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Abstract

The ability to dynamically adapt neural networks to newly-available data without perfor-
mance deterioration would revolutionize deep learning applications. Streaming learning (i.e.,
learning from one data example at a time) has the potential to enable such real-time adap-
tation, but current approaches i) freeze a majority of network parameters during streaming
and ii) are dependent upon offline, base initialization procedures over large subsets of data,
which damages performance and limits applicability. To mitigate these shortcomings, we
propose Cold Start Streaming Learning (CSSL), a simple, end-to-end approach for stream-
ing learning with deep networks that uses a combination of replay and data augmentation
to avoid catastrophic forgetting.
Because CSSL updates all model parameters during streaming, the algorithm is capable
of beginning streaming from a random initialization, making base initialization optional.
Going further, the algorithm’s simplicity allows theoretical convergence guarantees to be
derived using analysis of the Neural Tangent Random Feature (NTRF). In experiments,
we find that CSSL outperforms existing baselines for streaming learning in experiments on
CIFAR100, ImageNet, and Core50 datasets. Additionally, we propose a novel multi-task
streaming learning setting and show that CSSL performs favorably in this domain. Put
simply, CSSL performs well and demonstrates that the complicated, multi-step training
pipelines adopted by most streaming methodologies can be replaced with a simple, end-to-
end learning approach without sacrificing performance.

1 Introduction

Background. Many autonomous applications would benefit from real-time, dynamic adaption of models to
new data. As such, online learning1 has become a popular topic in deep learning; e.g., continual (Lopez-Paz
& Ranzato, 2017; Zenke et al., 2017), lifelong (Aljundi et al., 2017; Chaudhry et al., 2018b), incremental
(Rebuffi et al., 2017; Castro et al., 2018), and streaming (Hayes et al., 2018; Hayes et al., 2020) learning.
However, the (potentially) non-i.i.d. nature of incoming data causes catastrophic forgetting (McCloskey &
Cohen, 1989; Kirkpatrick et al., 2017), thus complicating the learning process.

Batch-incremental learning (Rebuffi et al., 2017; Castro et al., 2018), where batches of data—typically
sampled from disjoint sets of classes or tasks within a dataset—become available to the model sequentially,
is a widely-studied form of online learning. Within this setup, however, one must wait for a sizeable batch
of data2 to accumulate before the model is updated with an expensive, offline training procedure over new
data, thus introducing latency that prevents real-time model updates.

To avoid such latency, we adopt the streaming learning setting where i) each data example is seen once and
ii) the dataset is learned in a single pass (Hayes et al., 2018). Streaming learning performs brief, online
updates (i.e., one or a few forward/backward passes) for each new data example, forcing learning of new
data to occur in real-time. Additionally, streaming learning techniques can be adapted to cope with batches
of data instead of single examples (Wang et al., 2018), while batch-incremental learning techniques tend to

1We use “online learning” to generically describe methodologies that perform training in a sequential manner.
2These “batches” are large (e.g., a 100-class subset of ImageNet with >100,000 data examples (Rebuffi et al., 2017)) and

using smaller batches damages performance (Belouadah et al., 2020; Hayes et al., 2020).
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deteriorate drastically given smaller batch sizes (Hayes et al., 2020). As such, the streaming learning setting,
which has recently been explored for applications with deep neural networks (Hayes et al., 2018; Hayes et al.,
2020; Hayes & Kanan, 2020), is generic and has the potential to enable low-cost updates of deep networks
to incoming data.

Current streaming methodologies for deep neural networks learn in two-phases: base initialization and
streaming. During base initialization, network parameters (and other modules, if needed) are pre-trained
over a subset of data. Then, a majority of network parameters are frozen (i.e., not updated) throughout
the learning process. During streaming, most approaches maintain a replay buffer—though other techniques
exist (Hayes & Kanan, 2020)—to avoid catastrophic forgetting by allowing prior data to be sampled and
included in each online update.

The current, multi-stage streaming learning pipeline suffers a few notable drawbacks. Namely, the learning
process is dependent upon a latency-inducing, offline pre-training procedure and a majority of network
parameters are not updated during the streaming process. As a result, the underlying network i) has
reduced representational capacity, ii) cannot adapt a large portion of its parameters to new data, and
iii) is dependent upon high-quality pre-training (during base initialization) to perform well. Given these
considerations, one may begin to wonder whether a simpler streaming procedure could be derived to realize
the goal of adapting deep networks to new data in real time.

This Work. Inspired by the simplicity of offline training, we propose a novel method for streaming learning
with deep networks, called Cold Start Streaming Learning (CSSL), that updates all network parameters
in an end-to-end fashion throughout the learning process. Because no parameters are fixed by CSSL, base
initialization and pre-training procedures are optional—streaming can begin from a completely random
initialization (hence, “cold start” streaming learning). By leveraging a basic replay mechanism coupled with
sophisticated data augmentation techniques, CSSL outperforms existing streaming techniques in a variety of
domains. Furthermore, the simplicity of the approach makes our algorithm more apt to theoretical analysis,
as well as easier to implement and deploy in practice. A summary of our contributions is as follows:

• We propose CSSL, a simple streaming methodology that combines replay buffers with sophisticated data
augmentation, and provide extensive comparison to existing techniques on common class-incremental
streaming problems. We show that CSSL often outperforms baseline methodologies by a large margin.

• We leverage techniques related to neural tangent random feature (NTRF) analysis (Cao & Gu, 2019) to
prove a theoretical bound on the generalization loss of CSSL over streaming iterations.

• We propose a multi-task streaming learning benchmark, where multiple, disjoint classification datasets are
presented to the model sequentially and in a streaming fashion. We show that CSSL enables significant
performance improvements over baseline methodologies in this new domain.

• We extensively analyze models trained via CSSL, showing that resulting models i) achieve impressive
streaming performance even when beginning from a random initialization (i.e., a cold start); ii) are
robust to the compression of examples in the replay buffer for reduced memory overhead; and iii) provide
highly-calibrated confidence scores due to our proposed data augmentation policy.

2 Related Work

Online Learning. Numerous experimental setups have been considered for online learning, but they all
share two properties: i) the sequential nature of the training process and ii) performance deterioration
due to catastrophic forgetting when incoming data is non-i.i.d. (McCloskey & Cohen, 1989; Kemker et al.,
2018). Replay mechanisms, which maintain a buffer of previously-observed data (or a generative model to
produce such data (Rannen et al., 2017; Shin et al., 2017)) to include in online updates, are highly-effective
at preventing catastrophic forgetting at scale (Douillard et al., 2020; Chaudhry et al., 2019; Hayes et al.,
2020), leading us to base our proposed methodology upon replay. Similarly, knowledge distillation (Hinton
et al., 2015) can prevent performance deterioration by stabilizing feature representations throughout the
online learning process (Hou et al., 2019; Wu et al., 2019), even while training the network end-to-end (e.g.,
end-to-end incremental learning (Castro et al., 2018) and iCarl (Rebuffi et al., 2017)). Though distillation
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and replay are widely-used, numerous other approaches to online learning also exist (e.g., architectural
modification (Rusu et al., 2016; Draelos et al., 2017), regularization (Dhar et al., 2019; Li & Hoiem, 2017),
and dual memory (Kemker & Kanan, 2017; Belouadah & Popescu, 2019)).

Streaming Learning. Streaming, which we study in this work, performs a single pass over the dataset,
observing each sample once (Hayes et al., 2018). Having recently become popular in deep learning, streaming
learning (Hayes et al., 2020; Acharya et al., 2020; Hayes & Kanan, 2020; Gallardo et al., 2021) trains the
model in two-phases: base initialization and streaming. Base initialization uses a subset of data to pre-train
the model and initialize relevant network modules. Then, the streaming phase learns the dataset in a single-
pass with a majority of network parameters fixed. Within this training paradigm, replay-based techniques
perform well at scale (Hayes et al., 2020), though other approaches may also be effective (Hayes & Kanan,
2020).

Data Augmentation. The success of the proposed methodology is enabled by our data augmentation pol-
icy. Though data augmentation for computer vision is well-studied (Shorten & Khoshgoftaar, 2019), we focus
upon interpolation methods and learned augmentation policies. Interpolation methods (e.g., Mixup (Zhang
et al., 2017; Wolfe & Lundgaard, 2019; Inoue, 2018) and CutMix (Yun et al., 2019)) take stochastically-
weighted combinations of images and label pairs during training, which provides regularization benefits.
Learned augmentation policies (e.g., AutoAugment (Cubuk et al., 2018; Lim et al., 2019; Hataya et al.,
2020) and RandAugment (Cubuk et al., 2020)), on the other hand, consider a wide scope of augmentation
techniques and adopt a data-centric approach to learn an optimal augmentation policy (i.e., using reinforce-
ment learning or gradient-based techniques).

Confidence Calibration. Beyond the core methodology of CSSL, we extensively explore the confidence
calibration properties of resulting models. Put simply, confidence calibration is the ability of a model to ac-
curately predict the probability of its own correctness—poor predictions should be made with low confidence
and vice versa. Numerous methodologies have been proposed for producing calibrated models, including
post-hoc softmax temperature scaling (Guo et al., 2017), ensemble-based techniques (Lakshminarayanan
et al., 2017), Mixup (Zhang et al., 2017; Thulasidasan et al., 2019), Monte-Carlo dropout, and uncertainty
estimates in Bayesian networks (Neal, 2012; Gal & Ghahramani, 2016). Confidence calibration has also
been applied to problems including domain shift and out-of-distribution detection due to its ability to filter
incorrect, or low confidence predictions (Hendrycks & Gimpel, 2016; Hendrycks & Dietterich, 2019).

Multi-task learning. Our work is the first to consider multi-task streaming learning, though multi-task
learning has been previously explored for both offline and batch-incremental settings. (Hou et al., 2018)
studies the sequential learning of several datasets via knowledge distillation and replay, and several other
works study the related problem of domain shift (Jung et al., 2016; Furlanello et al., 2016), where two
datasets are learned in a sequential fashion. For the offline setting, multi-task learning has been explored
extensively, leading to a variety of successful learning methodologies for computer vision (Lu et al., 2020),
natural language processing (Stickland & Murray, 2019), multi-modal learning (Wolfe & Lundgaard, 2021;
Nguyen & Okatani, 2019), and more. The scope of work in offline multi-task learning is too broad to provide
a comprehensive summary here, though numerous surveys on the topic are available (Ruder, 2017; Worsham
& Kalita, 2020).

3 Methodology

The proposed streaming methodology, formulated in Algorithm 1, begins either from pre-trained parameters
or a random-initialization (Initialize in Algorithm 1) and utilizes a replay buffer R to prevent catastrophic
forgetting. At each iteration, CSSL receives a new data example xt, yt := Dt, combines this data with random
samples from the replay buffer, performs a stochastic gradient descent (SGD) update with the combined
data, and stores the new example within the buffer for later replay. Within this section, we will first provide
relevant preliminaries and definitions, then each component of CSSL will be detailed and contrasted with
prior work.
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Algorithm 1: Cold Start Streaming Learning
Parameters: W model parameters, D data stream, R replay buffer, C maximum replay buffer size,
B number of replay samples per iteration

# Initialize model parameters randomly or via pre-training (if possible)
W := Initialize()
R := ∅
for t = 1, . . . , |D| do

# Sample data from the replay buffer to combine with new data from D
xnew, ynew := Dt
Xreplay, Yreplay := ReplaySample(R, B)
X , Y := {xnew} ∪ Xreplay, {ynew} ∪ Yreplay
# Update all model parameters over augmented new and replayed data
StreamingUpdate(W, Augment(X , Y))
# Compress and Store the new data example for replay
ReplayStore(R, (Compress(xnew), ynew))
# Evict data from the replay buffer to maintain capacity
if |R| > C then

ReplayEvict(R)
end

end

3.1 Preliminaries

Problem Setting. Following prior work (Hayes et al., 2020), we consider the problem of streaming for
image classification.3 In most cases, we perform class-incremental streaming experiments, in which examples
from each distinct semantic class within the dataset are presented to the learner sequentially. However,
experiments are also performed using other data orderings; see Section 6.2. Within our theoretical analysis
only, we consider a binary classification problem that maps vector inputs to binary labels; see Section 5 for
further details. Such a problem setup is inspired by prior work (Cao & Gu, 2019; Allen-Zhu et al., 2019).

Streaming Learning Definition. Streaming learning considers an incoming data stream D =
{(xt, yt)}nt=1

4 (i.e., t denotes temporal ordering) and adopts the following rule set during training:

1. Each unique data example appears once in D.
2. The order of data within D is arbitrary and possibly non-iid.
3. Model evaluation may occur at any time t.

Notably, these requirements make no assumptions about model state prior to the commencement of the
streaming process. Previous methodologies perform offline, base initialization procedures before streaming
begins, while CSSL may either begin streaming from randomly-initialized or pre-trained parameters. As
such, CSSL is capable of performing streaming even without first observing examples from D, while other
methodologies are reliant upon data-dependent base initialization.

Evaluation Metric. In most experiments, performance is measured using Ωall (Hayes et al., 2018), defined
as Ωall = 1

T

∑T
t=1

αt
αoffline,t

, where αt is streaming performance at testing event t, αoffline,t is offline performance
at testing event t, and T is the number of total testing events. Ωall captures aggregate streaming performance
(relative to offline training) throughout streaming. A higher score indicates better performance.

As an example, consider a class-incremental streaming setup with two testing events: one after 1⁄2 of the
classes have been observed and one at the end of streaming. The streaming learner is evaluated at each testing

3Streaming learning has been considered in the object detection domain (Acharya et al., 2020), but we consider this appli-
cation beyond the scope of our work.

4E.g., xt ∈ R3×H×W (RGB image) and yt ∈ Z≥0 (class label) for computer vision applications.
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event, yielding accuracy α1 and α2. Two models are trained offline over 1⁄2 of the classes and the full dataset,
respectively, then evaluated to yield αoffline,1 and αoffline,2. From here, Ωall is given by 1

2

(
α1

αoffline,1
+ α2

αoffline,2

)
.

3.2 Cold Start Streaming Learning

Replay Buffer. As the learner progresses through the data stream, full images and their associated labels
are stored (ReplayStore) within a fixed-size replay buffer R. The replay buffer R has a fixed capacity
C. Data can be freely added to R if |R| < C, but eviction must occur (ReplayEvict in Algorithm 1) to
make space for new examples when the buffer is at capacity. One of the simplest eviction policies—which is
adopted in prior work (Hayes et al., 2020)—is to i) identify the class containing the most examples in the
replay buffer and ii) remove a random example from this class. This policy, which we adopt in CSSL, is
computationally efficient and performs similarly to more sophisticated techniques; see Appendix B.3.

Figure 1: Illustration of CSSL following the notation
of Algorithm 1.

Data Compression. Data is compressed
(Compress in Algorithm 1) before addition toR. By
freezing a majority of network layers during stream-
ing, previous methods can leverage learned quanti-
zation modules and pre-trained feature representa-
tions to drastically reduce the size of replay data
(Hayes & Kanan, 2020; Hayes et al., 2020). For
CSSL, full images, which induce a larger memory
overhead, are stored in R and no network parame-
ters are fixed, meaning that Compress cannot rely
on pre-trained, fixed network layers.

We explore several, data-independent Compress op-
erations, such as resizing images, quantizing the in-
teger representations of image pixels, and storing
images on disk with JPEG compression; see Ap-
pendix B.2. Such compression methodologies signif-
icantly reduce memory overhead without impacting
performance. Because storing the replay buffer on
disk is not always possible (e.g., edge devices may
lack disk-based storage), we present this as a sup-
plemental approach and always present additional
results without JPEG compression.

Due to storing full images in the replay buffer, the proposed methodology has more memory overhead relative
to prior techniques, making it less appropriate for memory-limited scenarios. However, many streaming
applications (e.g., e-commerce recommendation systems, pre-labeling for data annotation, etc.) store and
update models on cloud servers, making memory efficiency less of a concern. We recommend CSSL for such
scenarios, as it outperforms prior methods given sufficient memory for replay.

Model Updates. For each new example within D, CSSL updates learner parameters Θ (StreamingUpdate
in Algorithm 1) using the new example and N replay buffer samples obtained via ReplaySample. Simi-
lar to prior work, ReplaySample uniformly samples data from R—alternative sampling strategies provide
little benefit at scale (Aljundi et al., 2019b;a; Hayes et al., 2020); see Appendix B.4. StreamingUpdate is
implemented as a simple SGD update of all network parameters over new and replayed data.

Streaming updates pass the mixture of new and replayed data through a data augmentation pipeline (Augment
in Algorithm 1). Though prior work uses simple augmentations (Castro et al., 2018; Verma et al., 2019; Hayes
et al., 2020), we explore data interpolation (Zhang et al., 2017; Yun et al., 2019) and learned augmentation
policies (Cubuk et al., 2018). In particular, CSSL combines random crops and flips, Mixup, Cutmix, and
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Autoaugment into a single, sequential augmentation policy5; see Appendix B.1 for further details. Curating
a high quality data augmentation pipeline is the key CSSL’s impressive performance.

Our Methodology. In summary, CSSL, illustrated in Figure 1, initializes the network either randomly
or with pre-trained parameters (Initialize). Then, for each new data example, N examples are sampled
uniformly from the replay buffer (ReplaySample), combined with the new data, passed through a data
augmentation pipeline (Augment), and then used to perform a training iteration (StreamingUpdate). Each
new data example is added to the replay buffer (ReplayStore), and an example may be randomly removed
from the replay buffer via random, uniform selection (ReplayEvict) if the capacity C is exceeded.

4 Why is this useful?

The proposed methodology has two major benefits:

• Full Plasticity (i.e., no fixed parameters)

• Pre-Training is Optional

Such benefits are unique to CSSL; see Appendix C. However, one may question the validity of these
“benefits”—do they provide any tangible value?

No. Base Top-1 Ωall Top-5 ΩallInit.Classes
10 0.478 0.651
50 0.727 0.848
100 0.835 0.856

Table 1: Ωall of REMIND on ImageNet with different
amounts of base initialization data. REMIND perfor-
mance deteriorates with less data.

Full Plasticity. CSSL updates all model parame-
ters throughout the streaming process.6 Some incre-
mental learning methodologies train networks end-
to-end(Castro et al., 2018; Hou et al., 2019; Wu
et al., 2019), but these approaches either i) cannot
be applied or ii) perform poorly when adapted to the
streaming domain(Hayes et al., 2020); see Appendix
B.6. Fixing network parameters is detrimental to
the learning process. To show this, we pre-train a
ResNet18 on ImageNet and fix different ratios of
network parameters during fine-tuning on CIFAR10/100, finding that final accuracy deteriorates monotoni-
cally with respect to the ratio of frozen parameters; see Figure 2. Even given high-quality pre-training, fixing
network parameters i) limits representational capacity and ii) prevents network representations from being
adapted to new data, making end-to-end training a more favorable approach.
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Figure 2: Test acccuracy of ResNet18 models that
are pre-trained on ImageNet and fine-tuned on CI-
FAR10/100 with different ratios of frozen parameters.

