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Abstract

Implicit neural representations have recently
emerged as a promising tool in data science re-
search for their ability to learn complex, high-
dimensional functions without requiring explicit
equations or hand-crafted features. Here we
aim to use these implicit neural representations
weights to represent batch of data and use it to
classify these batch based only on these weights,
without any feature engineering on the raw data.
In this study, we demonstrate that this method
yields very promising results in data classifica-
tion of several type of data, such as sound, im-
ages, videos or human activities, without any
prior knowledge in the relative field.

1 Introduction

Implicit neural representations (INRs) have shown great
promise in a variety of tasks, including image and shape
synthesis, rendering, and inversion. INRs are neural net-
works that learn to represent a high-dimensional space im-
plicitly without requiring an explicit parametric form for
the function.

When it comes to classifying subsets of data using INRs,
there are a few approaches that can be taken. One possible
approach is to use INRs to learn a representation of the data
that is optimized for classification. This can be done by
training an INR on a dataset and using the learned weights
as extracted features that are then fed into a classifier such
as XGBoost or a neural network.

Extracting relevant information from sets of data is a funda-
mental task in many fields such as machine learning, data
science, and engineering. The process of comparing and
classifying sets of data often requires a minimum knowl-
edge of the data itself, such as its statistical characteristics
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(min, max, average, etc.) of each of their variables. How-
ever, this approach can be limiting as it requires the data to
be preprocessed in a specific way, and the choice of statisti-
cal characteristics may not always capture the most impor-
tant features of the data.

In this paper, we demonstrate the effectiveness of using
INRs for data classification. We show that the weights of
a neural network can be used as a vector representation
of a structured data set such as sound, images, videos or
accelerometer data, and that this representation allows a
model such as XGBoost to accurately classify data. Our
experiments demonstrate the potential of INRs for several
kinds of data and provide insights into their use for other
similar applications.

Furthermore, INR are mainly used for data reconstruction,
but this is not our goal here. That’s why in this paper we
will show if there is a direct correlation between the capac-
ity to reconstruct data and the capacity to represent the data
and have a good classification score.

2 Background and related work

Implicit neural representations (INRs) appear to be a good
way to represent signals by continuous functions parame-
terized by neural networks. It has been used to represent
diverses kinds of data such as shape parts (Genova, Cole,
Vlasic, et al. 2019; Genova, Cole, Sud, et al. 2019), ob-
jects (Park et al. 2019; Michalkiewicz et al. 2019; Atzmon
and Lipman 2020; Gropp et al. 2020), or scenes (Sitzmann,
Zollhöfer, and Wetzstein 2019; Jiang et al. 2020; Peng et
al. 2020; Chabra et al. 2020) but also images (Strümpler
et al. 2022; Feng, Jabbireddy, and Varshney 2022), videos
(H. Chen et al. 2021; Z. Chen et al. 2022) and audio (Sza-
tkowski et al. 2022; Szatkowski et al. 2023; Lanzendörfer
and Wattenhofer 2023).
All papers using implicit neural representations do not use
them the same way. There is several applications such as
super-resolution, compression or interpolation (Sitzmann,
Martel, et al. 2020).
In particular SIREN (Sitzmann, Martel, et al. 2020) appears
to be the most used architecture in all cited applications.
SIREN architecture demonstrate that it’s possible to cor-
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rectly perform classification task using INRs in the process
but not directly on the weights of the INR (Xu et al. 2022).

3 Hypotheses and proposed method

3.1 Implicit neural representation

An implicit neural representation (INR) is a type of neu-
ral network architecture that learn to represent objects or
scenes in a way that is independent of their explicit ge-
ometry or parametric representation. In other words, an
INR is a neural network that can learn to represent com-
plex shapes and patterns without explicitly encoding their
geometry, topology, or other explicit mathematical descrip-
tions.

An INR can learn to represent any type of data, whatever
the dimension. By processing the raw signal data through
a NN INR, the resulting vector representation can capture
the salient features and patterns in the signal data without
requiring explicit knowledge of the underlying signal pro-
cessing or physics.

The generation of INRs is a consequence of machine learn-
ing procedures conducted on a specific data collection.
Thus, it is imperative to treat the data intended for cate-
gorization as a well-structured dataset. Consequently, we
adapt our data manipulation techniques to accommodate
one dimension less. This is exemplified in the instance
of a video, which can be dissected and interpreted as an
image dataset. The neural network architecture typically
employed for INR execution is likely a 2DConv neural
network. Dimensionality reduction can be leveraged as a
strategic advantage, allowing us to approach our data as a
more conventional problem. This, in turn, simplifies the
architecture of the neural network required for the task.

3.2 INR vectorization generalization

Let’s consider a classification problem with a dataset E,
with n classes and P features such as:
n ∈ N+,
P ∈ N+,
E = {A1, A2, ..., AK}, where K is the number of subset
that compose E,
∀i ∈ [1,K], Ai ⊂ E, with n(Ai) > 0 and n(Ai) ≤ n(E),
∀i, j ∈ [1,K] such as i ̸= j, Ai ∩Aj = ∅,
Every subset Ai could be classified in class Ci, with Ci ∈
{C1, C2, ..., Cn}.
Now let’s take a neural network model M, with any achitec-
ture and k weights. ∀i ∈ [1,K], M is trained from scratch
on Ai with a constant initialization. ∀i ∈ [1,K], we obtain
a vector Wi composed of k values, that are the weights of
the model trained on Ai.

