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Abstract

The tool-use Large Language Models (LLMs)001
that integrate with external Python interpreters002
have significantly enhanced mathematical rea-003
soning capabilities for open-source LLMs,004
while tool-free methods chose another track:005
augmenting math reasoning data. However,006
a great method to integrate the above two re-007
search paths and combine their advantages008
remains to be explored. In this work, we009
firstly include new math questions via multi-010
perspective data augmenting methods and then011
synthesize code-nested solutions to them. The012
open LLMs (i.e., Llama-2) are finetuned on013
the augmented dataset to get the resulting mod-014
els, MuMath-Code (µ-Math-Code). During015
the inference phase, our MuMath-Code gener-016
ates code and interacts with the external python017
interpreter to get the execution results. There-018
fore, MuMath-Code leverages the advantages019
of both the external tool and data augmenta-020
tion. To fully leverage the advantages of our021
augmented data, we propose a two-stage train-022
ing strategy: In Stage-1, we finetune Llama-023
2 on pure CoT data to get an intermediate024
model, which then is trained on the code-nested025
data in Stage-2 to get the resulting MuMath-026
Code. Our MuMath-Code-7B achieves 83.8 on027
GSM8K and 52.4 on MATH, while MuMath-028
Code-70B model achieves new state-of-the-art029
performance among open methods—achieving030
90.7% on GSM8K and 55.1% on MATH. Ex-031
tensive experiments validate the combination032
of tool use and data augmentation, as well as033
our two-stage training strategy. We release the034
proposed dataset along with the associated code035
for public use.036

1 Introduction037

In Natural Language Processing (NLP), Large038

Language Models (LLMs) (Radford et al., 2019;039

Brown et al., 2020; Raffel et al., 2023) espe-040

cially the proprietary ones such as GPT-4 (Ope-041

nAI, 2023a) and Claud-3 (Anthropic, 2024) have042
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Figure 1: The comparison between our MuMath-Code
and other state-of-the-art tool-use LLMs. MuMath-
Code exhibits a substantial improvement in perfor-
mance on both GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021a), relative to the pre-
vious approaches.

demonstrated superiority in a variety of tasks, e.g., 043

text classification (Wang et al., 2018; Devlin et al., 044

2019; Min et al., 2022; Jiang et al., 2023b), auto- 045

mated coding (Chen et al., 2021; Luo et al., 2023b), 046

instructions following (Longpre et al., 2023), and 047

math problem solving (Chowdhery et al., 2022; 048

Lewkowycz et al., 2022; Anil et al., 2023; Fu et al., 049

2023a). Among these tasks, the capability to han- 050

dle math problems stands as a typical and criti- 051

cal criterion for the evaluation of different LLMs. 052

However, a significant performance disparity is ob- 053
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served between open-source LLMs, for instance,054

