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Abstract

Intent detection is a major task in Natural Lan-
guage Understanding (NLU) and is the core
component of dialogue systems for interpret-
ing users’ intentions based on their utterances.
Many works have explored detecting intents by
assuming that each utterance represents only a
single intent. Such systems have achieved very
good results; however, intent detection is a far
more challenging task in typical real-world sce-
narios, where each user utterance can be highly
complex and express multiple intents. There-
fore, in this paper, we propose PCMID, a novel
Multi-Intent Detection framework enabled by
Prototypical Contrastive Learning under a su-
pervised setting. The PCMID model can learn
multiple semantic representations of a given
user utterance under the context of different
intent labels in an optimized semantic space.
Our experiments show that PCMID achieves
the current state-of-the-art performance on both
multiple public benchmark datasets and a pri-
vate real-world dataset for the multi-intent de-
tection task.

1 Introduction

Natural Language Understanding (NLU) is a key
component of dialogue systems, particularly for
the task of intent detection (Tur, 2011) to interpret
users’ utterances throughout conversations. Intent
detection can essentially be regarded as a semantic
classification problem. Given an utterance like
"Show me the type of aircraft that Delta uses,"
intent detection can be implemented as a classifier
that predicts an intent label for the utterance such
as "Aircraft Type." This type of intent detection
is often called single-intent detection which has
been amply explored in previous works. Many
of these works adapt joint models to also capture
the relationship between intent detection and slot
filling (Goo et al., 2018, Li et al., 2018a, E et al.,
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2019, Qin et al., 2020a). These models currently
achieve very promising results.

Despite the promising results on single-intent
detection, the assumption that user utterances each
represent only a single intent does not always hold
in real-world scenarios where an utterance can rep-
resent multiple intents (Li et al., 2018b, Rastogi
et al., 2019). For example, consider a natural ex-
pansion of the previous sample utterance: "Show
me the type of aircraft that Delta uses and what
time zone is Denver in?". In this case, the classifier
should predict multiple intent labels including Air-
craft Type and City instead of just one. In scenarios
such as these, failing to consider multiple intent
predictions will result in incomplete Natural Lan-
guage Understanding and limit the performance of
a dialogue system.

In order to deal with this issue, Gangadharaiah
and Narayanaswamy (2019) explore the joint multi-
intent detection and slot filling task using a multi-
task framework with a slot-gated mechanism (Goo
et al., 2018). This work incorporates multi-intent
information within a single context vector but does
not integrate fine-grained intent information for
token-level slots, resulting in ambiguous relation-
ships between filled slots and intents. Following
this work, Qin et al. (2020b) introduce an intent-
slot graph interaction layer to model correlations
between slots and intents, but the solution does not
scale to cases where conjunctions are implicitly
defined in utterances.

Most recently, Wu et al. (2021) propose a label-
aware BERT attention network, which achieves the
state of the art performance on multi-intent detec-
tion. This work first applies two BERT encoders,
one to capture the semantics of utterances without
explicit conjunctions and the other for the words
in the intent labels. Then, a label-aware layer is
constructed which iteratively projects intent label
representations to utterance representations in or-
der to compute a projection weight that represents



the similarity between utterance and intent labels
for the purpose of multi-intent detection.

Although this intuitive approach works well for
detecting multiple intents, it fails to take the high
complexity of the intent label embedding space
into account and does not consider the semantics
between individual utterance tokens and the intent
label words. This results in ambiguity in matching
intent labels to utterances such that the related in-
tent information for each utterance token cannot
be captured. Furthermore, because two BERT en-
coders are applied, model size and computational
efficiency become issues for both the training and
inference phases.

Therefore, in this paper, we propose our frame-
work PCMID1: Multi-Intent Detection through Su-
pervised Prototypical Contrastive Learning, with
the following main steps and associated contri-
butions:

• We first obtain the utterance and multi-intent
label embedding by constructing an utterance-
label encoder using a single BERT encoder.
This achieves a smaller overall model size
with higher computational efficiency.

• Next, we obtain the utterance-label attention
by passing the utterance and multi-intent la-
bel embedding to a multi-head attention block
that builds the relationship between each ut-
terance token and its respective multi-intent
labels, allowing each utterance token to cap-
ture information relevant to its intent labels.

• Finally, we apply multi-label Supervised Pro-
totypical Contrastive Learning to learn multi-
ple semantic representations of a given user
utterance under the context of different intent
labels in an optimized semantic embedding
space of intent labels and utterance-label at-
tention.

We conduct experiments on multiple public
benchmark datasets and a private real-world dataset
and show that our approach achieves the current
state-of-the-art performance on the multi-intent de-
tection task.

2 Related Works

2.1 Intent Detection
Early works apply traditional machine learning ap-
proaches such as Support Vector Machines (Men-

1https://github.com/zjc664656505/PCMID

doza and Zamora, 2009) and graph based methods
(Hu et al., 2009) for intent detection tasks. With the
prevalence of deep neural network methods, later
works achieve intent detection via RNNs (Ravuri
and Stolcke, 2015, Sreelakshmi et al., 2018), CNNs
(Gupta et al., 2019; Hashemi et al., 2016), Capsule
Networks (Xia et al., 2018) and Transformer-based
models (Vaswani et al., 2017; Castellucci et al.,
2019; Chen et al., 2019; Zhang et al., 2019; Mehri
and Eric, 2021).