Pre-Training is Optional. Prior streaming meth-
ods perform base initialization (i.e., fitting of net-
work parameters and other modules over a subset of
data) prior to streaming. Not only does base initial-
ization introduce an expensive, offline training pro-
cedure, but it makes model performance dependent
upon the availability of sufficient (possibly unlabeled
(Gallardo et al., 2021)) pre-training data prior to
streaming. Streaming performance degrades with
less base initialization data; see Table 1. Thus, if
little (or worse, no) data is available when stream-
ing begins, such methods are doomed to poor per-
formance.

CSSL has no dependency upon pre-training because the network is trained end-to-end during streaming.
Thus, the CSSL training pipeline is quite simple—just initialize, then train. Such simplicity makes CSSL

5Mixup and Cutmix are not performed simultaneously. Our policy randomly chooses between Mixup or Cutmix for each
data example with equal probability.

6Training the network end-to-end within CSSL does make model inference and updates more computationally expensive,
which adds latency to streaming updates; see Appendix B.7 for further analysis.
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easy to implement and deploy in practice. We emphasize that CSSL can begin streaming from a pre-trained
set of model parameters, which often leads to better performance. The benefit of CSSL, however, is that
such a pre-training step is completely optional and network parameters are still updated during streaming.

Implications and Potential Applications. The proposed methodology yields improvements in perfor-
mance, simplicity, and applicability relative to prior work. Fixing no network parameters enables better
performance by increasing network representational capacity and adaptability, while the ability to stream
from a cold start simplifies the streaming pipeline and makes streaming applicable to scenarios that lack
sufficient data for base initialization.

Consider, for example, pre-labeling for data annotation, where a streaming learner works with a human an-
notator to improve labeling efficiency. In this case, the annotated dataset may be built from scratch, meaning
that no data is yet available when streaming begins. Similarly, cold-start scenarios for recommendation or
classification systems often lack prior data from which to learn. Though pre-trained models may sometimes
be downloaded online, this is not possible for domains that align poorly with public models and datasets
(e.g., medical imaging). While prior approaches fail in these scenarios due to a dependence upon high-quality
base initialization, CSSL can simply begin streaming from a random initialization and still perform well.

5 Theoretical Results

CSSL’s simple training pipeline enables the algorithm to be analyzed theoretically. To do this, we extend
analysis of the neural tangent random feature (NTRF) (Cao & Gu, 2019) to encompass multi-layer networks
trained via streaming to perform binary classification using a replay mechanism and data augmentation.
The analytical setup is similar to Algorithm 1 with a few minor differences. We begin by providing relevant
notation and definitions, then present the main theoretical result.

5.1 Preliminaries and Definitions

Notation. We denote scalars and vectors with lower case letters, distinguished by context, and matrices
with upper case letters. We define [l] = {1, 2, . . . , l} and ‖v‖p = (

∑d
i=1 |vi|p)

1
p for v = (v1, v2, . . . , vd)> ∈ Rd

and 1 ≤ p <∞. We also define ‖v‖∞ = maxi |vi|. For matrix A ∈ Rm×n, we use ‖A‖0 to denote the number
of non-zero entries in A. We use i ∼ N to denote a random sample i from distribution N , and N (µ, σ)
to denote the normal distribution with mean µ and standard deviation σ. 1{·} is the indicator function.
We then define ‖A‖F =

√∑
i,j A

2
i,j and ‖A‖p = max‖v‖p=1 ‖Av‖p for p ≥ 1 and v ∈ Rn. For two matrices

A,B ∈ Rm×n, we have 〈A,B〉 = Tr(A>B). For vector v ∈ Rd, diag(v) ∈ Rd×d is a diagonal matrix with
the entries of v on the diagonal. We also define the asymptotic notations O(·) and Ω(·) as follows. If an and
bn are two sequences, an = O(bn) if lim supn→∞ |anbn | <∞ and an = Ω(bn) if lim supn→∞ |anbn | > 0.

Network Formulation. We consider fully forward neural networks with widthm, depth L, input dimension
d, and an output dimension of one. The weight matrices of the network are W1 ∈ Rm×d, W` ∈ Rm×m for
` = 2, . . . , L − 1, and WL ∈ R1×m.7 We denote W = {W1, . . . ,WL} and define 〈W,W′〉 =

∑L
i=1〈Wi,W

′
i 〉

when W,W′ are two sets containing corresponding weight matrices with equal dimension. All of such sets
with corresponding weight matrices of the same dimension form the set W. Then, a forward pass with
weights W = {W1, . . . ,WL} ∈ W for input x ∈ Rd is given by:

fW(x) =
√
m ·WLσ(WL−1σ(WL−2 . . . σ(W1(x)) . . . )), (1)

where σ(·) is the ReLU activation function. Following (Cao & Gu, 2019), the first and last weight matrices
are not updated during training.

Objective Function. For data stream D = {(xt, yt)}nt=1, we define LD(W) , E(x,y)∼DL(x,y,ξ)(W),
where L(x,y,ξ)(W) = `[y · fW(x + ξ)] is the loss over (x, y) ∈ D with arbitrary perturbation vector ξ—
representing data augmentation—and `(z) = log(1 + e−z) is the cross-entropy loss. We use the notation

7Assuming the widths of each hidden layer are the same is a commonly-used simplification. See (Allen-Zhu et al., 2019; Cao
& Gu, 2019) for papers that have adopted the same assumption.
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L(t,ξ)(·) = L(xt,yt,ξ)(·) for convenience, and denote the 0-1 generalization error over the entire data stream
D as L0−1

D (W) , E(x,y)∼D[1{y · fW(x+ ξ) < 0}] with arbitrary perturbation vector ξ.

CSSL Formulation. Following Algorithm 1, our analysis considers a random initialization (Initialize)
of model parameters W(0) = {W (0)

1 , . . . ,W
(0)
L } as shown below:

W
(0)
j ∼ N

(
0, 2
m

)
, ∀ j ∈ [L− 1],

W
(0)
L ∼ N

(
0, 1
m

)
.

(2)

A buffer R of size C is used to maintain data for replay. All incoming data is added to R (ReplayStore),
and an entry is randomly (uniformly) evicted from R (ReplayEvict) if |R| > C.

Each online update takes B uniform samples from R (ReplaySample), forming a set St of replay examples
at iteration t. The t-th update of model parameters W (StreamingUpdate) over new and replayed data is
given by the following expression:

W(t+1) = W(t) − η

∇W(t)L(xt,yt,ξt)(W(t)) +
∑

(xrep,yrep)∈St

∇W(t)L(xrep,yrep,ξrep)(W(t))

 , (3)

where η is the learning rate, ξt is an arbitrary perturbation vector for the t-th data stream example, and
ξrep is an arbitrary perturbation vector that is separately generated for each individual replay example. Our
theoretical analysis does not consider the compression of replay examples (Compress(x) = x).

Data Augmentation. The t-th example in the data stream (xt, yt) ∈ D is augmented (Augment) using
the perturbation vector ξt; i.e., the network always observes an augmented version of the data, given by
(xt + ξt, yt). No assumptions are made about vectors ξt, though our final rate depends on their magnitude.
Similarly, all replay samples are augmented via ξrep, such that the network observes (xrep + ξrep, yrep) for
each (xrep, yrep) ∈ St. All replay samples have unique perturbation vectors ξrep, but we use ξrep to denote
all replay perturbation vectors for simplicity. We denote the set of all perturbation vectors used for new and
replayed data throughout streaming as X and define Ξ = sup

ξ∈X
‖ξ‖22.

Neural Tangent Random Feature. For W ∈ W, we define the ω-neighborhood as follows:

B(W, ω) , {W′ ∈ W : ‖W ′l −Wl‖F ≤ ω, ∀l ∈ [L]}.

Given a set of all-zero weight matrices 0 ∈ W and randomly initialized (according to equation 2) W(0), the
Neural Tangent Random Feature (NTRF) (Cao & Gu, 2019) is then defined as the following function set

F(W(0), R) = {f(·) = fW(0)(·) + 〈∇WfW(0)(·),W〉 : W ∈ B(0, R)},

where R > 0 controls the size of the NTRF. We use the following shorthand to denote the first order Taylor
approximation of network output, given weights W,W′ ∈ W and input x ∈ Rd:

FW,W′(x) , fW(x) + 〈∇WfW(x),W′ −W〉.

Using this shorthand, the NTRF can be alternatively formulated as:

F(W(0), R) = {f(·) = FW(0),W′(·) : W′ −W(0) ∈ B(0, R)}.

5.2 Convergence Guarantees

Here, we present the main result of our theoretical analysis for CSSL—an upper bound on the zero-one
generalization error of networks trained via Algorithm 1, as described in Section 5.1. Proofs are deferred to
Appendix E, but we provide a sketch in this section. Our analysis adopts the following set of assumptions.
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Assumption 1. For all data (xt, yt) ∈ D, we assume ‖xt‖2 = 1. Given two data examples (xi, yi), (xj , yj) ∈ D,
we assume ‖xi − xj‖2 ≥ λ.

The conditions in Assumption 1 are widely-used in analysis of overparameterized neural network generaliza-
tion (Cao & Gu, 2019; Allen-Zhu et al., 2019; Oymak & Soltanolkotabi, 2020; Zou et al., 2018; Li & Liang,
2018). The unit norm assumption on the data is adopted for simplicity but can be relaxed to c1 ≤ ‖xi‖ ≤ c2
for all (xi, yi) ∈ D and absolute constants c1, c2 > 0. Given these assumptions, we derive the following:

Theorem 1. Assume Assumption 1 holds, ω ≤ O
(
L−6 log−3(m)

)
, and m ≥ O

(
nB
√

1 + ΞL6 log3(m)
)
.

Then, defining Ŵ as a uniformly-random sample from iterates {W(0), . . . ,W(n)} obtained via Algorithm 1
with η = O

(
m−

3
2

)
and B replay samples chosen at every iteration from buffer R, we have the following

with probability at least 1− δ:

E
[
L0−1
D

(
Ŵ
)]
≤ inf
f∈F(W(0),R/m)

(
4
n

n∑
t=1

`(yt · f(xt + ξt))
)

+

√
2 log( 1

δ )
n

+O
(

(1 + Ξ) 3
4B

1
2n+R2

L2 log
3
2 (m)

)

where ξt is an arbitrary perturbation vector representing data augmentation applied at streaming iteration t,
R > 0 is a constant controlling the size of the NTRF function class, and δ ∈ [0, 1).

Discussion. Theorem 1 provides an upper bound on the 0-1 generalization error over D for a network
trained via Algorithm 1. This bound has three components. The first component—shaded in red—captures
the 0-1 error achieved by the best function within the NTRF F(W(0),R/m). Intuitively, this term captures
the “classifiability” of the data—it has a large value when no function in the ω-neighborhood of W(0) can fit
the data well and vice versa. Given fixed m, however, this term can be made arbitrarily small by increasing
R to enlarge the NTRF and, in turn, increase the size of the function space considered in the infimum.

The second term—shaded in green—is a probabilistic term that arises after invoking an online-to-batch
conversion argument (Cesa-Bianchi et al., 2004) to relate training error to 0-1 generalization error. This
term contains log(1/δ) in the numerator and n in the denominator. Smaller values of δ will make the bound
looser but allow it to hold with higher probability. On the other hand, larger values of n make this term
arbitrarily small, meaning that the bound can be improved by observing more data.

The final term—shaded in blue—considers all other additive terms that arise from technical portions of the
proof. This asymptotic expression grows with Ξ, R, B, and n. However, the term L2 log

3
2 (m) occurs in

the denominator, revealing that this final term will shrink as the model is made wider and deeper.8 Thus,
Theorem 1, as a whole, shows that the network generalizes well given sufficiently largem, L, and n—meaning
that the network is sufficiently overparameterized and enough data has been observed.

Sketch. The proof of Theorem 1—provided in Appendix E—proceeds as follows:

• We first show that the average 0-1 loss of iterates {W(0), . . . ,W(n)} obtained during streaming can be
upper bounded with a constant multiple of the average cross-entropy loss of the same iterates.

• Invoking Lemma 1, we convert this average loss of iterates {W(0), . . . ,W(n)} to an average loss of weights
within the set W? ∈ B(W(0),R/m), where R > 0.

• Using an online-to-batch conversion argument (see Proposition 1 in (Cesa-Bianchi et al., 2004)), we lower
bound average 0-1 loss with expected 0-1 loss over D with probability 1− δ.

• From here, we leverage Lemma 3 to relate average loss of W? over streaming iterations to the NTRF,
taking an infimum over all functions f ∈ F(W(0),R/m) to yield the final bound.

8Observe that n appears in the denominator of the green term and the numerator of the blue term of Theorem 1. However,
because the model is assumed to be overparameterized (i.e., m � n), the blue term is still negligible even given values of n
that are sufficiently large to make the green term small.
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Method Base Init. Ratio of Uses ReplayRequired Params Frozen
ExStream (Hayes et al., 2018) X 95% X
DeepSLDA (Hayes & Kanan, 2020) X 95% 7
REMIND (Hayes et al., 2020) X 75% X
CSSL 7 0% X

Table 2: A basic outline of properties for each of the considered streaming algorithms.

6 Experiments

Following prior work, we use ResNet18 to perform class-incremental streaming experiments on CIFAR100 and
ImageNet (Krizhevsky et al., 2009; Deng et al., 2009), experiments with various different data orderings on
Core50 (Lomonaco & Maltoni, 2017), and experiments using a novel, multi-task streaming learning setting.
As baselines, we adopt the widely-used streaming algorithms ExStream (Hayes et al., 2018), Deep SLDA
(Hayes & Kanan, 2020), and REMIND (Hayes et al., 2020); see Table 2 for details. Because REMIND freezes
most network layers after base initialization, we also study a REMIND variant (“Remind + Extra Params”)
with added, trainable layers such that the number of trainable parameters is equal to CSSL.9

All experiments split the dataset(s) into several batches and data ordering is fixed between comparable
experiments. Evaluation occurs after each batch and baselines use the first batch for base initialization—the
first batch is seen both during base initialization and streaming. CSSL performs no base initialization, but
may begin the streaming process with pre-trained parameters—such experiments are identified accordingly.
We first present class-incremental streaming experiments, followed by the analysis of different data orderings
and multi-task streaming. The section concludes with supplemental analysis that considers training other
network architectures and studies behavioral properties of networks trained via CSSL.

6.1 Class-Incremental Learning

We perform class-incremental streaming learning experiments using a ResNet18 architecture on CIFAR100
and ImageNet. The results of these experiments are summarized below, and a discussion of the results follows.
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Figure 3: Streaming performance on CIFAR100 using
different replay buffer capacities. CSSL outperforms
all existing approaches, no matter the buffer capacity,
and performs even better with pre-training.

CIFAR100. The dataset is divided into batches
containing 20 classes and results are averaged over
three different data orderings. Experiments are con-
ducted using replay buffer memory capacities rang-
ing from 30Mb (i.e., 10K CIFAR100 images) to
150Mb. These capacities are not relevant to Deep
SLDA or REMIND, as Deep SLDA does not use a
replay buffer and REMIND can store the full dataset
using < 30Mb of memory. CSSL compresses replay
examples by quantizing pixels to 6 bits and resiz-
ing images to 66% of their original area. In some
cases, CSSL is initialized with parameters that are
pre-trained over the first 20 classes of CIFAR100;
see Appendix A.1 for details. The results of these
experiments are illustrated in Figure 3.

ImageNet. The dataset is divided into batches of
100 classes. Following (Hayes et al., 2020), we per-

9This modified version of REMIND has the same number of trainable parameters as a normal ResNet18 model and is
included as a baseline to ensure the benefit of CSSL is not simply due to the presence of more traininable parameters within
the underlying network.
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form experiments with replay buffer memory capacities of 1.5Gb and 8Gb. For reference, 1.5Gb and 8Gb
experiments with (without) JPEG compression store 100,000 (10,000) and 500,000 (50,000) images for replay,
respectively, given standard pre-processing. Such capacities are not relevant to Deep SLDA.

Several CSSL variants are tested that i) optionally pre-train over the base initialization set and ii) may store
the replay buffer on disk. For in-memory replay, data is compressed by quantizing each pixel to four bits
and resizing images to 75% of their original area. No quantization or resizing is employed when the replay
buffer is stored on disk; see Appendix A.1 for details. ImageNet results are provided in Table 3.

Method Replay Buffer Size
1.5Gb 8Gb

ExStream 0.569 0.594
Deep SLDA 0.752 0.752
REMIND 0.855 0.856
REMIND + Extra Params 0.869 0.873
CSSL 0.740 0.873
CSSL + Pre-Train 0.750 0.903
CSSL + JPEG 0.899 0.951
CSSL + Pre-Train + JPEG 0.909 0.964

Table 3: Top-5 Ωall on ImageNet with 1.5Gb and 8Gb
buffer capacities. Methods that store the replay buffer
on main memory and disk are separated by a horizon-
tal line. REMIND performs well under memory con-
straints, but CSSL surpasses REMIND performance as
the replay buffer grows in size.

Discussion. CSSL far outperforms baselines on CI-
FAR100. Even at the lowest buffer capacity with a
random parameter initialization, our methodology
exceeds the performance of REMIND by 3.6% abso-
lute Ωall given an equal number of trainable parame-
ters, revealing that i) the performance improvement
of CSSL is not solely due to having more trainable
parameters and ii) the proposed approach is capable
of achieving impressive performance even with lim-
ited memory overhead. When a pre-trained param-
eter initialization is used, the performance improve-
ment of CSSL is even more pronounced, reaching
an absolute Ωall of 0.974 that nearly matches offline
performance. For comparison, REMIND achieves
Ωall of 0.790 with an equal number of trainable pa-
rameters and unlimited replay capacity.

On ImageNet, the proposed methodology without
JPEG compression performs comparably to Deep
SLDA at a memory capacity of 1.5Gb. Performance
improves significantly—and surpasses baseline performance—as the replay buffer grows. For example, CSSL
without JPEG compression matches or exceeds the performance of all baselines given a replay buffer ca-
pacity of 8Gb, and performance continues to improve when a pre-trained parameter initialization is used
and as more images are retained for replay. In fact, using pre-trained parameters and 8Gb of memory on
disk for replay, the proposed methodology can achieve a Top-5 Ωall of 0.964, nearly matching offline training
performance.