LLaMA (Touvron et al., 2023a,b), and their propri-055

etary counterparts, when it comes to mathematical056

reasoning ability.057

In recent years, many scholarly publications058

have been directed towards improving the mathe-059

matical proficiency of LLMs, which can be catego-060

rized into two distinct research trajectories: those061

that purely rely on natural language reasoning and062

those that incorporate external tools. The former063

methods are tool-free, mainly depends on data aug-064

mentation to enhance the models’ mathematical065

reasoning capability, while the second trajectory066

(namely tool-use LLMs) are often coupled with067

external Python interpreters. From the perspective068

of knowledge distillation (Huang et al., 2022; Li069

et al., 2022; Magister et al., 2023; Ho et al., 2023;070

Fu et al., 2023b; Shridhar et al., 2023), both main-071

stream approaches transfer math reasoning abilities072

from the powerful teacher models (for instance,073

GPT-4) to the inferior open foundation models.074

The tool-free methods synthesize a large number075

of new math problems and corresponding solutions,076

taking the original training math QA pairs as the ini-077

tial data seeds. Scaling law theoretically provides078

the basis for the ongoing improvement of LLMs’079

performance by constantly incorporating new train-080

ing data. Representative approaches are RFT (Yuan081

et al., 2023), MetaMath (Yu et al., 2023), Wizard-082

Math (Luo et al., 2023a), MuggleMath (Li et al.,083

2023), MuMath (You et al., 2024), etc. As for084

the second trajectory, code executors substantially085

supplant LLMs in particularly challenging com-086

putational and logical tasks, thereby alleviating087

the problem-solving burden on them. This tool-088

use category is exemplified by PAL (Gao et al.,089

2023), PoT (Chen et al., 2023), MAmmoTH (Yue090

et al., 2023), ToRA (Gou et al., 2023) and Math-091

Coder (Wang et al., 2023).092

Although the aforementioned research paths093

have been individually successful, to date, few094

methods have been developed that amalgamate095

their respective advantages. In this paper, we pro-096

pose a novel method that integrates tool usage with097

data augmentation to synthesize a large amount098

of multi-perspective mathematical questions and099

solutions (we employ the augmenting methods in-100

troduced in a previous work MuMath (You et al.,101

2024)). Specifically, we utilize proprietary LLMs102

(like GPT-4) to generate Python code while synthe-103

sizing new solutions to math problems, and then104

fine-tune the open-source models (e.g., LLaMA)105

on the augmented dataset. The resulting model, 106

MuMath-Code, is thus equipped with the ability 107

to write code for math problem solving. During 108

the inference phase, our MuMath-Code can gen- 109

erates both CoT (Wei et al., 2022) reasoning texts 110

and Python code blocks. These code blocks are 111

then extracted and executed by an external Python 112

interpreter, and the execution results are returned 113

to MuMath-Code for subsequent rounds of CoT 114

reasoning or code generation until the final result 115

is obtained or the maximum number of execution 116

rounds is reached. 117

The multi-perspective mathematical question 118

set comprises questions augmented via rephras- 119

ing (Yu et al., 2023), alteration (Li et al., 2023; 120

You et al., 2024), FOBAR (Jiang et al., 2023a), 121

BF-Trans (You et al., 2024), besides those from 122

the original training sets. Regarding the solutions 123

nested with Python code, we leverage a general 124

pattern like the ones used in ToRA (Gou et al., 125

2023) and MathCoder (Wang et al., 2023): CoT- 126

PoT interleaving. However, we propose prefix CoT, 127

code debugging and pseudo-answer guidance filter- 128

ing to improve the consistency and quality of our 129

augmented solutions. The prefix CoT is a thought- 130

ful analysis in pure natural language before code 131

generation, making the LLMs consider this anal- 132

ysis while generating all the subsequent content, 133

which thus are helpful for the models to learn the 134

whole solution. Besides, we prompt GPT-4 to de- 135

bug and correct the inexecutable code when re- 136

questing the solutions, and we keep the faulty code 137

since this process of verification and correction can 138

help boost the models’ coding proficiency. Further- 139

more, for those synthesized questions via alteration, 140

which lack ground truth answers as filtering guid- 141

ance, we choose the majority-voting answers as 142

the pseudo-answers. This process can increase the 143

correctness of the generated solutions and thus im- 144

prove the data quality generally. We name the pro- 145

posed dataset as MuMath-Code-Data and denote 146

it as Dµ-code. 147

Moreover, previous tool-use LLMs for math are 148

derived by directly finetuning on code-nested data, 149

which thus fail to fully harness the intrinsic nat- 150

ural language reasoning capability of the LLMs 151

themselves. Different from the other tool-use meth- 152

ods, we design a two-stage training strategy to 153

better combine the advantages of data augmenta- 154

tion and external code execution. The first stage is 155

to enhance the models’ pure language mathemat- 156

ical reasoning, where the largest (751K) dataset 157
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proposed in MuMath (here called MuMath-Data158