Now each Ai subset is vectorized into a Wi vector, that can
be classified with any standard classifier.

3.3 Functions comparison

If a function represents a set of data, then it is possible to
compare these functions directly, and in particular to clas-
sify these functions in the context of a classification.

In the context of implicit neural representation, the set of
weights of a model trained on a subset of data represents
this subset, and thus allows these weight vectors to be clas-
sified via a more conventional machine learning algorithm.
This set of weight could be named functa (Dupont et al.
2022), ”a concise term for INRs that are to be thought of as
data”.

According to XGBoost research (T. Chen and Guestrin
2016), XGBoost is a highly effective machine learning
model for classification tasks, demonstrating superior per-
formance through its regularized model formalization that
effectively controls overfitting. Its parallelizable nature al-
lows it to leverage the capabilities of multi-core comput-
ers, enhancing its speed and efficiency. Furthermore, XG-
Boost is versatile, capable of handling a variety of data
types, missing values, and outlier values, and can be ap-
plied to both regression and classification tasks, including
those involving categorical features. In the case of functa
classification, the main advantage of XGBoost is that even
in scenarios with a high number of features, XGBoost per-
forms well due to its tree-based nature, which is renowned
for handling high-dimensional data effectively, because de-
pending to the architecture used to create functas, the num-
ber of features in the Machine learning processus could ex-
plodes.

However, it is important to note that XGBoost, like any
machine learning model, can be affected by the ”curse of
dimensionality” when the feature space becomes exceed-
ingly large, making it challenging for the model to identify
patterns.

3.4 Reconstruction and classification correlation

The quality of an Implicit Neural Representation is often
measured by how well it can reconstruct or generate the
data it was trained on. This can be quantified using various
metrics depending on the specific task. For instance, in im-
age generation, one might use metrics like Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM),
or perceptual loss based on pre-trained networks. For 3D
shapes, one might use Chamfer distance or Earth Mover’s
distance. In the case of graph data, one might use graph-
based metrics like Graph Edit Distance or subgraph match-
ing scores. But here we don’t really want a good INR but
a good functa so whatever the type of data processed, the
only metric that interest us is the accuracy of our XGBoost
classifier.

During our experiment we will demonstrate that the INR
quality (capacity of data reconstruction) and the functa
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quality (capacity of being well classified) are not always
correlated, and depending on our objectif, reconstruction
or classification, we will not choose the same architecture
of neural network.

4 Experimental protocol

The use of different types of data in our experiments is
of paramount importance. The reason for this is twofold.
Firstly, it allows us to evaluate the generalizability of functa
across different data modalities. An approach that performs
well across diverse datasets is likely to be more robust and
versatile. Secondly, different types of data come with their
unique challenges and characteristics. For instance, im-
age data might involve dealing with high-dimensional in-
puts and complex spatial dependencies, while audio data
might involve handling temporal dependencies. By testing
on different types of data, we can gain insights into how
well functa can handle these different challenges, which
can guide future research and development.

4.1 Datasets

To test the approach and demonstrate its generalizability,
we will work on four types of datasets: image, sound,
video, and accelerometers.

4.1.1 CIFAR-10

The CIFAR-10 dataset is a widely used collection of im-
ages for research in image classification. It is commonly
employed in the fields of computer vision and machine
learning to evaluate and compare the performance of im-
age classification algorithms. It consists of a total of 60,000
color images divided into 10 different classes, with 6,000
images per class. The classes include common objects such
as cars, airplanes, birds, cats, dogs, and more. Each image
is 32x32 pixels in size and encoded with three color chan-
nels (red, green, blue).

This dataset is interesting for classification research due to
several challenges it presents:

• Class complexity: CIFAR-10 classes can be challeng-
ing to distinguish due to their visual similarity. For
example, images of cats and dogs can be quite simi-
lar in terms of shape and color, making classification
more difficult.

• Instance variability: Images within each class exhibit
significant variability in terms of pose, orientation,
scale, brightness, etc. This variability requires robust
classification models capable of generalizing well to
new instances.

• Dataset size: With 60,000 images, CIFAR-10 pro-
vides a sufficient amount of data to train machine

learning models and evaluate their performance mean-
ingfully.

• Image size: The 32x32 pixel images are relatively
small compared to other datasets like ImageNet. This
makes machine learning models lighter and faster to
train, facilitating experimentation and iteration in re-
search.

4.1.2 ESC-50

The ESC-50 (Environmental Sound Classification) dataset
is a widely used dataset in research on environmental sound
classification. It is specifically designed for the analysis
and classification of sounds from everyday environments.
It consists of a total of 2,000 audio clips, each lasting 5
seconds. The clips are divided into 50 different categories,
representing various sounds such as dog barking, car horns,
ocean waves, bird chirping, phone ringing, and more. Each
class contains 40 audio examples.

