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Abstract

We present the multimodal Materials and Chemistry Benchmark (MACBENCH),
a benchmark for evaluating multimodal capabilities of AI models in chemistry
and materials science tasks. This benchmark addresses the lack of comprehen-
sive, domain-specific evaluation tools for multimodal AI in scientific contexts.
MACBENCH encompasses tasks across three key areas: fundamental scientific
understanding, data extraction from visual information, and practical laboratory
knowledge, totaling 628 questions. It includes diverse visual inputs such as lab-
oratory images, band structures, crystal structures, and atomic force microscopy
images paired with multiple-choice questions. We evaluate state-of-the-art multi-
modal AI models (GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro) on MACBENCH,
revealing significant performance variations across tasks and skills. While models
excel at basic pattern recognition and information retrieval, they struggle with
complex reasoning and applying scientific principles to novel situations. Notably,
we observe a disconnect between object recognition and contextual understanding
in laboratory safety scenarios. MACBENCH provides crucial insights into the
capabilities and limitations of multimodal AI in chemistry and materials science,
serving as a valuable tool for guiding the development of more capable AI systems
for scientific research.
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Figure 1: Overview of MACBENCH. We introduce MACBENCH, a benchmark for materials science
and chemistry. We manually and semi-automatically gathered data and curated questions in different
categories, using a format similar to the BigBench library. With this corpus, we developed an engine
to automatically evaluate models, and used it to assess frontier VLMs.

1 Introduction

The ability of large language models (LLMs) to assimilate large-scale information, ground them
into a given context, and apply numerical computations to make real-time decisions has made them
an essential tool in accelerating science and engineering. In materials science and chemistry, these
models have shown promise in various applications, including property prediction [1–3], inverse
design of materials [4], automating experiments, and data extraction from scientific literature [5–8].
However, much information in scientific literature is spread across multiple modalities, including
text, tables, figures, and even videos, that need to be processed together in the context to make a
meaningful inference. Thus, the inherently multimodal nature of scientific research, particularly
in chemistry and materials science, necessitates developing and evaluating models that seamlessly
integrate textual and visual information.

While LLMs have shown promising performance for materials science and chemistry [9, 10], they are
insufficient for many real-world applications that require the incorporation of visual information such
as plots, figures, and tables [11, 12]. Moreover, the visual modality allows probing for tacit knowledge
[13] of laboratory environments, which is crucial for automating experiments and developing AI-
powered laboratory assistants [14–17]. Importantly, one of the main ways that frontier models are
thought to pose chemical or biosafety risks is by bridging tacit knowledge gaps. This involves filling
the gap left by the scarcity of experts with hands-on laboratory experience [18].

Addressing this key challenge has been the focus of recent research on multimodal LMs (MLMs)[19,
20]. However, standardized benchmarks for chemistry and materials science for these MLMs are
lacking. This gap makes it challenging to assess and develop multimodal models in scientific contexts
and to understand their visual capabilities in these fields.

To address this, we present MACBENCH, a multimodal benchmark for evaluating vision-language
models in chemistry and materials science (Figure 1). It includes various visual inputs: laboratory
images, band structure diagrams, crystal structures, tables, atomic force microscopy images, and
hand-written molecular structures.

Overall, our main contributions are as follows:

1. Multimodal dataset: We introduce MACBENCH, a manually-curated multimodal benchmark
dataset designed explicitly for evaluating vision-language models in chemistry and mate-
rials science, covering three key aspects of scientific research: (i) Fundamental materials
science and chemistry understanding, (ii) Data extraction capabilities from visual scientific
information, and (iii) Practical laboratory and experimentation knowledge.

2. Benchmarking: We evaluate state-of-the-art multimodal AI models on MACBENCH, provid-
ing insights into their strengths and limitations in scientific contexts.

The rest of this paper is organized as follows. Section 2 discusses related work in multimodal AI
and scientific benchmarks. Section 3 and Section 4 describes the evaluation methodology and the
MACBENCH dataset in detail, respectively. Section 5 presents our experimental results and analysis.
Finally, Section 7 concludes the paper and discusses future directions.
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2 Related Work

Significant progress has been made in developing benchmarks for multimodal machine learning and
scientific reasoning in recent years. However, existing work falls short of addressing the specific
needs of materials science and chemistry, particularly in capturing tacit knowledge and laboratory
skills.