and denoted as Dµ) is utilized to finetune LLaMA,159

and get an intermediate model, MuMath. In the160

second stage, we continue finetuning MuMath on161

MuMath-Code-Data to equip the model with the162

ability to write code for solving math problems.163

The resulting model, MuMath-Code, is thus can164

be prompted to leverage the Python interpreter to165

execute its generated code for securing the desir-166

able outputs at inference time.167

Our contributions are summarized as follows:168

• We construct a multi-perspective augmenta-169

tion dataset with code-nested solutions for170

math problem solving, called MuMath-Code-171

Data.172

• We design a two-stage training strategy to173

equip the open LLMs with pure language rea-174

soning and math related code generation ca-175

pabilities, respectively.176

• The obtained model, MuMath-Code, achieves177

new state-of-the-art performance among open178

LLMs across the in-domain math reasoning179

datasets as well as the out-of-domain ones.180

MuMath-Code-7B have 83.8 on GSM8K and181

52.4 on MATH, while MuMath-Code-70B has182

achieved 90.7% on GSM8K and 55.1% on183

MATH.184

2 Related Work185

2.1 Tool-Free LLMs for Math186

Rejection Sampling-based Fine-Tuning (RFT, Yuan187

et al., 2023) only augments the solutions via re-188

jection sampling to collect a variety of different189

reasoning paths. Since RFT does not introduce190

new math questions, the diversity of the augmented191

dataset is quite low, which limits the performance192

improvement of the finetuned models. With the aim193

of incorporating a broader spectrum of questions,194

MetaMath (Yu et al., 2023) employs rephrasing,195

Self-Verification (SV, Weng et al., 2023) and FO-196

BAR (Jiang et al., 2023a) to generate new questions.197

Ideally speaking, like the original questions, there198

are also ground truth answers for filtering solutions199

to these augmented questions. To bring in more di-200

verse data, WizardMath (Xu et al., 2023; Luo et al.,201

2023a) and MuggleMath (Li et al., 2023) choose202

to create totally new questions via evolution or di-203

rectional modification (changing numbers, adding204

conditions, increasing complexity, etc.) based on205

the seed questions. These altered questions have206

no ground truth answers, thus lacking a criterion to 207

filter their corresponding synthesized solutions. 208

Furthermore, MuMath (You et al., 2024) lever- 209

ages some of the aforementioned methods, and 210

additionally proposes BF-Trans and expression re- 211

placement (etc.) to perform comprehensive aug- 212

mentation, thus constructing a multi-perspective 213

math question set with much greater diversity. For 214

improving data quality, majority sampling serves 215

as the filtering rule for the synthesized solutions 216

to those new questions without deterministically 217

known answers. Instead of solution filtering, a con- 218

temporary work, Xwin-Math (Li et al., 2024), em- 219

ploys verification with solution requesting during 220

question synthesis, thereby improving the solvabil- 221

ity of the questions and the correctness of the an- 222

swers. Since there is no restriction on the direction 223

of question modification, Xwin-Math theoretically 224

offers a wider variety of diverse synthesized data. 225

Balancing the efficacy and the ease of replication, 226

in this paper the proposed MuMath-Code opts to 227

employ the question augmentation from MuMath, 228

although it is orthogonal to any other augmentation 229

methods. 230

Nevertheless, as probabilistic models, LLMs in- 231

herently have limitations in logical reasoning and 232

numerical computation. Thus, to improve the accu- 233

racy of mathematical problem-solving while rely- 234

ing solely on the capabilities of LLMs necessitates 235

the utilization of a substantially larger dataset com- 236

pared to tool-use methods. 237

2.2 Tool-Use LLMs for Math 238

Another research trajectory highlights the synergy 239

between LLMs and external tools. Pioneering ef- 240

forts along this include the Program-aided Lan- 241

guage model (PAL, Gao et al., 2023) and Pro- 242

gram of Thought (PoT, Chen et al., 2023). More- 243

over, MAmmoTH (Yue et al., 2023) integrates both 244

CoT and PoT in a coarse-grained fashion (each 245

sample corresponds to only one of these two pos- 246

sible solution types), enabling flexible inference 247

where the finetuned models may adopt different 248

methods for different questions. Different from 249

MAmmoTH, ToRA (Gou et al., 2023) interleaves 250

python code blocks and natural language reason- 251

ing parts over multiple turns for a same solution, 252

which offers a more flexible combination of CoT 253

and PoT. However, neither MAmmoTH nor ToRA 254

employs query augmentation, thereby narrowing 255

the range of math questions, which in effect, limits 256

the problem-solving capabilities that can be ac- 257
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quired. Wang et al. propose a contemporaneous258

