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ABSTRACT

Continual learning (CL) is characterized by learning sequentially arriving tasks
and behaving as if they were observed simultaneously. In order to prevent catas-
trophic forgetting of old tasks when learning new tasks, representative CL meth-
ods usually employ additional loss terms to balance their contributions (e.g., reg-
ularization and replay), modulated by deterministic hyperparameters. However,
this strategy struggles to accommodate real-time changes in data distributions and
is also lack of robustness to subsequent unseen tasks, especially in online sce-
narios where CL is performed with a one-pass data stream. Inspired by adap-
tive weighting in multi-task learning, we propose an innovative approach named
Learning UNCertain Hyperparameters (LUNCH) for adaptive balancing of task
contributions in CL. Specifically, we formulate each CL-relevant hyperparame-
ter as a function of optimizable uncertainty under homoscedastic assumption and
ensure its training stability through the exponential moving average of network
parameters. We further devise an evaluation protocol that moderately adjusts the
hyperparameter values and reports their impact on performance, so as to analyze
the sensitivity of these sub-optimal values in realistic applications. We perform
extensive experiments to demonstrate the effectiveness and robustness of our ap-
proach, which significantly improves online CL in a plug-in manner (e.g., up to
11.26% and 5.64% on Split CIFAR-100 and Split Mini-ImageNet, respectively)
as well as offline CL[T]

1 INTRODUCTION

The ability of continual learning (CL) is critical for artificial intelligence systems to accommodate
real-world changes, yet limited by catastrophic forgetting of old tasks when learning new tasks
(Wang et al.| [2024a; McClelland et al.||{1995). In order to strike an appropriate balance between task
contributions within the same parameter space, representative CL. methods often employ additional
loss terms to preserve previously learned knowledge, such as regularization of parameter changes
(Kirkpatrick et al.l[2017; |Zenke et al., 2017) and replay of a few old training samples (Buzzega et al.,
2020; Rebuffi et al., [2017). In general, the strength of these loss terms is regulated by deterministic
hyperparameters obtained from a grid search (Chaudhry et al.,|2018; Wang et al.,2023a). However,
this strategy is sub-optimal in performance as it struggles to adapt to real-time changes of data
distributions within the observed task sequence, and is also lacking robustness to subsequent unseen
tasks. These critical challenges tend to be more significant in online CL where each task is learned
from a one-pass data stream (Fini et al., [2020; |[Zhang et al., [2022)).

In this regard, we analyze in depth the role of CL-relevant hyperparameters in balancing task con-
tributions. We first formulate representative CL methods with a shared mathematical form of the
loss function. Besides a loss term for learning the current task, the loss function typically involves
additional loss terms that preserve previously learned knowledge in terms of the parameter space
and the output space with corresponding hyperparameters. These loss terms amount to approxi-
mate multi-task learning (MTL) for all tasks ever seen, i.e., the upper bound of CL, while largely
avoiding the use of old training samples. In MTL, adaptive weighting of task contributions in hy-
perparameters has been shown to be an effective strategy compared to fixed weighting (i.e., using
deterministic hyperparameters) (Kendall et al.l [2018; |Liu et al., 2019} 2022} |[Lin et al.| [2021)), but

'Our code is included in Supplementary Materials for examination and will be released upon acceptance.
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remains under-explored and highly non-trivial for CL due to the dynamic and unpredictable nature
of data distribution.

Based on the above analysis, we present Learnable UNCertain Hyperparameters (LUNCH), an inno-
vative approach that enables adaptive balancing of task contributions in CL. Specifically, we formu-
late each CL-relevant hyperparameter as a function of optimizable uncertainty, which is initialized
high and then decreases during the learning of changes in data distributions. Under the homoscedas-
tic uncertainty assumption, we derive probabilistic implementations for the loss terms of the param-
eter space and output space, corresponding to regression and classification problems, respectively.
Whenever a new task is introduced, the uncertain hyperparameters need to be refreshed to re-balance
the contributions, resulting in a performance degradation known as the “stability gap” (De Lange
et al., 2022). In this regard, we perform exponential moving average of network parameters along
the training trajectory, so as to stabilize training upon reinitialization.

We perform extensive experiments to evaluate our approach. Beyond the widely-used average accu-
racy for overall performance, we consider two additional evaluation metrics including the average
anytime accuracy and the worst-case accuracy for real-time changes in data distributions. We further
evaluate the sensitivity of sub-optimal hyperparameter values through analyzing their impact under
moderate adjustments. Our approach demonstrates outstanding performance with significant im-
provements in effectiveness and robustness across various online CL benchmarks, benefiting recent
strong baselines in a plug-in manner (e.g., up to 11.26% and 5.64% on Split CIFAR-100 and Split
Mini-ImageNet, respectively) and also remarkably facilitate offline CL.

