www.aclweb.org/anthology/2020.emnlp-demos.6

, Vol. 1, No. 1, Article . Publication date: May 2023.

http://essay.utwente.nl/87386/
http://essay.utwente.nl/87386/
https://doi.org/10.48550/arXiv.2206.00251
https://doi.org/10.48550/arXiv.2206.00251
https://github.com/5nizza/sdf-hoa
https://github.com/5nizza/sdf-hoa
https://doi.org/10.1007/s00236-019-00349-3
https://github.com/reactive-systems/ml2
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Abstract
	1 Introduction
	2 Neural Circuit Synthesis
	3 Pre-trained Language Models
	4 Experiments
	4.1 Representation
	4.2 Training Details
	4.3 Results

	5 Conclusion
	References