work with ToRA, MathCoder (Wang et al., 2023),259

where each solution is also organized in an inter-260

leaved manner. Besides, they introduce interpola-261

tion problems to mitigate the disparity in difficulty262

level between GSM8K (Cobbe et al., 2021) and263

MATH (Hendrycks et al., 2021b). Hence, like our264

MuMath-Code, MathCoder is also an amalgama-265

tion of tool usage and math question augmentation,266

although the new questions it introduces are com-267

paratively narrow in scope and limited in diversity.268

Similar to ToRA and MathCoder, we also con-269

struct such solutions that intertwine Python code270

with pure language reasoning text to adaptably271

combine LLMs with external code executing tools.272

However, we propose prefix CoT, code debug-273

ging, and pseudo-answer guidance filtering to fur-274

ther enrich the solutions and improve their cor-275

rectness. Additionally, different from MathCoder,276

the question augmentation we utilize are multi-277

perspective, thus offering greater diversity and ex-278

posing the model to a broader scope of novel ques-279

tions, thereby significantly enhancing the model’s280

generalization capabilities.281

3 Methodology282

We employ the augmented questions from Mu-283

Math (You et al., 2024), detailed in Appendix A,284

and synthesize code-nested solutions to them. To285

help the models better learn such solutions with286

multi-turn code generation, code execution and287

pure natural language reasoning, we propose prefix288

CoT, code debugging, and pseudo-answer guidance289

filtering to augment the quality of the synthetic data,290

as well as a two-stage training strategy. Figure 2291

delineates the overall pipeline.292

3.1 MuMath-Code-Data293

To facilitate the interaction with the python inter-294

preter, we synthesize the code-nested solutions for295

the models to learn, each consisting of multi-turn296

code generation, code execution and pure natural297

language reasoning.298

Specifically, for each question from Q, we299

prompt proprietary LLMs to request solutions each300

with at least one block of code, which is then ex-301

tracted and passed to the external interpreter for302

execution. Every execution result is appended to303

the preceding content, right after the corresponding304

code block. If the code execution fails, we append305

a prompt to actively debug, using all the previous306

content as a whole new prompt to request the cor- 307

rected code, which we then extract and execute 308

again. By iterating this process multiple times, we 309

obtain a reasoning path comprising code, execution 310

outcomes and natural language analysis. This rea- 311

soning path is similar to that of MathCoder (Wang 312

et al., 2023) and ToRA (Gou et al., 2023), but the 313

differences lie in the use of our proposed prefix 314

CoT, code debugging, and pseudo-answer guidance 315

filtering, which will be elaborated on in this section. 316

We marked MuMath-Data-Code as Dµ-code. 317

Prefix CoT We have observed that before gen- 318

erating code, a thorough pure natural language 319

analysis is helpful for the models’ performance. 320

Therefore, we deliberately add a thoughtful CoT 321

reasoning before code writing. The request prompt 322

used is “Analyze the question; list some knowledge 323

points related to the question and beneficial for 324

problem solving”. 325

Code Debugging Several research studies have 326

shown that the use of error correction and veri- 327

fication data can improve the mathematical rea- 328

soning capabilities of LLMs. Therefore, we intro- 329

duce an error correction process for our augmented 330

dataset. Specifically, while constructing a solution, 331

if the generated code fails to execute, we append a 332

prompt “The code above has encountered a prob- 333

lem. Now point out its mistakes and then correct 334

them.” for GPT-4 to debug the code and write new 335

code until the executable code is obtained, or the 336

maximum number of requests is reached. The fail- 337

ing code and error information are kept to equip 338

the finetuned models with debugging ability, and 339

thus enhance their coding proficiency for solving 340

math problems. 341

Pseudo-Answer Guidance Filtering In 342

MuMath-Data, we employ majority sampling 343

to filter solutions. This provides us with 344

pseudo-answers for the augmented questions 345

corresponding no reference answers, which can 346

also be employed for MuMath-Code-Data to select 347

solutions. This approach improve the correctness 348

of the synthesized solutions, thereby leading 349

to an enhancement in the overall quality of the 350

augmented data. 351

To sum up, we mark the i-th CoT (pure natu- 352

ral language reasoning) part as ci; the i-th python 353

code part is marked as pi, which always begins 354

with ```python and ends with ```; the i-th code 355

execution output is denoted as oi, beginning with 356

4



Stage 1 Stage 2

Natural Language 

Reasoning Data

Code Nested and 

Tool Interaction 

Data

MuMath
Pretrained

Model
MuMath MuMath-Code

Psuedo-

Answer

What is the smallest whole number…

[Prefix CoT]

Firstly we need to find …

[Python Code]

import sympy

def solve( ):

x = 1

…

print(…)

Final Answer

Question

Solution

Prompt to debug

Error

Success

[Output]