2.1 Multimodal Benchmarks in Science

Several benchmarks have been developed to evaluate multimodal models in scientific contexts.
LabBench [21] includes FigQA and TableQA tasks, focusing on interpreting scientific figures and
tables without additional context. ScienceQA [22] covers elementary to high school topics across
20 subjects in natural, social, and language sciences, while SciBench [23] focuses on college-level
physics, chemistry, and math, including a subset of multimodal problems.

More comprehensive benchmarks have also emerged. MMMU [24] covers college-level exams and
textbooks across 25 subjects in various scientific disciplines, and MMSci [25] uses PhD-level content
from Nature Communications, covering 72 subjects primarily in natural sciences, health, and social
sciences. OlympiadBench [26] provides challenging, diverse multimodal scientific problems at an
Olympiad level, while SciFIBench [27] focuses on scientific figure interpretation in computer science.

Specialized benchmarks like MathVista [28] integrate multiple datasets for mathematical reasoning
in visual contexts, and DesignQA [29] evaluates engineering documentation understanding. While
these benchmarks cover various aspects of scientific reasoning and multimodal understanding, they
do not specifically address the unique challenges in materials science and chemistry, particularly in
terms of tacit knowledge and laboratory skills.

2.2 Materials Science and Chemistry Benchmarks

Several benchmarks have been explicitly developed for materials science and chemistry but primarily
focus on text-based tasks or property prediction. ChemBench [30] provides thousands of text-
based question-answer pairs covering various chemistry topics, while MaScQA [31] tests materials
science knowledge through challenging questions. ChemistryQA [32] focuses on real-world chemical
calculation questions, and MatSci-NLP [33] encompasses seven different NLP tasks specific to
materials science.

In the realm of property prediction, benchmarks such as MoleculeNet [34], Therapeutics Data
Commons (TDC) [35], Matbench [36], and MatText [3] focus on molecular and materials property
prediction tasks. While these benchmarks are valuable for evaluating certain aspects of machine
learning models in materials science and chemistry, they do not address the multimodal nature of
scientific research in these fields nor capture the tacit knowledge and laboratory skills crucial for
practical applications.

2.3 Limitations of Existing Benchmarks

While valuable, existing benchmarks have several limitations when evaluating machine learning
models for materials science and chemistry. They lack a focused approach to materials science
reasoning in multimodal contexts and provide insufficient coverage of tacit knowledge and laboratory
skills. Moreover, there is limited integration of diverse visual inputs specific to materials science and
chemistry, such as band structures, AFM images, and hand-written molecular structures. Notably
absent are tasks that simulate real-world laboratory scenarios and safety considerations, which are
crucial for practical applications in these fields.

MACBENCH addresses these limitations by providing a comprehensive, multimodal benchmark
specifically designed for materials science and chemistry. It incorporates diverse visual inputs and
assesses fundamental understanding, data extraction capabilities, and practical laboratory knowledge.
By leveraging the ChemBench engine for running the benchmarks, MACBENCH ensures compatibility
with existing evaluation frameworks while extending their capabilities to multimodal scientific
evaluations.
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3 Methods

3.1 Dataset

To create the MACBENCH corpus, we used the BigBench-inspired format from the ChemBench
framework [37]. Using a templating syntax, we also expanded the framework to easily include other
modalities, like images. To prevent leakage into foundation model training corpora, we ask for
examples from this dataset not to be shared in plain text or images online. We also include the canary
string from Srivastava et al. [37] in our corpus to help training corpora filter out our benchmark.

3.2 Model Evaluation

We used the ChemBench framework to evaluate models and serialize questions. For all models, we
applied default settings and set the inference temperature to zero. To extract answers, we prompted the
model to return them in [ANSWER][\ANSWER] tags. We then used regular expressions for extraction,
with an option for LLM-based parsing not utilized in our examples.

For questions requiring floating-point answers, we employed a regular-expression based parser that
accommodates scientific notation. We applied a tolerance of 1% to determine if a numeric answer is
correct. All the questions were evaluated using three models, namely, GPT-4o, Claude-3.5-Sonnet,
Gemini-1.5-Pro.

4 Benchmark Corpus

Figure 2 displays our benchmarking corpus. It outlines the topics and the difficulty levels of the
questions, which were assigned through manual labeling. We show examples of questions in different
categories in Figure 3.
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Figure 2: Distribution of chemistry-related topics across different required skills. The x-axis
shows four categories of required skills: knowledge, reasoning, calculation, and optical character
recognition (OCR). The y-axis represents the number of questions or tasks. Each colored bar
corresponds to a specific chemistry topic, with Crystallography Information Files and Composition
Tables being the most prevalent across skill categories.