What’s possible with more memory? REMIND is capable of storing the replay buffer with limited
memory overhead and is the highest-performing method under strict memory limitations; e.g., REMIND
achieves the best performance given a 1.5Gb buffer capacity on ImageNet assuming no access to disk storage.
Despite the applicability of streaming learning to edge-device scenarios (Hayes et al., 2018; Hayes & Kanan,
2022), many streaming applications exist that do not induce strict memory requirements due to ease of
access to high-end hardware on the cloud. Thus, one may begin to wonder whether better performance is
possible when memory constraints upon the replay buffer are relaxed.

As outlined in Table 3, REMIND achieves an Ωall of 0.856 (0.873 with equal trainable parameters to CSSL)
when the entire dataset is stored for replay. Such performance is > 9% absolute Ωall below the best-
performing CSSL experiment (i.e., 8Gb capacity with JPEG storage and pre-training), which, despite in-
creased memory overhead relative to REMIND, does not store the whole dataset in the replay buffer. The
proposed approach continues improving as the replay buffer becomes larger, reaching a Top-5 Ωall of 0.975
given unlimited replay capacity and a pre-trained parameter initialization. Although REMIND may be
preferable in memory-constrained scenarios, the proposed approach continues improving as more memory is
allocated for replay, reaching performance levels much closer to that of offline training.

6.2 Different Data Orderings

We perform streaming experiments on the Core50 dataset using i.i.d. (ID), class i.i.d. (CID), instance (I), and
class-instance (CI) orderings (Lomonaco & Maltoni, 2017). For each ordering, ten different permutations
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Method Top-1 Ωall without Pre-Training Top-1 Ωall with Pre-Training
ID CID I CI ID CID I CI

ExStream 0.719 0.635 0.734 0.627 0.959 0.936 0.954 0.935
Deep SLDA 0.721 0.660 0.730 0.626 0.971 0.952 0.962 0.957
REMIND 0.719 0.628 0.741 0.600 0.985 0.971 0.986 0.973
REMIND + Extra Params 0.636 0.586 0.693 0.594 0.994 0.961 0.996 0.966
CSSL (100Mb Buffer) 1.106 0.977 1.071 0.990 0.963 0.979 0.962 0.976
CSSL (200 Mb Buffer) 1.107 1.005 1.104 0.995 0.968 0.981 0.977 0.976
CSSL (300 Mb Buffer) 1.153 1.009 1.112 1.024 0.976 0.986 0.974 0.979

Table 4: Core50 streaming performance for different data orderings, averaged across ten permutations.

are generated, and performance is reported as an average across permutations. The dataset is split into
batches of 1200 samples. Experiments are conducted with replay buffer memory capacities of 100Mb (i.e.,
2,000 images from Core50, or 1/3 of the full dataset), 200Mb, and 300Mb. These memory capacities only
apply to CSSL, while baselines are given unlimited replay capacity. The proposed methodology compresses
images using 4-bit integer quantization and resizing to 75% of original area; see Appendix A.2 for details.

Experiments are performed both with and without ImageNet pre-trained weights, allowing performance to
be observed in scenarios without a high-quality parameter initialization. In experiments without ImageNet
pre-training, baseline methodologies perform base initialization over the first 1200 dataset examples, while
CSSL begins streaming from a random initialization. When ImageNet pre-training is used, CSSL begins the
streaming process with these ImageNet pre-trained parameters, while baseline methodologies perform base
initialization beginning from the pre-trained weights. CSSL observes no data from the target domain prior
to the commencement of streaming. Core50 results are provided in Table 4.

Discussion. Without ImageNet pre-training, our methodology surpasses baseline performance at all mem-
ory capacities and often exceeds offline training performance. In this case, Ωall > 1 indicates that models
trained via CSSL outperform offline-trained models during evaluation. This result is likely possible due to
the use of simple augmentations (i.e., random crops and flips) for training offline models used to compute
Ωall; see Appendix A.2. Nonetheless, these findings highlight the broad applicability of CSSL. The proposed
approach flourishes in this setting because it i) has no dependence upon base initialization and ii) is capa-
ble of learning all model parameters via streaming. In contrast, baseline methodologies struggle with the
low-quality base initialization provided by only 1200 data examples.

When initialized with pre-trained weights, baseline methodologies perform much better, though the proposed
methodology still matches or exceeds this performance. We emphasize that such pre-trained parameter
initializations are not always possible; see Section 4. In numerous practical scenarios (e.g., surgical video,
medical imaging, satellite or drone imaging, etc.), well-aligned, annotated public datasets may not exist. The
proposed methodology performs well with or without pre-training due to its end-to-end approach to streaming
learning and even surpasses offline training performance when beginning streaming from a cold start.

6.3 Multi-Task Streaming Learning

The Setting. In addition to our proposal of CSSL, we propose and explore a new, multi-task streaming
learning domain. Although similar setups have been explored for batch incremental learning (Hou et al.,
2018), no work has attempted multi-task learning in a streaming fashion, where multiple datasets with dis-
joint output spaces are learned sequentially, one example at a time. Such a setting is particularly interesting
because the introduction of new datasets causes large shifts in properties of the data stream. In such sce-
narios, the learner must adapt to significant changes in incoming data, making the multi-task streaming
learning domain an interesting test case for CSSL.

We consider multi-task streaming learning over several image classification datasets. In particular, we per-
form multi-task streaming learning over the CUB-200 (Wah et al., 2011), Oxford Flowers (Nilsback & Zisser-
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ImageNet Method Top-1 Accuracy
Pre-Training MIT Scenes CUB-200 Flowers FGVC

X

Offline 71.42 ± 0.60 73.70 ± 0.01 91.98 ± 0.02 76.05 ± 0.17
ExStream 58.96 ± 0.70 26.04 ± 0.46 69.16 ± 0.27 33.33 ± 0.56
Deep SLDA 60.05 ± 0.35 29.85 ± 0.04 72.56 ± 0.13 34.16 ± 0.20
REMIND 54.23 ± 0.58 46.27 ± 1.01 78.06 ± 1.47 36.56 ± 3.24
CSSL 54.30 ± 1.95 59.94 ± 0.97 88.36 ± 0.98 45.29 ± 2.11

7

Offline 51.60 ± 0.56 46.95 ± 0.25 83.10 ± 0.57 60.12 ± 0.44
ExStream 31.84 ± 0.34 9.37 ± 0.08 40.31 ± 0.15 16.58 ± 0.20
Deep SLDA 35.05 ± 0.19 11.30 ± 0.10 44.04 ± 0.09 16.89 ± 0.06
REMIND 28.56 ± 0.71 17.97 ± 0.41 43.97 ± 1.29 16.53 ± 0.68
CSSL 42.49 ± 0.73 40.08 ± 0.45 78.70 ± 0.45 25.98 ± 2.30

Table 5: Top-1 test accuracy of models trained with different methodologies for multi-task streaming learning.
CSSL is able to better adapt its representations to each of the new datasets over time, resulting in significant
performance improvements relative to baselines.

man, 2008), MIT Scenes (Quattoni & Torralba, 2009), and FGVC-Aircrafts datasets (Maji et al., 2013). The
datasets are learned in that order and are introduced to the data stream one example at a time in a class-
incremental fashion; see Appendix A.3 for further details. Though the ordering of datasets is never changed,
the ordering of data within each dataset may be changed. Comparable experiments use the same ordering
of data. To handle the disjoint output spaces of each dataset, models for both the proposed methodology
and baselines are modified to have a separate output layer for each dataset.

Methodology. For simplicity, all methodologies are given unlimited replay capacity for multi-task streaming
learning experiments. Baseline methodologies perform base initialization over the first half of the MIT indoor
dataset, optionally beginning with ImageNet pre-trained parameters. CSSL begins the streaming process
with either random or ImageNet pre-trained parameters, such that no data from the target domain is
observed prior to the commencement of streaming. All tests are performed over three distinct permutations
of the data, and performance is averaged across permutations.

During streaming learning, each update performs i) an update with replayed and new data for the dataset
currently being learned and ii) a separate, full update with replayed data for each of the datasets that
have been learned previously. We find that such a strategy for multi-task replay performs better than
other strategies, such as performing a single update that encompasses all datasets; see Appendix B.5. Deep
SLDA and ExStream do not adopt this replay strategy, as only the final classification layers of the model are
updated during streaming. Thus, multi-task streaming learning is identical to performing separate streaming
experiments on each dataset. Performance in terms of Top-1 test accuracy is recorded separately over each
dataset at the end of the streaming process, as shown in Table 5.10

Discussion As shown in Table 5, CSSL, both with and without pre-triaining, far outperforms all baseline
methodologies on nearly all datasets in the multi-task streaming domain. For example, when ImageNet
pre-training is used, CSSL outperforms REMIND by 10% absolute test accuracy (or more) on CUB-200,
Oxford Flowers, and FGVC-Aircrafts datasets. When no ImageNet pre-training is used, the performance
improvement is even more drastic. In particular, CSSL provides a 22% and 35% absolute boost in Top-1
accuracy on the CUB-200 and Oxford Flowers datasets, respectively.

Interestingly, CSSL achieves lower performance than ExStream and Deep SLDA on the MIT Scenes dataset
when ImageNet pre-training is used. The impressive performance of these baselines on MIT Scenes is caused
by the fact that i) ExStream and Deep SLDA only update the model’s classification layer during streaming

10We choose to avoid reporting performance in terms of Ωall and only report performance at the end of streaming to match
the evaluation strategy of (Hou et al., 2018) and make results less difficult to interpret.
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Dataset Method Average ECE

CIFAR100

ExStream 0.301 ± 0.008
Deep SLDA 0.296 ± 0.012
REMIND 0.023 ± 0.000
CSSL + Pre-Train (30Mb Buffer) 0.031 ± 0.005
CSSL + Pre-Train (150Mb Buffer) 0.023 ± 0.003
CSSL + Pre-Train + No Aug. (150Mb Buffer) 0.161 ± 0.031
CSSL (30Mb Buffer) 0.040 ± 0.001
CSSL (150Mb Buffer) 0.036 ± 0.002
CSSL + No Aug. (150Mb Buffer) 0.149 ± 0.015

ImageNet
REMIND 0.021 ± 0.005
CSSL 0.043 ± 0.003
CSSL + No Aug. 0.266 ± 0.009

Table 6: Average ECE of models trained via diferent streaming methodologies on class incremental streaming
experiments with CIFAR100 and ImageNet datasets. Both REMIND and CSSL are found to facilitate
favorable calibration properties within the underlying model.

and ii) the fixed feature extractor being used is pre-trained on ImageNet and fine-tuned on over half of
the MIT Scenes dataset. Thus, ExStream and Deep SLDA perform well on this dataset only because their
feature extractor has been extensively pre-trained and exposed to a large portion of the dataset during base
initialization. When ImageNet pre-training is not included, the fixed feature extractor is of lower quality,
leading ExStream and Deep SLDA to be outperformed by CSSL even on the MIT Scenes dataset.

Adapting the model’s representations to new datasets is pivotal to achieving competitive performance in the
multi-task streaming learning domain. Baseline methodologies—due to the fixing of parameters after base
initialization—cannot adapt a majority of the model’s parameters, leading their representations to be biased
towards data observed during base initialization. Such a dilemma emphasizes the importance of developing
streaming algorithms, such as CSSL, that learn end-to-end. By using CSSL for multi-task streaming learning,
model representations are not fixed based on a subset of data that does not reflect future, incoming datasets,
and model performance can benefit from the positive inductive transfer that occurs by updating all model
parameters over multiple tasks or datasets simultaneously.

6.4 Supplemental Experiments and Analysis

We now present supplemental results that explore the properties of models trained with CSSL, as well as
other model architectures.
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Figure 4: ECE of models trained via REMIND and
CSSL on an i.i.d. ordering of CIFAR100. CSSL main-
tains better anytime calibration compared to REMIND.

Confidence Calibration Analysis. Confidence
calibration characterizes the ability of a model to
provide an accurate probability of correctness along
with any of its predictions. In many cases, model
softmax scores are erroneously interpreted as valid
confidence estimates, though it is widely-known that
deep networks make incorrect or poor predictions
with high confidence (Guo et al., 2017).

Ideally, deep models should be highly-calibrated, as
such a property would allow incorrect model pre-
dictions to be identified and discarded. For stream-
ing learning, confidence calibration is especially use-
ful, as one must decide during the streaming process
whether the model’s predictions should start to be
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relied upon. If the underlying model is highly-calibrated throughout streaming, this problem solves itself—
just use predictions that are made with high-confidence, indicating a high probability of correctness.

Previous work indicates that using Mixup encourage good calibration properties (Thulasidasan et al., 2019),
indicating that models obtained from CSSL and REMIND—both of which use some form of Mixup—should
be highly-calibrated. In this section, we measure confidence calibration, in terms of average expected cal-
ibration error (ECE) across testing events, of models during class-incremental streaming experiments on
CIFAR100 and ImageNet with different streaming methodologies; see Appendix A.4 for further details.

As shown in Table 6, CSSL and REMIND both aid model calibration. Interestingly, the confidence calibration
of CSSL degrades significantly if only random crops and flips are used for augmentation (i.e., “CSSL + No
Aug.”), highlighting the positive impact of a proper data augmentation policy on calibration. Using an i.i.d.
data ordering, we measure calibration more frequently throughout the streaming process in Figure 4 and
find that CSSL is highly-calibrated throughout streaming when beginning from a random initialization and
improves upon the calibration of REMIND when beginning from pre-trained parameters.
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Figure 5: CIFAR100 class-incremental streaming per-
formance measured after each new class is learned.

Performance Impact of a Cold Start. To
better understand how model performance evolves
throughout the streaming process, we perform class-
incremental learning experiments on CIFAR100 and
measure model accuracy after every new class that
is introduced during streaming; see Appendix A.5
for more details.

As shown in Figure 5, baseline methodologies begin
with a high accuracy but sharply decline in perfor-
mance when the model encounters data not included
in base initialization and continue to slowly degrade
in performance throughout the remainder of the
learning process. In contrast, randomly-initialized
CSSL begins with relatively poor performance that
improves gradually as more data is observed, even-
tually reaching a stable plateau in performance that surpasses all baseline methodologies. When beginning
streaming from a pre-trained parameter initialization, this initial period of poor performance is eliminated,
and the model still reaches a relatively stable plateau of higher performance.

Baseline methodologies perform well initially because of the data that was observed during base initialization,
which is made evident by the sharp drop in baseline performance upon encountering new data; see Figure 5.
Notably, CSSL does not experience this drop in accuracy even when beginning from pre-trained parameters,
revealing that end-to-end training mitigates bias towards data used for base initialization. Furthermore, the
ability of CSSL find a stable plateau in performance reveals that streaming learners need not always decay in
performance as the data stream moves further away from data seen during base initialization. With CSSL,
model representations can be adapted to changes in data over time to facilitate stable performance.

Model Top-5 Ωall

ResNet101 0.872
MobileNetV2 0.904
DenseNet121 0.898
Wide ResNet50-2 0.880

Table 7: Class-incremental streaming performance
with CSSL and various model architectures. CSSL
performs competitively with all architectures.

Different Network Architectures. Because
CSSL trains the underlying network in an end-to-
end fashion and is not dependent upon base ini-
tialization, its implementation is simple and agnos-
tic to the particular choice of model architecture
(i.e., substituting different architectures requires no
implementation changes). Because a majority of
prior work only studies ResNet architectures (Hayes
et al., 2018; Hayes et al., 2020), we use the proposed
methodology to study the behavior of ResNet101
(He et al., 2016), MobileNetV2 (Sandler et al., 2018), DenseNet121 (Huang et al., 2017), and Wide ResNet50-
2 (Zagoruyko & Komodakis, 2016) architectures in class-incremental streaming experiments on ImageNet;
see Appendix A.6 for further details. The replay buffer is stored on disk using JPEG compression with a
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memory capacity of 1.5Gb. The results of these experiments, recorded in terms of Top-5 Ωall, are provided in
Table 7, where it can be seen that CSSL achieves competitive performance with each of the different model
architectures.

7 Conclusion

We present CSSL, a new approach to streaming learning with deep neural networks that trains the net-
work end-to-end and uses a combination of replay mechanisms with sophisticated data augmentation to
prevent catastrophic forgetting. Because the underlying network is learned end-to-end with CSSL, no base
initialization is required prior to streaming, yielding a single-stage learning approach that is both simple
and performant. In experiments, CSSL is found to surpass baseline performance—and even match or ex-
ceed offline training performance—on numerous established experimental setups, as well as on a multi-task
streaming learning setup proposed in this work. We hope that CSSL inspires further developments in deep
streaming learning by demonstrating the surprising effectiveness of simple learning techniques.
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A Experimental Details

A.1 Class-Incremental Learning

Here, we provide all details for the class-incremental streaming learning experiments presented in Section
6.1. For both CIFAR100 and ImageNet, the ordering of data (i.e., both by class and by example) is fixed
for all methodologies, such that data is always encountered in the same order.

Offline Training Details. For CIFAR100, Top-1 Ωall is computed using an offline-trained ResNet18 model
that achieves a Top-1 accuracy of 78.61%. This model is trained using standard data augmentation for
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CIFAR100 (i.e., random crops and flips) using the SGD optimizer with momentum of 0.9 and an initial
learning rate of 0.1. The learning rate is decayed throughout training using a cosine learning rate decay
schedule over 200 total epochs. A weight decay of 5×10−4 is used. These offline training settings are adopted
from a widely-used repository for achieving state-of-the-art performance on CIFAR10 and CIFAR100 (Liu,
2017).

Similarly, Top-5 Ωall on ImageNet is computed using an offline-trained ResNet18 model that achieves a
Top-5 accuracy of 89.09%. This pre-trained model is made publicly available via torchvision (Paszke et al.,
2017) and matches the offline normalization model used to evaluate class-incremental streaming learning on
ImageNet in previous work (Hayes et al., 2020).

Data Details. On CIFAR100, the dataset is divided into batches of 20 classes, where the first 20 classes are
reserved for base initialization. Similarly, ImageNet is divided into batches of 100 classes, and the first 100
classes are used for base initialization. Evaluation occurs after each batch of data in the streaming process,
and all testing events are aggregated within the Ωall score. For all baselines, standard test augmentations
for both CIFAR100 and ImageNet are adopted. Namely, because the feature extractors of ExStream, Deep
SLDA, and REMIND are fixed, we perform appropriate resizing, center cropping, and normalization (i.e.,
following standard test settings of CIFAR100 and ImageNet) prior to passing each image into the fixed feature
extractor. REMIND also leverages random resized crops and manifold Mixup (Verma et al., 2019) on the
feature representations stored within the replay buffer throughout streaming. The proposed methodology
leverages the data augmentation policy described in Section 3, and images are cropped and normalized
following standard practice prior to augmentation.

