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ABSTRACT

Time series forecasting faces two important but often overlooked challenges.
Firstly, the inherent random noise in the time series labels sets a theoretical lower
bound for the forecasting error, which is positively correlated with the entropy
of the labels. Secondly, neural networks exhibit a frequency bias when modeling
the state-space of time series, that is, the model performs well in learning certain
frequency bands but poorly in others, thus restricting the overall forecasting per-
formance. To address the first challenge, we prove a theorem that there exists a
unitary transformation that can reduce the marginal entropy of multiple correlated
Gaussian processes, thereby providing guidance for reducing the lower bound of
forecasting error. Furthermore, experiments confirm that Discrete Fourier Trans-
form (DFT) can reduce the entropy in the majority of scenarios. Correspondingly,
to alleviate the frequency bias, we jointly introduce supervision in the frequency
domain along the temporal dimension through DFT and Discrete Wavelet Trans-
form (DWT). This supervision-side strategy is highly general and can be seam-
lessly integrated into any supervised learning method. Moreover, we propose a
novel loss function named OLMA, which utilizes the frequency domain transfor-
mation across both channel and temporal dimensions to enhance forecasting. Fi-
nally, the experimental results on multiple datasets demonstrate the effectiveness
of OLMA in addressing the above two challenges and the resulting improvement
in forecasting accuracy. The results also indicate that the perspectives of entropy
and frequency bias provide a new and feasible research direction for time series
forecasting.

1 INTRODUCTION

Time series forecasting is an important fundamental technique with broad applications in energy
management, financial trading, transportation optimization, weather prediction and healthcare mon-
itoring. As the volume of temporal data continues to grow rapidly, enhancing forecasting accuracy
has become an urgent need. As machine learning advances, neural networks have become the dom-
inant approach for time series forecasting. Most research efforts have concentrated on developing
increasingly sophisticated models to capture the underlying distributions of time series in real-world
settings (Wang et al.|(2025); [Liu et al.| (2024a; 2023)); Wu et al.|(2022)).

However, from a data-centric perspective, real-world time series are inevitably corrupted by purely
random noise. This noise overlays the underlying learnable patterns, rendering perfect forecasting
impossible, regardless of how strong the neural network’s capacity to model the data distribution
is. [Fang et al.| (2019); [Rho| (2020) have shown that the estimation error of a random variable (or
stochastic process) has a theoretical lower bound, which is positively correlated with its own entropy.
However, they have not further investigated whether the theoretical lower bounds of the estimation
errors decrease when multiple correlated stochastic processes are present.

In this work, we provide a concrete result that there necessarily exists a unitary transformation that
decreases the marginal entropy of multiple correlated Gaussian stochastic processes (the sum of the
entropy of the individual processes). In Section [3| a detailed proof of this theorem is presented.
By modeling the label data of time series as a combination of a learnable informative component
and an unlearnable stochastic component, this conclusion provides theoretical guidance for reducing
the lower bound of forecasting error. In particular, our experiments demonstrate that, in practical
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scenarios, the DFT applied along the channel dimension serves as a unitary transformation that
reduces entropy.

Another prevalent challenge in time series forecasting is the frequency bias of neural networks (Yu
et al.| (2024); [Kiessling & Thor| (2022); |Cao et al.| (2019)). More precisely, neural networks tend
to exhibit inherent differences in their learning capacity in different frequency bands. In fact, this
issue is not confined to the domain of time series forecasting, it also poses a significant challenge in
the field of computer vision. [Fang & Xu| (2024) and |Piao et al.| (2024) have independently tackled
the problem of frequency bias by introducing frequency domain transformation modules into their
respective architectures.

To enhance the universality of using frequency domain transformations to alleviate the inherent
frequency bias of neural networks, we embed the transformation directly into the loss function, en-
abling its application to any supervised learning method without altering the target network. Specif-
ically, inspired by Neelamani et al.|(2004), we applied the DFT and DWT to the temporal dimension
of time series labels and predictions.

In summary, we propose a novel supervision method for time series forecasting, termed OLMA,
which applies frequency domain transformations to both the channel and temporal dimensions of
multivariate time series. This approach not only reduces the entropy of label noise, but also mit-
igates the inherent frequency bias of neural networks. Since this solution is formulated as a loss
function, it can be seamlessly integrated into any supervised model. The contributions of this paper
are summarized below.

* We analyze time series forecasting errors from the perspective of entropy, then we theoret-
ically and empirically demonstrate that there exists a unitary transformation that reduces
the marginal entropy of multivariate correlated Gaussian processes. Moreover, it has been
validated that constructing loss in the frequency domain along the temporal dimension can
alleviate the frequency bias of neural networks.

* We propose OLMA, a supervision method that applies frequency domain loss along both
the channel and temporal dimensions of time series. OLMA provides a minimalist yet
effective approach to reducing the entropy of label noise while mitigating the inherent
frequency bias of neural networks. Moreover, it is plug-and-play and can be seamlessly
integrated into any supervised learning framework.

* On 9 public time series forecasting datasets, OLMA was evaluated with multiple represen-
tative baseline models and demonstrated superior performance compared to their original
time domain supervision methods. Our work calls for time series forecasting research not
only to pursue innovations in model architectures but also to devote greater attention to the
intrinsic properties of data, in order to discover more efficient and generalizable approaches
for improving forecasting accuracy.

2 RELATED WORKS

Time series forecasting approaches. With the rise of neural networks, time series modeling had
significantly evolved, particularly with the advent of recurrent neural network (RNN)-based meth-
ods (e.g., DeepAR |Salinas et al.[(2020), LSTNet |Li et al.| (2020), DA-RNN |Qin et al.[(2017)) and
convolutional neural network (CNN)-based approaches (e.g., TCN Bai et al.| (2018), SCINet |[Liu
et al.|(2022), TimesNet|Wu et al.|(2022)). The introduction of the Transformer|Vaswani et al.|(2017)
architecture, known for its exceptional modeling capacity, had led to a surge in Transformer-based
forecasting models. Early examples included InformerZhou et al.|(2021)), which applied Transform-
ers directly to time series forecasting; PatchTST Nie et al.| (2022)), which treated time series segments
as tokens; and iTransformer |Liu et al.| (2023), which integrated both temporal and channel-wise de-
pendencies. Interestingly, DLinear Zeng et al.| (2023) demonstrated the surprising effectiveness of
simple linear layers in time series forecasting, prompting the development of multilayer perceptron
(MLP)-based time domain models such as TimeXer Wang et al.| (2024b)), TimeMixer |Wang et al.
(2024a), and WPMixer Murad et al.| (2025). Furthermore, TimeLLM /Jin et al.| (2023)), AutoTime
Liu et al.{(2024b)), and TimeCMA [Liu et al.|(2024a) proved the effectiveness of large language mod-
els (LLMs) in time series forecasting. Recently, the Mamba-based model, S-Mamba |Wang et al.
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(2025) and Affirm |Wu et al.|(2025), had also demonstrated the superior capabilities of state space
models in time series forecasting.

Forecasting errors from entropy perspective. Fang et al|(2019) established information-theoretic
bounds on estimation and forecasting errors in time series, showing their dependence on the con-
ditional entropy of the data. Rho|(2020) proposed a framework to evaluate time series forecasting
algorithms by relating lower bounds of forecasting error to the conditional entropy rate of the series.
Both suggested that the lower bound of time series forecasting error was positively correlated with
the entropy of the labels, offering an insightful perspective. Nevertheless, they did not explore how
decreasing information entropy could enhance forecasting performance.