Although intent detection works that focus on
the single intent use-case have achieved great per-
formance on this task, user utterances are not re-
stricted to conveying one intent at a time in practice.
Consequently, multi-intent detection is needed for
advancing this research field. The work by (Xu and
Sarikaya, 2013) applies a log-linear model atop
n-gram features for multi-label detection. Rychal-
ska et al. (2018) propose a hierarchical model
for multi-intent detection. Gangadharaiah and
Narayanaswamy (2019) propose joint multi-intent
detection and slot filling using a multi-tasking
framework and slot-gated mechanism but cannot
resolve ambiguous relationships between slots and
intents. Qin et al. (2020b) propose an adaptive
intent-slot graph interaction layer which mitigates
the issue of ambiguous relationships from the pre-
vious work but requires intents to be detectable
by the presence of conjunctions in utterances. Wu
et al. (2021) propose a label-aware BERT atten-
tion network which is able to detect implicit intents
without explicit conjunctions.

2.2 Contrastive Learning (CL)

Contrastive Learning (CL) is a specific form of self
supervised learning, that focuses on using “posi-
tive" and “negative" samples to improve the latent
embedding space of models for better classification
results. The core idea of CL is finding a strong
manifold representation via pulling "positive” pairs
closer together, and repelling negative samples un-
der a dot product similarity metric. This idea was
first applied in the field of Computer Vision and
found great success in multiple tasks such as Data
Augmentation (Gao et al., 2021a, Meng et al., 2021,
Yan et al., 2021) and Instance Discrimination (Wu
et al., 2018, Oord et al., 2018, Ye et al., 2019, He
et al., 2019).

Although previous works in CL have achieved
great performance, many of them do not consider
the semantic structure of data, a fact which usually
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leads to samples being treated as either positive or
negative pairs as long as they are from different
instances without considering their semantic simi-
larity. This results in samples with shared semantic
similarity being pushed apart in the semantic space
and prevents the model from improving. To ad-
dress this issue, Li et al. (2020) propose Prototyp-
ical Contrastive Learning (PCL), which accounts
for semantic structure. Khosla et al. (2020) pro-
pose Supervised Contrastive Learning which ex-
tends the self-supervised CL to fully-supervised
CL and more effectively utilizes the label informa-
tion in CL. Dao et al. (2021) propose multi-label
Supervised CL that allows model to learn multiple
representations of an image under the context of
different given labels.

In this paper, we apply the principles from these
prior works to the multi-intent detection task by
applying multi-label supervised CL, and PCL. Fi-
nally, we show our approach’s effectiveness in our
experiments.

3 Approach

In this section, we describe in detail our proposed
model architecture, PCMID, as illustrated in Fig-
ure 1. The architecture consists of an utterance-
label encoder module that uses a single BERT en-
coder, a multi-head attention block module, and a
multi-label supervised contrastive learning module.

3.1 Utterance-Label encoder

The first component in our model architecture is
an utterance-label encoder, as shown at the bot-
tom of Figure 1, based on BERT and denoted as
BERTψ below. This encoder is used to obtain
both a token-level embedding of the utterance and
a sentence-level embedding of the intent label.
Given the utterance inputs X = (x1, x2, ..., xn),
we obtain token-level embeddings for each utter-
ance by simply feeding each xi into the BERTψ
encoder. Given the intent label inputs Y =
(l1, l2, ..., lm), we also compute the intent label
sentence-level embeddings by first feeding each lj
to the BERTψ encoder with a pooling mechanism
to get the sentence-level hidden representation of
each intent label and then stacking them together.
Constructing the intent label embedding at the sen-
tence level enables the model to learn the hidden
representation of multiple intent labels given a sin-
gle utterance such that each xi ∈ X is associated
with multiple intent labels selected from the set of

Figure 1: Model Architecture PCMID is mainly com-
posed by three components, which are Utterance-Label
Encoder, Multi-head Attention Block and Prototypical
Contrastive learning.

M labels in total. Formally, the process of obtain-
ing the utterance embedding, EX , and intent label
embedding, EY , is defined as,

EX = BERTψ(X)

EY = Stack([hy1 , hy2 , ...hym ]) (1)

where hyj = pooling(BERTψ(lj))

In Equation 1, EX ∈ RL is the token-level em-
bedding of utterance X with a maximum sequence
length of L and an embedding size of H . EY ∈
RM×H is the intent label sentence-level embed-
ding with the label input size of M . hyj ∈ R1×H

is the sentence-level hidden representation of each
label lj , where j ∈ {1, . . .m}, constructed using
pooling methods including default BERT pooling,
mean pooling and self attentive pooling Wu et al.
(2021) to convert the token-level intent label hid-
den representations to a sentence-level intent label
hidden representation.