Baseline Details. For ExStream, Deep SLDA, and REMIND, we utilize official, public implementations
within all experiments (Hayes, 2019; 2020b;a). ExStream is optimized using Adam with a learning rate of
2 × 10−3 and no weight decay, as in the official implementation. For CIFAR100, we modify the number
of class exemplars (i.e., 10K, 20K, . . . , 50K exemplars) to study ExStream’s behavior with different replay
buffer sizes. For ImageNet, we follow the settings of (Hayes et al., 2020) and train ExStream using 20 and
100 exemplars per class for buffer capacities of 1,5Gb and 8Gb, respectively. REMIND uses the SGD with
momentum optimizer with a learning rate that decays from 0.1 to 0.001 from the beginning to the end of each
class. Momentum is set to 0.9 and weight decay to 1× 10−5. REMIND samples 100 and 50 replay samples
during each online update for CIFAR100 and ImageNet, respectively. For Deep SLDA, we adopt the variant
that does not fix the covariance matrix during the streaming process for all experiments. For REMIND, we
perform experiments with a version that exactly matches the settings of the original papers, as well as with
a version that adds two extra layers to the trainable portion of the ResNet18 model such that the number
of trainable parameters between REMIND and CSSL is identical. All other experimental settings for each
of the baseline methodologies exactly match the settings within each of the respective papers and/or public
implementations (Hayes, 2019; 2020b;a).

All baseline methodologies perform base initialization over the first batch of data within the dataset. This
base initialization includes 50 epochs of tine-tuning, followed by the initialization of any algorithm-specific
modules to be used during the streaming process (e.g., the PQ module for REMIND). For fine-tuning, we
adopt the same hyperparameter settings used for training the offline baseline models. After base initialization,
streaming begins at the first class within the base initialization batch, meaning that data used within base
initialization is re-visited during streaming. For ExStream and Deep SLDA, models are initialized with pre-
trained ImageNet weights during base initialization on CIFAR100 experiments to enable more comparable
experimental results on the smaller dataset.

CSSL Details. The proposed methodology is trained with a SGD optimizer with momentum of 0.9 and a
learning rate that decays linearly from 0.1 to 0.001 from the first to last example of each class (i.e., the same
learning rate decay strategy as (Hayes et al., 2020) is adopted). We use weight decay of 1×10−5. 100 replay
samples are used within each online update for both CIFAR100 and ImageNet. We utilize the augmentation
strategy described in Section 3 in all experiments. For Mixup and Cutmix, we utilize α values of 0.1 and 0.8,
respectively. For AutoAugment, we adopt the CIFAR and ImageNet learned augmentation policies for each
of the respective datasets. See Appendix B.1 for details regarding the derivation of the optimal augmentation
policy and associated hyperparameters. For experiments that begin with a pre-trained parameter setting,
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we use identical training settings as used in base initialization for baseline methodologies to train model
parameters over the first 20 classes of CIFAR100 or 100 classes of ImageNet, then use the resulting model
parameters to initialize CSSL for streaming.

A.2 Different Data Orderings

Here, we overview the experimental details of the experiments performed using the Core50 dataset (Lomonaco
& Maltoni, 2017) in Section 6.2.

Data Orderings. Experiments are performed using four different data orderings: i.i.d. (ID), class i.i.d.
(CID), instance (I), and class-instance (CI). Such data orderings are described in detail in (Lomonaco &
Maltoni, 2017), but we also provide a brief description of each ordering scheme below:
• i.i.d.: batches contain a uniformly random selection of images from the dataset.
• class i.i.d.: batches contain all images from two classes (i.e., out of ten total classes) in the dataset.
• instance: batches contain all images, in temporal order, corresponding to 80 unique object instances

within the dataset.
• class-instance: batches contain images, in temporal order, corresponding to two classes in the dataset.

For each of the four possible ordering, ten unique data permutations are generated. Then, all experiments
are repeated over each of these permutations, and performance is recorded for each ordering scheme as an
average over all possible permutations.

Offline Training Details. Top-1 Ωall on Core50 is computed using an offline-trained ResNet18 model that
achieves a Top-1 accuracy of 43.91%. This model is trained for 40 epochs from a random intialization using
SGD with momentum of 0.9 and an initial learning rate of 0.01. We use a weight decay of 1×10−4 and decay
the learning rate by 10× at epochs 15 and 30 during training. The settings of training our offline model
for Core50 exactly match those provided in (Hayes et al., 2020), aside from not initializing the model with
pre-trained ImageNet weights. We attempted to improve the performance of the offline model by utilizing a
greater number of epochs and modifying hyperparameter settings, but such tuning resulted in only negligible
performance improvements.

Data Details. We sample the Core50 dataset at 1 frame per second, resulting in 600 and 225 training
and testing images for each class (Hayes et al., 2018). The Core50 dataset has 10 total classes, resulting
in 6000 total training images and 2250 total testing images. We adopt the same bounding box crops and
splits from (Lomonaco & Maltoni, 2017). The dataset is split into batches of 1200 examples, where the
content of each batch is determined by the ordering scheme and particular data permutation chosen for
a particular experiment. Comparable experiments utilize both the same ordering scheme and the same
permutation, where 10 unique permutations exist for each ordering scheme. The first batch is utilized for
base initialization, and evaluation occurs after each batch to compute the final Ωall score. To match the
settings of (Hayes et al., 2020), we do not utilize data augmentation within any of the baseline methodologies
(i.e., adding data augmentation was shown to degrade performance on Core50). The proposed methodology
utilizes the same data augmentation policy that is described in Section 3.

Baseline Details. Again, we utilize official, public implementations of ExStream, Deep SLDA, and RE-
MIND (Hayes et al., 2018; Hayes & Kanan, 2020; Hayes et al., 2020). ExStream is optimized using Adam
with a learning rate of 2 × 10−3 and no weight decay, and the memory buffer is allowed to store the full
dataset (i.e., this can be done with < 100Mb of memory). REMIND is trained using SGD with momentum
of 0.9 and a fixed learning rate of 0.01. A weight decay of 1× 10−4 is used and 20 samples are taken during
each online update, which matches settings of (Hayes et al., 2020). For Deep SLDA, we again adopt the
variant that does not fix the covariance matrix during the streaming process. All other experimental settings
match the hyperparameters provided in the respective papers and/or public implementations (Hayes, 2019;
2020b;a). No data augmentation is used during baseline streaming experiments, as outline in (Hayes et al.,
2020).

The first batch of data is used for base initialization within all streaming baseline methodologies. During
base initialization, the fine-tuning procedure again adopts the same hyperparameters as the offline training

23



Under review as submission to TMLR

Dataset Classes Training Examples Testing Examples
CUB-200 200 5994 5794

Oxford Flowers 102 2040 6149
MIT Scenes 67 5360 1340

FGVC-Aircrafts 100 6667 3333

Table 8: Details of datasets used for multi-task streaming learning experiments.

procedure described above. After the network has been fine-tuned over base intialization data, all algorithm-
specific modules are initialized using the same data, and streaming begins from the first class of the base
initialization step. We do not utilize pre-trained ImageNet weights to initialize baseline model parameters
within Core50 experiments, as we are attempting to accurately assess model performance in low-resource
scenarios on Core50 experiments.

CSSL Details. The proposed methodology is trained with SGD with momentum of 0.9 and a fixed learning
rate of 0.01. We use a weight decay of 1 × 10−4. 100 replay samples are observed during each online
update, and we adopt the data augmentation policy described in Section 3. For AutoAugment, we utilize
the ImageNet augmentation policy, and α values of 0.1 and 0.8 are again adopted for Mixup and CutMix,
respectively.

The proposed methodology is tested with replay buffer capacities of 100, 200, and 300Mb. For the 200Mb
experiment, image pixels are quantized to four bits, while for the 100Mb experiment we both quantize pixels
and resize images to 75% of their original area. The 300Mb experiment performs no quantization or resizing,
as the full dataset can be stored as raw images with memory overhead slightly below 300Mb.

A.3 Multi-Task Streaming Learning

Here, we overview the details of the multi-task streaming learning experiments in Section 6.3.

Datasets. We perform multi-task streaming learning with the CUB-200 (Wah et al., 2011), Oxford Flowers
(Nilsback & Zisserman, 2008), MIT Scenes (Quattoni & Torralba, 2009), and FGVC-Aircrafts datasets (Maji
et al., 2013). The details of each of these datasets are provided in Table 8. Following the settings of (Hou
et al., 2018), the datasets are learned in the following order: MIT Scenes, CUB-200, Oxford Flowers, then
FGVC-Aircrafts.

Offline Training Details. The offline trained models for multi-task streaming experiments are trained
separately for each of the datasets listed in Table 8. For each dataset, offline models are trained for 50 total
epochs with cosine learning rate decay. Initial learning rates of 0.1, 0.01, and 0.001 are tested and results of
the best-performing model are reported in Section 6.3. We also test baseline models with step learning rate
schedules but find that cosine learning rate decay tends to produce models with better performance.

Data Details. For multi-task streaming learning performance, testing is performed after each dataset has
been observed. We choose to not perform more regular evaluation (e.g., after subsets of each individual
dataset have completed streaming) to make performance simple to interpret. All results are reported in
terms of Top-1 accuracy computed separately on each dataset at the end of the streaming process. During
streaming, each dataset is observed one example at a time in a class-incremental order. Three separate
class-incremental data permutations are generated, and results are averaged across these three different
permutations. The order of the datasets—presented above—is kept fixed in the three different permutations,
as we only shuffle class and example orderings.

Because the feature extractors of ExStream, Deep SLDA, and REMIND are fixed, we perform appropriate
resizing, center cropping, and normalization prior to passing each image into the fixed feature extractor.
REMIND also leverages random resized crops and manifold mixup (Verma et al., 2019) on the feature
representations stored within the replay buffer throughout streaming. The proposed methodology leverages
the data augmentation policy described in Section 3, and images are cropped and normalized following
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standard practice prior to augmentation. Baselines utilize standard training and testing augmentations as
used on ImageNet, which matches the settings of (Hou et al., 2018).

Baseline Details. Again, official, public implementations of baseline methodologies with the ResNet18
architecture are used in all experiments. For baseline methodologies, base initialization is performed over
50% of the MIT scenes dataset (i.e., the first dataset to be observed during streaming), encompassing 34 of
the 67 total classes. All baseline methodologies are allowed unlimited memory capacity for replay. ExStream
is optimized using Adam with a learning rate of 2×10−3 and no weight decay. REMIND uses the stochastic
gradient descent (SGD) optimizer with a learning rate that decays from 0.1 to 0.001 from the beginning to
the end of each class. Momentum is set to 0.9 and weight decay to 1× 10−5. REMIND samples 50 examples
from the replay buffer for each online update. Furthermore, we modify REMIND’s replay strategy to sample
a batch of replayed data from each of the seen tasks when performing each online update. Such a change is
necessary to not forget previous tasks when learning each new dataset, and we do not enforce any memory
capacity on the replay buffer (i.e., all data can be kept for replay). For Deep SLDA, we adopt the variant
that does not fix the covariance matrix during the streaming process for all experiments.

All baseline methodologies perform base initialization over the first 34 classes of the MIT scenes dataset.
This base initialization includes 50 epochs of tine-tuning, followed by the initialization of any algorithm-
specific modules to be used during the streaming process (e.g., the PQ module for REMIND). For fine-
tuning, we adopt the same hyperparameter settings used for training the offline baseline models. After base
initialization, streaming begins at the first class within the base initialization batch, meaning that data
used within base initialization is re-visited during streaming. For each of the baseline methodologies, we
perform experiments both with and without pre-training on ImageNet. Experiments with pre-training simply
initialize the underlying ResNet18 architecture with ImageNet pre-trained weights prior to performing base
initialization.

CSSL Details. The proposed methodology is trained with an SGD optimizer with momentum of 0.9 and a
learning rate that decays linearly from 0.1 to 0.001 from the beginning to the end of each class. Weight decay
of 1× 10−5 is used. For all datasets, 100 replay samples are taken at each online update, and we modify the
replay strategy to sample a batch of replayed data from each of the seen tasks when performing an online
update. The augmentation strategy described in 3 is used in all experiments. Mixup and Cutmix use α
values of 0.1 and 0.8, respectively, and AutoAugment adopts the Imagenet learned augmentation policy. See
Appendix B.1 for details regarding the derivation of the optimal augmentation strategy. For all experiments,
CSSL is fine-tuned on the first 34 classes of the MIT scenes dataset with identical hyperparameters as are
used for base initialization with other methodologies. Some experiments utilize ImageNet pre-training and
are identified as such.

A.4 Confidence Calibration Analysis

Here, we present experimental details for the confidence calibration analysis performed in Section 6.4.

Expected Calibration Error. Confidence calibration is measured in terms of expected calibration error
(ECE). Assume that the i-th example within the testing set is associated with a true label, a model prediction,
and a confidence value. Additionally, assume N total examples exist within the test set. Given Nbin bins,
ECE groups data into uniformly-spaced bins based on confidence values. For example, if Nbin = 2, all
predictions are separated into two groups, one group within confidence values in the range [0.0, 0.5) and
another with confidence values in the range [0.5, 1.0].

Denote the i-th bin as bini. Once model predictions are separated into such bins, ECE computes the average
accuracy and confidence of predictions within each bin. Then, using ai and ci to denote the accuracy and
average confidence within the i-th bin, ECE can be computed as shown in the equation below.

ECE =
Nbin∑
i=1

|bini|
N
· |ai − ci|
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Model Top-5 Acc.
ResNet101 93.54%
MobileNetV2 90.29%
DenseNet121 91.98%
Wide ResNet50-2 94.09%

Table 9: Top-5 accuracies achieved by offline models of different architectures on ImageNet.

For all experiments within Section 6.4, we follow the settings of (Guo et al., 2017) and set Nbin = 15.
Performance is sometimes reported in terms of average ECE. In such cases, average ECE is computed by
measuring ECE separately at each testing event during the streaming process, then taking a uniform average
of ECE values across all testing events.

CIFAR100 Experiments. For the CIFAR100 experiments reported in Table 6, we perform class-
incremental streaming using the same data ordering described in Appendix A.1. CSSL experiments use
two different memory capacities: 30Mb (10K CIFAR100 images) and 150Mb (full CIFAR100 dataset). The
version of CSSL denoted as “No Aug.” replaces the CSSL augmentation strategy outlined in Section 3 with
a simple augmentation policy that performs only random crops and flips. Furthermore, the pre-trained
variant of CSSL simply initializes model parameters with pre-trained ImageNet weights at the beginning of
the streaming process. All other experimental settings are identical to that of the class incremental learning
experiments outlined in Appendix A.1.

For the streaming experiment depicted in Figure 4, we perform streaming with an i.i.d. ordering of the
CIFAR100 dataset. Because the data ordering is i.i.d., all testing events perform evaluation over the entire
CIFAR100 testing dataset. For CSSL, a memory capacity of 150Mb is used for the replay buffer. All
experiments with CSSL utilize the augmentation strategy described in Section 3, except for the “No Aug.”
experiment that utilizes only random crops and flips for data augmentation. REMIND is allowed to store
the full dataset for replay. All other experimental settings match those of the class-incremental learning
experiments for CIFAR100 described in Appendix A.1.

ImageNet. For the confidence calibration experiments on ImageNet presented in Table 6, we utilize a
class-incremental data ordering for streaming. For CSSL, we use a 1.5Gb replay buffer capacity and store all
images with JPEG compression on disk. For the “No Aug.” variant of CSSL, we again use random crops and
flips for data augmentation instead of the augmentation strategy described in Section 3. All other settings for
these experiments are identical to those of the class incremental learning experiments on ImageNet described
in Appendix A.1.

A.5 Performance Impact of a Cold Start

The experiments in Section 6.4 utilize the same experimental setup for CIFAR100 as described in Section 6.1
and Appendix A.1. All results are recorded in terms of Top-1 Ωall using the same offline normalization model
from 6.1 that achieves a Top-1 accuracy of 78.61%. The only difference between the two experimental setups
is that model accuracy is recorded after every new class is observed during the streaming process, whereas
experiments in Section 6.1 only record model accuracy after every 20-class batch. Within Section 6.4, both
the proposed methodology and all baselines are allowed to retain the full dataset within the replay buffer.
The proposed methodology does not perform and quantization or resizing on the images. All hyperparameter
settings are the same as Appendix A.1 for all methodologies.

A.6 Different Network Architectures

The experiments with different network architectures in Section 6.4 follow the same settings as the class-
incremental streaming experiments on ImageNet provided in Section 6.4; see Appendix A.1 for further details.
However, the ResNet18 architecture used in previous experiments is substituted for several different model
architectures. The experimental results presented in Section 6.4 store the replay buffer on disk using JPEG
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MU CM AA RA Top-1 Ωall

0.689 ± 0.001
X 0.807 ± 0.012

X 0.863 ± 0.020
X X 0.877 ± 0.004

X 0.822 ± 0.037
X X 0.886 ± 0.018

X X 0.852 ± 0.019
X X X 0.886 ± 0.002
X X 0.856 ± 0.025

X X 0.857 ± 0.008
X X X 0.875 ± 0.005

Table 10: Performance of the proposed methodology for CSSL with numerous augmentation policies that
combine Mixup (MU), CutMix (CM), AutoAugment (AA), and RandAugment (RA) for class-incremental
streaming experiments on CIFAR100. All tests use random clops and flips, and X indicates the use of a
particular augmentation technique. The best performance is achieved with a combination of Mixup, Cutmix,
and AutoAugment.

compression, and a replay buffer capacity of 1.5Gb is adopted. All results are reported in terms of Top-5 Ωall,
and the offline models used for normalization (i.e., pre-trained models taken from the torchvision package
(Paszke et al., 2017)) achieve Top-5 accuracies listed in Table 9

A.7 Closing the Performance Gap with Offline Learning

Here, we present the details of experiments performed in Appendix B.6. Separate comparison are performed
between incremental learning methodologies (i.e., iCarl and E2EIL) and streaming learning methodologies
(i.e., REMIND) for class-incremental learning on the CIFAR100 dataset. In all cases, we use a ResNet18
model, but the architecture is slightly modified to yield best-possible performance on the CIFAR100 dataset,
as demonstrated in (Liu, 2017). Within these experiments, a class-specific ordering of the CIFAR100 dataset
is induced that is used to ensure all experiments receive data in the same order. In all cases, the first 20
classes of CIFAR100 are used for base initialization.

For REMIND, we use the public implementation, but adapt it to utilize the modified ResNet18 architecture
and perform training over CIFAR100. The learning rate is decayed from 0.1 to 0.001 for each class during
streaming (i.e., we perform tests with different learning rates and fine that 0.1 still performs best), and we
leverage random crops and manifold mixup within REMIND’s feature representations. We allow all dataset
examples to be stored within the replay buffer, due to the memory-efficiency of REMIND’s memory indexing
approach. Settings for PQ are kept identical to ImageNet experiments. We find that weight decay of 5×10−4

yields the best performance when evaluated using grid search over a validation set.