Frequency bias of neural networks. (Cao et al.|(2019) and |Kiessling & Thor| (2022) had rigorously
demonstrated that neural networks exhibit frequency bias. |Fang & Xu|(2024) tackled the frequency
bias of deep neural networks by using a frequency-based multi-grade learning approach to better
capture high-frequency features. Tancik et al.| (2020) addressed the frequency bias of MLPs by using
Fourier feature mappings, enabling faster learning of high-frequency functions in low-dimensional
tasks. [Piao et al.|(2024) proposed Fredformer to mitigate frequency bias by learning features evenly
across all frequency bands, improving forecasting of high- and low-frequency components. These
methods addressed frequency bias by designing network architectures that incorporate frequency
domain transformations, but their applicability is often limited to specific models.

3 METHODOLOGY

This chapter first theoretically demonstrates the possibility of reducing the marginal entropy of mul-
tivariate time series (Section , and then presents the detailed formulation of the OLMA loss

(Section[3.2).

3.1 THEORETICAL DERIVATION

Preliminaries. Let 2 be a continuous random variable with differential entropy h(x), and let & be
an unbiased estimate of x formed without any side information. Under this constraint, unbiasedness
requires & = E[z], so the estimation error e = x — & = x — E[xz] is zero-mean. Since differential
entropy is translation-invariant, h(e) = h(z). According to the maximum entropy theorem for con-
tinuous random variables with given mean and variance (Jaynes| (1957)), for any random variable,
its entropy is upper-bounded by that of a Gaussian with the same variance,

hie) = h(z) < %log(QweVar(e)), (1)

where Var denotes the variance. It can be rearranged to give the desired lower bound on the mean
squared error,

1
E A2 =V > 722h(7') 2
(@ = #)%] = Var(e) > 5 @
The equality holds if and only if = is Gaussian (Fang et al.[(2019)).

Let Y € R*! denote the time series labels with ¢ dimensions (channels) and length [. Followed by

Li et al.[(2022); |[Zhou et al.| (2022); Box & Jenkins| (1968)), the label is decomposed into two com-

ponents as Y = Z + N, where Z, N € R¢*! denote components of learnable deterministic process

(without randomness, the entropy is theoretically zero) and components of unlearnable stochastic

noise respectively. We assume that IV is Gaussian (Aigrain & Foreman-Mackey| (2023); [Yuan &

Q1a0| (2024)) and mutually independent across different time steps for analytical tractability. Thus,
the lower bound of N; € R!, the variable i" of N, is

: L l
E[(N;[t] — N;[t])?] = ) ——22n(Nilth) — _—_92h(N3) 3
>IN - M) 2 Y g - G)

This indicates that the lower bound of the forecasting error for each time series variable is positively
correlated with its own entropy. If there exists an invertible transformation that can reduce entropy,
the lower bound of the forecasting error can be decreased, thereby improving the forecasting accu-
racy. In this regard, we propose Theorem 1, which demonstrates that such transformation indeed
exists.
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Theorem 1. If multiple Gaussian stochastic processes are internally independent and identically
distributed (i.i.d.) but exhibit correlations across processes, then there necessarily exists a unitary
transformation that reduces their marginal entropy, i.e., the sum of the entropy of each individual
process.

Before proving Theorem 1, we state 3 lemmas that will be used in the proof.

Lemma 1. Let A € C™*™ be a positive definite Hermitian matrix with main diagonal elements
a11, 92, - - -, Apn. Then the determinant of A satisfies the inequality:

det(A) S H ajj, (4)
7j=1

with equality if and only if A is a diagonal matrix.

Proof of Lemma 1. Since A is positive definite Hermitian, it admits a unique Cholesky decomposi-
tion A = LL*, where L is a lower triangular matrix with [;; > 0 fori = 1,2,...,n, and L* denotes
the conjugate transpose of L (Pedersen et al.|(2024)). The determinant of A can be expressed as

det(A) = det(LL*) = | det(L)|* = (] [ 1:1)*. (5)
i=1
The diagonal elements of A are given by a;; = X7_.|l;x|> > 1], fori = 1,2,...,n. Taking the
product of these inequalities yields

n

ﬁau‘ > ﬁ li|? = (Hlii)2 = det(A4). (6)
i=1 i=1

i=1
Equality holds if and only if a;; = % for all 4, which requires l;;, = 0 for all ¥ < 4. This implies L
is diagonal, and consequently A = LL* is also diagonal. Thus, Lemma 1 is proved.

Lemma 2 (Unitary diagonalization of a Hermitian matrix). Let A € C"*"™ be a Hermitian matrix
(i.e., A = A*). Then there exists a unitary matrix U € C™"*" (i.e., U* = U~') and a real diagonal
matrix A = diag(A1, Ao, ..., \,) such that

A=UAU". (7

The columns of U form an orthonormal basis of C™ consisting of eigenvectors of A, and the diagonal
entries of A are the corresponding eigenvalues. Furthermore, if A is positive definite, then all
eigenvalues \; are positive (Cederbaum et al.|(1989)).

Lemma 3 (Path-Connectedness of the Unitary Group). The unitary group U(n) is path-connected.
That is, for any two unitary matrices U,V € U(n), there exists a continuous function ¢ : [0,1] —
U(n) such that ¢(0) = U and p(1) =V (Knapp & Knapp|(1996)).

Proof of Theorem 1. Let G € R°*! denote c correlated Gaussian stochastic processes and length /.
For each process G, since the variables are i.i.d. Gaussian, its entropy is

h(G;) = %log((%re)l det(3;)) Y élog(%rea?), 8)

where YJ; is the covariance matrix of (;, and 01»2 corresponds to the variance of each Gaussian
random variable. The sum of the marginal entropy of G is

c

> WG = %log(%rea?) = %log((%re)c 11D 9)
i=1 %

i=1

It is evident that [] o7 is the product of the first-order principal minors of the covariance matrix
of GG, which is denoted as S = %GG*, where G* is the conjugate transpose matrix of G. When a
unitary transformation F' is applied to G, the covariance matrix .S, is transformed into

1 1
Su=FG(FG)" = F(;GG")F* = FSF". (10)

4
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According to Lemma 1, det(S) < []; 07, because the G;s are correlated, the equality does not ap-
ply. According to Lemma 2, there is necessarily a unitary transformation F), such that S,, becomes a
diagonal matrix, which means det(S,,) = [[;_, 67, where 67 is the element on the main diagonal of

Sy. Since a unitary transformation does not change the determinant of a matrix, det(S) = det(S,,).

In summary, there exists a unitary transformation ¢(0) = I (identity matrix) such that the main
diagonal of the covariance matrix of G remains unchanged, and there also exists a unitary trans-
formation (1) = F, that reduces it to its minimum value det(S). Since the unitary space is
continuous (from ¢(0) = I to p(1) = F,), the range of attainable values forms a closed real
value interval (from []; o to det(S5)), there necessarily exists a F\ = ¢()),0 < A < 1 such that
det(S) < [[;_, 67 < [I; o7, that s the product of the main diagonal entries is reduced. In conjunc-
tion with Eq. [9] it can be rigorously deduced that there necessarily exists a unitary transformation
that reduces the marginal entropy of the Gaussian process. Thus, Theorem 1 is proved.

