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ABSTRACT

Embedding models play a crucial role in a variety of downstream tasks, including
semantic similarity, information retrieval, and clustering. While there has been a
surge of interest in developing universal text embedding models that generalize
across tasks (e.g., MTEB), progress in learning universal multimodal embedding
models has been comparatively slow, despite their importance and practical appli-
cations. In this work, we explore the potential of building universal multimodal
embeddings capable of handling a broad range of downstream tasks. Our contri-
butions are two fold: (1) we propose MMEB (Massive Multimodal Embedding
Benchmark), which covers 4 meta-tasks (i.e. classification, visual question an-
swering, multimodal retrieval, and visual grounding) and 36 datasets, including
20 training datasets and 16 evaluation datasets covering both in-distribution and
out-of-distribution tasks, and (2) VLM2VEC (Vision-Language Model → Vector),
a contrastive training framework that converts any vision-language model into
an embedding model via contrastive training on MMEB. Unlike previous mod-
els such as CLIP and BLIP, which encode text and images independently without
task-specific guidance, VLM2VEC can process any combination of images and text
while incorporating task instructions to generate a fixed-dimensional vector. We
develop a series of VLM2VEC models based on state-of-the-art VLMs, including
Phi-3.5-V, LLaVA-1.6, and Qwen2-VL, and evaluate them on MMEB’s bench-
mark. With LoRA tuning, VLM2VEC achieves a 10% to 20% improvement over
existing multimodal embedding models on MMEB’s evaluation sets. Our findings
reveal that VLMs are surprisingly strong embedding models.

1 INTRODUCTION

Embeddings, or distributed representations, encode inputs (whether text or images) as
fixed-dimensional vectors, enabling a range of downstream tasks. Since the advent of
Word2Vec (Mikolov, 2013) and GloVe (Pennington et al., 2014), substantial research efforts have
focused on learning textual embeddings (Kiros et al., 2015; Conneau et al., 2017) and image em-
beddings (Radford et al., 2021; Li et al., 2022; Jia et al., 2021; Yu et al., 2022). These embeddings
facilitate a variety of applications, including textual and visual semantic similarity (Agirre et al.,
2012; Marelli et al., 2014; Chechik et al., 2010; Cer et al., 2017), information retrieval (Mitra et al.,
2017; Karpukhin et al., 2020; Lin et al., 2014), automatic evaluation (Zhang et al., 2020; Sellam
et al., 2020), prompt retrieval for in-context learning (Liu et al., 2022; Rubin et al., 2022; Hongjin
et al., 2022), and retrieval-augmented generation (Lewis et al., 2020; Guu et al., 2020; Izacard &
Grave, 2020). A recent shift in research has focused on developing universal embeddings that can
generalize across a wide range of tasks. For instance, Muennighoff et al. (2023) introduced MTEB
(Massive Text Embedding Benchmark) to comprehensively assess text embeddings across tasks such
as classification and clustering. MTEB has become the standard for evaluating universal text em-
beddings. Recent works (Wang et al., 2022a; Su et al., 2023; Wang et al., 2024a; Springer et al.,
2024; BehnamGhader et al., 2024) have demonstrated promising results on the MTEB benchmark.
However, progress in multimodal embeddings has been relatively slower. Despite advancements
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Foods The napkin is under the utensil.

Instruction: Represent the given image and the 
related question.

Visual Question Answering

What is under the utensil 
on the left?

VLM2Vec

Instruction: Represent the given news image with the 
following caption for domain classification.

Classification

The menu is to the point: 
meat, above all lamb.

Instruction: Select the portion of the image that 
follows the language expressions.

Visual Grounding

right sandwich, left half

Instruction: Retrieve an image-description pair that 
provides evidence for the given question and image.

Retrieval

What is the name of this 
place?

The Titisee is a lake 
in the southern Black 
Forest in Baden-
Württemberg.

MMEB

Figure 1: We develop a universal multimodal embedding benchmark, MMEB, along with
VLM2VEC, an embedding model adapted from vision-language models (VLMs). VLM2VEC is capa-
ble of following instructions and performing various multimodal embedding tasks, accommodating
any combination of image and text modalities.

in text embeddings, the lack of both benchmarks and methodologies in the multimodal embedding
domain remains a challenge.