Figure 2: Illustration of our proposed method. The foundation model is first trained through an initial stage, resulting
in an intermediary model that possesses more powerful math reasoning capability. This intermediary model is then
further trained on the proposed dataset to learn code generation and tool interaction, leading to the final model,
MuMath-Code.

```output and ending with ```. To formalize, one357

resulting solution s is defined as follows:358

s =
( n−1⊕
i=1

cipioi

)
cn

= c1p1o1c2p2o2...cn−1pn−1on−1cn,

(1)359

where
⊕

stands for the concatenation of all the360

turns, and n is the number of CoT parts. See Ap-361

pendix C for an example.362

3.2 Two-Stage Training363

Stage-1 The first stage training is on MuMath-364

Data (see Appendix B), where the models concen-365

trate on learning the capability of pure CoT math366

reasoning. The learning target is as follows:367

L1 = −Eq,s∼Dµ
[ l∑
t=1

logP
(
xt|q, x<t;θ

)]
, (2)368

where the solution s = (x1, x2, ..., xl) contains l369

tokens, and θ is the model parameter.370

This training stage endow the models with a371

fairly strong mathematical reasoning capability,372

which can be seen as an preliminary task for the373

second stage learning.374

Stage-2 The second stage training is on MuMath-375

Code-Data, where the models concentrate on PoT-376

CoT interleaved data to learn how to interact with377

an external tool (i.e., the Python interpreter). We378

mask the loss of the outputs from the code execu- 379

tion, which should not be learned by the models. 380

The learning target is: 381

L2 =

− Eq,s∼Dµ-code

[ n∑
i=1

logP
(
cipi|q,

i−1⊕
j=1

cjpjoj ;θ
)]
,

(3)

382

where pn = ∅. The training process at Stage-2 is 383

consistent with the inference, so we do not need 384

to consider the issue of catastrophic forgetting (re- 385

garding the natural language reasoning in Stage-1). 386

At inference time, after being given a mathematical 387

problem, the finetuned model needs to generate 388

code for problem solving, and then an external in- 389

terpreter executes the code and returns the result 390

for the model to continue generating. Therefore, 391

Stage-2 training simulates the above inference pro- 392

cess by masking out the losses of the execution 393

outputs. 394

4 Experiments 395

4.1 Experimental Setup 396

Datasets Our seed datasets for synthesis are 397

the training sets of two popular math reasoning 398

benchmarks: GSM8K (Cobbe et al., 2021) and 399

MATH (Hendrycks et al., 2021a). GSM8K con- 400

tains elementary school math problems, comprising 401

7,473 training instances and 1,319 test instances; 402
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while MATH encompasses math competition prob-403

lems at the high school level with 7,500 training404

samples and 5,000 for test.405

We take the MuMath (You et al., 2024) dataset406

(750K) as our Dµ for Stage-1 training, and the407

MuMath augmented question set Q are utilized to408

construct Dµ-code for Stage-2; in Q, we request409

15 solutions for each question that originates from410

GSM8K and 30 for MATH-related ones, and then411

perform filtering to get 30K samples for each ques-412

tion subset, making 600K in total.413

Implementation Details Our study utilizes414

LLaMA-2 (7B, 13B and 70B) (Touvron et al.,415

2023b) and CodeLlama (7B, 13B, 34B, and416

70B) (Rozière et al., 2023) as the foundation mod-417

els for full-parameter finetuning, corresponding418

to MuMath-Code-L and MuMath-Code-CL as the419

resulting models. We employ AdamW as the op-420

timizer and a cosine learning rate scheduler with421

a 0.03 warmup ratio. Across all the models and422

both stages, we train 3 epochs with a 128 global423

batch size. All the models except for LLaMA-70B424

and CodeLlama-70B are trained using the Deep-425

speed framework, while those two 70B models are426

trained using Megatron for the sake of speed. The427

hardware we use are NVIDIA H800 GPUs.428

4.2 Comparison Results429

As shown in Table 1, the comparison experiment of430

our models with the current state-of-the-art demon-431

strates that our approach consistently achieves su-432

perior performance across all scales of open-source433

models on all the datasets. Notably, our MuMath-434

Code-L 7B model has attained a test accuracy of435

83.8 on the GSM8K, and MuMath-Code-CL 7B436

has reached a score of 52.4 on MATH. These out-437

comes surpass many 70B open-source baselines438

and even some proprietary LLMs. Additionally,439

our MuMath-Code-CL 34B and 70B achieve 55.0+440

on MATH, two impressive results considering that441

they are accomplished by leveraging data augmen-442

tation techniques based on the original training set443

without the incorporation of extensive additional444

mathematical corpora for pre-training.445

There are some noteworthy findings from the ex-446

perimental statistics presented in the table, such447

as the performance of MuMath-Code-CL 13B448

on MATH, registering at 53.1, which is only449

marginally higher than that of MuMath-Code-CL450

7B, which stands at 52.4. Moreover, the MuMath-451

Code-CL 34B’s performance on MATH, scoring at452

55.0, is very close to that of the MuMath-Code-CL 453

70B, which records a score of 55.1. We specu- 454

late that this may be attributed to the phenomenon 455

where, beyond a certain threshold of data volume, 456

the advantages conferred by increased model size 457

may be diminished or even offset by the benefits 458

derived from the expanded dataset. Additionally, 459

variations in the training frameworks may also con- 460

tribute to the observed discrepancy between the 461

performances of MuMath-Code-CL 34B and 70B. 462

4.3 Effectiveness of the Two-Stage Training 463

Strategy 464

MuMath-Code is derived from a two-stage train- 465

ing process that enhances the model’s pure natural 466

language reasoning capabilities and the ability to 467

generate code and interact with external tools. In 468

this section, we validate the efficacy of this bifur- 469

cated training strategy. Unless otherwise specified, 470

all ablation experiments presented in this paper are 471

conducted on 7B models, for the sake of time effi- 472

ciency. We have designed a comparative evaluation 473

of model performances for two-stage and one-stage 474

training strategies. The two-stage training referred 475

to here is as described in Section 3.2, which in- 476