3.2 Multi-head Attention Block
The next component of PCMID is the Multi-head
Attention Block (MAB) inspired by the work



of Dao et al. (2021) shown in the middle of Fig-
ure 1. The Multi-head Attention Block is adapted
from the BERT encoder without considering the
positional embedding.
Multi-head Attention. Multi-head attention is
an extension of attention which is first introduced
by Vaswani et al. (2017). Compared to single
attention, multi-head attention projects Query,
Key, Value to h different head vectors separately.
Then, the attention is applied to the h projections
individually and results in a linear transformation
of the combination of all attention outputs. By
applying multi-head attention, the model can attend
to information from different hidden representation
subspaces at different positions. In our work, the
Query is the intent label embedding EY , the Key
and Value are the utterance embedding EX . We
express multi-head attention as follows:

MHA(EY , EX , EX)) = Concat(O1, ...Oh)W
o

where Oh = Att(EYW q
yh
, EXW

k
xh
, EXW

v
xh
)

(2)

where the W o,W q
yh ,W

k
xh
,W v

xh
are the

parameters which are learnable and
EYW

q
yh , EXW

k
xh
, EXW

v
xh

are the projected
vectors based on our Query, Key and Values.
Multi-head Attention Block. Based on multi-head
attention, we define the Multi-head Attention Block
(MAB) which is adapted from the encoder block
of BERT, without considering the positional em-
bedding and dropout. In our work, the MAB can
be viewed as a 12-layer BERT model with an ex-
tra layer on top of the BERT model, taking EY
as the Query and EX as the Key and Value. By
designing the MAB in this way, each intent label
queries the utterance Keys and determines whether
the utterance is close to the intent label semanti-
cally. The MAB also obtains an utterance-label
embedding, denoted as G, which represents the se-
mantic association between each utterance’s hidden
representation in both its embedding and its intent
label embedding. The utterance-label embedding
G through MAB is formally defined such that:

G = MAB(EY , EX , EX)

= LayerNorm(E
′
Y + FFNN(E

′
Y )) (3)

E
′
Y = LayerNorm(EY + MHA(EY , EX , EX))

Then, we have the output G ∈ RN×M×H where N

is the batch size of the utterance samples, M is the
number of intent labels, and H is the embedding
size.

3.3 Multi-label Supervised Contrastive
Learning

The final component of our work is the Multi-label
Supervised Contrastive Learning module, which is
done through Contrastive Learning (CL) and Pro-
totypical Contrastive Learning (PCL), as shown at
the top of Figure 1 and as described in the following
subsections.

Supervised CL. Contrastive Learning (CL) has
been increasingly popular and has proven to be an
effective learning mechanism. It shows extraordi-
nary performance for optimizing sentence seman-
tic hidden representations in an embedding space
in a single-label setting and in a self-supervised
way (Gao et al., 2021b; Chen et al., 2022; Ke
et al., 2021). CL helps improve the performance
of models, but, as a self-supervised technique, CL
does not leverage the label information and the
model’s learning capability is limited thereby. Con-
sequently, Khosla et al. (2020) propose Supervised
CL (SCL) to utilize the label information by select-
ing positive and negative samples to achieve a sig-
nificant improvement in model performance. Such
improvements are also realized in similar works,
like (Liu et al., 2021; Hu et al., 2022; Gunel et al.,
2020). Motivated by these works, we adapt SCL to
the multi-intent detection task.

Naively extending SCL to multi-intent detection
can be complicated by a label mismatch issue. For
multi-label SCL, if we have multiple positive sam-
ples with an unequal number of negative samples,
SCL is apt to find erroneous manifold represen-
tations, which in turn would decrease the model
performance.

In order to solve this problem, we implement
SCL in a multi-label setting by applying our con-
structed utterance-label embedding G. In this em-
bedding, since each utterance’s hidden representa-
tion is correlated with each intent label’s hidden
representation in their respective embeddings, the
number of positive samples and negative samples
will be the same and the label mismatch issue is
avoided.

Given the utterance-label embedding G with N
utterance instances in each mini-batch, we rep-
resent each utterance’s hidden representation i
with respect to intent label hidden representation



j such that {h(i, j) ∈ G(i, j)|i ∈ {1, . . . N}; j ∈
{1, . . .M}} and we represent the ground truth of
each utterance sample i regarding each intent label
j such that {yij ∈ {0, 1}|i ∈ {1, 2, 3, ..., N}; j ∈
{1, 2, 3, ...,M}}. Hence, each multi-intent utter-
ance i can be transformed to the single-intent rep-
resentation h(i, j) with respect to a single ground
truth label; so, the multi-intent problem can be
solved as single-intent classification. For SCL, we
regard hij as an anchor with the goal of pulling the
hij with the same intent label j closer. Accordingly,
we define the set containing all positive samples of
hij as P (i, j) = {hzj ∈ G(i, j)|yzj = yij = 1}
and the set containing all negative samples as
S(i, j) = G \ P (i, j). Then, we define the SCL
loss as:

ℓscl =
−1

|P (i,j)|
∑

hp∈P (i,j)

log
exp(hij ·hp/τ)∑

hs∈S(i,j)

exp(hij ·hs/τ)