4.1 Fundamental Materials Science Understanding

Electronic Structure We selected 15 materials each from the Materials Project database [38]
representing metallic, indirect, and direct bandgap systems. Using the Materials Project IDs for these
materials, we curated images of their band structures from the Materials Project AWS OpenData. We
then formulated two types of questions: one to determine the presence of a bandgap and the other to
classify the electronic structure as metallic, indirect, or direct bandgap semiconductors. We generated
25 and 24 questions for each type, ensuring a balanced sampling across all categories.
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Lab scenarios
This is a photograph 
from a chemistry lab. 
The apparatus is in 
operation. What is the
safety issue here?

Options:
a) The setup should be 
placed perpendicular 
to the ground
b) There is risk of the 
apparatus falling down
c) The round bottom 
flask is not touching 
the oil bath
d) Everything is correct, 
no safety risk

Lab scenario comparisons

The chemist wants to separate two liquids with 
a separation funnel. Which is image, A or B, 
shows the correct protocol?

Glassware identification
In this photograph, 
what do you see?

Options:
a) Funnel
b) Separatory Funnel
c) Chromatography Column
d) Burette

Handdrawn molecules
What is the SMILES of this molecule?
a) C[Al](C)NC1=NC=CS1
b) C(F)(F)(F)S(=O)NP(=S)(N)N
c) C\1=C/C(=N\Br)/C(=C/C1=N/Br)Cl
d) C/C(=C\C(C(C#C)[Si](C)(C)C(C)
(C)C)(O)[Si](C)(C)C)/C#C

Band structures
What is the 
characteristic of 
the electronic 
structure in 
the image?

a) metallic 
b) direct gap
c) indirect gap

Reasoning about crystal structures

What is the crystal
system of this 
crystal structure?

a) monoclinic
b) orthorhombic
c) tetragonal
d) hexagonal
e) rhombohedral
f) cubic

AFM images

How many gold
nanoislands 
can be 
observed in 
the image? 
Consider only 
those with a 
positive 
height as gold
nanoislands.

Table understanding
Does this table contain 
any material 
composition?

Do all the material 
compositions present 
in the table add up? 

Figure 3: Samples of questions in the different categories of MACBENCH. Note that each category
contains multiple question types but that we typically only show one sample in this figure.

Crystal Structures Crystalline materials are defined by their unit cells. Fundamental properties
like density, elastic modulus, and thermal expansion depend on the crystal structure. To examine
how well MLMs interpret crystal structures, we built questions around reasoning based on crystal
structure renderings. We use crystallographic information files (CIF) from the American Mineralogist
Crystal Structure Database (AMCSD) [39]. To ensure diversity, we select binary, ternary, quaternary,
quinary, and decanary, each with diverse space groups.

We generated 170 question-answer pairs for 34 crystal structures. The questions evaluate how well
MLMs understand crystal structures and their unit cells. We assess models on tasks of varying
complexity, including OCR (lattice parameters are also shown along with the crystal structure),
counting ability to identify the number of atoms in a crystal, knowledge of the crystal systems, and
advanced reasoning.

5



4.2 Practical Laboratory and Experimentation

Novel Corpus of Chemistry Lab Images We staged various scenarios in a university chemistry
lab to build our corpus about practical laboratory settings. In this initial version of MACBENCH, we
focused on safety problems frequently observed in university lab courses and research labs.

We created two types of questions based on the images. The first set includes 38 multiple-choice
questions about safety protocol violations, and the second set contains 17 questions. These questions
present images and ask respondents to select the one that correctly shows a specific process.

Chemical Lab Equipment We used the LabPics image dataset by Eppel et al. [40] to create
multiple-choice questions about the types of chemical glassware (Pipette, Test Tube, Beaker, Round
Flask, Cylindrical Beaker, Separatory Funnel, Funnel, Burette, Chromatography Column, Condenser)
shown in an image. The model was given 3 other randomly sampled glassware apart from the correct
answer as options. 25 images were randomly selected for this task.

AFM Images MLMs might have a significant role in experimental planning and analysis. We utilize
atomic force microscopy (AFM) images and manually developed questions based on them. These
images are created in-house to prevent data leakage. Additionally, the AFM images are processed
with a scale bar to provide information on length scale and image size. A set of 50 curated questions
were used to assess the capability of MLMs to comprehend AFM images.