volves continuing training from the checkpoints 477

of the first stage (the MuMath models). The one- 478

stage training, directly applies the second stage of 479

training on the base models. Table 2 illustrates the 480

performance comparison of models derived from 481

both strategies across different data volumes, re- 482

vealing that training solely onDµ-code is worse than 483

the two-stage training. Furthermore, by merging 484

the training data from both stages into a single 485

dataset for one-stage training, we observe that the 486

outcomes are still not as favorable as those obtained 487

from two separate training stages. 488

To further validate the effectiveness of our two- 489

stage training strategy, we select MetaMath (Yu 490

et al., 2023) and Xwin-Math (Team, 2023) 7B 491

models as the initial checkpoints for Stage-2 train- 492

ing, emulating the scenario where relevant datasets 493

were employed during the first stage (Given the 494

the unavailability of the most recent models and 495

dataset proposed in (Li et al., 2024), we opt to 496

utilize Xwin-Math-7B-V1.0 detailed in the corre- 497

sponding GitHub repository). Table 2 illustrates 498

that models fine-tuned from MetaMath and Xwin- 499

Math checkpoints on Dµ-code (two-stage) outper- 500

form the one directly trained from Llama (single- 501

stage), verifying the efficacy of a two-stage training 502

strategy as well as the compatibility of our Dµ-code 503

6



Model GSM8K MATH GSM-Hard SVAMP TabMWP ASDiv MAWPS
colsed-source LLMs

Claud-3 Opus (Anthropic, 2024) 95.0 60.1 - - - -
GPT-4 (OpenAI, 2023b) 92.0 42.5 64.7 93.1 67.1 91.3 97.6
GPT-4 (PAL) 94.2 51.8 77.6 94.8 95.9 92.6 97.7
GPT-3.5 (OpenAI, 2023a) 80.8 35.5 55.9 83.0 69.1 87.3 94.6
GPT-3.5 (PAL) 78.6 38.7 67.6 77.8 79.9 81.0 89.4

tool-free open LLMs
7B

LLaMA-2 (Touvron et al., 2023b) 13.3 4.1 7.8 38.0 31.1 50.7 60.9
LLaMA-2 SFT (Touvron et al., 2023b) 41.3 7.2 16.1 31.9 27.8 47.4 60.0
WizardMath (Luo et al., 2023a) 54.9 10.7 20.6 57.3 38.1 59.1 73.7
MetaMath (Yu et al., 2023) 66.5 19.8 - - - - -
MuggleMath (Li et al., 2023) 68.4 - - - - - -
MuMath (You et al., 2024) 70.9 22.0 - 76.8 - 93.6 87.3

13B
LLaMA-2 (Touvron et al., 2023b) 24.3 6.3 13.6 43.1 39.5 56.3 70.4
LLaMA-2 SFT (Touvron et al., 2023b) 51.1 9.2 22.3 46.3 35.8 58.6 75.0
WizardMath (Luo et al., 2023a) 63.9 14.0 28.4 64.3 46.7 65.8 79.7
MetaMath (Yu et al., 2023) 72.3 22.4 - - - - -
MuggleMath (Li et al., 2023) 74 - - - - - -
MuMath (You et al., 2024) 76.4 25.3 - - - - -

70B
LLaMA-2 (Touvron et al., 2023b) 57.8 14.4 36.0 73.6 57.5 76.0 92.4
LLaMA-2 SFT (Touvron et al., 2023b) 69.3 14.9 39.0 64.0 53.0 71.3 84.8
WizardMath (Luo et al., 2023a) 81.6 22.7 50.3 80.0 49.8 76.2 86.2
MetaMath(Yu et al., 2023) 82.3 26.6 - - - - -
MuggleMath (Li et al., 2023) 82.3 - - - - - -
MuMath (You et al., 2024) 84.5 32.2 - 87.6 - 96.6 92.0

tool-use open LLMs
7B

MAmmoTH (Yue et al., 2023) 53.6 31.5 - 67.7 - - -
MAmmoTH-Coder 59.4 33.4 - 71.4 - - -
CodeLLama (PAL) (Rozière et al., 2023) 34.0 16.6 33.6 59.0 47.3 61.4 79.6
MathCoder-L (Wang et al., 2023) 64.2 23.3 - 71.5 - - -
MathCoder-CL (Wang et al., 2023) 67.8 30.2 - 70.7 - - -
ToRA (Gou et al., 2023) 68.8 40.1 54.6 68.2 42.4 73.9 88.8
ToRA-Code (Gou et al., 2023) 72.6 44.6 56.0 70.4 51.6 78.7 91.3
MuMath-Code-L 83.8 48.8 70.5 87.6 65.6 86.2 94.7
MuMath-Code-CL 82.6 52.4 70.6 88.1 66.9 87.4 95.3

13B
MAmmoTH (Yue et al., 2023) 62.0 34.2 - 72.4 - - -
MAmmoTH-Coder(Yue et al., 2023) 64.7 36.3 - 73.7 - - -
CodeLlama (PAL) (Rozière et al., 2023) 39.9 19.9 39.0 62.4 59.5 65.3 86.0
MathCoder-L (Wang et al., 2023) 72.6 29.9 - 76.9 - - -
MathCoder-CL (Wang et al., 2023) 74.1 35.9 - 78.0 - - -
ToRA (Gou et al., 2023) 72.7 43.0 57.3 72.9 47.2 77.2 91.3
ToRA-Code (Gou et al., 2023) 75.8 48.1 60.5 75.7 65.4 81.4 92.5
MuMath-Code-L 84.3 49.9 70.6 87.9 64.9 86.4 94.9
MuMath-Code-CL 84.6 53.1 70.8 86.8 67.2 85.2 95

34B
CodeLLaMa (PAL) (Rozière et al., 2023) 53.3 23.9 49.4 71.0 63.1 72.4 91.5
MAmmoTH-Coder (Yue et al., 2023) 72.7 43.6 - 84.3 - - -
MathCoder-CL (Wang et al., 2023) 81.7 45.2 - 82.5 - - -
ToRA (Gou et al., 2023) 80.7 50.8 63.7 80.5 70.5 84.2 93.3
MuMath-Code-CL 87.6 55.0 68.8 91.4 74.9 87.9 92.9

70B
LLaMA-2 (PAL) 55.2 18.3 50.0 74.6 59.5 71.9 92.8
MAmmoTH (Yue et al., 2023) 76.9 41.8 - 82.4 - - -
MathCoder-L (Wang et al., 2023) 83.9 45.1 - 84.9 - - -
ToRA (Gou et al., 2023) 84.3 49.7 67.2 82.7 74.0 86.8 93.8
MuMath-Code-L 90.7 52.8 68.6 93 74 88.4 95.4
MuMath-Code-CL 89.5 55.1 70.1 92.9 77.4 87.9 94.7

Table 1: Comparison of the state-of-the-art methods on various datasets. For the tool-use open LLMs, the best
results are bolded and the second best underlined among the same scale models tested on the same datasets.

7



Inference Training Strategy
LLaMA CodeLlama

GSM8K MATH GSM8K MATH

Tool free
Dmeta 66.5 19.8 - -

Dxwin 66.6 17.4 - -

Tool use

Dµ-code 81.2 46.2 81 49.8

Dµ +Dµ-code 82.7 47.1 81.3 49.1

Dmeta → Dµ-code 82.3 47.4 - -

Dxwin → Dµ-code 82.0 47.2 - -

Dµ → Dµ-code 83.8 48.8 82.6 52.4

Table 2: A two-stage training strategy improves the
models’ performance, as opposed to a single-stage train-
ing.

Sythesized Solutions LLaMA CodeLlama
GSM8K MATH GSM8K MATH

w all 83.8 48.8 82.6 52.4
w/o prefix CoT 81.3 47.5 81.8 49.4

w/o code debugging 82 47.1 82.1 52.1
w/o either 81.0 46.8 81.3 49.0

Table 3: Ablation study for prefix CoT and code debug-
ging.

with different first-stage CoT datasets.504

4.4 Ablation Studies505

To verify our proposed prefix CoT and code de-506

bugging, we respectively modify the solutions in507

Dµ-code via two distinct approaches: the first ap-508

proach involves the removal of the prefix CoT,509

thereby eliminating the detailed preliminary anal-510

ysis and directly begining with code writing; the511

second approach consists of retaining only the final512

and successfully executed code and omitting all513

the other inexecutable code before as well as the514

corresponding debugging process. The results of515

this ablation study are presented in Table 3, which516

Data Size Pseudo-Answer LLaMA CodeLlama
GSM8K MATH GSM8K MATH

30K w 65.4 33.4 67.3 38.5
w/o 65.9 32.4 67.6 36.9

60K w 71.4 37.6 73.4 42.7
w/o 71.2 36.6 72.3 40.4

90K w 75.1 39.3 75.2 44.5
w/o 74.8 37.9 74.2 41.9

120K w 76.1 40.7 76.9 45.7
w/o 74.6 40.3 75.9 43.6

150K w 77.8 42.7 76.8 46
w/o 75.8 41.5 76.4 45

180K w 77.3 43.5 78.5 47.3
w/o 76.7 42.7 77.7 46.5

Table 4: Ablation study for pseudo-answer guidance
filtering.