(4)
where hp ∈ P (i, j) is the positive sample, hs ∈
S(i, j) is the negative sample and τ is its tempera-
ture.
Supervised Prototypical Contrastive Learning
Li et al. (2020) propose self-supervised Prototyp-
ical Contrastive Learning (PCL), which adapts a
clustering mechanism to CL in image tasks. Works
including (Medina et al., 2020; Yue et al., 2021)
use PCL for the pre-training of a few-shot model
and achieve great performance. Wang et al. (2021)
apply PCL for improving the label semantic em-
bedding space for the zero-shot slot-filling task.
Unlike self-supervised PCL, which finds the distri-
bution of prototypes via clustering, we adapt PCL
as a supervised method which marks the labels as
prototypes and optimizes the representation of both
the intent labels and the utterance samples in the
utterance-label embedding space G.
The definition of the positive set of samples and
negative set of samples differs between PCL and
CL. In PCL, we set the prototype to the intent la-
bel embedding EY ∈ RM×H . Then, we define
Q(i, j) as the hard positive set of samples which
satisfies that {hq(i, j) ∈ EY |yij = 1} and C(i, j)
is a hard negative set of samples which satisfies
{hc(i, j) ∈ EY |yij ̸= 1}. We define the Super-
vised Prototypical Contrastive Learning (SPCL)
loss as:

ℓspcl =
−1

|Q(i,j)|
∑

hq∈Q(i,j)

log
exp(hij ·hq/τ)∑

hc∈C(i,j)

exp(hij ·hc/τ)

(5)

We combine the multi-label classification loss,
the Binary Cross-Entropy loss (BCE), and the Su-
pervised PCL loss together during training, for our
work’s (PCMID’s) loss as:

ℓPCMID = ℓBCE + γℓspcl (6)

where the parameter γ is used to control the trade-
off between the two losses.

4 Experiment

Datasets. We conduct experiments on three pop-
ular public datasets including MixATIS2, MixS-
NIPS3 and Facebook Semantic Parsing System
(FSPS)4, which contain 18, 7, and 25 unique in-
tent labels, and 14749, 44173, and 44783 utterance
samples, respectively (Qin et al., 2020b, Coucke
et al., 2018, Gupta et al., 2018). We also use a
real-world private commercial dataset in the credit
repair domain, referred to as CREDIT165, which
contains 16 unique intent labels and 4384 utterance
samples. This dataset reflects the real-world chal-
lenges regarding the multi-intent detection task.

We pre-process the MixATIS, MixSNIPS and
FSPS datasets following the data processing
pipeline from the previous work (Wu et al., 2021;
Qin et al., 2020b). Also, we pre-process the
CREDIT16 dataset by lower-casing and then re-
moving punctuation characters and emojis from
the utterances and intent labels. Next, we remove
new-line characters and repeated white space char-
acters from each utterance sample. We split the
CREDIT16 dataset into train, validation and test
sets using the ratio of [0.8, 0.1, 0.1], respectively.
The detailed dataset characteristics are shown in
Table 1.

MixATIS MixSNIPS FSPS CREDIT16
Num. Label 18 7 25 16
Num. Utt 14749 44173 44783 4384
Train 13162 397768 31279 3570
Validation 828 2199 9042 439
Test 759 2198 4462 439

Table 1: Dataset Characteristics

2https://github.com/zjc664656505/PCMID/tree/
main/data/MixATIS_clean

3https://github.com/zjc664656505/PCMID/tree/
main/data/MixSNIPS_clean

4https://github.com/zjc664656505/PCMID/tree/
main/data/SNIPS

5https://github.com/zjc664656505/PCMID/tree/
main/data/Aktify
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https://github.com/zjc664656505/PCMID/tree/main/data/SNIPS
https://github.com/zjc664656505/PCMID/tree/main/data/Aktify
https://github.com/zjc664656505/PCMID/tree/main/data/Aktify


MixATIS MixSNIPS FSPS CREDIT16
Models Acc F1 Acc F1 Acc F1 Acc F1

Stack-Prop 0.719 0.790 0.946 0.976 0.723 0.911 - -
Joint-MID-SF 0.731 0.806 0.951 0.980 0.780 0.877 - -

AGIF 0.758 0.812 0.953 0.980 0.749 0.914 - -
LABAN 0.765±0.3% 0.905±0.4% 0.955±0.3% 0.980±0.2% 0.910±0.1% 0.937±0.1% 0.447±0.9% 0.716±0.7%

PCMIDbase pooler 0.773±0.5% 0.912±0.2% 0.960±0.2% 0.983±0.1% 0.913±0.1% 0.941±0.1% 0.471±1.2% 0.759±0.8%
PCMIDbase mean 0.792±0.6% 0.911±0.7% 0.959±0.7% 0.982±0.6% 0.910±0.1% 0.940±0.1% 0.482±1.4% 0.747±0.7%

PCMIDlarge pooler 0.837*±0.7% 0.940*±0.7% 0.960±0.2% 0.983±0.1% 0.916±0.1% 0.942±0.1% 0.478±0.6% 0.745±0.6%
PCMIDlarge mean 0.819±1.2% 0.933±0.8% 0.960±0.3% 0.982±0.1% 0.917*±0.1% 0.944*±0.1% 0.495*±1.0% 0.759±0.4%

S-PCMIDbase pooler 0.816±0.9% 0.917±0.5% 0.961*±0.4% 0.983±0.2% 0.912±0.2% 0.940±0.1% 0.472 ±1.4% 0.742±0.8%
S-PCMIDbase mean 0.809±1.5% 0.919±0.7% 0.958±0.5% 0.982±0.1% 0.913±0.2% 0.941±0.1% 0.490±0.7% 0.749±0.5%

Table 2: Multi-intent detection results on four datasets. We report accuracy (Acc) for all intent exact matches and F1
scores based on individual intent calculations. ∗ indicates the significant improvement of p-value < 0.05 compared
to the previous models. base indicates BERT-base, and large indicates BERT-large.