Our contributions can be summarized as follows: (1) We perform an in-depth analysis of CL-relevant
hyperparameters under a unified framework of representative CL methods and task balancing strate-
gies in MTL; (2) We propose an innovative approach that incorporates optimizable uncertainty into
CL-relevant hyperparameters for adaptive balancing of task contributions, coupled with exponential
moving average of network parameters to address the stability gap; and (3) Our approach signifi-
cantly improves the effectiveness and robustness of CL, validated by extensive experiments.

2 RELATED WORK

Continual Learning (CL), also known as incremental learning or lifelong learning, aims to over-
come catastrophic forgetting of old tasks when learning new tasks (Wang et al., [2024a; [ McClelland
et al.l|1995). Numerous efforts have been devoted into addressing this challenging issue. A majority
of representative methods attempt to strike an appropriate balance between task contributions within
the same parameter space. For example, regularization-based methods employ explicit regulariza-
tion terms to stabilize network parameters and simulate behaviors of the old model (Kirkpatrick
et al., 2017} Buzzega et al.| 2020; |L1 & Hoiem, 2017). Meanwhile, replay-based methods approx-
imate and recover the old data distributions through preserving a small memory buffer or learning
a generative model (Buzzega et al., 2020; |Shin et al., 2017} |Aljundi et al., 2019). Other methods
that optimize network parameters in different parameter spaces are often collectively referred to as
architecture-based methods (Serra et al.,2018};|Kang et al.|[2022; Rusu et al., |2016), which explicitly
avoid the problem of balancing task contributions. However, this kind of method typically requires
the oracle of task identity at test time in order to select an appropriate parameter space, and is there-
fore not prioritized in this work. Based on the availability of training samples, the widely-used CL
setups can be categorized into online CL and offline CL (detailed in Section [3.1)), with the former
being considered realistic yet much more challenging.

Hyperparameter of CL. For representative CL methods, an appropriate management of hyper-
parameters (e.g., learning rates, regularization strengths, memory buffer sizes, etc.) is critical for
achieving outstanding performance across tasks. A primary consideration is task balancing, which
ensures that the model maintains performance on old tasks while learning new ones (Cha & Cho,
2024 |Yildirim et al., 2023). As the upper bound of CL, multi-task learning (MTL) attempts to
address this problem through various weighting strategies: fixed weighting assigns constant impor-
tance to each task, while adaptive weighting adjusts the importance based on task difficulty or model
performance (Kendall et al.,| 2018} |Liu et al.;, 2019; 2022; |Lin et al.,2021). Despite the effectiveness
in MTL, adaptive weighting of CL-relevant hyperparameters is remarkably challenging due to the
dynamic and unpredictable nature of data distribution, and therefore remains largely under-explored
in literature.
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3 PRELIMINARIES

In this section, we first describe the problem formulation of CL with a unified framework of rep-
resentative methods. We then analyze the selection of hyperparameter(s) in CL on the basis of the
inherent connections between CL and MTL.

3.1 PROBLEM FORMULATION

Let us consider a sequence of tasks defined by a collection of respective training sets S =
{D1,--- ,Dr}, where D; for each task ¢ consists of several data-label pairs (¢, y;) with x; € X}

and y; € );. The goal of CL is to learn a mapping fy : Uthl X — Uthl Y, parameterized by
trainable parameters 6 with sequentially arriving D, so as to achieve superior performance on all
observed tasks (Wang et al., [2024a)). Since previous training samples are often unavailable at the
current training stage, it remains extremely challenging to strike an appropriate balance between old
and new tasks, resulting in catastrophic forgetting (i.e., fo abruptly and dramatically forget previ-
ously learned knowledge upon new information). Regarding specific setups, training samples for
each task can be reused for multiple epochs in offline CL, but arrive as a one-pass data stream in
online CL, which greatly adds to the challenge.

To alleviate catastrophic forgetting when optimizing 6 within the same parameter space, many repre-
sentative methods have been proposed for CL. These methods can be classified into regularization-
based methods, which incorporate additional regularization term(s) to stabilize knowledge of the
parameter space and the output space (Kirkpatrick et al. |2017; [Li & Hoiem, 2017), as well as
replay-based methods (Aljundi et al., 2019; Zhang et al., [2022), which preserve some old train-
ing samples with a small memory buffer. In particular, replay is often coupled with regularization
(Buzzega et al.| [2020; Rebutffi et al., 2017) to encourage the current model fy to mimic the behaviors
of the old model fy. with parameters 8* when processing old training samples.