Current research in multimodal embeddings faces two primary limitations: (1) existing studies typ-
ically evaluate visual embeddings on isolated tasks, such as ImageNet classification (Deng et al.,
2009; Hendrycks et al., 2021a;b) or MSCOCO/Flickr retrieval (Lin et al., 2014; Plummer et al.,
2015); (2) most existing models, such as CLIP (Radford et al., 2021), BLIP (Li et al., 2022), and
SigLIP (Zhai et al., 2023), either process text and images separately or perform shallow fusion of
visual and textual information (Wei et al., 2023), limiting their ability to fully capture the relation-
ships between text and image modalities. Furthermore, these models exhibit limited reasoning and
generalization capabilities, particularly in zero-shot scenarios for complex reasoning tasks.

In this paper, we attempt to build an universal multimodal embedding framework to pave road for
the future research, which consists of two efforts:

- MMEB: We introduce a novel benchmark, MMEB (Massive Multimodal Embedding Benchmark),
which includes 36 datasets spanning four meta-task categories: classification, visual question an-
swering, retrieval, and visual grounding. MMEB provides a comprehensive framework for training
and evaluating embedding models across various combinations of text and image modalities. All
tasks are reformulated as ranking tasks, where the model follows instructions, processes a query,
and selects the correct target from a set of candidates. The query and target can be an image, text,
or a combination of both. MMEB is divided into 20 in-distribution datasets, which can be used for
training, and 16 out-of-distribution datasets, reserved for evaluation.
- VLM2VEC: We adopt the pre-trained vision-language models like Phi-3.5-V (Abdin et al., 2024)
and LLaVA-1.6 (Li et al., 2024) as the backbone for VLM2VEC. In contrast to other multimodal
embedding models like UniIR (Wei et al., 2023) and MagicLens (Zhang et al., 2024), which rely
on late fusion of CLIP (Radford et al., 2021) features, our approach leverages the deep integration
of vision and language features within a transformer architecture. There are several advantages to
this approach: (1) VLMs are trained on massive multimodal datasets and can handle any combi-
nation of images and text, as well as high-resolution images and long text inputs; (2) vision and
language features are deeply fused in the transformer model, improving the model’s ability to cap-
ture cross-modal relationships; and (3) these models are well-suited for generalizing across diverse
tasks, particularly those requiring instruction-following capabilities. These factors make VLM2VEC
an ideal choice for task generalization. We trained VLM2VEC on the 20 MMEB training datasets
using contrastive learning and compared its performance with various baselines.

Following extensive contrastive training, VLM2VEC can handle any combination of images and
text, producing fixed-dimensional vectors. We evaluate VLM2VEC against a wide array of mul-
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timodal embedding models, including CLIP (Radford et al., 2021), BLIP2 (Li et al., 2023a),
SigLIP (Zhai et al., 2023), MagicLens (Zhang et al., 2024), UniIR (Wei et al., 2023) and E5-V (Jiang
et al., 2024), demonstrating consistent improvements across all task categories. Notably, compared
to the best baseline model without fine-tuning, our model achieves a 21.1 point improvement (from
44.7 to 65.8) across all 36 MMEB datasets and a 16.1-point increase (from 41.7 to 57.8) on 16 out-of-
distribution datasets for zero-shot evaluation. Compared to the best baseline model with fine-tuning,
our model achieves a 18.6 point improvement (from 47.2 to 65.8) across all 36 MMEB datasets and
a 14.7-point increase (from 43.1 to 57.8) on 16 out-of-distribution datasets for zero-shot evaluation.
Moreover, as a general multimodal representation model, VLM2VEC can still achieve competitive
zero-shot T2I (Text-to-Image) and I2T (Image-to-Text) performance on Flickr30K compared to ex-
isting CLIP-like models, as presented in Table 11.

2 MMEB: A BENCHMARK FOR MULTIMODAL EMBEDDINGS

2.1 DATASET OVERVIEW

We present MMEB (Massive Multimodal Embedding Benchmark), a comprehensive benchmark
designed to evaluate multimodal embeddings across a diverse set of tasks. MMEB consists of 36
datasets organized into four meta-tasks: classification, visual question answering, retrieval, and
visual grounding. Each task is reformulated as a ranking problem, where the model is provided with
an instruction and a query (which may consist of text, images, or both) and is tasked with selecting
the correct answer from a set of candidates. These candidates could be text, images, or additional
instructions. The datasets are divided into two categories: 20 in-distribution datasets for training and
16 out-of-distribution datasets for evaluation. We report performance metrics across all 36 tasks. An
overview of MMEB is provided in Figure 2 and the dataset statistics are provided in Table 1.