3.2 OLMA Loss

The forecasting of the model is denoted as Y € R, and the corresponding label as Y € R!xe,
According to Theorem 1, the DFT applied along the channel dimension acts as a unitary trans-
formation that can reduce the marginal entropy of multivariate time series labels (the experimental
validation is presented in Sectiond). The computation can be explicitly formulated as

-1
Lo =a > ||Fr ) - Fr(vi)|
t=0

; (11)
1
ol V;. and Y; . are forecasting

and label sequence of the ¢! time step respectively and F'¢ represents DFT that detailed calculation
is

where 0 < o < 1 is the hyperparameter to adjust the strength of £

c—1
Fr(Ye)[k] = Y -e 2m0/e k=0,1,...,c~1, (12)
n=0

where i is the imaginary unit.

To alleviate the frequency bias of neural networks, we also apply frequency domain transformations
directly at the supervision stage. This provides the most convenient way to adapt to all supervised
time series forecasting models. Inspired by Neelamani et al.| (2004), we perform DFT and DWT
along the temporal dimension of the time series. Applying a full DFT to long non-stationary signals
may yield misleading frequency representations, since it assumes global stationarity and overlooks
localized variations. In contrast, Wavelet Transform, a localized alternative to the short-time Fourier
Transform, captures both temporal and frequency information, making it effective for modeling

long-term non-stationary patterns in time series. The computation of L(()f[)m is
c—1
2]
=0
where f’z and Y, ; are forecasting and label sequence of the i*" channel respectively, the hyper-
parameters 3 and v (where 0 < 8,7 < land o« + 8 + v = 1) are introduced to adjust the

strength of alignment in the Fourier and Wavelet domains, respectively, and F},, denotes the DWT.
Fork =1,2,...,1/2, there are

cAg + cDy, cAg — cDy,
—, Yo, =——F—7—, Fy(Y.;)={cA1,...,cAk,cDy,...,cDy}.
V2 2k, V2 () {cAy k 1 k}
(14)

where cA is the approximation coefficient and cD is the detail coefficient of Y. ;. Note that squared
or higher-order norms for the error are not adopted. Because, in most time series data, the magnitude
of frequency components varies significantly across different bands in the frequency domain. In
particular, low-frequency components typically dominate and exhibit much larger amplitudes than
high-frequency components. To ensure stability of the loss, the L1 norm is adopted. Finally, the
OLMA loss L is defined as a linear combination of the frequency domain losses along the temporal
and channel dimensions,

Fw(Yz,i) - Fw<y L)

B

c—1
Lo =B ||Fr (V) = Fr(v2) . (13)
=0

Yor_1, =

Lo=/L0 1l (15)

olma olma“*



Under review as a conference paper at ICLR 2026

ETThI ETTh2 ETTml
3 3 3
5 3 k4
<2 <2 % 2
& g g
g1 Original entropy 1 Original entropy 51 Original entropy
Entropy after DFT Entropy after DFT o Entropy after DFT
0 0
0 50 100 150 0 50 100 150 0 200 400 600
Segment index Segment index Segment index
Exchange ILI ETTm2
3
- = 30 = 3
] 4 G}
o =3 =
£ g2s 5
g1 Original entropy 3 Original entropy g1 Original entropy
Entropy after DFT 20 Entropy after DFT Entropy after DFT
0 . 0
0 20 40 60 80 0 2 4 6 8 0 200 400 600
Segment index Segment index Segment index
Weather Electricity Traffic
3 4
5 54 5
Z
<2 z 2
=3 =3 =3
g 22 g2
1 Original entropy A& Original entropy ) Original entropy
Entropy after DFT Entropy after DFT Entropy after DFT
0 0 0
0 100 200 300 400 500 0 50 100 150 200 250 0 50 100 150
Segment index Segment index Segment index

Figure 1: Entropy changes after applying channel-wise DFT in different time series datasets.

4 EXPERIMENTS

4.1 Low ENTROPY REPRESENTATION OF TIME SERIES

Inspired by Theorem 1, we aim to develop a representation method that reduces the marginal en-
tropy of time series along the temporal dimension. Since the DFT decomposes a sequence into dif-
ferent frequency components, we apply it along the channel dimension so that energy from the same
frequency band is concentrated within the same channel. This reduces the uncertainty within each
individual channel and thereby decreases the entropy of the time series. For the original real-valued
time series Y. ; € R!, we compute its Shannon entropy. Because the true probability distribution
of each value is inaccessible, we replace it with the empirical probability estimated from the data.
Concretely, the values of Y, ; are first partitioned into M equal-width, non-overlapping bins. Let
ng = number(Y;; € My),j = 0,1,...1 — 1 denote the number of series points that fall into My,
the k" interval of M. The empirical probability pj, = ny, /1. Therefore, the Shannon entropy of Y; ;
can be expressed as

M
H(Y.;) == prlog(ps), (16)
k=1

Since Y. ; becomes a complex-valued sequence after the DFT, we treat it as a two-dimensional
discrete sequence and compute its joint entropy following the method described above. Followed
by [Wang et al.[(2025); Liu et al.[(2023); Wu et al.| (2022), ETT (4 subsets), Exchange, Illness (ILI),
Weather, Electricity (ECL), Traffic datasets are used in our experiments (see Appendix [A.T] for
dataset details). Each dataset is segmented into 96-length segments along the temporal dimension.
As shown in Figurdl] the entropy of each segment is indicated with a scatter plot, where green
represents the entropy of the original sequence and orange represents the entropy after applying
DFT along the channel dimension. Evidently, in most scenarios, representing time series using DFT
along the channel dimension can significantly reduce their marginal entropy, which experimentally
validates Theorem 1. Moreover, this representation significantly reduces the entropy differences
across different time series samples, which indicates a more uniform distribution of information,
without extreme redundancy or uncertainty. However, for a few datasets, such as ECL, this can lead
to an increase in entropy, which may affect the forecasting performance of certain models (a detailed
discussion is provided in Section[4.3]and [4.4).
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Figure 2: (a) denotes the forecasting error across different frequency bands on the ETTh1 test set
during training, reflecting the frequency bias of the network. (b) and (d) visualize the forecasting
and ground truth values in the time and frequency domains under time domain MSE supervision,
respectively. (c) and (e) visualize the forecasting and ground truth values in the time and frequency
domains under OLMA supervision, respectively.

4.2 ALLEVIATION OF FREQUENCY BIAS

Followed by Yu et al.|(2024)), we quantify frequency bias by measuring the forecasting errors of dif-
ferent frequency bands. As evidenced by the two green curves in Figure 2| (a), the model manifests
a pronounced frequency bias, exhibiting a preferential tendency toward capturing high-frequency
components. It is worth noting that the DLinear model employed in this experiment was specifically
designed to balance low- and high-frequency learning through parallel seasonal and trend branches,
yet the issue of frequency bias still persists. After applying OLMA supervision, the model’s abil-
ity to learn low-frequency components is substantially enhanced, while its ability to capture high-
frequency components remains largely unaffected. This provides empirical evidence that applying
supervision in the frequency domain allows the network to access information across all frequency
bands more directly, effectively alleviating its intrinsic frequency bias.