4.3 Data Extraction Capabilities

A subset of our questions focused on data extraction capabilities in settings relevant to materials
science and chemistry.

Material Tables Tables are commonly used to present information about the compositions and
properties of materials [41]. Understanding these tables can greatly benefit the use of MLMs in the
materials domain. To test this understanding, we gathered 120 tables that included both composition
and property information. These tables were formatted in various ways, such as compositions written
in one cell, multiple cells, or as an equation with a variable like SixGe1 – x. We manually selected
questions to assess the table understanding and materials knowledge of MLMs.

Molecule Recognition To excel in chemistry, one must be able to comprehend molecular drawings.
Therefore, we designed 29 multiple-choice questions that require selecting the correct SMILES string
for a hand-drawn 2D molecule. These drawings were taken from the DECIMER dataset [42], and the
SMILES options were randomly selected from our subset of images.

5 Model Evaluation Results

Our evaluation of MLMs on the MACBENCH benchmark reveals striking performance variations
across different categories (Figure 4). GPT-4o, Gemini-1.5-Pro, and Claude-3.5-Sonnet each excel in
at least one area, but Claude-3.5-Sonnet leads in most categories.

Claude-3.5-Sonnet shines in questions requiring scientific understanding, particularly in the crystal
structure, AFM image analysis, and electronic structure categories. Gemini-1.5-Pro lags in these
areas, suggesting a gap in scientific reasoning.

The models perform best at simple tasks like identifying lab glassware, identifying handwritten
molecules, or extracting basic data (Figure 5). Here, they approach perfection. However, they stumble
on real-world lab scenarios, raising doubts about their readiness for use as assistants in real-world
scenarios.

All models struggle with questions demanding calculation or scientific reasoning (Figure 8). They
can recognize and recall but often fail to apply scientific principles or deduce logically.

It is interesting to observe the trade-off between precision and recall. Gemini-1.5-Pro, on average,
adds 0.53 additional (incorrect) options when answering MCQ questions, compared to 0.37 for
Claude-3.5-Sonnet (Table 1). Overall, Gemini-1.5-Pro and GPT-4o tend to have a recall slightly
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Figure 4: Performance of MLMs on different categories of questions in MACBENCH. The
chart shows the performance of MLMs in different categories based on the fraction of questions
they answered completely correctly. It is observable that the performance varies widely between
categories, with Claude-3.5-Sonnet often being the top-performing model.

higher than precision, meaning they capture more relevant classes but at the cost of introducing more
errors.

5.1 Common Error Modes

For 233 out of 628 questions, all three models failed to provide a correct answer. A significant
portion of these occurred in questions related to reasoning about crystal structures (81) and extracting
information from tables (96). However, many other questions requiring basic reasoning also seem to
trip up the models. Anecdotally, on the two questions when no safety protocols were violated, all
three models consistently failed to vote “everything is correct.”

A striking disconnect emerges between object recognition and contextual understanding in laboratory
scenarios. While models excel at identifying individual lab equipment, they struggle to grasp the
broader implications of complex setups. This limitation is particularly evident in safety assessments,
where models often miss subtle yet critical issues that human experts would readily identify. For
instance, the models failed to recognize potential hazards in scenarios involving improperly positioned
equipment, such as clamped setups not kept perpendicular or separation funnels placed at unusual
heights. This suggests a gap between the models’ ability to process visual information and their
capacity to apply domain-specific knowledge in practical contexts.

Quantitative analysis and scale interpretation prove to be significant challenges across various tasks.
In AFM image analysis, all models surprisingly frequently failed to accurately estimate widths from
image legends. This difficulty extends to other quantitative tasks, such as counting specific features
in images (e.g., islands or grid lines).
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Figure 5: Performance of models as a function of the required skill. One question might be
assigned to multiple required skills. Skills have been manually assigned. Models perform well
based on questions requiring text recognition but struggle with questions involving calculations or
reasoning.

Perhaps most surprisingly, the models exhibit unexpected difficulties in areas considered foundational
in materials science and chemistry. A notable example is their frequent misclassification of electronic
band structures, particularly their tendency to erroneously identify band gaps in metallic systems.
This error is especially concerning given that distinguishing between metals, semiconductors, and
insulators based on band structure is a basic skill for chemists and materials scientists. Such
misconceptions suggest that despite their broad knowledge base, these AI models may lack a deep,
principled understanding of core scientific concepts (when displayed in visual form that might not
occur frequently in the training corpus).