Following a recent work (Wang et al., 2024b)), these two kinds of methods can be described as shared
mathematical forms under a unified framework:

£CL :)\n‘cn(xay) +)\O»CO (fg(l'),Z) +/\P ‘Cp (9,9*) ) (1)
—— ~———— —_———
new task output space parameter space

where L,, denotes the loss function for learning each new task. L, and £, restrict update rates
in output space and parameter space, respectively. The example definitions of £, and £, will be
described latter in Table [T} It can be seen that the contributions of new and old tasks are explicitly
regulated by the hyperparameters { Ay, Ao, Ap}.

3.2 HYPERPARAMETERS IN CONTINUAL LEARNING

With Eq. (I, we further analyze the selection of hyperparameters in representative CL methods.
Similar to regular machine learning methods, the optimal hyperparameter values for CL are usu-
ally obtained by repeated iterations of the task sequence S = {D;,--- , Dy}, which can be further
divided into two strategies. One is to run the first several tasks iteratively to determine the hyperpa-
rameter values and use them to learn subsequent tasks (Chaudhry et al.,[2018};[Pham et al.,[2021); the
other is to run the entire task sequence iteratively in different orders to determine the hyperparameter
values and provide a sensitivity analysis of them (Yildirim et al., 2023} |Cha & Chol [2024; |[Van de
Ven et al., |2022). Both strategies assume relatively stable changes in data distribution and employ
deterministic hyperparameters for CL, making it difficult to adapt to real-world scenarios that are
highly dynamic and unpredictable (Semola et al [2024; [Cha & Cho, 2024)). In addition, manually
adjusting these hyperparameters over time is both costly and impractical.

In fact, MTL is often considered to be the upper bound of CL. Both CL and MTL aim to achieve
the same objective, i.e., to find a solution 6 that performs well for all observed tasks, with the main
difference being whether S is provided sequentially or simultaneously. Formally, the objective of
MTL can be defined as follows:

Lyt = Z wi Ly, 2)
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Table 1: Definition of representative CL methods that target the same parameter space. F' is the
Fisher information matrix to approximate the importance of the network parameters. M denotes
the memory buffer consisting of a few old training samples. ., is the augmentation of x. z is the
output logit of the old models in the training trajectory.

Method ‘ Regularization Loss ‘ Replay Loss

EWC (Kirkpatrick et al.|[2017) (0 —0*)TF(0—6%) -

ER (Shin et al.]2017) - Eeepenm(L(z,y))
MIR (Aljundi et al.|2019) - max E(, yenr(L(z,y))
DER (Buzzega et al.|[2020) E(o,pyer (| folx) — 2|13) -

DER-++ (Boschini et al.|[2022) | E, e (|l fo(z) — 2|12) Eo, e (L(2,y))
RAR (Zhang et al.|[2022) - E (a2, M (L(Tang, Y))

where £, corresponds to the loss function for learning each task, and w; denotes the hyperparameter
that regulates the task weight. The loss function of CL in Eq. can be seen as an approximation
of Eq. (), with the use of old training samples largely avoided.

Although many MTL methods also employ deterministic hyperparameters selected from a grid
search, even simplified into an unweighted form w; = wj;, adaptive balancing of task contribu-
tions has proven to be a superior strategy (Kendall et al.||2018; [Liu et al.l 2019;2022)). In particular,
the corresponding {w; } can be modeled as an optimizable function related to the relative confidence
between tasks (Liu et al., | 2019; |[Kendall & Gal, 2017). However, these adaptive weighting strategies
remain under-explored and highly non-trivial for CL, due to the dynamic and unpredictable proper-
ties of data distributions. To this end, we aim to provide an innovative approach to address the above
challenges, as detailed below.

4 LEARNABLE UNCERTAIN HYPERPARAMETERS (LUNCH)

In this section, we design an innovative adaptive weighting strategy for CL that optimizes CL-
relevant hyperparameters according to training progress. We incorporate optimizable uncertainty
into CL-relevant hyperparameters under the unified framework of representative CL methods, and
further rectify the “stability gap” introduced by uncertainty refresh.

We first define the specific forms of several representative CL methods with Eq. (I)), as shown in
Table[I] These methods mainly focus on addressing the problem of catastrophic forgetting by lim-
iting model updates in either parameter space or output space, so as to preserve previously learned
knowledge. For adaptive balancing of task contributions, we propose to incorporate optimizeable
parameters o (called “uncertainty”) into the hyperparameter set {\,,, Ao, A, } in Eq. . From
a Bayesian perspective, such uncertainty can capture the model’s confidence in different types of
tasks and accordingly adjust the CL process to balance new and old tasks (Guo et al., 2011). During
the learning of each task in CL, the confidence in the predictive distribution p(y|z, #) should grad-
ually increase, and corresponding uncertainty o2 should gradually decrease from large to small and
eventually stabilize at a certain value (Kendall & Gal, [2017).