For greater clarity, we visualize the forecasting in both the time and frequency domains. As il-
lustrated in Figure 2] (b), the ground truth exhibits an overall upward trend, which is manifested
primarily in the low-frequency components. However, under time domain supervision, the net-
work exhibits limited capacity in capturing low-frequency information, and consequently, such a
trend cannot be adequately fitted. In contrast, under the guidance of OLMA, the network exhibits
a markedly improved capacity to approximate the trend component, as shown in the plot (c). In
addition, comparison of plots (d) and (e) reveals that OLMA supervision provides a more faithful
approximation of the primary and secondary spectral peaks in the low-frequency band than conven-
tional time domain MSE. This serves as compelling evidence for the network’s enhanced proficiency
in modeling low-frequency structures, substantiating the claim that direct frequency domain super-
vision provides a principled solution to alleviate frequency bias. In addition, we also discuss the
issue of frequency bias from the perspective of the data, see Appendix for details.

4.3 PERFORMANCE OF OLMA

We further validate the effectiveness of OLMA by incorporating it into several state-of-the-art
baseline models across diverse settings. These methods include Mamba-based S-Mamba [Wang
et al.| (2025), LLM-based TimeCMA |L1u et al.| (2024a)), Transformer-based iTransformer |Liu et al.
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Table 1: Performance of OLMA on different time series datasets. Lower forecasting errors indicate
better performance. The best results are highlighted in bold. TDL denotes the temporal domain loss
(MSE) corresponding to each baseline.

) S-Mamba TimeCMA
Dataset ‘ Loss | MSE MAE | MSE MAE

TimesNet TimeXer TimeMixer DLinear
MSE MAE | MSE MAE | MSE MAE | MSE MAE

iTransformer
MSE MAE

ETTh1 TDL | 0.455 0.450 | 0.438 0.441 | 0.454 0.448 | 0.460 0.455 | 0.437 0.437 | 0.447 0.440 | 0.423 0.437
OLMA | 0.432 0.426 | 0.433 0.434 | 0.444 0.437 | 0.445 0.443 | 0.436 0.429 | 0.435 0.429 | 0.413 0.424

ETTh2 TDL | 0.381 0.405 | 0.407 0.420 | 0.383 0.407 | 0.407 0.421 | 0.368 0.396 | 0.374 0.401 | 0.431 0.447
OLMA | 0.362 0.391 | 0.388 0.408 | 0.376 0.400 | 0.401 0.416 | 0.363 0.389 | 0.368 0.394 | 0.415 0.434

TDL | 0.398 0.405 | 0.393 0.406 | 0.407 0.410 | 0.411 0.418 | 0.382 0.397 | 0.381 0.396 | 0.357 0.379

ETTml | ol MA | 0379 0386 | 0383 0.391 | 0.397 0.398 | 0.393 0.402 | 0377 0.385 | 0378 0.385 | 0353 0372
ETTm2 TDL | 0.288 0.332 | 0.290 0.333 | 0.288 0.332 | 0.296 0.332 | 0.274 0.322 | 0.275 0.323 | 0.267 0.332

OLMA | 0.278 0.319 | 0.285 0.323 | 0.283 0.324 | 0.285 0.323 | 0.271 0.315 | 0.273 0.319 | 0.263 0.322
Weather TDL | 0.251 0.276 | 0.248 0.281 | 0.258 0.278 | 0.259 0.286 | 0.241 0.271 | 0.240 0.272 | 0.246  0.300

OLMA | 0.241 0.265 | 0.245 0.275 | 0.255 0.275 | 0.257 0.281 | 0.239 0.266 | 0.242 0.266 | 0.240 0.280

Exchange TDL | 0.367 0.408 | 0.446 0.457 | 0.360 0.403 | 0.408 0.439 | 0.372 0.409 | 0.352 0.398 | 0.367 0.416
2% | OLMA | 0.350 0.398 | 0.416 0.441 | 0.353 0.401 | 0.403 0.434 | 0.349 0.398 | 0.342 0.393 | 0.315 0.394

TDL | 2.027 1.066 | 1.864 0.873 | 2.552 1.109 | 2.263 0.928 | 2.143 0.961 | 2.088 0.977 | 2.169 1.041
OLMA | 1.806 0.853 | 1.858 0.869 | 2.516 1.097 | 2.045 0.869 | 2.124 0.944 | 1.739 0.828 | 2.049 0.970

ECL TDL | 0.170 0.265 | 0.213 0.307 | 0.178 0.270 | 0.194 0.296 | 0.171 0.270 | 0.182 0.273 | 0.166 0.264
OLMA | 0.167 0.262 | 0.200 0.296 | 0.169 0.258 | 0.188 0.288 | 0.172 0.268 | 0.183 0.272 | 0.167 0.263

TDL | 0.414 0276 | 0.697 0.370 | 0.428 0.282 | 0.625 0.331 | 0.466 0.287 | 0.499 0.322 | 0.434 0.295
OLMA | 0.412 0.265 | 0.696 0.370 | 0.421 0.270 | 0.616 0.319 | 0.468 0.277 | 0.496 0.308 | 0.433 0.293

ILI

Traffic

(2023), CNN-based TimesNet Wu et al.| (2022), linear-based DLinear Zeng et al.| (2023)), and MLP-
based TimeMixer Wang et al| (2024a) and TimeXer Wang et al.| (2024b)). The average forecast
errors of four horizons {96, 192,336,720} for different methods on different datasets (ILI are
{12,24,48,96}) are shown in Table [1| (complete experimental results and detailed setting of hy-
perparameters are provided in the Appendix[A.3). In accordance with commonly adopted protocols,
each dataset is divided into training (60%), validation (20%) and test (20%) subsets. The experimen-
tal results indicate that OLMA, when directly integrated into diverse baseline models, consistently
outperforms the widely adopted time domain supervision approaches. More intriguingly, OLMA
eliminates the reliance on time domain supervision altogether, instead representing time series la-
bels purely within the frequency domain. This phenomenon can be explained by Parseval’s Theorem
Folland| (2009).

Parseval’s Theorem. Let x(t) be the time domain signal of interest. The total energy of the signal
in the time domain is equal to that in the frequency domain. Mathematically, this relationship is
expressed as

o0 oo
[ ora= [ xR an
—00 — 00
where X (f) is the Fourier Transform of z(¢). This indicates that the frequency domain represen-
tation of a signal preserves its total energy and only redistributes it across frequency components.
Therefore, applying supervision in the frequency domain does not result in any energy loss, and re-
tains the full informational content of the original signal. Thus, combining time domain supervision
with OLMA does not provide any additional information gain (experimental validation is provided

in the Appendix [A.4).

Consequently, OLMA constitutes an information-lossless representation of time series that effec-
tively reduces their intrinsic disorder, as measured by entropy. Nevertheless, as shown in Figure [T}
for datasets characterized by more intricate channel interactions, exemplified by ECL, the Fourier
Transform can inadvertently increase the entropy of the time series. The performance of methods
such as DLinear and TimeMixer on the ECL, as reported in Table [T} substantiates this finding. Be-
cause their architectures are relatively simple, these models are unable to counteract the increase in
disorder induced by entropy growth, resulting in limited performance improvement.