The embedding models are supposed to compress the query side into a vector and the target can-
didates into a set of vectors. The candidate with the highest dot-product will be selected as the
prediction for evaluation. We measure the Precision@1 to reflect the percentage of top candidate
matching the groundtruth. For the number of target candidates, a higher count could increase eval-
uation costs and hinder rapid model iteration, while a lower count might make the benchmark too
simple and prone to saturation. To strike a balance between these extremes, we have chosen 1,000
candidates. Further details about this decision can be found in Section A.2.

MMEB offers a wide range of tasks from various domains, such as common, news, Wikipedia,
web, and fashion. The benchmark incorporates diverse combinations of modalities for both queries
and targets, including text, images, and text-image pairs. Additionally, tasks are designed to follow
different types of instructions. For instance, tasks may involve object recognition (e.g., “Identify the
object shown in the image.”), retrieval (e.g., “Find an image that matches the given caption.”), or
visual grounding (e.g., “Select the portion of the image that answers the question.”). Examples for
each dataset in MMEB are provided in Tables 7, 8, 9 and 10. The diversity in MMEB makes it an
ideal testbed for universal embeddings.

2.2 META-TASK AND DATASET DESIGN

MMEB is organized into four primary meta-task categories:

Classification The query consists of an instruction, an image, optionally accompanied by related
text, while the target is the class label. The number of candidates equals the number of classes.

Visual Question Answering The query consists of an instruction, an image, and a piece of text as
the question, while the target is the answer. Each query has 1 ground truth and 999 distractors as
candidates.

Information Retrieval Both the query and target sides can involve a combination of text, images,
and instructions. Each query has 1 ground truth and 999 distractors as candidates.

Visual Grounding The category is adapted from object detection tasks. The query combines an
instruction (e.g., “Select the portion of the image that isolates the object of the given label: red
apple”) with the full image. This instruction guides the model to focus on a specific object within
the image. Each candidate corresponds to cropped regions (bounding boxes) of the image, including
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Table 1: The statistics of MMEB: 36 datasets across 4 meta-task categories, with 20 in-distribution
datasets used for training and 16 out-of-distribution datasets used exclusively for evaluation.

Meta-Task Dataset Query Target OOD? #Training #Eval #Candidates

Classification
(10 Tasks)

ImageNet-1K I T 100K 1000 1000
N24News I + T I 49K 1000 24

HatefulMemes I T 8K 1000 2
VOC2007 I T 8K 1000 20
SUN397 I T 20K 1000 397
Place365 I T ↭ - 1000 365

ImageNet-A I T ↭ - 1000 1000
ImageNet-R I T ↭ - 1000 200
ObjectNet I T ↭ - 1000 313

Country-211 I T ↭ - 1000 211

VQA
(10 Tasks)

OK-VQA I + T T 9K 1000 1000
A-OKVQA I + T T 17K 1000 1000
DocVQA I + T T 40K 1000 1000

InfographicVQA I + T T 24K 1000 1000
ChartQA I + T T 28K 1000 1000
Visual7W I + T T 70K 1000 1000

ScienceQA I + T T ↭ - 1000 1000
VizWiz I + T T ↭ - 1000 1000
GQA I + T T ↭ - 1000 1000

TextVQA I + T T ↭ - 1000 1000

Retrieval
(12 Tasks)

VisDial T I 123K 1000 1000
CIRR I + T I 26K 1000 1000

VisualNews t2i T I 100K 1000 1000
VisualNews i2t I T 100K 1000 1000
MSCOCO t2i T I 100K 1000 1000
MSCOCO i2t I T 113K 1000 1000

NIGHTS I I 16K 1000 1000
WebQA T I + T 17K 1000 1000
OVEN I + T I + T ↭ - 1000 1000

FashionIQ I + T I ↭ - 1000 1000
EDIS T I + T ↭ - 1000 1000

Wiki-SS-NQ T I ↭ - 1000 1000

Visual Grounding
(4 Tasks)