For iCarl and E2EIL, we adopt the official, public implementations of both approaches. Because the CI-
FAR100 dataset is small, we allow both iCarl and E2EIL store the full dataset within the replay buffer (i.e.,
we do not enforce a fixed buffer size) during the online learning process. To tune hyperparameters in the
streaming setting, we perform a grid search over a validation set of CIFAR100 to obtain the optimal settings.
We train iCarl and E2EIL in the typical, incremental fashion so that the impact of class imbalance can be
observed. Within the incremental learning process, we use 20-class subsets of CIFAR100 as each sequential
batch during the learning process. From here, we adopt identical hyperparameter settings as the original
publication to replicate the original experimental settings.
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Quant. Resize Ratio Top-1 Ωall

8 bit 100% 0.810 ± 0.009
6 bit 100% 0.822 ± 0.014
4 bit 100% 0.813 ± 0.025
8 bit 66% 0.819 ± 0.001
8 bit 50% 0.764 ± 0.029
6 bit 66% 0.826 ± 0.002
4 bit 66% 0.715 ± 0.038

Table 11: Performance of the proposed methodology on class-incremental streaming experiments with CI-
FAR100, where different levels of quantization and resizing are used when adding examples into the replay
buffer.

B Further Experimental Results

B.1 Data Augmentation Policies

We test all combinations of the Mixup, Cutmix, AutoAugment, and RandAugment data augmentation
strategies to arrive at the final, optimal augmentation policy used within the proposed methodology for
CSSL. All experiments perform random crops and flips in addition to other augmentation strategies. The
comparison of different data augmentation policies is performed with class-incremental learning experiments
on CIFAR100. These experiments adopt identical experimental settings as CIFAR100 experiments in Section
6.1; see Appendix A.1 for further details.

For these experiments, the entire dataset is allowed to be stored in the replay buffer, and the replay buffer is
kept in main memory without the use of any compression schemes (i.e., no integer quantization or resizing).
All reported results represent average performance recorded over three independent trials. For Mixup and
Cutmix, we perform experiments using all combinations of α values in the set {0.1, 0.4, 0.8, 1.0, 1.2}. We
leverage the CIFAR100 AutoAugment policy, and experiments are performed with RandAugment using 1-2
augmentations and all magnitudes in the set {4, 9, 14}. All combinations of considered data augmentation
methodologies are tested, and results with best-performing hyperparameters are presented. These results
inform the data augmentation policy that is adopted within the proposed methodology for CSSL used in
later experiments.

The results of these experiments, reported in terms of Top-1 Ωall, are provided in Table 10, where it can
be seen that the best results are achieved by combining Mixup, Cutmix, and AutoAugment techniques into
a single augmentation policy. Interestingly, this augmentation policy provides a nearly 20% improvement
in absolute Ωall compared to a simple crop and flip augmentation strategy, thus demonstrating the massive
impact of proper data augmentation on streaming performance.

B.2 Memory Efficient Replay.

The proposed methodology for CSSL compresses replay examples using integer quantization (i.e., on the
uint8 pixels of each image) and image resizing. Within this section, we analyze the performance impact of
this strategy in class-incremental streaming experiments on CIFAR100 using the same experimental setup as
outlined in Section 6.1. All combinations of quantizing uint8 pixels to six or four bits11 and resizing images
to 66% or 50% of their original area are tested. For each possible augmentation strategy, the corresponding
experiment stores the maximum number of images within the replay buffer without exceeding 30Mb of
storage. Three separate trails are performed for each possible compression strategy, and average results
across the three trials are reported. These results inform the optimal strategy of reducing memory overhead
for the replay mechanism used within the proposed methodology for CSSL.

11The integer quantization procedure is simulated by integer dividing each pixel value by 28−b, where b is the number of bits
present in the quantized pixel values, then re-scaling the result into the range [0, 256).
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Eviction Strategy Top-1 Ωall

Mixup (Zhang et al., 2017) 0.746 ± 0.019
CutMix (Yun et al., 2019) 0.778 ± 0.014
SamplePairing (Inoue, 2018) 0.735 ± 0.023

Table 12: Performance of CSSL when various interpolation strategies are used to combine replay examples
instead of evicting them. These eviction policies are found to perform worse than the quantization and
resizing strategy used within the main experiments.

Buffer Capacity Random Reservoir
30Mb 0.810 ± 0.019 0.709 ± 0.099
60Mb 0.855 ± 0.011 0.764 ± 0.010
90Mb 0.889 ± 0.024 0.795 ± 0.004
120Mb 0.874 ± 0.009 0.830 ± 0.001

Table 13: Comparison of different strategies for maintaining the replay buffer for class-incremental CSSL
experiments on CIFAR100. A random eviction strategy is shown to outperform reservoir sampling for all
different replay buffer capacities that were considered.

Adopting a fixed buffer capacity of 30Mb, we explore different levels of quantization and resizing within the
replay buffer.12 The results are reported in terms of Top-1 Ωall in Table 11, where it can be seen that the
best performance is achieved by quantizing pixel values to 6 bits and resizing images to 66% of their original
area (i.e., the exact strategy adopted for CIFAR100 experiments in Section 6.1).

Interestingly, the proposed methodology is robust to high levels of quantization; e.g., using 4 bit quantization
slightly exceeds the performance of storing full images for replay. Similar behavior is observed on ImageNet,
where 4-bit quantization is found to outperform 6-bit quantization given a fixed buffer capacity. Moreover,
resizing images beyond 66% of their original area noticeably degrades performance; e.g., 50% resizing without
quantization yields noticeably degraded performance in Table 11. For datasets with higher-resolution images,
we observe that performance is even more sensitive to the resizing ratio, leading us to adopt a ratio of 75%
within ImageNet and Core50 experiments in Sections 6.1 and 6.2.

B.3 Consolidating Replay Examples

In addition to the approaches for memory efficient replay described in Section 3, we attempt to use data
interpolation methods to consolidate examples within the replay buffer. In particular, when a replay example
is about to be evicted from the replay before, interpolation is performed between two replay examples,
thus consolidating two entrties in the replay buffer into one. Such an approach avoids evicting examples
within the replay buffer without increasing memory overhead. In particular, we perform experiments with
Mixup, CutMix, and SamplePairing interpolation strategies13 for class-incremental learning on the CIFAR100
dataset, adopting the same experimental setting as described in Section 6.1. We use a fixed replay buffer
capacity of 30Mb and report results of these experiments in terms of Top-1 Ωall within Table 12. As can
be seen, these eviction strategies are outperformed by the quantization and resizing strategies utilized in
Section 6.4. We also consider setting a fixed number of times a certain example can be interpolated, such
that a replay examples is evicted after it has been interpolated more than two or three times, but such an
approach still does not meaningfully improve performance and introduces an extra hyperparameter.

12When images are compressed, more images are added into the replay buffer to reach the 30Mb capacity.
13The α values used for Mixup and Cutmix are tuned by searching over the set {0.1, 0.4, 0.8, 1.0, 1.2} using a hold-out

validation set, and we present the results of the best-performing α for each method. By definition, Sample Pairing always takes
an average between two images (i.e., there are no hyperparameters to tune).
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Full Split Sep Sum
Top-1 Accuracy Average Top-1

MIT Scenes CUB-200 Flowers FGVC Accuracy
X X 56.11 60.79 88.08 45.22 62.55

X X 53.13 57.232 84.50 36.78 57.91
X X 54.40 62.12 84.39 49.09 62.50

X X 54.48 60.32 86.57 43.05 61.11

Table 14: Multi-task streaming learning performance of CSSL with different replay strategies.

B.4 Alternative Sampling Approaches

The methodology described in Section 3 assumes that, when a new example is added into an already-full
replay buffer, an example must be removed via ReplayEvict in Algorithm 1. Within the experiments
in Section 6, a random eviction procedure is adopted as described in Section 3. However, such random
maintenance of the replay buffer is not the only option. Namely, different approaches such as herding
selection (Rebuffi et al., 2017; Castro et al., 2018; Hou et al., 2019) or reservoir sampling (Chaudhry et al.,
2019; Aljundi et al., 2019a) could be adopted instead to add and remove elements from the replay buffer in
a more sophisticated manner.

Although herding selection is a popular method in incremental learning literature (Rebuffi et al., 2017;
Castro et al., 2018; Hou et al., 2019) for determining which examples within each incremental batch should
be added into the replay buffer, it is not a viable approach given the restrictions of CSSL. Namely, herding
selection requires that, for each class, a mean feature vector should be computed across all available data.
Then, a representative subset of exemplars is selected within that class, such that the mean feature vector
of that subset closely matches the overall mean feature vector. Such an approach is easily adoptable within
incremental learning, as one can compute mean feature vectors and relevant exemplars for the disjoint classes
that appear within each incremental batch. Further, herding selection can be modified to the streaming
setting (i.e., based on a greedy approach) if fixed feature representations are available for each input image
throughout the streaming process. However, within CSSL, the entire network is updated during streaming,
meaning that the feature respresentations of data change over time, making the application of herding
selection difficult.

Despite the difficulty of adopting herding selection within CSSL, we compare the performance of our random
eviction policy with reservoir sampling with class-incremental learning experiments on the CIFAR100 dataset,
where we adopt the same setup as described in Section 6.1. Reservoir sampling adds items into the replay
buffer until the buffer is full. Assuming the capacity of the replay buffer is C examples, once the k-th example
is received (i.e., k > C), we sample a random integer i in the set {0, 1, . . . , k − 1}. If i ∈ {0, 1, . . . , k − 1},
then the i-th example in the replay buffer is replaced with the k-th example (i.e., the new data). Otherwise,
the k-th example is discarded. The performance of reservoir sampling in comparison to the random eviction
strategy described in Section 3 is provided in Table 13, where we measure performance across multiple
different buffer capacities (i.e., 150Mb is full capacity for CIFAR100). As can be seen, the more sophisticated
reservoir sampling approach is outperformed by the random eviction strategy outlined in Section 3.

B.5 Different Strategies for Multi-Task Streaming Learning

Within Section 6.3, we generalize the replay strategy of CSSL and REMIND to the multi-task streaming
learning domain. In this domain, each model has multiple classification layers and replay buffers (i.e., one for
each dataset).14 Thus, the previously-used strategy for replay—sampling a fixed number of replay samples to
be included with each new data example during an online update—is no longer valid, as one must incorporate
replay examples from previous tasks to avoid catastrophic forgetting.

14The separate replay buffers for each dataset could be considered as one replay buffer than encompasses all datasets and the
resulting algorithm and discussin would be the same.
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Figure 6: Top-1 test accuracy for ResNet18 trained on CIFAR100 with both online and offline approaches.
Accuracy is measured over “seen” classes at different points during online learning.

The main strategies that were explored for multi-task replay were differentiated by i) whether each task
is updated with B replay examples or if B total replay examples are split between each task (i.e., Full
or Split) and ii) whether each task performs a separate update or if gradients are summed over all tasks
to perform a single update (i.e., Sep or Sum). Considering these options forms four different strategies for
multi-task replay. Using a fixed replay size of B = 100 and adopting the experimental settings explained in
Appendix A.3 for multi-task streaming learning, these different strategies for multi-task streaming learning
are explored for CSSL in Table 14. Models are initialized with ImageNet pre-trained parameters, but we do
not perform any fine-tuning on the MIT Indoor dataset prior to streaming.

As can be seen in Table B.5, the best performing strategy utilizes the full replay size for each task during
the online update and performs a separate model update for each task. A strategy of using the full replay
size for each task but performing a single update that sums the gradients of each task together performs
similarly. However, this strategy is slightly worse than performing a separate update for each task. Thus,
within Section 6.3, we adopt the strategy of, at each online update, sampling B replay examples—or B − 1
replay examples for the current task, plus the new example—for each of the tasks that have been seen so far
and performing a separate model update for each task. The added computation of performing a separate
update for each task is minimal relative to performing a single update across all tasks.

B.6 Closing the Performance Gap with Offline Learning

We claim that streaming learning methodologies have the potential for drastically-improved performance,
but cannot be derived via simple modifications to existing techniques. To substantiate this claim, we perform
class-incremental learning experiments on CIFAR100 (Krizhevsky et al., 2009) with two batch-incremental
methods—iCarl (Rebuffi et al., 2017) and End-to-End Incremental Learning (E2EIL) (Castro et al., 2018)—
and a state-of-the-art streaming approach—REMIND (Hayes et al., 2020); see Appendix A.7 for details.
Performance is measured using Ωall (Hayes et al., 2018) and displayed in Figure 6.

As can be seen, a performance gap exists between online and offline-trained models; e.g., in Figure 6, the
final Top-1 accuracy of REMIND is > 20% below that of offline training. To be of use to most practitioners,
this performance gap between online and offline training must be reduced—no viable, real-time alternatives
to offline training yet exist. Considering possible sources of such a performance gap, one may look to the
freezing of network layers within existing approaches to online learning. Such an approach is shown to
significantly degrade network performance in Section 4. Thus, an approach with the potential to perform
more comparably to offline training likely should not freeze large portions of network parameters.

31



Under review as submission to TMLR

20 40 60 80 10
0

20

40

60

80

100

20 40 60 80 10
0

20

40

60

80

100

20 40 60 80 10
0

20

40

60

80

100

20 40 60 80 10
0

20

40

60

80

1000

5

10

15

20

25

0

5

10

15

20

25

30

35

0

5

10

15

20

25

0

5

10

15

20

25

30

Actual Class

Pr
ed

ict
ed

 C
la

ss
iCarl E2EIL REMIND: 50 Samp. REMIND: 100 Samp.

Figure 7: Confusion matrices (excluding base initialization data) for incremental and streaming learning
models after class-incremental CIFAR100 training. Incremental learning techniques (iCarl and E2EIL) are
biased towards recently-observed classes (see the many incorrect predictions for classes 80-100 in the two
leftmost plots). In contrast, incorrect predictions for REMIND are concentrated on the last class observed
during streaming (see the line of incorrect predictions at the bottom of third plot). This bias starts getting
corrected when 100 replay samples—instead of 50—are used during each online update (see the rightmost
plot).

Method PQ Encoding Forward Pass Backward Pass Parameter Update
Time Time Time Time

CSSL - 3.67 ± 0.45 5.41 ± 0.97 1.53 ± 0.06
REMIND 23.37 ± 1.13 2.65 ± 0.02 1.62 ± 0.03 0.52 ± 0.01
REMIND + Extra Params 23.37 ± 1.13 2.95 ± 0.12 1.84 ± 0.09 0.69 ± 0.04

Table 15: Timing metrics (in milliseconds) for performing model inference and updates with different stream-
ing methodologies on ImageNet. Because CSSL is fully-plastic, backward passes and parameter updates take
longer to complete, but REMIND’s use of product quantization to encode model hidden representations make
inference time an order of magnitude slower in comparison to CSSL.

Interestingly, many incremental learning approaches exist that perform end-to-end training (Castro et al.,
2018; Hou et al., 2019; Wu et al., 2019). Thus, one may wonder whether a high-quality streaming approach—
one that comes closer to matching offline learning performance—could be developed by simple modifications
to such techniques. Unfortunately, these techniques, which employ replay, bias correction, and knowledge
distillation to prevent catastrophic forgetting, are known to perform poorly in the streaming domain (Hayes
et al., 2020). To understand why this is the case, it should be noted that knowledge distillation is known to
provide minimal added benefit when combined with replay mechanisms (Belouadah & Popescu, 2020; 2019).
Furthermore, we find that correcting bias in the network’s classification layer is unnecessary for streaming
learning. Though batch-incremental techniques are biased towards recently-observed classes, REMIND is
only biased towards a single class (i.e., the last streamed class), which is easily corrected by increasing
the number of replay samples observed during each online update; see Figure 7 and Appendix A.7 for
experimental details.15

Such observations reveal that findings relevant to batch-incremental learning may not translate to the stream-
ing setting. Additionally, a better streaming methodology cannot be derived by simply adopting and modify-
ing established techniques for batch incremental learning. To close the performance gap with offline learning,
streaming techniques likely need to avoid freezing network parameters and leverage more effective forms of
replay, as other techniques like knowledge distillation and bias correction provide minimal benefit.

15Many incremental learning works have been proposed to correct such bias towards recently-observed classes(Hou et al.,
2019; Wu et al., 2019). We emphasize that our focus here is not to compare streaming learning to the most recent approaches
for incremental learning, but rather to demonstrate that bias towards recent classes is not a consideration for the streaming
domain that we consider.
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B.7 Computational Impact of Full Plasticity

Given that CSSL makes all model parameters trainable, one may wonder about the impact of such an
approach on the computational complexity of performing updates and inferences with the underlying model
throughout streaming. To better understand the complexity impact of full plasticity, we measure the time
taken to i) perform a forward pass, ii) perform a backward pass, and iii) update model parameters with
CSSL over several streaming iterations. For comparison, we perform the same test with REMIND, which
freezes a majority of the underlying network’s early layers.

These timing tests use a ResNet18 model and are performed on the ImageNet dataset using the same
procedure described in Appendix A.1. At each iteration, 100 replay examples are sampled for both CSSL
and REMIND. For REMIND, we also perform supplemental test in which the underlying model has added
layers to make the number of trainable parameters equal to that of CSSL. In all cases, we measure timing
across five streaming iterations and report the average time; see Table 15.

CSSL has a more expensive forward pass, backward pass, and parameter update in comparison to REMIND,
due to the fact that all network layers are updated by CSSL. However, REMIND encodes the output of
the network’s frozen feature extractor with a product quantization (PQ) (Jegou et al., 2010) module, which
is quite slow in comparison to the other operations. As such, when data is passed through the REMIND
model—aside from replay examples for which the model’s encoded hidden representations can be cached—
it must be passed through the frozen portion of the network, encoded via PQ, then passed through the
remaining, trainable layers, making the total inference time of REMIND an order of magnitude slower than
that of CSSL.

C Adapting Baselines to CSSL.

CSSL is capable of randomly initializing the full network—and all network modules—immediately prior to
the commencement of streaming; see Section 3. The baseline methodologies used within Section 6.1 (i.e.,
ExStream, Deep SLDA, and REMIND), however, all utilize pre-trained networks within their respective
streaming algorithms. In particular, ExStream (Hayes et al., 2018) and Deep SLDA (Hayes & Kanan,
2020) train only the final, fully-connected layer of the neural network, while REMIND trains the last few
convolutional layers and the final fully-connected layer during streaming—all other network layers are fixed
either by using pre-trained network parameters or performing offline training over a subset of data during
base initialization.