4.4 ABLATIONS

A detailed ablation study is conducted on the ETThl and ECL dataset using iTransformer and
TimeMixer to examine the contributions of two frequency domain loss components in OLMA, those
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Table 2: Ablation study of OLMA on channel and temporal losses.

iTransformer TimeMixer
Channel  Temporal ‘ ETThi ECL ‘ ETThI
X X 0454 0448 0.178 0.270 | 0.447 0.440 0.182 0.273
v X 0.448 0440 0.172 0.263 | 0439 0.433 0.197 0.284
X v 0451 0444 0.175 0.262 | 0.442 0.436 0.183 0.274
v v 0.444 0437 0.169 0.258 | 0.435 0.429 0.183 0.272
96-Points Forecast 192-Points Forecast 336-Points Forecast 720-Points Forecast
0.210.1680.169 0.167 0.169 0.169 0.220 0.218 0.219 0.222 0.219 0.2750.279 0.275 0.276 0.276 0.4 40357 0.354 0.354 0.355 0.354

0.0 0.0 0.0
01 03 05 07 09 01 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Ratio of Channel Loss Ratio of Channel Loss Ratio of Channel Loss Ratio of Channel Loss

Figure 3: Impact of the ratio between channel and temporal losses in OLMA on forecasting error.

are the channel-wise £'¢) and the temporal-wise £ n Table 2| “Channel” represents £ and

olma olma* olma
“Temporal” represents ﬁfﬁm. Both are discarded, denoting the MSE loss originally used by the
models. For dataset such as ETTh1, where channel-wise DFT effectively reduces information en-
tropy, iTransformer and TimeMixer achieve enhanced forecasting performance by leveraging solely
Egﬁzla. However, for dataset like ECL, where channel-wise DFT increases entropy, MLP-based
predictors such as TimeMixer are substantially affected, whereas Transformer-based models like
iTransformer remain largely unaffected. Moreover, the stabilization of entropy distribution further
enhances iTransformer’s forecasting performance. This further corroborates the analysis presented

in Section

4.5 IMPACT OF CHANNEL AND TEMPORAL LOSSES ON FORECASTING PERFORMANCE

In the ablation study, we have already demonstrated that jointly applying losses along both the chan-
nel and temporal dimensions yields superior forecasting performance. However, an open question
remains that does the relative weighting between the two losses exert a significant influence on fore-
casting accuracy? To this end, we take the Weather dataset as an example and conduct detailed
experiments using iTransformer. Specifically, as shown in Figure [3] we vary the proportion of the
channel loss across {0.1, 0.3, 0.5, 0.7, 0.9}, and evaluate the model under four different forecasting
lengths {96, 192, 336, 720}. It is evident that even under substantial variations in the relative weight-
ing of channel and temporal losses, the model’s forecasting performance remains largely unaffected,
which implies that within a relatively wide range of weight assignments, the model forecasting per-
formance remains stable and strong, eliminating the need for tedious and expensive hyperparameter
fine-tuning. Additional experiments are provided in the Appendix [A.5]

5 CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions. We prove that unitary transformations can reduce the marginal entropy of multivariate
time series, yielding low-entropy representations that enhance forecasting accuracy. Meanwhile,
we mitigate frequency bias of neural networks by enforcing supervision directly in the frequency
domain. As a combination of these two solutions, OLMA provides a minimalist approach that can
be seamlessly integrated into any supervised learning model.

Future directions. We reveal two overlooked issues that offer valuable guidance for future research.
Firstly, we analyze time series representations from the perspective of entropy. Although we have
proposed an effective representation for entropy reduction in time series, this approach still leaves
considerable room for improvement. Future work should strive to identify representations with
minimal entropy in order to further lower the fundamental bound of forecasting error. Secondly,
future work should assess model performance across different frequency bands in time series and
develop more targeted solutions accordingly.
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Table 3: Information of each dataset. Channel represents the variate number of each dataset. Length
is the total number of time steps. Sampling rate denotes the sampling interval of time steps. Domain
refers to the application area to which the dataset belongs.

Dataset Channel Length Sampling rate Domain
ETTh1&ETTh2 7 17420 1 Hour Energy
ETTmI&ETTm2 7 69680 15 Minutes Energy
Weather 21 52696 10 Minutes Climate
Exchange 8 7588 1 Day Finance
ILI 7 966 1 Week Healthcare
Electricity 321 26304 1 Hour Energy
Traffic 862 17544 1 Hour Transportation

A APPENDIX

A.1 DATASETS

The datasets used in our experiments span a wide variety of real-world time series applications.
The ETT dataset collects industrial temperature and torque data, divided into four subsets (ETThI,
ETTh2, ETTml1, ETTm?2), each reflecting different temporal granularities and periods for evaluating
long-sequence forecasting models. The Weather dataset consists of meteorological variables such
as temperature, humidity, and wind speed across multiple geographic locations, and is widely used
in environmental forecasting. The Exchange Rate dataset contains foreign exchange rates of eight
major currencies against the US dollar and is commonly used for financial time series forecasting.
The ILI dataset comprises historical weekly records of flu-related case counts released by the United
States Centers for Disease Control and Prevention, suitable for epidemiological modeling. The
Electricity dataset reflects household-level electricity consumption across hundreds of clients and
supports studies on energy demand forecasting. The Traffic dataset captures vehicle road occupancy
across California’s highway system, useful for urban mobility prediction. More detailed information
about the sequence length, number of channels, and sampling rate for each dataset is provided in
Table[3

A.2 EXPLAINING FREQUENCY BIAS FROM DATA PERSPECTIVE

The inherent frequency preference of neural networks is a well-recognized phenomenon. However,
the characteristics of the data itself can also influence the network’s ability to learn across differ-
ent frequency components. In the time domain, strong correlations between time points (e.g., high
values of the autocorrelation function) imply that the errors of adjacent points in the loss compu-
tation are highly correlated. This, in turn, biases gradient descent updates toward capturing local
variation patterns. As illustrated in Figure [2[ (b), the time series exhibits strong local oscillations,
indicating that high-frequency components dominate within these regions. This provides an addi-
tional explanation for why the model tends to prioritize learning high-frequency information. In the
frequency domain, after applying the Fourier transform, different frequency components become
approximately orthogonal (i.e., weakly correlated). This implies that the error associated with each
frequency component contributes independently to the loss function. Consequently, gradient de-
scent updates the network parameters corresponding to each frequency in an independent manner,
preventing any single frequency from dominating the optimization process. To validate this, we
conducted experiments on the ETThI dataset. As shown in Figure [4] (a), the data exhibits strong
correlations among adjacent points in the time domain. In contrast, (b) and (c) clearly demonstrate
that such correlations become much weaker in the frequency domain.

Specifically, we employ a Double Machine Learning (DML)Chernozhukov et al.| (2018)) approach
to eliminate the influence of confounders on correlation estimation. The specific computation pro-
cedure is as Algorithm which estimates the causal correlation from time point ¢ to ¢’ within a time
series using residual regression based on the DML framework.

Let the input time series be {x1,z2,...,2 N}, Where N is the total sequence length. It takes four
parameters: a window size w (is set to 2 in this work) to define the set of confounders (assuming
that confounding factors exist in the sequence near the source time steps), the source and target time
steps t and ¢’ such that ¢ < ¢/, and the maximum length used for computing sequence correlation T

13
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Figure 4: The correlation matrices on the ETTh1 dataset. (a) Correlation matrix in the time domain.
(b) Correlation matrix of the real part after Fourier Transform. (c) Correlation matrix of the imagi-
nary part.

(is set to 96 in this work). Each time point ¢ (from w to N — T\;s) defines a local context for causal
evaluation. The value at index j = ¢ + ¢ serves as the source time steps set 7', and the value at index
k = i+’ serves as the target time steps set O. For each such pair, we construct a set of confounders
C by collecting the 2w neighbors around z;, excluding z; itself (and optionally excluding x; if it
appears in the context window).