Baseline Experiments. We conduct experiments
comparing our approach to previous works
including:
Stack-Prop (Qin et al., 2019), which proposes a
shared self-attentive encoder and two decoders for
joint intent and slot filling tasks separately.
Joint-MID-SF (Gangadharaiah and
Narayanaswamy, 2019), which uses Bi-LSTMs
with a slot-gated mechanism for slot filling and
intent detection tasks.
AGIF (Qin et al., 2020b), which adapts graph
BI-LSTM interactive architectures for both slot
filling and intent detection tasks simultaneously.
LABAN (Wu et al., 2021), which encodes both
utterances and intent labels through two different
encoders, along with an adaptive label-aware
attentive layer for the multi intent detection task
specifically.

Experimental Setup. In our work, PCMID,
we conduct experiments based on the pre-trained
BERT-Base-Uncased language model. We apply a
pre-trained sentence embedding, the BERT-Base-
NLI-STSB-Mean-Tokens6 from sentence trans-
former (Reimers and Gurevych, 2019), to further
improve our model’s semantic understanding ca-
pability in our later experiments. Additionally, we
have also conducted experiments using pre-trained
BERT-Large-Uncased model in our PCIMID frame-
work. We use BERT default pooling (PCMID-
pooler), mean pooling (PCMID-mean) and self-
attentive pooling (S-PCMID-pooler) in our exper-
iments. Our experiments are conducted using an
Nvidia Titan RTX with 24GB GPU memory.

During our training we use the AdamW opti-
mizer as our parameter optimizer, apply StepLR as

6https://huggingface.co/sentence-transformers/
bert-base-nli-stsb-mean-tokens

our learning rate scheduler, in which it adjusts the
learning every 4 training steps with a multiplicative
factor of learning rate decay equal to 0.9. We set the
training epochs, initial learning rate, and batch size
hyperparameters to 50, 1e−5, and 128, respectively
in our experiments on the MixATIS, MixSNIPS,
and FSPS datasets. However, in our CREDIT16
experiment, we failed to converge within the 50
training epochs, so we increased the number of
training epochs to 100 for the CREDIT16 dataset.

We set the threshold for multi-label classifica-
tion to 0.5 and evaluate the results based on the
F1-score and Accuracy metrics. We run the train-
ing experiments 10 times per dataset and obtain the
trained model parameters based on the best vali-
dation accuracy epoch for computing the testing
results. We report results of the final model by
averaging 5 testing results per dataset.

5 Results

Multi-Intent Results. Our main experimental re-
sults for the multi-intent detection task are shown
in Table 2. One of the previous works which we
compare to is LABAN (Wu et al., 2021), however
we could not reproduce the results presented in
their publication. Upon inspection of their github
repository, we found that their published results
use their validation set as part of their test set. We
generated the LABAN results shown in Table 2 by
using the code provided in their github repository,
but we separated the test set from the validation
set.

We find that all PCMID models achieve close
results on the MixSNIPS datasets. S-PCMIDbase

pooler, which is PCMID with BERT default pool-
ing using pre-trained sentence embeddings, is
slightly better than other models. This fact sug-
gests that the model can capture better contex-

https://huggingface.co/sentence-transformers/bert-base-nli-stsb-mean-tokens
https://huggingface.co/sentence-transformers/bert-base-nli-stsb-mean-tokens


Samples Labels Predictions

1
give me the fares from miami to cleveland next sunday
and which airline is us

atis_airfare,
atis_airline

atis_airfare,
atis_airline

2 list la and how much is a limousine service in la guardia
atis_city,
atis_ground_fare

atis_ground_fare

3
understand that i already have safety alert center and
it’s too expensive for what i

already_client,
money_too_expensive

already_client,
money_too_expensive

4
1 i don’t have debt with you 2 i ignore your calls
emails and messages because i’m no longer interested

don’t_owe_anything
stop_calling,
don’t_owe_anything

Table 3: Real samples extracted from the MixATIS and CREDIT16 Datasets via the PCMIDbase mean model.

ATIS SNIPS
Models Acc Acc

Stack-Prop 0.969 0.980
Joint MID-SF 0.954 0.972

AGIF 0.971 0.981
LABAN 0.976 ±0.2% 0.977± 0.2%

PCMIDbase pooler 0.968 ±0.6% 0.979± 0.4%
PCMIDbase mean 0.979 ±0.2% 0.982± 0.2%

PCMIDlarge pooler 0.973 ±0.4% 0.980± 0.2%
PCMIDlarge mean 0.980 ±0.2% 0.982 ± 0.1%

S-PCMIDbase pooler 0.978 ±0.3% 0.980± 0.4%
S-PCMIDbase mean 0.977 ±0.2% 0.981± 0.3%

Table 4: Single-intent detection results on two datasets.
We report the accuracy (Acc) for the verbatims labelled
correctly.

tual semantic information by applying the pre-
trained sentence embeddings even though the
model size is smaller than other PCMIDlarge. We
also find that our PCMIDlarge pooler achieves
the highest performance on the MixATIS dataset.
PCMIDlarge mean, which is PCMID with mean
pooling using pre-trained BERT-large word embed-
dings, achieves the highest accuracy and the best F1
score on both the CREDIT16 and FSPS datasets.