To be capable of starting streaming from a random initialization, baseline methodologies would either have
to i) allow nearly all (or a majority of) network layers to remain random throughout streaming or ii) be
adapted to train the network end-to-end. Forcing network layers to remain random throughout streaming
catastrophically degrades performance, and adapting such methodologies to perform end-to-end training is
highly non-trivial, as a majority of techniques within each methodology would break down (e.g., compressing
the feature representations with PQ, clustering feature vectors, computing feature covariance, etc.). As such,
we simply compare CSSL to baseline approaches in their original form, without forcing baselines to conform
a cold-start setting (i.e., baselines do not satisfy rule four from Section 3).

D Technical Results

Within this section, we outline the technical theoretical results (i.e., Lemmas and Corollaries) that are
established in the process of proving Theorem 1. Again, full proofs of each result are deferred to Section E.

Lemma 1. Assume Assumption 1 holds and ω ≤ O
(
L−6 log−3(m)

)
. Consider iterates W(0), . . . ,W(n) ∈

B(W(0), ω) obtained via Algorithm 1 with B replay examples taken from buffer R per iteration with η =
O(m− 3

2 ). Given sufficient overparamterization characterized by

m ≥ O
(
nB
√

1 + ΞL6 log3(m)
)
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We have
n∑
t=1

L(t,ξt)(W(i)) ≤
n∑
t=1

L(t,ξt)(W?) +O
(
LR2m−

1
2

)
+O

(
nm−

1
2BL(1 + Ξ)

)

for W? ∈ B(W(0),R/m) with R > 0 and probability at least 1−O(nBL)e
−Ω
(
mω

2
3 L

)
.

Lemma 2. Given Assumption 1 and taking ω ≤ O
(
L−6 log−3(m)

)
, we have that

W(0), . . . ,W(n) ∈ B(W(0), ω)

over n successive iterations of Algorithm 1 with B replay samples taken from buffer R per iteration, arbitrary
perturbation vectors applied to both new and replayed data, η = O(m− 3

2 ), and sufficient overparameteriza-
tion given by

m ≥ O
(
nB
√

1 + ΞL6 log3(m)
)

with probability at least 1−O(nLB)e
−Ω
(
mω

2
3 L

)
.

Lemma 3. Assume Assumption 1 holds and ω ≤ O
(
L−6 log−3(m)

)
. Then, when W,W′ ∈ B(W(0), ω), we

have

|fW′(xt + ξ)− fW(xt + ξ)− 〈∇WfW(xt + ξ),W′ −W〉|

≤ O
(√

m (1 + ‖ξ‖22)ω 4
3L3 log(m)

)

for arbitrary perturbation vector ξ16 and all t ∈ [n] with probability at least 1−O(nL)e
−Ω
(
mω

2
3 L

)
.

Corollary 1. Assume Assumption 1 holds and ω ≤ O
(
L−6 log−3(m)

)
, then when W,W′ ∈ B(W(0), ω), we

can extend Lemma 3 to show

L(t,ξ)(W′)− L(t,ξ)(W) ≥
L∑
l=1
〈∇Wl

L(t,ξ)(W),W ′l −Wl〉 − O
(√

m(1 + ‖ξ‖22)ω 4
3L3 log(m)

)

for all t ∈ [n] and arbitrary perturbation vector ξ with probability at least 1−O(nL)e
−Ω
(
mω

2
3 L

)
.

Lemma 4. Assume Assumption 1 holds and ω ≤ O
(
L−

9
2 log−3(m)

)
. Then, for W ∈ B(W(0), ω) we have

‖g(t,l,ξ) − g
(0)
(t,l,ξ)‖2, ‖h(t,l,ξ) − h

(0)
(t,l,ξ)‖2 ≤ O

(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)

for all t ∈ [n], l ∈ [L−1], and arbitrary perturbation vector ξ with probability at least 1−O(nL)e
−Ω
(
mω

2
3 L

)
.

Lemma 5. Assume Assumption 1 holds and ω ≤ O
(
L−6 log−3(m)

)
. Then, with probability at least 1 −

O(nL)e
−Ω
(
mω

2
3 L

)
we have for all l such that l ∈ [L− 1] and t ∈ [n]∥∥∥∥∥W ′L
L−1∏
r=l

(
D′(t,r,ξ) +D′′(t,r)

)
W ′r −WL

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

≤ O
(
ω

1
3L2

√
log(m)

)
where W,W′ ∈ B(W(0), ω), D′′i,r ∈ [−1, 1]m×m is any random diagonal matrix with at most O

(
mω

2
3L
)

non-zero entries, and ξ is an arbitrary perturbation vector.
16Here, we do not assign a subscript ξt to the perturbation vector intentionally. This is because the perturbation vector

used for this result is arbitrary. Namely, different perturbation vectors can be used for any t ∈ [n] and both when the data is
encountered newly or sampled for replay. The result holds for any perturbation vector chosen for each of these scenarios, where
the final bound then depends on the factor ‖ξ‖2

2.
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Lemma 6. Given Assumption 1, randomly initialized weights W(0), and arbitrary perturbation vector ξ we
have ∥∥∥h(0)

(t,j,ξ)

∥∥∥2

2
∈
[
1− ‖ξ‖22, 1 + ‖ξ‖22

]
with probability at least 1−O (nL) e−Ω(m/L) for all t ∈ [n] and j ∈ [L− 1].

Corollary 2. Given Assumption 1 and assuming ω ≤ O(L− 9
2 log−3(m)), we have for W ∈ B(W(0), ω) and

arbitrary perturbation vector ξ

‖h(t,j,ξ)‖2 ≤ O
(√

1 + ‖ξ‖22
(
ωL

5
2
√

log(m) + 1
))

for all t ∈ [n] and j ∈ [L− 1] with probability at least 1−O(nL)e
−Ω
(
mω

2
3 L

)
.

Lemma 7. Given Assumption 1 and ω ≤ O
(
L−6 log−3(m)

)
, the following can be shown when W ∈

B(W(0), ω) for arbitrary perturbation vector ξ

‖∇Wl
fW(xt + ξ)‖F ,

∥∥∇Wl
L(t,ξ)(W)

∥∥
F
≤ O

(√
m(1 + ‖ξ‖22)

)

for all t ∈ [n] and l ∈ [L− 1] with probability at least 1−O(nL)e
−Ω
(
mω

2
3 L

)
.

E Proofs

Within this section, we provide full proofs for all theoretical results derived within this work. We begin with
an overview of further notation used within the analysis.

Notation. For some arbitrary set of weight matrices W = {W1, . . . ,WL}, we define h(t,0,ξ) = xt + ξ and
h(t,l,ξ) = σ(Wlh(t,l−1,ξ)) for l ∈ [L−1] and arbitrary perturbation vector ξ. Similarly, we define g(t,0,ξ) = xt+ξ
and g(t,l,ξ) = Wlh(t,l−1,ξ) for l ∈ [L−1]. For the weight matrices at initialization W(0) = {W (0)

1 , . . .W
(0)
L }, we

would similarly define such vectors with the notation h(0)
(t,l,ξ) and g

(0)
(t,l,ξ) (or h′(t,l,ξ), g′(t,l,ξ) for weight matrices

W′ and so on). We also define D(t,l,ξ) = diag(1{(Wlh(t,l,ξ))1 > 0}, . . . ,1{(Wlh(t,l,ξ))m > 0}) for all t ∈ [n]
and l ∈ [L− 1].

E.1 Proof of Theorem 1

Proof. For t ∈ [n] and associated perturbation vectors ξt for t ∈ [n], let L0−1
(t,ξt)(W

(t)) =
1 {yt · fW(t)(xt + ξt) < 0}, where L0−1

(t,ξt)(W
(t)) ≤ 4L(t,ξt)(W(t)) due to properties of the cross entropy

loss function (i.e., 1{z ≤ 0} ≤ 4`(z)). With this in mind, when m > O
(
nB
√

1 + ΞL6 log3(m)
)
and

ω ≤ O
(
L−6 log−3(m)

)
, we can invoke Lemma 1 to yield

1
n

n∑
t=1

L0−1
(t,ξt)(W

(t)) ≤ 4
n

n∑
t=1

L(t,ξt)(W?) +O
(
LR2

nm
1
2

)
+O

(
m−

1
2BL(1 + Ξ)

)

with probability at least 1−O(nBL)e
−Ω
(
mω

2
3 L

)
. Then, because the model is trained in a streaming fashion

as described in Section 5.1, the t-th new data example is seen for the first time only at iteration t within the
data stream. Thus, we have that weights W(t) only depend on data examples (x1, y1), . . . , (xt−1, yt−1). In
other words, W(t) is independent of the t-th new data example (xt, yt). Thus, we can invoke an online-to-
batch conversion argument (see Proposition 1 in (Cesa-Bianchi et al., 2004)) to yield

1
n

n∑
t=1

L0−1
D (W(t)) ≤ 1

n

n∑
t=1

L0−1
(t,ξt)(W

(t)) +
√

2 log(1/δ)
n

35



Under review as submission to TMLR

with probability at least 1 − δ for δ ∈ (0, 1]. From here, we define Ŵ as a random entry chosen uniformly
from the set {W(0), . . . ,W(n)}. Thus, we have the following by definition

1
n

n∑
t=1

L0−1
D (W(t)) = E

[
L0−1
D (Ŵ)

]
Then, the following can be derived by combining the above expressions

E
[
L0−1
D (Ŵ)

]
≤ 4
n

n∑
t=1

L(t,ξt)(W?) +O
(
LR2

nm
1
2

)

+O
(
m−

1
2BL(1 + Ξ)

)
+

√
2 log( 1

δ )
n

(4)

with probability at least 1− δ−O(nBL)e
−Ω
(
mω

2
3 L

)
for all W? ∈ B(W(0),R/m). Now, we can compare the

neural network function fW? with FW(0),W? as follows

L(t,ξt)(W?)
(i)
≤ `(yt · FW(0),W?(xt + ξt)) +O

(√
m (1 + Ξ)ω 4

3L3 log(m)
)

where (i) holds from the 1-Lipschitz continuity of `(·) and Lemma 3 with probability at least 1 −

O(nL)e
−Ω
(
mω

2
3 L

)
. Then, we can plug this inequality into equation 4 to yield

E
[
L0−1
D (Ŵ)

]
≤ 4
n

n∑
t=1

`[yt · FW(0),W?(xt + ξt)] +O
(√

m (1 + Ξ)ω 4
3L3 log(m)

)

+O
(
LR2

nm
1
2

)
+O

(
m−

1
2BL(1 + Ξ)

)
+

√
2 log( 1

δ )
n

Then, by taking an infimum over all W? ∈ B(W(0),R/m), we get the following

E
[
L0−1
D

(
Ŵ
)]
≤ inf
f∈F(W(0),R/m)

(
4
n

n∑
t=1

`(yt · f(xt + ξt))
)

+O
(√

m (1 + Ξ)ω 4
3L3 log(m)

)
+O

(
LR2

nm
1
2

)
+O

(
m−

1
2BL(1 + Ξ)

)
+
√

2 log(1/δ)
n

From here, by noting that ω ≤ O
(
L−6 log−3(m)

)
and m ≥ O

(
nB
√

1 + ΞL6 log3(m)
)
, the expression can be

simplified as follows

E
[
L0−1
D

(
Ŵ
)]
≤ inf
f∈F(W(0),R/m)

(
4
n

n∑
t=1

`(yt · f(xt + ξt))
)

+
√

2 log(1/δ)
n

+O
(

(1 + Ξ) 3
4
√
nB

L2 log
3
2 (m)

+ R2

n
3
2B

1
2 (1 + Ξ) 1

4L2 log
3
2 (m)

+ B
1
2 (1 + Ξ) 3

4

n
1
2L2 log

3
2 (m)

) (5)
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We then analyze the asymptotic portion of the expression above—highlighted in red—as follows.

O

(
(1 + Ξ) 3

4
√
nB

L2 log
3
2 (m)

+ R2

n
3
2B

1
2 (1 + Ξ) 1

4L2 log
3
2 (m)

+ B
1
2 (1 + Ξ) 3

4

n
1
2L2 log

3
2 (m)

)

= O
(

(1 + Ξ)B(n2 + 1) +R2

L2 log
3
2 (m)nB 1

2 (1 + Ξ) 1
4

)

= O
(

(1 + Ξ) 3
4B

1
2n

L2 log
3
2 (m)

)
+O

(
R2

L2 log
3
2 (m)nB 1

2 (1 + Ξ) 1
4

)
(i)
≤ O

(
(1 + Ξ) 3

4B
1
2n+R2

L2 log
3
2 (m)

)

where (i) holds due to the fact that nB 1
2 (1 + Ξ) 1

4 > 1. Then, by substituting this simplified asymptotic
expression, we have

E
[
L0−1
D

(
Ŵ
)]
≤ inf
f∈F(W(0),R/m)

(
4
n

n∑
t=1

`(yt · f(xt + ξt)
)

+
√

2 log(1/δ)
n

+O
(

(1 + Ξ) 3
4B

1
2n+R2

L2 log
3
2 (m)

)

where the asymptotic portion of the expression can be made arbitrarily small by increasing the value of

m. Realizing that this result holds with probability 1− δ −O(nBL)e
−Ω
(
mω

2
3 L

)
≈ 1− δ as the value of m

increases yields the desired result.

E.2 Proof of Lemma 1

Proof. We assume W(0) is initialized as described in Section 5.1, then updated according to Algorithm 1 with
B replay samples taken from buffer R at each iteration and distinct, arbitrary data perturbation vectors—
representing data augmentation—applied to both new and replayed data throughout streaming. For R > 0,
we have W? ∈ B(W(0),R/m), where W? ∈ B(W(0), ω) whenever m ≥ O(L6 log3(m)) (i.e., R is a constant
that does not appear in the asymptotic bound), which is looser than the overparameterization requirement
within Lemma 2. Similarly, by Lemma 2, we have W(0), . . . ,W(n) ∈ B(W(0), ω) with probability at least

1−O(nLB)e
−Ω
(
mω

2
3 L

)
whenever m ≥ O

(
nB
√

1 + ΞL6 log3(m)
)
and η = O(m− 3

2 ).

Thus, for W(t),W? ∈ B(W(0), ω), by Corollary 1 we have with probability at least 1 − O(nL)e
−Ω
(
mω

2
3 L

)
that

L(t,ξt)(W(t))− L(t,ξt)(W?) ≤
〈
∇W(t)L(t,ξt)(W(t)),W(t) −W?

〉
+O

(√
m(1 + Ξ)ω 4

3L3 log(m)
)

=
L∑
l=1

〈
∇
W

(t)
l

L(t,ξt)(W(t)),W (t)
l −W

?
l

〉
+O

(√
m(1 + Ξ)ω 4

3L3 log(m)
)

(6)
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We can focus on bounding the red term within the expression above as follows

L∑
l=1

〈
∇
W

(t)
l

L(t,ξt)(W(t)),W (t)
l −W

?
l

〉
i=

L∑
l=1

1
η

〈
W

(t)
l −W

(t+1)
l − η

∑
(xrep,yrep)∼St

∇
W

(t)
l

L(xrep,yrep,ξrep)(W(t)),W (t)
l −W

?
l

〉

ii
≤

L∑
l=1

1
2η

(∥∥∥∥∥∥W (t)
l −W

(t+1)
l − η

∑
(xrep,yrep)∼St

∇
W

(t)
l

L(xrep,yrep,ξrep)(W(t))

∥∥∥∥∥∥
2

F

+
∥∥∥W (t)

l −W
?
l

∥∥∥2

F

−

∥∥∥∥∥∥W (t+1)
l −W ?

l + η
∑

(xrep,yrep)∼St

∇
W

(t)
l

L(xrep,yrep,ξrep)(W(t))

∥∥∥∥∥∥
2

F

)

=
L∑
l=1

1
2η

(∥∥∥η∇W (t)
l

L(t,ξt)(W(t))
∥∥∥2

F
+
∥∥∥W (t)

l −W
?
l

∥∥∥2

F

−

∥∥∥∥∥∥W (t+1)
l −W ?

l + η
∑

(xrep,yrep)∼St

∇
W

(t)
l

L(xrep,yrep,ξrep)(W(t))

∥∥∥∥∥∥
2

F

)

iii
≤

L∑
l=1

1
2η

(∥∥∥η∇W (t)
l

L(t,ξt)(W(t))
∥∥∥2

F
+
∥∥∥W (t)

l −W
?
l

∥∥∥2

F

−
∥∥∥W (t+1)

l −W ?
l

∥∥∥2

F
+

∥∥∥∥∥∥η
∑

(xrep,yrep)∼St

∇
W

(t)
l

L(xrep,yrep,ξrep)(W(t))

∥∥∥∥∥∥
2

F

)

iv
≤

L∑
l=1

1
2η

(∥∥∥W (t)
l −W

?
l

∥∥∥2

F
−
∥∥∥W (t+1)

l −W ?
l

∥∥∥2

F

)
+O (ηBLm(1 + Ξ))

where i follows from equation 3, ii holds from the identity that 2〈A,B〉 ≤ ‖A‖2F + ‖B‖2F − ‖A − B‖2F , and
iii holds due to the lower triangle inequality, and iv holds due to the upper triangle inequality and Lemma

7 with probability at least 1−O(nBL)e
−Ω
(
mω

2
3 L

)
by taking union bound across all data, replay examples,

and network layers. Plugging this bound into equation 6, we get

L(t,ξt)(W(t))− L(t,ξt)(W?) ≤
L∑
l=1

1
2η

(∥∥∥W (t)
l −W

?
l

∥∥∥2

F
−
∥∥∥W (t+1)

l −W ?
l

∥∥∥2

F

)
+O

(
ηBLm(1 + Ξ) +

√
m(1 + Ξ)ω 4

3L3 log(m)
)
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Then, telescoping this expression over t ∈ [n] yields

n∑
t=1

L(t,ξt)(W(t)) ≤
n∑
t=1

L(t,ξt)(W?) +
L∑
l=1

∥∥∥W (0)
l −W ?

l

∥∥∥2

F

2η

+O
(
nηBLm(1 + Ξ) + n

√
m(1 + Ξ)ω 4

3L3 log(m)
)

i
≤

n∑
t=1

L(t,ξt)(W?) + LR2

2ηm2

+O
(
nηBLm(1 + Ξ) + n

√
m(1 + Ξ)ω 4

3L3 log(m)
)

ii
≤

n∑
t=1

L(t,ξt)(W?) +O
(
LR2m−

1
2

)
+O

(
nm−

1
2BL(1 + Ξ)

)
where i follows from the fact that W? ∈ B(W(0),R/m) and ii holds for sufficiently small ω with η = κ

m
3
2
, where

κ is a small, positive constant. Thus, the desired result holds with probability at least 1−O(nBL)e
−Ω
(
mω

2
3 L

)
with overparameterization given by the expression below.

m ≥ O
(
nB
√

1 + ΞL6 log3(m)
)

E.3 Proof of Lemma 2

Proof. We assume W(0) is initialized as described in Section 5.1 and updated according to Algorithm 1 with
B replay examples sampled uniformly from the replay buffer R at each update and arbitrary perturbation
vectors—representing data augmentation—applied separately to both new and replayed data throughout
streaming. We take ω = C1L

−6 log−3(m) such that C1 is a small enough constant to satisfy assumptions on
ω in Lemma 7. From here, we can show that W(0), . . . ,W(n) ∈ B(W(0), ω) through induction.