After collecting the samples of treatment, outcome, and confounders, we train two separate regres-
sion models:

* Model, to predict the source 7" from the confounders C, and compute the residuals .

* Model, to predict the target O from the confounders C, and compute the residuals o.

These residuals represent the parts of the source and target that are not explained by the confounders.
The final causal effect estimate e;_,;+ is computed as the absolute value of the regression coefficient
Cov(%,5)
Var(t)
denotes the covariance calculation, and Var denotes the variance calculation. This value captures
the residual dependence between the source and the target after adjusting for confounding variables,
and thus serves as a proxy for causal correlation. Likewise, applying this algorithm in the frequency
domain only requires a preliminary fixed-length Fourier Transform on the entire time series.

between ¢ and 6, which is equivalent to the normalized covariance: e;_,4 = , where Cov

Algorithm 1 Causal Correlation of Time Series

Require: Time series {x1, zo, ..., zN}, window size w, offsets t < t/, visible range Ty
Ensure: Estimated causal effect e;_,;/

1: Precompute confounders C; <— {@;—wy, .., Tim1, Tit1, -+, Titw }

2: Initialize sample list T <[], O <[], C + |]

3: foreach? = wto N — T,;s do

4 je—i+t, k+i+t

5. if k > N then

6: continue

7:  endif

8: T<—mj,0<—xk,C<—Ci

9: end for

10: Training a double machine learning model.

11: Train Model,(C, T), get residuals t = Model;(C') — T

12: Train Model, (C, O), get residuals 6 = Model,(C) — O

Cov(#,5)
Var(t)

13: Compute e;_yp =
14: return ey

14
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Table 4: Full results of forecasting errors of OLMA on mainstream model baselines (TimeCMA,
S-Mamba, iTransformer and TimesNet) which supervised by time domain losses (TDL) on different
datasets. Lower values indicate better performance. The best results are highlighted in bold.
TimeCMA S-Mamba iTransformer TimesNet

Dataset | Length TDL OLMA TDL OLMA TDL OLMA TDL OLMA
MSE MAE MSE MAE | MSE MAE MSE MAE | MSE MAE MSE MAE | MSE MAE MSE MAE

96 10392 0.413 0.389 0.406 | 0.386 0.405 0.368 0.387 | 0.386 0.405 0.382 0.396 | 0.389 0.412 0.382 0.403
192 10.432 0.435 0.431 0.428 | 0.443 0.437 0.422 0.417|0.441 0.436 0.435 0.427 |0.439 0.442 0.432 0.435
ETThl 336 [ 0.467 0.452 0.464 0.445|0.489 0.468 0.466 0.438|0.487 0.458 0.483 0.454|0.494 0.471 0.480 0.458
720 |0.461 0.465 0.449 0.456 | 0.502 0.489 0.470 0.463|0.503 0.491 0.476 0.472|0.516 0.494 0.485 0.476
Avg |0.438 0.441 0.433 0.434|0.455 0.450 0.432 0.426 | 0.454 0.448 0.444 0.437 | 0.460 0.455 0.445 0.443

96 |0.326 0.364 0.315 0.357|0.296 0.348 0.281 0.333 [ 0.297 0.349 0.294 0.343 (0.337 0.370 0.312 0.350
192 10.419 0.420 0.382 0.398|0.376 0.396 0.357 0.382|0.380 0.400 0.373 0.391|0.405 0.415 0.392 0.406
ETTh2 336 |0.443 0.443 0.432 0.435|0.424 0.431 0.403 0.418|0.428 0.432 0.417 0.426 | 0.453 0.450 0.438 0.445
720 | 0.441 0.453 0.423 0.442|0.426 0.444 0.408 0.432]0.427 0.445 0.420 0.439 | 0.434 0.448 0.460 0.464
Avg |0.407 0.420 0.388 0.408|0.381 0.405 0.362 0.391|0.383 0.407 0.376 0.400 | 0.407 0.421 0.401 0.416

96 10.324 0.365 0.313 0.352|0.333 0.368 0.311 0.348|0.334 0.368 0.325 0.359 | 0.334 0.375 0.326 0.360
192 10.374 0.394 0.362 0.377 | 0.376 0.390 0.357 0.372|0.377 0.391 0.373 0.381|0.408 0.414 0.390 0.397
ETTml 336 [0.407 0.415 0.396 0.399|0.408 0.413 0.393 0.395|0.426 0.420 0.411 0.407 | 0.415 0.422 0.402 0.410
720 0.469 0.448 0.462 0.437 | 0.475 0.448 0.455 0.430|0.491 0.459 0.479 0.445|0.485 0.461 0.454 0.439
Avg |0.393 0.406 0.383 0.391|0.398 0.405 0.379 0.386|0.407 0.410 0.397 0.398 | 0.411 0.418 0.393 0.402

96 |0.182 0.263 0.175 0.255|0.179 0.263 0.171 0.250 [ 0.180 0.264 0.177 0.256 [ 0.189 0.266 0.178 0.255
192 10257 0.316 0.245 0.298|0.250 0.309 0.238 0.295|0.250 0.309 0.243 0.300 | 0.252 0.307 0.246 0.301
ETTm2 336 |0.310 0.348 0.307 0.338|0.312 0.349 0.300 0.336 | 0.311 0.348 0.306 0.340 | 0.323 0.350 0.306 0.337
720 | 0.412 0.404 0.414 0.400 | 0.411 0.406 0.402 0.396 | 0.412 0.407 0.407 0.399 |0.419 0.405 0.411 0.398
Avg [0.290 0.333 0.285 0.323|0.288 0.332 0.278 0.319 | 0.288 0.332 0.283 0.324 | 0.296 0.332 0.285 0.323

96 [0.170 0.217 0.166 0.209 | 0.165 0.210 0.152 0.193|0.174 0.214 0.168 0.205|0.169 0.219 0.165 0.211
192 10.216 0.257 0.211 0.252|0.214 0.252 0.204 0.241|0.221 0.254 0.219 0.252|0.225 0.265 0.222 0.260
Weather | 336 |0.268 0.299 0.267 0.294|0.274 0.297 0.264 0.287 | 0.278 0.296 0.276 0.294 | 0.281 0.304 0.277 0.297
720 ]0.340 0.351 0.337 0.346 | 0.350 0.345 0.344 0.339|0.358 0.347 0.356 0.348|0.359 0.354 0.362 0.355
Avg |0.248 0.281 0.245 0.275]0.251 0.276 0.241 0.265|0.258 0.278 0.255 0.275|0.259 0.286 0.257 0.281

96 |0.114 0.242 0.104 0.231|0.086 0.207 0.083 0.202 [ 0.086 0.206 0.085 0.205 | 0.105 0.235 0.109 0.240
192 10209 0.331 0.200 0.323|0.182 0.304 0.179 0.300 | 0.177 0.299 0.177 0.300|0.223 0.344 0.215 0.333
Exchange | 336 |0.379 0.452 0.370 0.446|0.332 0.418 0.317 0.408 [ 0.331 0.417 0.330 0.416 | 0.363 0.439 0.366 0.439
720 | 1.080 0.802 0.992 0.764 | 0.867 0.703 0.821 0.681 | 0.847 0.691 0.818 0.681 |0.940 0.739 0.921 0.725
Avg |0.446 0.457 0.416 0.441|0.367 0.408 0.350 0.398|0.360 0.403 0.353 0.401 | 0.408 0.439 0.403 0.434