demonstrates that the exclusion of either the prefix 517

CoT or code debugging leads to a decline in the 518

models’ test accuracy. This emphatically under- 519

scores the significance of a thorough analysis prior 520

to code writing and the code mistake correction 521

process for the models’ learning. 522

Moreover, we conduct another ablation experi- 523

ment on pseudo-answer guidance filtering. In Sec- 524

tion 3.1, we note that pseudo-answers are suitable 525

for synthetic questions that lack a definitive cor- 526

rect answer, namely those in Qalter and Qreplace. 527

In MuMath, majority voting is utilized to assign 528

pseudo-answers to these questions. These pseudo- 529

answers are then also employed to filter the data for 530

Dµ-code in the second training stage. As illustrated 531

in Table 4, fine-tuning the model with data filtered 532

through this pseudo-answer technique proves to 533

be more beneficial than solutions obtained through 534

directly random sampling. This trend holds across 535

data volumes ranging from 30K to 180K. 536

5 Conclusion 537

In this paper, we propose a multi-perspective 538

and code integrated math reasoning dataset called 539

MuMath-Code-Data, where each solution contains 540

multi-turn code generation, code execution and 541

pure natural language analysis (CoT). Through 542

a two-stage training strategy, our MuMath-Code 543

models outperforms the state-of-the-art open meth- 544

ods and even some powerful proprietary ones 545

across different scales on the in-domain reason- 546

ing datasets (i.e., GSM8K and MATH) as well as 547

those out-of-domain ones. Additionally, ablation 548

studies demonstrates the effectiveness of our three 549

novel methods for the data synthesis: prefix CoT, 550

code debugging and pseudo-answer guidance filter- 551

ing. Our work represents a new attempt at integrat- 552

ing mathematical question augmentation (tool-free) 553

with code generation and execution (tool-use) to 554

enhance the mathematical reasoning capabilities 555

of LLMs, and we hope it can inspire subsequent 556

research endeavors. 557

6 Limitations 558

Our work is limited by the capabilities of the LLMs 559

used to synthesize new math reasoning data. 560
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A Question Synthesis832

A.1 MuMath Augmented Questions833

The original questions from the training834

sets of GSM8K (Cobbe et al., 2021) and835

MATH (Hendrycks et al., 2021a) are taken as836

the seed question set Qoriginal. The question837

augmenting methods employed in MuMath are838

conducted on this seed set, which are briefly839

concluded as follows:840

(1) Rephrasing Rewrite a text while keeping the841

original meaning unchanged. Based on the fact that842

a rephrased question holds the same meaning as843

the original one, the final answer of it should also844

be the same. We denote the rephrased question set845

as Qrephrase.846

(2) Question Alteration There are five manners847

to alter the original questions, like changing num-848

bers and adding more conditions, concluded in849

MuggleMath (Li et al., 2023). The resultant ques-850

tion set created via alteration is referred to as851

Qalter = Qalter1 ∪ Qalter2 ∪ Qalter3 ∪ Qalter4 ∪852

Qalter5. Besides, Expression Replacement, pro-853

posed in MuMath, firstly get the expressions of the854

solution to an original question, then change the855

calculation operators within them. Based on the856

changed expressions, a new question is asked to857

generate. Qreplace represents the question set pro-858

duced by this augmentation technique. Note that859

Qalter and Qreplace correspond no definitely cor-860

rect answers due to modifications in the questions’861

intrinsic meanings.862

(3) FOBAR Following Jiang et al. (2023a), we863

mask a certain condition in an initial question by864

substituting it with “X", and meanwhile give the865

answer to the original question as a new condition,866

thereby creating a reverse question that seeks to867

determine the value of the unknown X. Qfobar is868

utilized to mark the FOBAR question set.869

(4) BF-Trans Backward-Forward Transforma-870

tion (BF-Trans), proposed in MuMath, aims to871

construct such backward questions that can be an-872

swered through direct reasoning, bypassing the ne-873

cessity of solving equations to find the unknown874

variables (thus resemble the data sampled from875

the original distribution). For a certain question-876

answer pair, BF-Trans firstly utilize FOBAR to877

transform the original question into a backward878

one; secondly, we rephrase the FOBAR question879

into a new form where the masked value is re- 880

quested directly instead of employing an unknown 881

variable X, resulting in a “secondary forward” ques- 882

tion which we called BF-Trans question. The set 883

of these BF-Trans questions is marked as Qbf . 884

To sum up, all the 10 aforementioned subsets 885

(5 in Qalter) constitute the resulting question set 886

Q = Qoriginal ∪ Qrephrase ∪ Qalter ∪ Qreplace ∪ 887

Qfobar ∪Qbf . Based on Q, we generate 2 datasets 888

called MuMath-Data and MuMath-Code-Data, 889

emphasizing pure natural language mathematical 890

reasoning and tool interaction via code generation, 891

respectively. 892

B MuMath-Data 893

MuMath-Data (denoted as Dµ) is just the largest 894

dataset from MuMath, which contains about 750K 895

samples with pure CoT reasoning solutions to ques- 896

tions in Q. 897

Majority Sampling As is introduced in the paper 898

of MuMath, for Qalter and Qreplace whose each 899

question has no reference answer, majority sam- 900

pling is utilized to filter all the randomly gener- 901

ated solutions and only those solutions with the 902

majority answers are kept. In other words, each 903

majority answer serves as a pseudo-answer to the 904

corresponding question. 905
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C Examples 906

Example C.1: MuMath-Code-Data QA Pair

Question:
What is the smallest whole number that has a remainder of 1 when divided by 4, a remainder of 1 when
divided by 3, and a remainder of 2 when divided by 5?

Solution
We need to find a positive integer solution for the system of linear congruences. We can use the Chinese
Remainder Theorem to solve this system. The Chinese Remainder Theorem states that for any system
of equations like this, there exists a solution. Let’s find the solution using sympy’s solve_congruence
function.