MSCOCO I + T I 100K 1000 1000
Visual7W-Pointing I + T I ↭ - 1000 1000

RefCOCO I + T I ↭ - 1000 1000
RefCOCO-Matching I + T I + T ↭ - 1000 1000

ImageNet-1K

N24News

HatefulMemes

VOC2027

SUN297

Place365 ImageNet-A

Country211ObjectNet

ImageNet-R

Classification

OK-VQA

InfoVQA

A-OKVQA

ChartQA

DocVQA

ScienceQA GQA

VizWizTextVQA

VQA

Visual7W

VisDial CIRR

VisualNews_t2i VisualNews_i2t MSCOCO_t2i MSCOCO_t2i

WebQANIGHTS

FashionIQ EDISOVENWiki-SS-NQ

Retrieval

Visual7W-
Pointing

MSCOCO

RefCOCO-
Matching

RefCOCO

Visual Grounding

Figure 2: An overview of the tasks and datasets in MMEB. MMEB includes four meta-tasks and
36 datasets: 20 in-distribution datasets (blue) used for training and 16 out-of-distribution (orange)
datasets used exclusively for evaluation.

both the object of interest and distractor regions. Each query includes 1,000 candidates: 1 ground
truth and 999 distractors. These distractors may include hard negatives from the same object class,
other objects in the image, or random objects from different images.

Further details on dataset processing can be found in Section A.1.
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3 VLM2VEC : TRANSFORMING LVMS TO EMBEDDERS

3.1 CONTRASTIVE TRAINING

We develop VLM2VEC, a contrastive training framework designed to convert any state-of-the-art
vision-language model into an embedding model, as illustrated in Figure 3. A relevant query-target
pair is denoted as (q, t+). Both q and t+ could be either single image, text or single image + text.
We define q : (qt, qi) and t+ : (t+t , t

+
i ).

We then apply the instruction to the original query q to generate a new one qinst:

qinst = [IMAGE TOKEN]Instruct: {task definition} \n Query: {q} (1)

where “{task definition}” is a placeholder for a one-sentence description of the embedding task.
To enhance the embedding model’s generalizability by better understanding instructions, we have
crafted task-specific instructions, as shown in Tables 7, 8, 9 and 10.

Given a pretrained VLM, we feed query and target into it to obtain the query and target embeddings
(hqinst ,ht+ ) by taking the last layer vector representation of the last token. To train the embedding
model, we adopt the standard InfoNCE loss L over the in-batch negatives and hard negatives:

min L = ↑ log
ω(hqinst ,ht+)

ω(hqinst ,ht+) +
∑

t→↑N
ω(hqinst ,ht→)

(2)

where N denotes the set of all negatives, and ω(hq,ht) is a function that computes the matching
score between query q and target t. In this paper, we adopt the temperature-scaled cosine similarity
function as ω(hq,ht) = exp( 1ω cos(hq,ht)),where ε is a temperature hyper-parameter.

3.2 INCREASING BATCH SIZE THROUGH GRADCACHE

Since hard negatives are often difficult or ambiguous to collect for most multimodal datasets, using
larger batch sizes becomes crucial. This increases the number of in-batch random negatives, which
in turn helps improve the performance of the embedding model.

A bottleneck lies in the GPU memory that limits us from increasing the batch size and the number
of in-batch random negatives during training, as each training instance may include one image (ei-
ther from the query or target side) or multiple images (from both query and target sides), resulting in
substantial memory consumption. We apply GradCache (Gao et al., 2021a), a gradient caching tech-
nique that decouples backpropagation between contrastive loss and the encoder, removing encoder
backward pass data dependency along the batch dimension.

Mathematically, supposed we have a large batch of queries Q, and we divide it into a set of
sub-batches, each of which can fit into memory for gradient computation: Q = {Q̂1, Q̂2, . . . }.
There are two major steps: “Representation Gradient Computation and Caching” and “Sub-batch
Gradient Accumulation”. First, gradient tensors within each subbatch is calculated and stored:
ui =

εL
εf(qi)

, vi =
εL

εf(di)
.

Then gradients are accumulated for encoder parameters across all sub-batches:

ϑL
ϑ!

=
∑

Q̂j↑Q

∑

qi↑Q̂j

ui
ϑf(qi)

ϑ!
+

∑

D̂j↑D

∑

di↑D̂j

vi
ϑf(di)

ϑ! (3)

4 EXPERIMENTS

In this section, we adopt Phi-3.5-V (Abdin et al., 2024), LLaVA-1.6 (Li et al., 2024) and Qwen2-
VL-7B-Instruct (Wang et al., 2024b) as the backbone VLMs, with training conducted via either full
model fine-tuning or LoRA. The temperature for the loss function is set to 0.02, with a batch size of
1,024, a maximum text length of 256 tokens, and 2K training steps. The LoRA variant uses a rank
of 8. For VLM2VEC leveraging Phi-3.5-V as the backbone, we configure the number of sub-image
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LLM

Projection

Image Encoder VLM2Vec(Query)

LAST LASTContrastive Loss

Represent the given news image with the 
following caption for domain classification.