24 |1.870 0913 1.962 0.909 | 2.103 0.972 2.007 0.932|2.438 1.076 2.450 1.082|1.806 0.893 1.715 0.857
36 | 1.825 0.852 1.827 0.857|1.832 0.921 1.703 0.759|2.455 1.086 2.410 1.071|2.679 0.986 2.402 0.924
ILI 48 1.824 0.834 1.764 0.827 |2.224 0.998 1.877 0.725|2.580 1.118 2.513 1.095|2.584 0.938 2.224 0.843
60 |1.938 0.892 1.880 0.882|1.950 1.373 1.636 0.994|2.734 1.155 2.689 1.140|1.981 0.894 1.840 0.851
Avg |1.864 0.873 1.858 0.869|2.027 1.066 1.806 0.853|2.552 1.109 2.516 1.097 |2.263 0.928 2.045 0.869

96 |0.144 0.244 0.149 0.248|0.139 0.235 0.138 0.233 [ 0.148 0.240 0.145 0.234 (0.168 0.272 0.165 0.266
192 ]0.161 0.261 0.174 0.275|0.159 0.255 0.158 0.251|0.162 0.253 0.159 0.247 | 0.185 0.288 0.183 0.283
ECL 336 |0.227 0.328 0.197 0.293|0.176 0.272 0.173 0.270 | 0.178 0.269 0.173 0.262 | 0.204 0.306 0.193 0.293
720 0.320 0.397 0.280 0.370 | 0.204 0.298 0.199 0.293 | 0.225 0.317 0.200 0.287 | 0.219 0.318 0.210 0.309
Avg [0.213 0.307 0.200 0.296|0.170 0.265 0.167 0.262|0.178 0.270 0.169 0.258 | 0.194 0.296 0.188 0.288

96 10.717 0.379 0.705 0.373|0.382 0.261 0.381 0.250 | 0.395 0.268 0.388 0.254|0.589 0.315 0.573 0.306
192 10.708 0.377 0.682 0.364 | 0.396 0.267 0.389 0.255|0.417 0.276 0.410 0.264 | 0.618 0.324 0.623 0.320
Traffic 336 [ 0.655 0.351 0.668 0.351|0.417 0.276 0.417 0.266 | 0.433 0.283 0.426 0.271|0.632 0.336 0.626 0.323
720 10.709 0.374 0.730 0.392|0.460 0.300 0.461 0.287|0.467 0.302 0.461 0.289 | 0.659 0.349 0.643 0.328
Avg 10.697 0.370 0.696 0.370|0.414 0.276 0.412 0.265|0.428 0.282 0.421 0.270|0.625 0.331 0.616 0.319

A.3 FULL RESULTS

The full experimental results are reported in Tables [d] and [5] Without introducing any architectural
modifications, simply replacing the original time domain loss with OLMA consistently improves
the forecasting performance across models. Specifically, to respect the original supervision schemes
of the various methods, all models except WPMixer employed the MSE loss, while WPMixer used
the SmoothL.1 loss [Murad et al. (2025). For the hyperparameters («, 3,y) of OLMA, we assign
equal weights (0.34, 0.33, 0.33) for all models. Specifically, for the ECL and Traffic datasets,
to mitigate the impact of entropy increase caused by channel-wise Fourier transform, we set the
hyperparameters to (0.1, 0.45, 0.45).
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Table 5: Full results of forecasting errors of OLMA on mainstream model baselines (TimeMixer,
TimeXer, DLinear and WPMixer) which supervised by time domain losses (TDL) on different
datasets. Lower values indicate better performance. The best results are highlighted in bold.

TimeMixer TimeXer DLinear WPMixer
Dataset | Length TDL OLMA TDL OLMA TDL OLMA TDL OLMA
MSE MAE MSE MAE | MSE MAE MSE MAE | MSE MAE MSE MAE | MSE MAE MSE MAE

96 10.375 0.400 0.370 0.388|0.382 0.403 0.378 0.391|0.375 0.399 0.365 0.386 | 0.347 0.383 0.345 0.379
192 10.429 0.421 0.417 0.419|0.429 0.435 0.430 0.423|0.405 0.416 0.402 0.408|0.381 0.408 0.378 0.404
ETTh1 336 [ 0.484 0.458 0.472 0.443|0.468 0.448 0.470 0.442|0.439 0.443 0.430 0.428|0.382 0.412 0.379 0.408
720 |0.498 0.482 0.481 0.466 | 0.469 0.461 0.465 0.459|0.472 0.490 0.454 0.474|0.405 0.432 0.401 0.431
Avg |0.447 0.440 0.435 0.429|0.437 0.437 0.436 0.429|0.423 0.437 0.413 0.424 | 0.379 0.409 0.376 0.406

96 0289 0.341 0.286 0.335|0.286 0.338 0.279 0.330 [ 0.289 0.353 0.284 0.346 | 0.253 0.328 0.253 0.326
192 10.372 0.392 0.365 0.386 | 0.363 0.389 0.365 0.384|0.383 0.418 0.370 0.402 | 0.303 0.364 0.304 0.363
ETTh2 336 [0.417 0.431 0.407 0.420 | 0.414 0.423 0.414 0.419|0.448 0.465 0.448 0.461|0.305 0.371 0.305 0.370
720 | 0.419 0.440 0.414 0.434|0.408 0.432 0.395 0.422|0.605 0.551 0.556 0.525|0.373 0.417 0.371 0.413
Avg 10374 0.401 0.368 0.394|0.368 0.396 0.363 0.389|0.431 0.447 0.415 0.434|0.309 0.370 0.308 0.368

96 10320 0.357 0.311 0.343|0.318 0.356 0.311 0.345|0.299 0.343 0.298 0.338 | 0.275 0.333 0.275 0.329
192 10.361 0.381 0.357 0.371|0.362 0.383 0.357 0.371|0.335 0.365 0.334 0.359|0.319 0.362 0.311 0.352
ETTml1 336 [0.390 0.404 0.388 0.394|0.395 0.407 0.389 0.394|0.369 0.386 0.369 0.379 | 0.347 0.384 0.346 0.378
720 |0.454 0.441 0.454 0.430|0.452 0.441 0.451 0.431|0.425 0.421 0.423 0.413|0.403 0.414 0.399 0.413
Avg 10.381 0.396 0.378 0.385|0.382 0.397 0.377 0.385|0.357 0.379 0.356 0.372|0.336 0.373 0.333 0.368

96 [0.175 0.258 0.171 0.251|0.171 0.256 0.168 0.249 |0.167 0.260 0.164 0.253 | 0.159 0.246 0.157 0.243
192 10.237 0.299 0.235 0.295|0.237 0.299 0.232 0.291 | 0.224 0.303 0.224 0.289 | 0.214 0.286 0.214 0.281
ETTm2 336 [0.298 0.340 0.294 0.335|0.296 0.338 0.290 0.328 | 0.281 0.342 0.282 0.339 | 0.266 0.322 0.267 0.319
720 10.391 0.396 0.390 0.396 | 0.392 0.394 0.393 0.391|0.397 0.421 0.383 0.408|0.344 0.374 0.344 0.370
Avg (0275 0.323 0.273 0.319|0.274 0.322 0.271 0.315|0.267 0.332 0.263 0.322 | 0.246 0.307 0.246 0.303