Base Case. The base case W(0) ∈ B(W(0), ω) holds trivially.

Inductive Case. Assume that W(t) ∈ B(W(0), ω). By Lemma 7, we have∥∥∇Wl
L(t,ξt)(W)

∥∥
F
≤ O

(√
m(1 + ‖ξt‖22)

)
(7)

with probability at least 1− e
−Ω
(
mω

2
3 L

)
. Denoting the indices of data elements within our replay buffer as

R, we can then show the following over iterations of Algorithm 1.∥∥∥W (t+1)
l −W (0)

l

∥∥∥
F

i
≤

t∑
j=1

∥∥∥W (j+1)
l −W (j)

l

∥∥∥
F

ii=
t∑

j=1

∥∥∥∥∥∥−η
 ∑

(xrep,yrep)∼St

∇Wl
L(xrep,yrep,ξrep)

(
W(j)

)
+∇Wl

L(j,ξj)

(
W(j)

)∥∥∥∥∥∥
F

iii
≤ η

t∑
j=1

(∑
(xrep, yrep) ∼ St

∥∥∥∇Wl
L(xrep,yrep,ξrep)

(
W(j)

)∥∥∥+
∥∥∥∇Wl

L(j,ξj)

(
W(j)

)∥∥∥)
iv
≤ O

(
ηnB

(√
m (1 + Ξ)

))
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where i and iii hold due to the upper triangle inequality, ii holds from equation 3, and iv holds due to
equation 7 and the definition of Ξ. Thus, for ω = C1L

−6 log−3(m), if we set η = κ

m
3
2
we have

∥∥∥W (t+1)
l −W (0)

l

∥∥∥
F
≤ O

(
ηnB

√
m (1 + Ξ)

)
= κnB

√
1 + Ξ√
m

i
≤ ω

for some small enough absolute constant κ and m ≥ O
(
nB
√

1 + ΞL6 log3(m)
)
. Thus, the inductive step is

complete and we have W(0), . . . ,W(n) ∈ B(W(0), ω) with probability at least 1 − O(nLB)e
−Ω
(
mω

2
3 L

)
by

taking a union bound over all data examples, replay examples, and network layers.

E.4 Proof of Lemma 3

Proof. We consider some fixed t ∈ [n] with perturbation vector ξ and two weight matrices W,W′ ∈
B(W(0), ω), where W(0) is initialized as described in Section 3.1. It should be noted that ξ is an arbi-
trary perturbation vector that can be different for any t ∈ [n]. We omit the subscript ξt to emphasize that
the result can hold with different perturbations for any t ∈ [n] and both when data is encountered newly or
used for replay. In particular, the result only depends on the value of ‖ξ‖22, thus allowing arbitrary settings
of ξ to be used for new or replayed data. From the formulation of the forward pass in equation 1, it can be
shown that fW′(xt + ξ) =

√
m ·W ′Lh′(t,L−1,ξ) and fW(xt + ξ) =

√
m ·WLh(t,L−1,ξ). These identities allow us

to derive the following via direct calculation

fW′(xt + ξ)− FW,W′(xt + ξ)

= −
√
m ·

L−1∑
l=1

WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ) (W ′l −Wl)h(t,l−1,ξ)

+
√
m ·W ′L

(
h′(t,L−1,ξ) − h(t,L−1,ξ)

) (8)

Then, from Claim in 11.2 in (Allen-Zhu et al., 2019), it is known that, for all t ∈ [n], h(t,L−1,ξ) − h′(t,L−1,ξ)
(i.e., the red term within the above expression) can be re-written as

h(t,L−1,ξ) − h′(t,L−1,ξ) =
L−1∑
l=1

(
L−1∏
r=l+1

(
D′(t,r,ξ) +D

′′

(t,r)

)
W ′r

)(
D′(t,l,ξ) +D

′′

(t,l)

)
(Wl −W ′l )h(t,l−1,ξ)

where D′′(t,l) ∈ Rm×m for l ∈ [L−1] is any random diagonal matrix with at most O
(
mω

2
3L
)
non-zero entries

in the range [−1, 1]. With this in mind, we can then rewrite equation 8 as follows.

fW′(xt + ξ)− FW,W′(xt + ξ)

=
√
m ·

L−1∑
l=1

W ′L

(
L−1∏
r=l+1

(
D′(t,r,ξ) +D

′′

(t,r)

)
W ′r

)(
D′(t,l,ξ) +D

′′

(t,l)

)
(Wl −W ′l )h(t,l−1,ξ)

−
√
m ·

L−1∑
l=1

WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ) (W ′l −Wl)h(t,l−1,ξ)
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Now, given that ω ≤ O
(
L−6 log−3(m)

)
, we can unroll this expression to arrive at the final result as follows

|fW′(xt + ξ)− FW,W′(xt + ξ)|

=
√
m ·

∣∣∣∣∣
L−1∑
l=1

(
W ′L

(
L−1∏
r=l+1

(
D′(t,r,ξ) +D

′′

(t,r)

)
W ′r

)(
D′(t,l,ξ) +D

′′

(t,l)

)
(Wl −W ′l )h(t,l−1,ξ)

)

−

(
WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ) (W ′l −Wl)h(t,l−1,ξ)

)∣∣∣∣∣
i
≤
√
m ·

L−1∑
l=1

∥∥∥∥∥
(
W ′L

(
L−1∏
r=l+1

(
D′(t,r,ξ) +D

′′

(t,r)

)
W ′r

)(
D′(t,l,ξ) +D

′′

(t,l)

)

+WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ)

∥∥∥∥∥
2

· ‖Wl −W ′l ‖2 · ‖h(t,l−1,ξ)‖2

ii
≤ O

(√
mω

1
3L2 log(m)

) L−1∑
l=1
‖Wl −W ′l ‖2 · ‖h(t,l−1,ξ)‖2

iii
≤ O

(√
m (1 + ‖ξ‖22)ω 1

3L2 log(m)
(
ωL

5
2
√

log(m) + 1
)) L−1∑

l=1
‖Wl −W ′l ‖2

iv
≤ O

(√
m (1 + ‖ξ‖22)ω 1

3L2 log(m)
(
ωL

5
2
√

log(m) + 1
)

(ωL)
)

v
≤ O

(√
m (1 + ‖ξ‖22)ω 4

3L3 log(m)
)

where i holds due to triangle inequality, ii holds due to Lemma 5 with probability at least 1 −

O(nL)e
−Ω
(
mω

2
3 L

)
, iii holds due to Corollary 2 with probability at least 1 − O(nL)e

−Ω
(
mω

2
3 L

)
, iv holds

due to the definition of the ω neighborhood, and v holds for sufficiently small ω.

E.5 Proof of Corollary 1

Proof. Consider some fixed t ∈ [n] and arbitrary perturbation vector ξ, where we again omit the subscript
ξt to emphasize that the result holds with different perturbations for any t ∈ [n] and both when data is
encountered newly or sampled for replay. We consider W,W′ ∈ B(W(0), ω), where W(0) is initialized as
described within Section 5.1. Recall that we utilize a standard cross-entropy loss function `(z) = log(1+e−z).
We denote the derivative of this function as `′(z), where `′(z) = d

dz log(1 + e−z) = −1
ez+1 . For W,W′ ∈

B(W(0), ω), we can derive the following

L(t,ξ)(W′)− L(t,ξ)(W) = ` (ytfW′(xt + ξ))− ` (ytfW(xt + ξ))
i
≥ `′ (ytfW(xt + ξ)) · yt · (fW′(xt + ξ)− fW(xt + ξ))
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where i holds due to the convexity of `(·). From here, we have

`′ (ytfW(xt + ξ)) · yt · (fW′(xt + ξ)− fW(xt + ξ))

= `′(ytfW(xt + ξ)) · yt ·
(
fW′(xt + ξ)− fW(xt + ξ)

± 〈∇WfW(xt + ξ),W′ −W〉
)

= `′ (ytfW(xt + ξ)) · yt · 〈∇WfW(xt + ξ),W′ −W〉

+ `′ (ytfW(xt + ξ)) · yt ·
(
fW′(xt + ξ)− fW(xt + ξ)

− 〈∇WfW(xt + ξ),W′ −W〉
)

≥ `′ (ytfW(xt + ξ)) · yt · 〈∇WfW(xt + ξ),W′ −W〉

−
∣∣∣`′ (ytfW(xt + ξ)) · yt ·

(
fW′(xt + ξ)− fW(xt + ξ)

− 〈∇WfW(xt + ξ),W′ −W〉
)∣∣∣

=
L∑
l=1
〈∇Wl

L(t,ξ)(W),W ′l −Wl〉 −
∣∣∣`′ (ytfW(xt + ξ)) · yt

·
(
fW′(xt + ξ)− fW(xt + ξ)− 〈∇WfW(xt + ξ),W′ −W〉

)∣∣∣
Then, by noticing that |`′(ytfW(xt + ξ)) · yt)| ≤ 1 and invoking Lemma 3, we can derive the following with

probability at least 1−O(nL)e
−Ω
(
mω

2
3 L

)

L(t,ξ)(W′)− L(t,ξ)(W) ≥
L∑
l=1
〈∇Wl

L(t,ξ)(W),W ′l −Wl〉 − O
(√

m(1 + ‖ξ‖22)ω 4
3L3 log(m)

)
whenever ω ≤ O

(
L−6 log−3(m)

)
.

E.6 Proof of Lemma 4

Proof. Consider some t ∈ [n] and arbitrary perturbation vector ξ, where we omit the subscript ξt to emphasize
that the result holds with different perturbations for any t ∈ [n] and both when data is newly encountered
or sampled for replay. Consider random weight matrices W(0) initialized as in Section 5.1, and W such that
W ∈ B(W(0), ω).

From Lemma 6, we have with probability at least 1 − O (nL) e−Ω(m/L) that ‖h(0)
(t,j,ξ)‖

2
2, ‖g

(0)
(t,j,ξ)‖

2
2 ∈[

1− ‖ξ‖22, 1 + ‖ξ‖22
]
. Furthermore, if m ≥ Ω(nL log(nL)), we have that for all i ∈ [n] and all 1 ≤ a ≤ b ≤ L∥∥∥∥∥

b∏
l=a

W
(0)
l D

(0)
(t,l−1,ξ)

∥∥∥∥∥
2

≤ O(
√
L) (9)

with probability at least 1 − e−Ω(m/L) by Lemma 7.3 in (Allen-Zhu et al., 2019).17 Now, we can prove the
desired result with an induction argument over layers of the network.

Base Case. ‖g(t,0,ξ) − g
(0)
(t,0,ξ)‖2 = ‖xt + ξ − (xt + ξ)‖2 = 0, so the base case trivially holds. The same is

true for ‖h(t,0,ξ) − h
(0)
(t,0,ξ)‖2.

17equation 9 has one extra factor of D(0)
(t,l−1,ξ) within the expression in comparison to Lemma 7.3 in (Allen-Zhu et al., 2019),

but this does not impact the norm of the overall expression because
∥∥∥D(0)

l−1

∥∥∥
2
≤ 1.
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Inductive Case. Assume the inductive hypothesis holds for l − 1. We can derive the following

g(t,l,ξ) − g
(0)
(t,l,ξ) =

(
W

(0)
l +Wl −W (0)

l

)(
D

(0)
(t,l−1,ξ) +D(t,l−1,ξ) −D

(0)
(t,l−1,ξ)

)(
g

(0)
(t,l−1,ξ) + g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
−W (0)

l D
(0)
(t,l−1,ξ)g

(0)
(t,l−1,ξ)

=
(
Wl −W (0)

l

)(
D

(0)
(t,l−1,ξ) +D(t,l−1,ξ) −D

(0)
(t,l−1,ξ)

)(
g

(0)
(t,l−1,ξ) + g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
+W

(0)
l

(
D(t,l−1,ξ) −D

(0)
(t,l−1,ξ)

)(
g

(0)
(t,l−1,ξ) + g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
+W

(0)
l D

(0)
(t,l−1,ξ)

(
g(t,l−1,ξ) − g

(0)
(t,l−1,ξ)

)
From here, we can telescope over the g(t,l,ξ) − g

(0)
(t,l,ξ) terms to obtain the expression below, where distinct

terms of interest are highlighted with separate colors

g(t,l,ξ) − g
(0)
(t,l,ξ) =

l∑
a=1

(
a+1∏
b=l

W
(0)
b D

(0)
(t,b−1,ξ)

)(
(
Wa −W (0)

a

)(
D

(0)
(t,a−1,ξ) +D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
g

(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)
+W (0)

a

(
D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
g

(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

))
(10)

Now, we focus on a single summation element of the green term in equation 10 and provide an upper bound
on the norm of this expression.∥∥∥∥∥

(
a+1∏
b=l

W
(0)
b D

(0)
(t,b−1,ξ)

)(
Wa −W (0)

a

)(
D

(0)
(t,a−1,ξ) +D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)
(
g

(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)∥∥∥∥∥
2

≤

∥∥∥∥∥
a+1∏
b=l

W
(0)
b D

(0)
(t,b−1,ξ)

∥∥∥∥∥
2

·
∥∥∥Wa −W (0)

a

∥∥∥
2
·
∥∥D(t,a−1,ξ)

∥∥
2 ·
∥∥∥g(0)

(t,a−1,ξ) + g(t,a−1,ξ) − g
(0)
(t,a−1,ξ)

∥∥∥
2

i
≤ O

(√
L
)
·
∥∥∥Wa −W (0)

a

∥∥∥
2
·
∥∥D(t,a−1,ξ)

∥∥
2 ·
∥∥∥g(0)

(t,a−1,ξ) + g(t,a−1,ξ) − g
(0)
(t,a−1,ξ)

∥∥∥
2

ii
≤ O

(√
Lω
)
·
∥∥D(t,a−1,ξ)

∥∥
2 ·
∥∥∥g(0)

(t,a−1,ξ) + g(t,a−1,ξ) − g
(0)
(t,a−1,ξ)

∥∥∥
2

iii
≤ O

(√
Lω
)
·
∥∥∥g(0)

(t,a−1,ξ) + g(t,a−1,ξ) − g
(0)
(t,a−1,ξ)

∥∥∥
2

iv
≤ O

(√
Lω
) [
‖g(0)

(t,a−1,ξ)‖2 + ‖g(t,a−1,ξ) − g
(0)
(t,a−1,ξ)‖2

]
v
≤ O

(√
Lω
)[√

1 + ‖ξ‖22 +O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)]
where i holds due to equation 9, ii holds because W ∈ B(W(0), ω), iii holds because ‖Di,a−1‖2 ≤ 1 by
construction, iv holds by upper triangle inequality, and v holds by Lemma 6 and the inductive hypothesis.

Now that we have bounded the green term, we can focus on a single summation element of the red term in
equation 10. First, we make the following definition

ζ ,
(
D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
g

(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)
=
(
D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
W

(0)
a−1h

(0)
(t,a−2,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)
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Then, by Claim 8.3 and Corollary 8.4 in (Allen-Zhu et al., 2019), we have that with probability at least
1− e−Ω(mω

2
3 L)

∥∥∥∥1
c
ζ

∥∥∥∥
0
≤ O

(
mω

2
3L
)

and
∥∥∥∥1
c
ζ

∥∥∥∥
2
≤ O

(
ωL

3
2

)
(11)

where c = ‖h(0)
(t,a−2,ξ)‖2 ∈ [

√
1− ‖ξ‖22,

√
1 + ‖ξ‖22]. Additionally, we define

γ ,

(
a+1∏
b=l

W
(0)
b D(t,b−1,ξ)

)
·W (0)

a ·
[(
D(t,a−1,ξ) −D

(0)
(t,a−1,ξ)

)(
g

(0)
(t,a−1,ξ) + g(t,a−1,ξ) − g

(0)
(t,a−1,ξ)

)]
= c

(
a+1∏
b=l

W
(0)
b D(t,b−1,ξ)

)
·W (0)

a ·
[

1
c
ζ

]

By invoking Claim 8.5 from (Allen-Zhu et al., 2019), we can reformulate γ as

γ =
(
c

∥∥∥∥1
c
ζ

∥∥∥∥
2

)
(γ1 + γ2)

where with probability at least 1− e−Ω(mω
2
3 L log(m)) the γ1 and γ2 terms can be bounded as

‖γ1‖2 ≤ O
(
L

1
2ω

1
3 log(m)

)
and ‖γ2‖∞ ≤ O

(√
log(m)
m

)
(12)
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Combining all of this together, we get

‖g(t,l,ξ) − g
(0)
(t,l,ξ)‖2 =

∥∥∥∥∥
l∑(
O
(√

Lω
)[√

1 + ‖ξ‖22 +O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)]

+
(
c

∥∥∥∥1
c
ζ

∥∥∥∥
2

)
(γ1 + γ2)

)∥∥∥∥∥
2

=
∥∥∥∥∥L
(
O
(√

Lω
)[√

1 + ‖ξ‖22 +O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)]

+
(
c

∥∥∥∥1
c
ζ

∥∥∥∥
2

)
(γ1 + γ2)

)∥∥∥∥∥
2

i
≤ O

(
L

3
2ω
)[√

1 + ‖ξ‖22 +O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)]
+ L

(
c

∥∥∥∥1
c
ζ

∥∥∥∥
2

)
‖γ1 + γ2‖2

ii
≤ O

(
L

3
2ω
)[√

1 + ‖ξ‖22 +O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)]
+
(√

1 + ‖ξ‖22 O
(
ωL

5
2

))
‖γ1 + γ2‖2

iii
≤ O

(
L

3
2ω
)[√

1 + ‖ξ‖22 +O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)]
+
(√

1 + ‖ξ‖22 O
(
ωL

5
2

))
(‖γ1‖2 + ‖γ2‖2)

iv
≤ O

(
L

3
2ω
)[√

1 + ‖ξ‖22 +O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)]
+
(√

1 + ‖ξ‖22 O
(
ωL

5
2

))(
O
(
L

1
2ω

1
3 log(m)

)
+O

(√
log(m)

))
= O

(
L

3
2ω
√

1 + ‖ξ‖22
)

+O
(
ω2L4

√
(1 + ‖ξ‖22) log(m)

)
O
(
ω

4
3L3

√
1 + ‖ξ‖22 log(m)

)
+O

(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)

where i holds by the upper triangle inequality and properties of norms, ii holds by Lemma 6 and equation 11,
iii holds by triangle inequality, and iv holds by equation 12 and invoking the upper bound ‖γ2‖2 ≤

√
m‖γ2‖∞.