```python

from sympy.ntheory.modular import solve_congruence
def smallest_number():

congruences = [(’1’, ’4’), (’1’, ’3’), (’2’, ’5’)]
result = solve_congruence(*congruences)
return result[0]

result = smallest_number()
print(result)
```
```output
ValueError: 1 is not an integer
```
The code above has encountered a problem. Now point out its mistakes and then correct them.
Mistake:
The error is in the format of the input to the function ‘solve_congruence‘. The function is expecting
tuples of the format ‘(remainder, modulus)‘, but the inputs need to be integers, not strings.

Correction:
Let’s modify the code to convert the strings to integers.

```python
def smallest_number():

congruences = [(1, 4), (1, 3), (2, 5)]
result = solve_congruence(*congruences)
return result[0]

result = smallest_number()
print(result)
```
```output
NameError: name ’solve_congruence’ is not defined
```
The code above has encountered a problem. Now point out its mistakes and then correct them.
Mistake:
The error is that the ‘solve_congruence‘ function is not defined. It should be imported from the ‘sympy‘
module before it can be used.

907
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Correction:
Let’s modify the code to import the ‘solve_congruence‘ function from the ‘sympy‘ module.

```python
from sympy.ntheory.modular import solve_congruence

def smallest_number():
congruences = [(1, 4), (1, 3), (2, 5)]
result = solve_congruence(*congruences)
return result[0]

result = smallest_number()
print(result)
```
```output
37
```
The smallest whole number that has a remainder of 1 when divided by 4, a remainder of 1 when divided
by 3, and a remainder of 2 when divided by 5 is $\\boxed{37}$.

908

D Additional Experimental Results909

D.1 Two-Stage Training910

Dµ-code Training Strategy
LLaMA CodeLlama

GSM8K MATH GSM8K MATH

100K
Dµ-code 69.7 36.1 72.4 41

Dµ → Dµ-code 77.1 41.5 80.3 46.1

200K
Dµ-code 76.2 41.4 78.3 44.2

Dµ → Dµ-code 80.4 46 80.7 49.1

300K
Dµ-code 77.1 43.7 78.2 46.8

Dµ → Dµ-code 79.5 46.4 83.2 50.2

400K
Dµ-code 78 44.3 79 47.8

Dµ → Dµ-code 81.6 48.5 81.9 50.9

500K
Dµ-code 79.8 45.7 80.2 48.9

Dµ → Dµ-code 82.8 48.7 82.6 52.2

600K
Dµ-code 81.2 46.2 81 49.8

Dµ → Dµ-code 83.8 48.8 82.6 52.4

Table 5: We vary the data volumes of Dµ-code. It is observed that training solely on Dµ-code is consistently inferior
to the two-stage training across all data volumes.

D.2 Scaling Study911

The scaling experiments for various subsets of the MuMath-Code-Data are depicted in Figure 3. These912

curves represent the performance changes of models trained on different data subsets with respect to the913
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(a) Test on GSM8K (b) Test on MATH

Figure 3: Scaling all the subsets of MuMath-Code-Data. The models undergo a single stage (only Stage-2) of
training.

(a) Test on GSM8K (b) Test on MATH

Figure 4: Scaling all the subsets of MuMath-Code-Data. Initially, the model has already been finetuned on MuMath-
Data (thus two-stage training results). It is observable that the curves show very similar trends to those in Figure 3.

number of samples. The base model is LLaMA 7B and it is directly trained on the subsets of Dµ-code 914

(single-stage training). It is evident that with the increase in data volume, all subsets continuously 915

contribute to the enhancement of the models’ performance, and the curves still do not show saturation. 916

This indicates that employing our methodology allows for the continued addition of data to further improve 917

the LLMs’ mathematical reasoning capabilities. For the two-stage scenario where the initial model is an 918

intermediate checkpoint from Stage-1, please see Figure 4. 919
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