96 |0.163 0.209 0.158 0.198|0.157 0.205 0.155 0.198 [ 0.176 0.237 0.172 0.221 | 0.141 0.188 0.140 0.186
192 10208 0.250 0.206 0.243|0.204 0.247 0.202 0.242 | 0.220 0.282 0.213 0.260 | 0.185 0.229 0.185 0.230
Weather | 336 |0.251 0.287 0.261 0.285|0.261 0.290 0.259 0.285|0.265 0.319 0.257 0.298 | 0.236 0.271 0.235 0.271
720 |0.339 0.341 0.341 0.338|0.340 0.341 0.338 0.337 [ 0.323 0.362 0.320 0.351 |0.307 0.321 0.306 0.322
Avg [0.240 0.272 0.242 0.266 | 0.241 0.271 0.239 0.266 | 0.246 0.300 0.241 0.283 | 0.217 0.252 0.217 0.252

96 |0.083 0.201 0.082 0.200 | 0.087 0.206 0.085 0.205 | 0.081 0.203 0.080 0.202 (0.094 0.216 0.092 0.212
192 10.177 0.299 0.177 0.299|0.176 0.298 0.175 0.297 | 0.157 0.293 0.156 0.288 | 0.184 0.306 0.183 0.305
Exchange | 336 |0.329 0.413 0.320 0.409 | 0.346 0.425 0.338 0.4210.333 0.441 0.365 0.452]0.339 0.421 0.340 0.421
720 |0.817 0.678 0.787 0.663 | 0.879 0.707 0.799 0.670 | 0.897 0.725 0.657 0.634 | 0.831 0.682 0.753 0.644
Avg 10352 0.398 0.342 0.393|0.372 0.409 0.349 0.398 | 0.367 0.416 0.315 0.394|0.362 0.406 0.342 0.396

24 |2.245 0.985 2.245 0.953|2.203 0.958 2.205 0.958|2.215 1.081 2.119 0.964 | 1.349 0.731 1.432 0.745
36 | 1.962 0.930 1.610 0.785|2.099 0.928 2.088 0.924|1.963 0.963 2.051 0.966 | 1.462 0.764 1.599 0.791
ILI 48 2393 1.086 1.563 0.785|2.081 0.977 2.064 0.928 [2.130 1.024 1.992 0.961 | 1.813 0.882 1.525 0.788
60 |1.753 0.908 1.539 0.790 [ 2.190 0.980 2.140 0.966 | 2.368 1.096 2.035 0.989 |1.712 0.889 1.586 0.809
Avg [2.088 0.977 1.739 0.828|2.143 0.961 2.124 0.944|2.169 1.041 2.049 0.970 | 1.584 0.817 1.536 0.783

96 |0.153 0.247 0.155 0.246 | 0.140 0.242 0.140 0.239 | 0.140 0.237 0.140 0.236 | 0.128 0.222 0.128 0.221
192 10.166 0.256 0.167 0.257|0.157 0.256 0.158 0.255|0.153 0.249 0.154 0.249 | 0.145 0.237 0.145 0.237
ECL 336 [ 0.185 0.277 0.184 0.273|0.176 0.275 0.176 0.272|0.169 0.267 0.169 0.267 | 0.161 0.256 0.160 0.253
720 |0.225 0.310 0.224 0.312|0.211 0.306 0.215 0.306 | 0.203 0.301 0.205 0.300 | 0.196 0.287 0.197 0.287
Avg [0.182 0.273 0.183 0.272|0.171 0.270 0.172 0.268 | 0.166 0.264 0.167 0.263 | 0.158 0.251 0.158 0.250

96 |0.482 0.315 0.462 0.301|0.428 0.271 0.429 0.258 [ 0.410 0.282 0.410 0.282 | 0.354 0.246 0.354 0.244
192 10.486 0.315 0.476 0.299 | 0.448 0.282 0.456 0.268 | 0.423 0.287 0.422 0.286 | 0.371 0.253 0.367 0.251
Traffic 336 [0.503 0.332 0.499 0.306 | 0.473 0.289 0.472 0.282|0.436 0.296 0.435 0.293|0.387 0.267 0.383 0.265
720 |0.524 0.326 0.545 0.326 | 0.516 0.307 0.513 0.300 [ 0.466 0.315 0.464 0.311|0.431 0.289 0.427 0.285
Avg [0.499 0.322 0.496 0.308 | 0.466 0.287 0.468 0.277|0.434 0.295 0.433 0.293 | 0.386 0.264 0.383 0.261

16



Under review as a conference paper at ICLR 2026

Table 6: Comparison of forecasting errors between OLMA and the combined OLMA + MSE loss
across different datasets. Lower values indicate better performance. The best results are highlighted
in bold.

Dataset Loss 96 192 336 720 Average | Improvement
MSE MAE | MSE MAE | MSE MAE | MSE MAE | Ver8 prov

EThy | OLMA+MSE | 0.367 0388 | 0.402 0409 | 0.429 0429 | 0455 0475 | 0419 0.3%
OLMA 0.365 0.386 | 0.402 0.408 | 0429 0.428 | 0.453 0474 | 0418 -
ETTm1 | OLMA+MSE | 0.297 0338 | 0332 0360 | 0.380 0370 | 0420 0413 | 0364 0.2%
OLMA 0.297 0.338 | 0331 0359 | 0.379 0369 | 0.419 0412 | 0.363 -2
Weather | OLMA+MSE | 0171 0223 | 0212 0262 | 0258 0303 | 0322 0357 | 0.264 149
cathe OLMA 0171 0217 | 0211 0257 | 0.256 0.296 | 0320 0351 | 0.260 e

A.4 OLMA orR OLMA + TIME DOMAIN SUPERVISION?

An interesting question arises, that is, can incorporating time domain supervision into OLMA lead
to better forecasting performance? In other words, does the pure frequency domain supervision
of OLMA already capture all the essential information in the time series, or would adding time
domain supervision introduce redundant information? To explore this, we conduct experiments
using the basic DLinear model. Table[6|compares the forecasting errors of OLMA alone and OLMA
combined with time domain supervision. It is evident that OLMA alone achieves better performance
in most cases. This suggests that temporal domain supervision does not provide additional useful
information on top of OLMA and may even introduce noise that harms performance in certain
scenarios.

A.5 IMPACT OF CHANNEL AND TEMPORAL LOSSES ON FORECASTING PERFORMANCE

The impact of the balancing channel and temporal losses of OLMA on forecasting error is further
evaluated on the ETTh1, ETTmI and Weather datasets with forecasting lengths of {96, 192, 336,
720}. Figure illustrates the forecasting errors of WPMixer in different loss weight configurations.
The results show that the performance of OLMA remains stable across a wide range of loss weight
ratios between channel and temporal dimensions. This demonstrates that OLMA is a parameter-
insensitive loss function, which can be seamlessly applied to any supervised method without the
need for complex hyperparameter tuning.

96-Points Forecast 192-Points Forecast 336-Points Forecast 720-Points Forecast
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Figure 5: Impact of the ratio between channel and temporal dimension losses in OLMA on forecast-
ing error on ETTh1, ETTm1 and Weather datasets under various forecasting lengths {96, 192, 336,
720} by WPMixer.
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B THE USE OF LARGE LANGUAGE MODELS

We express our special thanks to the large language models GPT-4 and DeepSeek-R1 for their as-
sistance in polishing writing.
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