The menu is to the point: meat, above all lamb.

Foods

LLM

Projection

Image Encoder VLM2Vec(Target)

Figure 3: VLM2VEC uses a VLM as the backbone to deeply integrate image and text features. It
is trained with a contrastive loss between the query and target, following task-specific instructions.
The training data consists of diverse combinations of modalities on both the query and target sides,
which may include images, text, or image-text pairs.

crops to 4. For VLM2VEC using LLaVA-1.6 and Qwen2-VL as the backbone, we resize the input
images to a uniform resolution, employing two setups: a high-resolution configuration of 1344 !
1344 and a low-resolution configuration of 336 ! 336. For the 20 training datasets, we randomly
select up to 100K data points. When using GradCache, we set a sub-batch size accordingly, with
the total batch size accumulated to 1,024. All experiments were run on 8 H100 GPUs. We report
Precision@1 for all models in Table 2. It measures the ratio of positive candidates being ranked in
the top place for all queries.

4.1 BASELINES

Four groups of baselines are reported in this study.

CLIP-family: We utilize vision/language encoders such as CLIP (Radford et al., 2021), Open-
CLIP (Cherti et al., 2023), SigLIP (Zhai et al., 2023), and BLIP2 (Li et al., 2023a) as our baseline.
Due to the length limitations of the text encoder, some queries or target text in certain tasks may
be truncated. We apply score-level fusion by combining multimodal features using element-wise
addition with equal weights (w1 = w2 = 1). We do not use instructions, as they could potentially
degrade performance. For more details, please refer to Section 4.3.4.
UniIR: UniIR (Wei et al., 2023) is a unified, instruction-guided multimodal retriever designed to
handle eight different retrieval tasks across multiple modalities. The model builds on CLIP and
BLIP, employing shallow fusion techniques such as score-level and feature-level fusion to integrate
modalities. In this study, we use the CLIP SF and BLIP FF variations as baselines.
MagicLens: MagicLens (Zhang et al., 2024) is a self-supervised image retrieval model capable of
handling open-ended instructions. It utilizes a dual-encoder architecture with shared parameters,
initializing the vision and language encoders with either CoCa or CLIP. The model uses a multi-
head attention pooler to unify multimodal inputs into a single embedding. For this study, we report
results using the CLIP-Large backbone.
E5-V: E5-V (Jiang et al., 2024) is a contemporary model that also leverages vision-language models
for multimodal embedding tasks. It proposes a single-modality training approach, where the model
is trained exclusively on text pairs. In contrast, our model is trained on multimodal pairs, which
include various combinations of image and text modalities on both the query and target sides.

For all our baselines, we first use their original versions. Additionally, we have fine-tuned both
CLIP and OpenCLIP on MMEB training datasets. We adopt the same experimental configurations
as VLM2VEC to ensure a fair comparison. For the remaining baseline models, UniIR and MagicLens
also utilize a shallow fusion approach based on CLIP models, with their primary contribution being
the datasets they were trained on. E5-V proposes training exclusively on text pairs, making it un-
suitable for fine-tuning on our datasets. Therefore, we have not included the fine-tuned versions of
these three models in this comparison.
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Table 2: Results on the MMEB benchmark. The scores are averaged per meta-task. For detailed
scores per dataset, see Table 6. We include baselines with and without fine-tuning on MMEB training
datasets and our models with three different backbones using a batch size of 1,024.

Model Per Meta-Task Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of datasets → 10 10 12 4 20 16 36

Baseline Models (No Fine-tuning on MMEB Training)

CLIP (Radford et al., 2021) 42.8 9.1 53.0 51.8 37.1 38.7 37.8
BLIP2 (Li et al., 2023a) 27.0 4.2 33.9 47.0 25.3 25.1 25.2
SigLIP (Zhai et al., 2023) 40.3 8.4 31.6 59.5 32.3 38.0 34.8
OpenCLIP (Cherti et al., 2023) 47.8 10.9 52.3 53.3 39.3 40.2 39.7
UniIR (BLIP FF) (Wei et al., 2023) 42.1 15.0 60.1 62.2 44.7 40.4 42.8
UniIR (CLIP SF) (Wei et al., 2023) 44.3 16.2 61.8 65.3 47.1 41.7 44.7
E5-V (Jiang et al., 2024) 21.8 4.9 11.5 19.0 14.9 11.5 13.3
Magiclens (Zhang et al., 2024) 38.8 8.3 35.4 26.0 31.0 23.7 27.8