Our work, PCMID, outperforms previous base-
line results on every public benchmark dataset with
only a single BERT encoder. Regarding our private
CREDIT16 dataset, we compare our work with LA-
BAN and BERT and show that our work still gets
the best performance. However, we do not compare
our work with the other baseline models (Stack-
Prop, Joint-MID-SF, AGIF) on the CREDIT16
dataset since CREDIT16 is not designed for the
joint multi-intent detection and slot filling task, and
is therefore not comparable to these works.
Single-Intent Results. In order to show the ro-
bustness of our work, we also evaluate our ap-
proach in the single-intent setting using ATIS7 and

7https://github.com/zjc664656505/PCMID/tree/

SNIPS8 datasets and compare the experiment re-
sults of our work with previous works. As can
be seen in Table 4, our PCMIDlarge mean ap-
proach using BERT-large pre-trained word em-
bedding achieves the highest performance on the
single-intent detection task for the accuracy evalua-
tion metrics. We observe that although the other re-
sults from our approach, such as PCMIDbase pooler
and S-PCMIDbase pooler, are not achieving accu-
racy results as good as the PCMIDlarge mean, they
still perform relatively well on both datasets and
have a minimal performance gap compared to pre-
vious works.

6 Analysis

PCL on Multi-Intent Detection. In Table 5, we
present the results of PCMID with different combi-
nations of options between CL and PCL and com-
pare them on all of the datasets we use. Given
the results shown in Table 5, we can see that by
applying PCL, PCMID outperforms PCMID with-
out any CL strategy on the MixSNIPS, FSPS and
CREDIT16 datasets. Especially on the CREDIT16
dataset, using PCL has an absolute advantage over
PCMID alone. This indicates that PCL plays an
important role in the PCMID model, especially
when the amount of training data is limited. When
we compare the results of PCMID with CL only
and PCMID without CL or PCL, we also see that
PCMID’s performance is substantially improved
on MixATIS and MixSNIPS datasets, but not on
the FSPS and CREDIT16 datasets. This suggests
that PCMID with CL might be affected by data
volume and complexity.
Intents Visualization To illustrate the effective-
ness of PCL optimization, Figure 2 shows the dis-
tribution of label representations of the test samples

main/data/ATIS
8https://github.com/zjc664656505/PCMID/tree/

main/data/SNIPS
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Dataset MixATIS MixSNIPS FSPS CREDIT16
With CL With PCL Acc F1 Acc F1 Acc F1 Acc F1

No Yes 0.773 0.912 0.960 0.983 0.913 0.941 0.471 0.759
Yes No 0.783 0.923 0.959 0.982 0.904 0.940 0.437 0.740
Yes Yes 0.788 0.919 0.961 0.982 0.909 0.939 0.466 0.761
No No 0.767 0.905 0.958 0.981 0.911 0.940 0.448 0.756

Table 5: Analysis of contrastive learning strategies for PCMIDbase. The first row is our default strategy through the
PCMIDbase pooler.

Figure 2: The distribution of FSPS intent representa-
tions of test samples from the PCMIDbase pooler.

from FSPS. Each cluster is clearly separated with-
out significant overlap. Compared with the plot
diagram from (Wu et al., 2021), our clusters are
more concentrated within the class and more iso-
lated from each other. In other words, due to the
PCL optimization, each utterance can be more eas-
ily classified into their label clusters.
Samples Analysis As a motivational example, con-
sider cases 1 and 2 in the Table 3, from the Mix-
ATIS dataset. PCMID is able to predict all labels
correctly in case 1. However, it also shows in case
2 that PCMID cannot understand the representation
of "la", and misses the label "city" in its prediction.

It indicates that the model can be further trained
with some domain specific terms like location, com-
pany, etc. Because the CREDIT16 dataset contains
real world user conversations, the utterances in the
dataset contain some noise. When faced with the
imperfect case 3 (incomplete sentence) from the
CREDIT16, PCMID is able to make the correct
prediction. Even if human labels are corrupted, as
in case 4, PCMID makes a correct classification
ignoring the noise. In summary, PCMID is a robust
model, but it can be further improved by learning
the representation relationships between specific
terminologies and labels.

In terms of model size, LABAN’s (Wu et al.,
2021) parameters are about twice that of our
PCMID due to LABAN’s use of a separate BERT
encoder for the label. But their performance is
worse than our model. Additionally, BERT fine-
tuning classification can yield a decent perfor-
mance gain on some tasks. By simply building
a cross-attention layer of target and utterances on
top of BERT, the model can be further boosted fol-
lowing the PCL strategies. With small additional
costs, the model can gain consistent improvements,
especially in the multi-label tasks.

7 Conclusion

In our paper, we propose a multi-label classifica-
tion model PCMID with a single BERT encoder to
handle the multi-intent detection task with smaller
model size and higher computational efficiency but
still achieve higher performance compared with
previous state-of-art work.