The performance gaps are mainly seen in tasks that involve multi-step reasoning, combining domain
knowledge with visual interpretation, and applying scientific principles to new situations. The models’
performance decreases significantly when tasks require more complex cognitive processes beyond
simple recognition or recall.

6 Discussion

Our evaluation of MLMs on MACBENCH reveals both promising capabilities and significant limita-
tions in their application to chemistry- and materials-science-related tasks.

Claude-3.5-Sonnet’s superior performance, especially in tasks requiring deeper scientific under-
standing, suggests that some models may be developing a more robust grasp of scientific concepts.
However, even the best-performing model falls short in many areas, indicating that current MLMs
are not yet ready for unsupervised use in real-world chemistry and materials science settings.

6.1 Limitations

While our benchmark provides valuable insights, it has several limitations:

• Limited evaluations of models and agents: We currently only evaluated a limited number
of proprietary MLMs. We focused on those because they present the leading edge, but one
might expect different performances of models fine-tuned for scientific figure understanding.
Similarly, we would expect better performance if the models were given access to specialized
tools.
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• Dealing with uncertainty: In our current settings, models did not have the option to decline
an answer. While we have done this to measure the performance across a wide variety with
low variance, it is also relevant to understand how models would perform only on the subset
of questions on which they are certain [21].

• Limited number of question types: At the moment, MACBENCH only supports multiple-
choice questions and questions with numeric output.

• Human baseline: We did not include a human expert baseline for comparison, which could
provide additional context for interpreting model performance.

• Prompting: Evaluations of language models are often affected by prompting. We do
not claim that our prompting strategies are the best, but we offer our entire pipeline for
reproducibility.

7 Conclusions

MACBENCH is a significant step towards evaluating the capabilities of multimodal language models
in chemistry and materials science. Our benchmark reveals both promising advancements and critical
limitations in current state-of-the-art models.

The results show that while MLMs excel in identifying lab equipment and extracting basic data, they
struggle with tasks that require deeper scientific understanding, complex reasoning, and practical
application of knowledge.

Our findings highlight the need for further development in AI systems to bridge the gap between
broad knowledge acquisition and the nuanced, context-aware reasoning characteristic of human
expertise in scientific domains.

Moving forward, it is crucial to address the limitations identified in current models, particularly in
their ability to integrate visual information with domain-specific knowledge and perform quantitative
analysis. MACBENCH sets a new standard for evaluating MLMs in chemistry and materials science,
paving the way for more capable and reliable AI assistants in scientific research and education.
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A Appendix
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Figure 6: Overall model performance on MACBENCH. We compute the overall performance
by measuring the fraction of questions answered completely correctly. Claude-3.5-Sonnet is the
best-performing model, overall, followed by GPT-4o, with the worst model in our study being
Gemini-1.5-Pro.

Table 1: Model performance comparison on multiple choice questions. Claude-3.5-Sonnet
performs best overall, with the lowest extra classes, hamming distance, and highest rate of completely
correct predictions. Gemini-1.5-Pro tends to hallucinate the most extra responses in MCQ questions.
It is important to note that the standard deviations (std) are relatively high compared to the means,
indicating significant variability in performance across different instances. The standard error of
the mean (sem) values are generally low, suggesting that the sample means are reasonably precise
estimates of the true population means.

number of extra classes number of missed classes Hamming loss frac. completely correct

Model mean std sem mean std sem mean std sem mean std sem

Claude-3.5-Sonnet 0.37 0.50 0.03 0.39 0.54 0.03 0.70 0.94 0.05 0.52 0.50 0.02
GPT-4o 0.47 0.57 0.03 0.42 0.52 0.03 0.86 0.99 0.05 0.39 0.49 0.02
Gemini-1.5-Pro 0.53 0.68 0.04 0.40 0.50 0.03 0.88 1.04 0.06 0.37 0.48 0.02
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Figure 7: Heatmap of model performance for different question categories. The colors and the
numbers in the cells indicate the fraction of questions that have been answered completely correctly.

0.0 0.2 0.4
fraction of completely correct answers

Scientific Understanding

Practical Laboratory &
 Experimentation Knowledge

Data Extraction Capabilities

Models
GPT-4o
Gemini-1.5-Pro
Claude-3.5-Sonnet

Figure 8: MLM performance for question superclasses in MACBENCH. We observe that models
perform well for data extraction tasks but struggle with tasks requiring scientific understanding or
reasoning scenarios in a chemistry lab.
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