Baseline Models (Fine-tuning on MMEB Training)

CLIP 55.2 19.7 53.2 62.2 47.6 42.8 45.4
OpenCLIP 56.0 21.9 55.4 64.1 50.5 43.1 47.2

Ours (VLM2VEC)

Phi-3.5-V, Full-model fine-tuned (#crop=4) 52.8 50.3 57.8 72.3 62.8 47.4 55.9
Phi-3.5-V, LoRA (#crop=4) 54.8 54.9 62.3 79.5 66.5 52.0 60.1
LLaVA-1.6, LoRA (low-res) 54.7 50.3 56.2 64.0 61.0 47.5 55.0
LLaVA-1.6, LoRA (high-res) 61.2 49.9 67.4 86.1 67.5 57.1 62.9
Qwen2-VL, LoRA (high-res) 62.6 57.8 69.9 81.7 72.2 57.8 65.8
” - Best baseline (No Fine-tuning) +17.9 +41.6 +8.1 +25.1 +25.1 +16.1 +21.1
” - Best baseline (Fine-tuning) +6.6 +35.9 +14.5 +22.0 +21.7 +14.7 +18.6

4.2 MAIN RESULT

From Table 2, the best variant of VLM2VEC leverages Qwen2-VL, is trained with LoRA, and pro-
cesses input images at a relatively high resolution of 1344 ! 1344. It achieves an average preci-
sion@1 of 65.8% across all 36 datasets from MMEB. Additionally, it maintains an average preci-
sion@1 of 57.8% on 16 out-of-distribution tasks in zero-shot evaluation, suggesting strong general-
ization ability. These results indicate that when trained on datasets spanning diverse task categories,
domains, and modality combinations, VLM2VEC effectively follows instructions to align visual and
textual representations while generalizing well to unseen tasks.

Furthermore, VLM2VEC using Phi-3.5-V and LLaVA-1.6 also outperforms baseline models. No-
tably, LLaVA-1.6 has a transparent pre-training data recipe with minimal overlap with MMEB’s
OOD datasets, reinforcing that the strong zero-shot performance of VLM2VEC is not due to prior
exposure of its backbone to the OOD datasets. When using the same backbone, the full fine-tuning
variant achieves slightly lower scores than the LoRA version. For a detailed discussion comparing
full fine-tuning and LoRA, please refer to Section 4.3.1.

Compared to other baseline models, with or without fine-tuning on MMEB training data, our model
demonstrates consistent improvements. Compared to the best baseline model without fine-tuning,
our model achieves a 21.1 point improvement (from 44.7 to 65.8) across all 36 MMEB datasets and
a 16.1-point increase (from 41.7 to 57.8) on 16 out-of-distribution datasets for zero-shot evaluation.
Compared to the best baseline model with fine-tuning, our model achieves a 18.6 point improvement
(from 47.2 to 65.8) across all 36 MMEB datasets and a 14.7-point increase (from 43.1 to 57.8) on
16 out-of-distribution datasets for zero-shot evaluation. Additionally, unlike the baseline models,
which fail to demonstrate reasonable performance across all different task categories, VLM2VEC
achieves strong performance across all four meta-task categories. This highlights its capability to
handle a wide range of multimodal embedding tasks effectively.

4.3 RESULT ANALYSIS

To train an effective and generalizable multimodal embedding, various factors need to be considered,
ranging from the data to the training setup. In this section, we present detailed ablation studies on
these factors. We will discuss two training setups: Full Fine-Tuning vs. LoRA, along with Training
parameters, and two topics related to data: Meta-task generalization and Impact of instructions.
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4.3.1 FULL FINE-TUNING VS. LORA

When fine-tuning the VLMs, a key decision is whether to conduct full fine-tuning, which updates
all parameters in the model, or to use a parameter-efficient method such as LoRA. We compare
the performance of fully fine-tuned VLM2VEC with its LoRA variants at different ranks. The train-
ing and data setups are kept consistent across all models. We observe that LoRA achieves better
performance when the rank is appropriately configured.