This dataset is interesting for sound classification research
for several reasons:

• Class variety: ESC-50 offers a wide variety of envi-
ronmental sounds from different sources and contexts.
This allows researchers to study and develop classifi-
cation models capable of recognizing and distinguish-
ing a wide range of real-world sounds.

• Classification challenges: Classifying environmental
sounds can be complex due to acoustic variations,
background noise, overlaps, and other factors. ESC-
50 provides a realistic testing environment to evaluate
the models’ ability to tackle these challenges.

• Dataset size: With 2,000 audio clips, ESC-50 provides
a sufficient amount of data to train classification mod-
els and evaluate their performance meaningfully.

4.1.3 HMDB-51

The HMDB-51 (Human Motion DataBase) dataset is a
widely used dataset in research on human motion classi-
fication. It is specifically designed for the analysis and
recognition of actions and movements performed by hu-
mans. It consists of a total of 6,766 video clips from 51
different action classes. The classes include movements
such as walking, running, jumping, smiling, waving, lying
down, dancing, and more. Each class contains a variable
number of videos, with an average of about 70 videos per
class. The videos are captured in diverse contexts, with dif-
ferent individuals, camera angles, lighting conditions, and
more.

This dataset is interesting for research in human motion
classification for several reasons:
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• Action variety: HMDB-51 offers a wide range of hu-
man movements and actions, spanning from basic ac-
tions like walking and running to more complex ac-
tions like dancing and sports. This allows researchers
to study and develop classification models capable of
recognizing an extensive range of human actions.

• Recognition challenges: Recognizing human actions
from videos can be challenging due to variations in
poses, clothing, backgrounds, camera angles, and
more. HMDB-51 provides a realistic challenge to
evaluate the models’ ability to identify and classify
human movements under diverse conditions.

• Dataset size: With over 6,000 video clips, HMDB-51
provides a significant amount of data to train and eval-
uate classification models. This enables conducting
experiments and statistically robust studies.

4.1.4 UCI-HAR

UCI-HAR dataset was developed to help in human activity
recognition field (Jorge et al. 2012), which involved 30 vol-
unteers engaging in various daily activities such as sitting,
lying down, walking, standing, walking upstairs, and walk-
ing downstairs. The authors used a smartphone equipped
with an accelerometer and gyroscope to capture tri-axial
linear acceleration and angular velocities. The data was
sampled at a rate of 50Hz and consisted of nine features.
The data was then segmented into fixed-width sliding win-
dows with 50% overlap, resulting in a total of 10,299 sam-
ples that have been segmented by user id.

4.2 Data Computation

Each dataset have to be processed differently. For image
data (CIFAR-10), this involves training an implicit neural
representation (INR) for each image. For audio data (ESC-
50), this might involve training an INR for each audio clip.
For video data (HMDB-51), this might involve training an
INR for each video frame or sequence. For sensor data
(UCI-HAR), this might involve training an INR for each
sensor reading sequence.

There are several ways to create INR on each type of data.
In all cited papers, INR to reconstruct image is a fonction
that map the coordinate of of pixel to its value. But an
image could be seen as a time series, and a LSTM could be
trained on it, and, given the N first pixel values, predict the
N+1 pixel value.

For each dataset we will test different approaches and dis-
cuss the relevance of the INR and the functa created this
way. It will permit us to see if their is any direct correlation
between the INR quality and functa quality. Moreover, we
will be able to see if certain architectures are more suitable
to create good functa.

4.3 Evaluation metrics

This paper evaluates the effectiveness of functas with XG-
Boost using various performance metrics, as described be-
low:

Accuracy is defined as the ratio of correctly predicted sam-
ples to the total number of samples, where TP denotes true
positives, FN denotes false negatives, TN denotes true neg-
atives, and FP denotes false positives.
Accuracy = (TP + TN) / (TP + TN + FP + FN)

A confusion matrix (CM) is a square matrix that provides
a complete performance analysis of a classification model.
The rows of the CM represent instances of true class labels,
while the columns represent predicted class labels. The di-
agonal elements of the matrix indicate the percentage of
points for which the predicted label is equal to the true la-
bel.

We will also evaluate the quality of the INR used, with
a PSNR wich is most commonly defined via the mean
squared error (MSE) between two images.

4.4 Baseline comparison

During these experiments we’ll need two types of baseline:

• An INR baseline to compare what is a good INR for
data reconstruction. That baseline will be classified
as functa too. To achieve that we will use SIREN as
baseline if possible for each type of data.

• A classifier baseline to compare with a more common
classifier for the current type of data. We will use
2dConv model as baseline image classifier, a 3Dconv
model for videos, 1Dconv model for sound classifier,
logistic regression for human activity recognition.

4.5 Ablation Studies

To understand the contribution of different components of
the functa models, we perform ablation studies, which in-
volve removing or modifying certain components and ob-
serving the effect on performance.

4.6 Analysis

Finally, we analyze the results, compare the performance of
the functa models with the baseline models, discuss the re-
sults of the ablation studies, and provide insights into why
the functa models performed as they did.
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