Our approach maps complex utterance states
to an utterance-label representation with respect
to a joint label representation, and adapts proto-
typical contrastive learning to optimize both the
utterance encoder and the representation. Experi-
ments and analysis demonstrate the effectiveness
of our proposed model, which can further allevi-
ate the discrepancies between utterance and label
representations and improve the quality of label



representations and the performance of multi-label
classification. In the future, we will explore how to
further optimize the label representations in cross-
domains and study the effectiveness of the model
on domain transfer tasks.

Limitations

Although our work achieves good results on the
multi-intent detection tasks, we are focusing only
on single-domain multi-intent detection and not
on cross-domain settings; a fact which limits our
work’s generalizability.

Through our experiments, we find that the perfor-
mance of PCMID is sensitive to the initialization of
label embeddings. When the label name is not well
defined, the pre-trained label embedding through
the BERT encoder can reduce the performance,
which is even worse than with randomly initialized
label embeddings. For example, if the intent labels
are not clearly defined, the model will potentially
be misled and optimize both utterance embeddings
and label embeddings in the wrong direction at the
beginning. As a result, utterances will be assigned
to the wrong intent label clusters.
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Appendix

Ablation analysis

We focus on the impact of choices in architec-
ture and contrastive learning strategy on the perfor-
mance of our models, and vary the pooling strategy
choice of contrastive learning strategy and label
pre-training strategy.

Self-Attentive vs Mean-Pooling vs Pooler

We experiment with different choices of pooling
strategy, as seen in Table 6 namely with mean pool-
ing, a self-attentive layer over the pooled output,
and using a pooler layer. We find that at lower
accuracy levels, such as seen for MixATIS, mean-
pooling is superior to a pooler layer, obtaining a
gain of 1.9% in accuracy. Whereas for higher ac-
curacy datasets such as MixSNIPS and FSPS, the
pooling strategies are essentially equivalent.

In the Table 6, a comparison is made of the pool-
ing strategies. The performance of three strategies
are close for MixSNIPS and FSPS. While using the
mean-pooling shows a slight better performance
in both MixATIS and CREDIT16 than the other
two datasets. Therefore, using the default pooler
and mean-pooling is recommended because the use
of a self-attentive layer requires a large number of
model parameters.

Label Pre-trained

We validate the effect of label training on our
model, with the other loss and pooler strategies
kept at the default values. We find that the accuracy
is consistently higher when using label pretraining,
ranging from a 0.2% accuracy boost on FSPS, to a
1.3% accuracy boost on MixATIS.

In the Table 7, the results show that our models
can achieve a better result with pretrained label
states in the MixATIS, MixSNIPS and FSPS. But it
is not as good as that of using random initialization
on the CREDIT16 dataset.

With pretrained label states, the model can han-
dle unseen labels more confidently because unseen
labels can be turned into a processed representation
instead of being randomly initialized.

However, there are some cases in which the label
names are too sparse to represent the utterance’s
complex intents. In such scenarios, the model can
show a better performance without pretrained label
states, as seen for CREDIT16 in Table 7.
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Dataset MixATIS MixSNIPS FSPS CREDIT16
Models Acc F1 Acc F1 Acc F1 Acc F1

PCMIDbase pooler 0.773 0.912 0.960 0.983 0.913 0.941 0.471 0.759
PCMIDbase mean 0.792 0.911 0.959 0.982 0.910 0.940 0.482 0.747

PCMIDbase self-attentive 0.777 0.905 0.960 0.982 0.910 0.939 0.481 0.741

Table 6: Ablation analysis of pooling strategies for label states.

Dataset MixATIS MixSNIPS FSPS CREDIT16
Uses Pretrained Label Acc F1 Acc F1 Acc F1 Acc F1

Yes 0.773 0.912 0.960 0.983 0.913 0.941 0.472 0.742
No 0.760 0.899 0.957 0.981 0.911 0.940 0.486 0.747

Table 7: Ablation analysis of label pretraining for PCMID. The first row is the default strategy through PCMID-
pooler.

MAB Analysis

In the main experiments, we achieve good results
on multi-intent detection tasks across different
datasets by setting label embedding as query and
utterance embedding as key&value in MAB. In or-
der to ensure this is the best setting for MAB in
our task, we also conduct experiments with the sce-
nario of setting utterance embedding as query and
label embedding as key&value in MAB.

Based on the experiment results shown in Ta-
ble 8, we can clearly observe that using label
embedding as query and utterance embedding
as key&value in MAB is achieving significantly
higher performance than the other way around.
This fact happens because the intent label is much
shorter and contains very limited semantic informa-
tion compared to utterances, and usually we want
to set the value as the one that contains richer se-
mantic information to fully explore the multi-head
attention mechanism. Therefore, by setting query
as intent label and utterance as key and values, the
utterance-label embedding, the output of MAB, can
directly represent how much label semantic infor-
mation is contained in each corresponding utter-
ance and PCL can further fine-grain the embedding
to achieve higher classification results. However,
if the query is set as utterance and the label is set
as key and value, then the output will focus more
on the token semantic information of utterances
that associate with the limited label semantic in-
formation, where the utterance-label embedding
needs to be obtained using additional pooling layer,
resulting in worse utterance and label semantic as-
sociation and lower classification results.

More details on the CREDIT16 dataset

Similar datasets.