Table 3: We compare the performance of fully fine-tuned VLM2VEC with its LoRA variants at
different ranks. LoRA can achieve better performance when the rank is appropriately configured.
All the models utilize Phi-3.5-V as their backbone.

Model Meta-Task Average Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of datasets → 10 10 12 4 20 16 36

Full Fine-Tuning (bs=256) 50.4 46.4 52.6 68.6 57.9 44.7 52.0
LoRA r = 4 (bs=256) 52.7 53.6 60.1 80.2 64.9 50.4 58.4
LoRA r = 8 (bs=256) 52.9 52.5 60.3 80.0 64.2 50.8 58.2
LoRA r = 16 (bs=256) 51.1 40.5 52.0 72.5 54.9 45.8 50.8
LoRA r = 32 (bs=256) 50.6 47.8 53.9 72.5 58.9 46.5 53.4

4.3.2 TRAINING PARAMETERS

During our experiments, we identified three key parameters that significantly impact the perfor-
mance of VLM2VEC: training batch size, the number of sub-image crops, and the number of training
steps. In Figure 4, we observe that the final performance gradually improves as we increase the
batch size, training step size, and number of sub-image crops. We particularly want to highlight
the impact of batch size. Due to the lack of hard negatives, using a large batch size with plenty
of random negatives, supported by the GradCache technique, plays a crucial role in enhancing the
performance of VLM2VEC, as discussed in Section 3.2.

Figure 4: The figures demonstrate the influence of the training setup on VLM2VEC’s final perfor-
mance. Here, we examine the effects of training batch size, the number of sub-image crops, and the
number of training steps. All the models utilize Phi-3.5-V as their backbone.

4.3.3 META-TASK GENERALIZATION

We have demonstrated that VLM2VEC has the potential to transfer to out-of-distribution datasets
after being trained on a diverse range of in-distribution datasets, with the instruction-following set-
tings. An interesting question arises as to whether focusing on a specific meta-task can enhance the
model’s overall generalizability. We have trained three models, each focused solely on one meta-task
(classification, visual question answering, and retrieval). Visual grounding was not included due to
the limited number of training datasets. We then evaluated the models’ transferability to other meta-
tasks. We refer to these three models as VLM2VEC RET, trained on 8 retrieval tasks, VLM2VEC VQA,
trained on 6 visual question answering tasks, and VLM2VEC CLS, trained on 5 classification tasks.

8



Manuscript

Figure 5 illustrates the generalizability of these three models on unseen meta-tasks. We could ob-
serve that VLM2VEC RET has better generalizablilty on other meta-task, compared with other two
models, especially on visual grounding categories. The reason is that retrieval tasks involve a more
diverse combination of text and visual modalities from both the query and target sides, which helps
the model generalize better to unseen meta-tasks. This observation highlights the benefits of using
more diverse tasks in the VLM2VEC training process.

Figure 5: The figures show the generalization ability of models trained on one meta-task to other
unseen meta-tasks. For example, the first subplot compares the performance of VLM2VEC trained
exclusively on VQA datasets with VLM2VEC trained exclusively on retrieval datasets across the
other two meta-task categories: classification and visual grounding. Overall, VLM2VEC trained on
retrieval tasks demonstrate better generalization ability because retrieval tasks involve a more diverse
combination of text and visual modalities from both the query and target sides. VLM2VEC utilizes
Phi-3.5-V as its backbone.

4.3.4 IMPACT OF INSTRUCTIONS

Previous studies have shown the influence of instructions on addressing various tasks. VLM2VEC,
which leverages a VLM as its backbone and is trained on large-scale datasets with instructions,
is expected to better generalize across tasks and improve performance in multimodal embedding
tasks. In this section, we evaluate the performance of both CLIP and VLM2VEC with and without
task-specific instructions to quantify the impact of incorporating instructions into the embedding
process. As shown in Table 4, incorporating instructions reduces the CLIP model’s performance by
29.4%, while our VLM2VEC achieves a 49.4% improvement. This highlights how a VLM backbone
enhances the embedding model’s instruction-following capability and emphasizes the advantages of
instruction-guided embeddings.

Table 4: Comparison of CLIP and our VLM2VEC with and without task-specific instructions. Incor-
porating instructions could decrease CLIP’s performance by 29.4%, whereas our VLM2VEC achieves
a 49.4% improvement. VLM2VEC utilizes Phi-3.5-V as its backbone.