Then, when ω is sufficiently small, we get

‖g(t,l,ξ) − g
(0)
(t,l,ξ)‖2 ≤ O

(
L

3
2ω
√

1 + ‖ξ‖22 + ωL
5
2

√
1 + ‖ξ‖22

√
log(m)

)
≤ O

(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)
(13)
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thus completing the inductive portion of the proof for ‖g(t,l,ξ) − g
(0)
(t,l,ξ)‖2. Then, to finish the inductive

portion of the proof for ‖h(t,l,ξ) − h
(0)
(t,l,ξ)‖2, we note that∥∥∥h(t,l,ξ) − h

(0)
(t,l,ξ)

∥∥∥
2

= ‖D(t,l,ξ)

(
g(t,l,ξ) − g

(0)
(t,l,ξ)

)
+
(
D(t,l,ξ) −D

(0)
(t,l,ξ)

)
g(t,l,ξ)‖2

i
≤ ‖D(t,l,ξ)‖2 ·

∥∥∥g(t,l,ξ) − g
(0)
(t,l,ξ)

∥∥∥
2

+
∥∥∥D(t,l,ξ) −D

(0)
(t,l,ξ)

∥∥∥
2
· ‖g(t,l,ξ)‖2

ii
≤ 1 · O

(
ωL

5
2

√
1 + ‖ξ‖22

√
log(m)

)
+ 1 ·

(
ωL

3
2

√
1 + ‖ξ‖22

)
≤ O

(
ωL

5
2

√
1 + ‖ξ‖22

√
log(m)

)
where i holds from the upper triangle inequality and properties of the spectral norm and ii holds from
equation 11 and equation 13. Thus, we have completed the inductive case for ‖h(t,l,ξ) − h

(0)
(t,l,ξ)‖2. From

here, a union bound can be taken over all t ∈ [n] and l ∈ [L− 1] to yield the desired result with probability

1−O(nL)e−Ω(m/L)−O(nL)e
−Ω
(
mω

2
3 L

)
+O(nL)e

−Ω
(
mω

2
3 L log(m)

)
= 1−O(nL)e

−Ω
(
mω

2
3 L

)
, where the last

equality again holds when ω is sufficiently small.

E.7 Proof of Lemma 5

Proof. We consider some fixed t ∈ [n] and arbitrary perturbation vector ξ, where we omit the subscript ξt
to emphasize that the result holds with different perturbations for any t ∈ [n] and both when data is newly
encountered or sampled for replay. We define random diagonal matrices D′′(t,1), . . . , D

′′

(t,L−1) as any diagonal
matrix with at most O

(
mω

2
3L
)

entries in the range ∈ [−1, 1]. Consider two sets of model parameters
W,W′ ∈ B(W(0), ω), where W(0) is initialized as described in Section 5.1. From equation 11, we know that∥∥∥∥∥∥ 1

‖h(0)
(t,l−1,ξ)‖2

(
D(t,l,ξ) −D

(0)
(t,l,ξ)

)
g(t,l,ξ)

∥∥∥∥∥∥
0

≤ O
(
mω

2
3L
)

with probability at least 1− e
−Ω
(
mω

2
3 L

)
. This bound holds for both W and W′. Then, noticing that right

multiplication by g(t,l,ξ) and division by a constant factor cannot increase the number of non-zero entries
within the matrix D(t,l,ξ) −D

(0)
(t,l,ξ) (i.e., recall that this matrix is diagonal), we have∥∥∥D(t,l,ξ) −D

(0)
(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
)

(14)

From here, we can apply the upper triangle inequality to yield∥∥∥D(t,l,ξ) −D′(t,l,ξ)
∥∥∥

0
=
∥∥∥(D(t,l,ξ) −D

(0)
(t,l,ξ)

)
−
(
D′(t,l,ξ) −D

(0)
(t,l,ξ)

)∥∥∥
0

i
≤
∥∥∥D(t,l,ξ) −D

(0)
(t,l,ξ)

∥∥∥
0

+
∥∥∥D′(t,l,ξ) −D(0)

(t,l,ξ)

∥∥∥
0

ii= O
(
mω

2
3L
)

where i holds by the upper triangle inequality and ii is due to equation 14. From here, we apply a union
bound over all t ∈ [n] and l ∈ [L− 1] to yield∥∥∥D(t,l,ξ) −D′(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
)

(15)
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for all t ∈ [n] and l ∈ [L − 1] with probability at least 1 − O(nL)e
−Ω
(
mω

2
3 L

)
. equation 15 can also be

extended to show the following properties with identical probability

∥∥∥D(t,l,ξ) +D
′′

(t,l) −D
(0)
(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
)

∥∥∥D′(t,l,ξ) +D
′′

(t,l) −D
(0)
(t,l,ξ)

∥∥∥
0
≤ O

(
mω

2
3L
) (16)

which holds due to the number of non-zero entries assumed to be within each random diagonal matrix D′′(t,l)

by construction. From here, we first note that with probability at least 1− e
−Ω
(
mω

2
3 L log(m)

)
we have

∥∥∥∥∥
L−1∏
r=l

(
D(t,l,ξ) −D

′′

(t,l)

)
Wl

∥∥∥∥∥
2

≤ O
(√

L
)

(17)
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due to Lemma 8.6 in (Allen-Zhu et al., 2019). Then, we consider bounding the following expression∥∥∥∥∥W ′L
L−1∏
r=l

(
D′(t,r,ξ) +D′′(t,r)

)
W ′r −WL

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

=
∥∥∥∥∥(W ′L +W

(0)
L −W (0)

L

) L−1∏
r=l

(
D′(t,r,ξ) +D

′′

(t,r)

)
W ′r

−
(
WL −W (0)

L +W
(0)
L

) L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

=
∥∥∥∥∥(W ′L −W (0)

L

) L−1∏
r=l

(
D′(t,r,ξ) +D

′′

(t,r)

)
W ′r +W

(0)
L

L−1∏
r=l

(
D′(t,r,ξ) +D′′(t,r)

)
W ′r

−
(
WL −W (0)

L

) L−1∏
r=l

D(t,r,ξ)Wr −W (0)
L

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

i
≤

∥∥∥∥∥(W ′L −W (0)
L

) L−1∏
r=l

(
D′(t,r,ξ) +D

′′

(t,r)

)
W ′r

∥∥∥∥∥
2

+
∥∥∥∥∥(WL −W (0)

L

) L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

+
∥∥∥∥∥W (0)

L

L−1∏
r=l

(
D′(t,r,ξ) +D′′(t,r)

)
W ′r −W

(0)
L

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

ii
≤ O

(√
Lω
)

+
∥∥∥∥∥W (0)

L

L−1∏
r=l

(
D′(t,r,ξ) +D′′(t,r)

)
W ′r −W

(0)
L

L−1∏
r=l

D(t,r,ξ)Wr

∥∥∥∥∥
2

= O
(√

Lω
)

+
∥∥∥∥∥W (0)

L

L−1∏
r=l

(
D′(t,r,ξ) +D′′(t,r)

)
W ′r −W

(0)
L

L−1∏
r=l

D(t,r,ξ)Wr

±W (0)
L

L−1∏
r=l

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

iii
≤ O

(√
Lω
)

+
∥∥∥∥∥W (0)

L

L−1∏
r=l

(
D′(t,r,ξ) +D′′(t,r)

)
W ′r −W

(0)
L

L−1∏
r=l

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

+
∥∥∥∥∥W (0)

L

L−1∏
r=l

D(t,r,ξ)Wr −W (0)
L

L−1∏
r=l

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

iv
≤ O

(√
Lω
)

+O
(
ω

1
3L2

√
log(m)

)
v
≤ O

(
ω

1
3L2

√
log(m)

)
where i and iii hold due to the upper triangle inequality, ii holds due to equation 17, iv holds by Lemma 8.7 in

(Allen-Zhu et al., 2019) with probability at least 1−e
−Ω
(
mω

2
3 L log(m)

)
, and v holds for ω ≤ O

(
L−6 log−3(m)

)
.

Then, the desired result follows with probability at least 1−O(nL)e
−Ω
(
mω

2
3 L

)
−O(nL)e

−Ω
(
mω

2
3 L log(m)

)
=

1−O(nL)e
−Ω
(
mω

2
3 L

)
by taking a union bound across all t ∈ [n] and l ∈ [L− 1].

E.8 Proof of Lemma 6

Proof. Consider some fixed t ∈ [n], j ∈ [L − 1], and arbitrary perturbation vector ξ, where we omit the
subscript ξt to emphasize that the result holds with different perturbations for any t ∈ [n] and both when
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data is newly encountered or sampled for replay. Assume the neural network weights at initialization W(0)

follow the initialization scheme describe in Section 5.1. For l ∈ [L], we can define ∆(0)
l ,

‖h(0)
(t,l,ξ)‖

2
2

‖h(0)
(t,l−1,ξ)‖

2
2
.

Applying a logarithm (with arbitrary base a > 1) to this definition, we have

log
(∥∥∥h(0)

(t,j,ξ)

∥∥∥2

2

)
= log(‖xt + ξ‖22) +

j∑
l=0

log
(

∆(0)
l

)
Given some ε ∈ (0, 1], we can invoke Fact 7.2 and the proof of Lemma 7.1 from (Allen-Zhu et al., 2019) to
show that ∣∣∣∣∣

j∑
l=0

log
(

∆(0)
l

)∣∣∣∣∣ ≤ ε
with probability at least 1−O(e−Ω(ε2m/L)). Thus, we have

log(‖xt + ξ‖22)− ε ≤ log
(∥∥∥h(0)

(t,j,ξ)

∥∥∥2

2

)
≤ log(‖xt + ξ‖22) + ε (18)

We first expand the upper bound to derive a bound on ‖h(0)
(t,j,ξ)‖

2
2. We begin by exponentiating both sides

of the inequality in equation 18 to obtain the following∥∥∥h(0)
(t,j,ξ)

∥∥∥2

2
≤ alog(‖xt+ξ‖2

2)+ε

= (‖xt + ξ‖22) · aε
i
≤ (‖xt‖22 + ‖ξ‖22) · aε
ii
≤ (‖xt‖22 + ‖ξ‖22) · a
iii= (1 + ‖ξ‖22) · a

where i follows from the upper triangle inequality, ii is implied by the fact that a > 1 and ε ∈ (0, 1], and iii
follows from the unit norm assumption on input data. From here, we note that the base a chosen for the
logarithm is arbitrary, and that any base greater than one can be chosen. With this in mind, we note that
lima→1+(1 + ‖ξ‖22) · a = 1 + ‖ξ‖22, which yields the upper bound ‖h(0)

(t,j,ξ)‖
2
2 ≤ 1 + ‖ξ‖22.

We can similarly derive a lower bound on ‖h(0)
(t,j,ξ)‖

2
2 as follows, where we begin by exponentiating both sides

of equation 18

‖h(0)
(t,j,ξ)‖

2
2 ≥ alog(‖xt+ξ‖2

2)−ε

= (‖xt + ξ‖22) · a−ε
i
≥
(∣∣‖xt‖22 − ‖ξ‖22∣∣) · a−ε

ii
≥ (1− ‖ξ‖22) · a−ε
iii
≥ (1− ‖ξ‖22) · 1

a

where i follows from the lower triangle inequality, ii follows from the norm assumption on the data, and iii
follows from the fact that ε ∈ (0, 1] and a > 1. Noting that the base a chosen for the logarithm is arbitrary,
we have lima→1+(1− ‖ξ‖22) · 1

a = 1− ‖ξ‖22.

By invoking both the upper and lower bounds derived above, we end up with ‖h(0)
(t,j,ξ)‖

2
2 ∈

[
1− ‖ξ‖22, 1 + ‖ξ‖22

]
with probability at least 1 − O

(
e−Ω(m/L)) due to the fact that ε ∈ (0, 1]. From here, we can take a union

bound over all all t ∈ [n] and j ∈ [L− 1] to yield the final result with probability 1−O (nL) e−Ω(m/L).
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E.9 Proof of Corollary 2

Proof. Consider some fixed t ∈ [n], j ∈ [L − 1], and arbitrary perturbation vector ξ, where we omit the
subscript ξt to emphasize that the result holds with different perturbations for any t ∈ [n] and both when
data is newly encountered or sampled for replay. Assume the neural network weights at initialization W(0)

follow the initialization scheme described in Section 5.1. From here, we take W ∈ B(W(0), ω). If we then
assume ω ≤ O

(
L−

9
2 log−3(m)

)
, then we have from Lemma 4 that

∥∥∥h(t,j,ξ) − h
(0)
(t,j,ξ)

∥∥∥
2
≤ O

(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)
(19)

with probability at least 1− e
−Ω
(
mω

2
3 L

)
. Similarly, from Lemma 6, we have the following∥∥∥h(0)

(t,j,ξ)

∥∥∥
2
≤
√

1 + ‖ξ‖22

with probability at least 1 − e−Ω(m/L). Then, we can use these expressions to derive a bound on ‖h(t,j,ξ)‖2
as follows ∥∥∥h(t,j,ξ) − h

(0)
(t,j,ξ)

∥∥∥
2

i
≥
∣∣∣‖h(t,j,ξ)‖2 −

∥∥∥h(0)
(t,j,ξ)

∥∥∥
2

∣∣∣
ii
≥
∣∣∣∣‖h(t,j,ξ)‖2 −

√
1 + ‖ξ‖22

∣∣∣∣
≥ ‖h(t,j,ξ)‖2 −

√
1 + ‖ξ‖22

where i follows from the lower triangle inequality and ii follows from Lemma 6. Then, combining the
expression above with equation 19, we derive

‖h(t,j,ξ)‖2 ≤ O
(
ωL

5
2

√
(1 + ‖ξ‖22) log(m)

)
+
√

1 + ‖ξ‖22

= O
(√

1 + ‖ξ‖22
(
ωL

5
2
√

log(m) + 1
))

Then, by taking a union bound over all t ∈ [n] and j ∈ [L− 1], we have the desired result with probability

at least 1−O(nL)e
−Ω
(
mω

2
3 L

)
.

E.10 Proof of Lemma 7

Proof. Consider some fixed t ∈ [n], l ∈ [L − 1], and arbitrary perturbation vector ξ, where we omit the
subscript ξt to emphasize that the result holds with different perturbations for any t ∈ [n] and both when
data is newly encountered or sampled for replay. Given W ∈ B(W(0), ω) with W(0) initialized as described
in Section 5.1, we have

‖∇WL
fW(xt + ξ)‖2

i=
∥∥√m · h(t,L−1,ξ)

∥∥
2

ii
≤ O

(√
m(1 + ‖ξ‖22)

(
ωL

5
2
√

log(m) + 1
))

where i holds because ∇WL
fW(xt + ξ) =

√
m · h>(t,L−1,ξ) and ii holds due to Corollary 2 with probability at

least 1− e
−Ω
(
mω

2
3 L

)
. For layers l ∈ [L− 1], we have

∇Wl
fW(xt + ξ) =

√
m ·

(
h(t,l−1,ξ)WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ)

)>
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which allows us to show

‖∇Wl
fW(xt + ξ)‖F =

√
m ·

∥∥∥∥∥h(t,l−1,ξ)WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)
D(t,l,ξ)

∥∥∥∥∥
F

i=
√
m · ‖h(t,l−1,ξ)‖2 ·

∥∥∥∥∥WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)∥∥∥∥∥
2

ii
≤ O

(√
m(1 + ‖ξ‖22)

(
ωL

5
2
√

log(m) + 1
))

·

∥∥∥∥∥WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr

)∥∥∥∥∥
2

(20)

where i holds due to properties of norms and ii holds due to Corollary 2 with probability at least 1 −

e
−Ω
(
mω

2
3 L

)
. Now, we must bound the red term within the expression above to complete the proof

∥∥∥∥∥WL

(
L−1∏
r=l+1

D(t,r,ξ)Wr
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2

i
≤

∥∥∥∥∥WL

(
L−1∏
r=l+1

(
D(t,r,ξ) +D

′′

(t,r)

)
Wr

)∥∥∥∥∥
2

=
∥∥∥∥∥WL

(
L−1∏
r=l+1

(
D(t,r,ξ) +D

′′

(t,r)

)
Wr

)

±W (0)
L

L−1∏
r=l+1

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

ii
≤

∥∥∥∥∥WL

(
L−1∏
r=l+1

(
D(t,r,ξ) +D

′′

(t,r)

)
Wr

)

−W (0)
L

L−1∏
r=l+1

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

+
∥∥∥∥∥W (0)

L

L−1∏
r=l+1

D
(0)
(t,r,ξ)W

(0)
r

∥∥∥∥∥
2

iii
≤ O

(
ω

1
3L2

√
log(m)

)
+O(1)

= O (1)

(21)

where i holds for some random diagonal matrix D
′′

(t,l) ∈ [−1, 1]m×m with at most O
(
mω

2
3L
)

non-zero
entries and ii is due to the upper triangle inequality. iii holds due to Lemma 5 when ω ≤ O

(
L−6 log−3(m)

)
and Lemma 7.4 in (Allen-Zhu et al., 2019) with probabilities at least 1 − e

−Ω
(
mω

2
3 L

)
and 1 − e−Ω(m/L),

respectively. Thus, we have from equation 20 and equation 21

‖∇Wl
fW(xt + ξ)‖F ≤ O

(√
m(1 + ‖ξ‖22)

(
ωL

5
2
√

log(m) + 1
))

≤ O
(√

m(1 + ‖ξ‖22)
)

where the final inequality holds given suffiently small ω. Then, a union bound can be taken over all
t ∈ [n] and l ∈ [L − 1] to yield the desired bound on ‖∇Wl

fW(xt + ξ)‖F with probability at least
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1 − O(nL)e−Ω(m/L) − O(nL)e
−Ω
(
mω

2
3 L

)
= 1 − O(nL)e

−Ω
(
mω

2
3 L

)
. From here, we translate this result

to a bound on ‖∇Wl
L(t,ξ)(W)‖F as follows∥∥∇Wl

L(t,ξ)(W)
∥∥
F

= ‖`′ (yt · fW(xt + ξ)) · yt · ∇Wl
fW(xt + ξ)‖F

= |`′ (yt · fW(xt + ξ)) · yt| · ‖∇Wl
fW(xt + ξ)‖F

≤ O
(√

m(1 + ‖ξ‖22)
)

where the final inequality is derived by noticing that |`′ (yt · fW(xt + ξ)) · yt| ≤ 1 and invoking the bound
on ‖∇Wl

fW(xt + ξ)‖F derived above. Thus, we have arrived at the desired result.
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