SMS focused datasets have been collected before,
for example Almeida et al. (2013) collect a dataset
labeling spam messages, while Mauriello et al.
(2021) label different stressors in another SMS
dataset. As far as we are aware however, no dataset
has been collected before that specifically deals
with conversational sales interactions over SMS in
the credit repair domain. In particular, conduct-
ing automated conversations over text message is a
fairly new endeavor, in which we hope this dataset
will be useful for benchmarking trained models.

Initial dataset collection and domain
description

• We collected an initial dataset of 115,000 un-
labelled utterances acquired through SMS text
message.

• The context of these conversations is an agent
reaching out to a pre-subscribed customer,
asking their interest in scheduling a call with
a credit repair representative to discuss how
their credit scores may be improved.

• As such, the utterances span discussion on cus-
tomer credit scores, client interest in schedul-
ing a call, as well as requests to remove erro-
neously added customers from the automated
texting list.

Pre-labelling and annotation of CREDIT16

• For the domain, we have a pre-collected train-
ing dataset with 130 intents for credit repair



MAB MixATIS MixSNIPS FSPS CREDIT16
Query/Key/Value Acc F1 Acc F1 Acc F1 Acc F1
Label/Utter/Utter 0.773 0.912 0.960 0.983 0.913 0.941 0.471 0.759
Utter/Label/Label 0.733 0.893 0.952 0.979 0.897 0.935 0.340 0.601

Table 8: Results of PCMIDbase pooler by swapping label embedding and utterance embedding as Query, Key and
value in MAB. Label indicates label embedding and Utter indicates utterance embedding.

Metric Avg. # of sentences Avg. # of tokens Avg. # of chars Avg. TTR Med. Flesch reading ease
Value 2.63 36.4 174.2 0.84 68.1

Table 9: Length and token type derived statistics.

and general conversational texting. We trained
130 binary text classification models, where
for each classifier the negative samples for an
intent were randomly collected from all other
129 intents.

• For pre-selection of which samples would be
annotated by humans, we first restricted to
which utterances would receive at least two la-
bels under our automated process above. (We
note that not all utterances retained more than
1 label by the end of our rounds of annotation.)
Next, we split the dataset to be annotated by 3
linguists contracted to our company for a first
round of annotations.

• At this point, we ran preliminary analysis and
either removed or merged all labels with less
than 100 examples. Merger of intents was
based on discretion of which seemed com-
mon, e.g., joining together different reasons
to stop calling, or merging different intents
expressing interest in the service. After this la-
bel cleanup, we dropped any utterances which
had no associated label.

• Next, we rotated the assignment of utterances
to the linguists so that each could revise an-
notations from the previous round under the
revised label set. The intent label distribution
visualization is shown in Figure 3.

Privacy and anonymity
All data was run through an automatic entity clas-
sifier before even being presented to human anno-
tators, removing all instances of PIID including
name, phone number, address, email address and
credit card number. The labelers then also manually
reviewed given examples, removing any omissions
found in the automatic redaction. All occurrences

of names are replaced by “namex“ ranging from
“name1" to “name2" and so forth, where the num-
bering indicates unique names in the utterance. Lo-
cations are replaced with “location1", “location2"
and so forth. Similarly, we replace credit card
info and expiration with “creditcardx" and “credit-
cardexpirationx", and email address with “emailad-
dressx".

Basic dataset statistics

We look at basic statistics of dataset quality. First
we evaluate the average length (in characters, to-
kens and sentences) of each phrase. Next, we com-
pute the average type-token-ratio(TTR) introduced
by Templin 1957 which is a measure of the lin-
guistic complexity/quality9, and the Flesch reading
ease metric introduced by Kincaid et al. 1975

The average TTR of 0.84 indicates the token
repetition within phrases is limited, and a median10

Flesch reading ease metric of 68.1 indicates the
texts are easily readable by most English speakers
of teenage age or older. See Table 9 for precise
figures.

Next we consider the emotional context of the
text using a standard T5 (Raffel et al., 2020) clas-
sifier11 trained on the emotion dataset introduced
by Saravia et al. (2018). We note that nearly 20%
of examples are emotion laden, especially anger
and sadness. This dataset may therefore also be
useful for detection and analysis of emotion laden
responses in short text conversations. See Table 10

9We calculate the TTR via the Lexical Richness package
by Shen (2022)

10We use the median Flesch reading ease metric, because
we find the scores are not normalized on our dataset, and has
some large negative outliers that skew the distribution.

11See here for the emotion classifier:
https://huggingface.co/mrm8488/t5-base-finetuned-emotion.
We threshold any examples assigned below a 0.9 score as
neutral, and with an even higher threshold of 0.97 for joy and
love due to oversensitivity of the model.



Emotion Percentage of total Example Utterance
Neutral 81.34 % Are you all able to help me see all of my debts?
Anger 8.19 % I definitely terminated it twice now. If I find I’m still

being charged somehow, I’m going to be very upset
Sadness 4.61 % I’m not well at the moment and I’m off of work on

sick leave from Covid call me tomorrow evening I’m
resting my voice is horrible!.

Fear 0.753 % I would love to fix my credit but I’m also afraid of
spams and people stealing money.

Joy 4.90 % Thank you for checking with me. I’m in good shape
right now from your service to my past issues. I have
encouraged others to use your services also.

Table 10: Emotional content of Credit-16.

for more details.



Figure 3: The distribution of CREDIT16 labels