Model Meta-Task Average Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of datasets → 10 10 12 4 20 16 36

CILP

w/o instruction 42.8 9.1 53.0 51.8 37.1 38.7 37.8
w/ instruction 17.4 8.0 41.3 52.9 23.8 30.3 26.7
” -59.3% -12.1% -22.1% 2.1% -35.8% -21.7% -29.4%

Ours (VLM2VEC)

w/o instruction 36.7 33.5 31.1 44.3 37.3 31.6 34.8
w/ instruction 50.4 46.4 52.6 68.6 57.9 44.7 52.0
” 37.3% 38.5% 69.1% 54.9% 55.2% 41.5% 49.4%
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5 RELATED WORK

5.1 TEXT EMBEDDING

Text embeddings have demonstrated significant potential in powering downstream applications such
as information retrieval (Karpukhin et al., 2020; Xiong et al., 2020), text similarity (Gao et al.,
2021b), prompt retrieval for in-context learning (Hongjin et al., 2022), and classification (Lo-
geswaran & Lee, 2018; Reimers & Gurevych, 2019). Early work focused on creating effective
embeddings for specific tasks. With the rise of pretrained language models, efforts have shifted to-
ward developing universal embedding models capable of handling a wide range of embedding tasks.
Studies such as GTR (Ni et al., 2022) and E5 (Wang et al., 2022a) leveraged large amounts of noisy
paired data to pretrain and fine-tune dense retrievers. More recent works like TART (Asai et al.,
2022) and InstructOR (Su et al., 2023) introduced natural language prompts to guide embedding
models in producing task-relevant embeddings. Building on this, models like E5Mistral(Wang et al.,
2024a), SFR-Embedding(Meng et al., 2024), RepLLaMA(Ma et al., 2024b), GTE-Qwen2(Li et al.,
2023b), and NV-Embed (Lee et al., 2024) have utilized pretrained large language models (LLMs)
as their backbone, fine-tuning them with multi-task data and instructions. These models have de-
livered significant improvements over earlier approaches that did not use LLMs for initialization or
instruction tuning.

5.2 MULTIMODAL EMBEDDINGS

Multimodal embeddings have long been a significant research challenge. Early works like
CLIP (Radford et al., 2021), BLIP (Li et al., 2022; 2023a), Align (Jia et al., 2021), SigLIP (Zhai
et al., 2023), SimVLM Wang et al. (2022b) and CoCa (Yu et al., 2022) primarily focused on learn-
ing universal representations from large-scale, weakly supervised image-text pairs. These models
generally encode images and text separately, projecting them into a shared space. This approach has
laid the groundwork for more recent multimodal models like LLaVA (Liu et al., 2024).

Most research on universal multimodal embeddings involves fine-tuning models like CLIP or BLIP,
typically using simple fusion mechanisms to combine visual and language information. For instance,
UniIR (Wei et al., 2023) creates multimodal embeddings by simply adding text and visual features,
while MagicLens (Zhang et al., 2024) employs shallow self-attention layers to integrate these fea-
tures more effectively. The study most similar to ours is E5-V (Jiang et al., 2024), a contemporary
work that fine-tunes a vision-language model using only text training data.

5.3 EMBEDDING BENCHMARKS

Significant efforts have been made to develop benchmarks for evaluating retrieval systems. For text
retrieval models, MS MARCO (Nguyen et al., 2016) and Natural Questions (Kwiatkowski et al.,
2019b) are two of the most widely used benchmarks in general domains. To broaden the evaluation
across more diverse domains, BEIR (Thakur et al.) was introduced, incorporating 18 datasets from
various fields. Building on this, MTEB (Muennighoff et al., 2023) further expands BEIR’s scope by
adding more tasks, such as classification, clustering, and semantic textual similarity (STS).

For multimodal retrieval, several benchmarks have been introduced to evaluate model performance
across different modalities. MBEIR (Wei et al., 2023) includes 8 tasks and 16 datasets, designed to
test models’ ability to retrieve information based on various forms of queries and instructions.

6 CONCLUSION

In this paper, we aim to build the first large-scale multimodal embedding framework, comprising
two main components: MMEB and VLM2VEC. MMEB includes 36 datasets across four meta-task
categories, providing a comprehensive and diverse framework for training and evaluating embed-
ding models. VLM2VEC leverages VLMs as a backbone to deeply fuse visual and textual spaces,
enhancing generalization to unseen tasks through instruction following.
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