In particular, we observe that the loss terms L, £, and £, correspond to addressing a regres-
sion or classification problem (Bishop & Nasrabadi, 2006). Specifically, the classification problem
predicts discrete labels (e.g., DER employs a cross-entropy loss £, with a small memory buffer),
while the regression problem predicts continuous numerical value (e.g., EWC employs a weighted
squared loss £, to stabilize parameter changes). Here we focus on homoscedastic aleatoric uncer-
tainty (Kendall & Gal,|2017), whose corresponding hyperparameters {\,,, Ao, A, } do not depend on
specific input data, rather stay constant for all inputs and vary only between different tasks.

For regression problems, the predictive distribution can be defined as a Gaussian distribution under
the Laplace approximation (Bishop & Nasrabadi, [2006), finding a Gaussian approximation to a
continuous probability density:

py | folx)) =N (fo(z),0%), 3)

where o2 denotes the homoscedastic aleatoric uncertainty. Due to the space limit, the detailed
derivation can be found in Appendix When using the mean squared error as the loss function
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Figure 1: Demonstration of our approach. and Session 3 shows that the proposed LUNCH

incorporates optimizable uncertainty into CL-relevant hyperparameters, enabling adaptive balancing
of task contributions in both parameter space and output space.
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L for regression problem, the corresponding log-likelihood becomes:
1 2 1 9
—logp(y | fo(z)) o< 55 lly = fo(2)II” + 5 log o™ )

For classification problems, we use a Gibbs distribution to capture the predictive distribution scaled
by the learnable “temperature” o2, which determines the flatness of discrete distribution (i.e., en-
tropy) (Bishop & Nasrabadil [2006):

(] foe)) = Softmx (25 o(a)). ®)

where the o2 determines the degree of entropy divergence in the deterministic discrete distribution.
Then, the corresponding log-likelihood becomes:

g

logp (y = ¢ | fo(x)) = — folx) — log [Z exp (;fg’@))] , ©)
c'=1

where fgl denotes the ¢’-th logit. To simplify the derivation in CL regarding its dynamic and un-

predictable nature, the explicit trick 25 ¢, _; exp (% fs (x)) ~ (ZE,:l exp (% fs (x))) ” be-
comes an equality when o2 — 1, which has been verified in empirically improving the performance.

Due to the space limit, the derivation is detailed in Appendix [A.2] Then, the overall log-likelihood
of the predictive distribution is:

1
—logp(y| fo(z)) = = log Softmax (y, fo(z)) + log o2, 7

Then, we can reformulate each CL-relevant hyperparameter in Eq. as a function \(c2) of ho-
moscedastic aleatoric uncertainty o2 based on the training progress. The overall objective function
2 2

logp (y | w;302,02,02) is defined as follows:

log (p | ,y:00,02,00) = exp (—logoy.) Ln(z,y) +exp (—logo2) Lo (he(x), 2)
—— N ——
new task output space

8
+ exp (— log 012,) L, (0,0%) +loga? +logo? + log 012), ®

parameter space

where L, (z,y), Lo(z,y) and L,(z,y) represent the loss terms for CL. {\,(c2) =
exp (—logoz), Ao(02) = exp (—logo?),Ap(02) = exp (—logoy)} represent aforementioned
uncertain hyperparameters. As uncertainty o> increases, the relative weights of the loss function £
decrease, and vice versa. The additional term log o2 discourages rapid changes in o2, thus stabi-

lizing the norm of relative weights. We also use the exponential mapping trick (Murphyl |2012) to
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Figure 2: CL suffers substantial forgetting as each new task is introduced, followed by a phase of
performance recovery. The experiment is performed with RAR on Split CIFAR-10.

ensure numerical stability, letting fo directly predict the log variance o2 to avoid division by zero.
As shown in Fig. [2] (left), when they gradually learn representative features in a new task, the corre-
sponding uncertainty about the predictive distribution gradually decreases and ultimately stabilizes
at a fixed local optima (Kendall & Gal, 2017).

With significant changes in data distribution over the course of training (e.g., switching from D;_,
to Dy), we need to refresh the uncertain hyperparameters for adaptation (i.e., the uncertainty is re-
raised, and then gradually decreased):

An (0721) =An (O—Z,inil) i Ao (‘73) =X (Jg,mn) i Ap (Uzzz) =X (Jg,init) . )]

This is accompanied by a critical challenge called the “stability gap” (De Lange et al., 2022): fy
suffers substantial forgetting when starting to learn new tasks, followed by a phase of performance
recovery (see Fig. 2] right).

To alleviate the mismatch between the refreshed hyperparameters and the current training progress,
we employ the temporal ensemble (Laine & Aila, [2016) strategy to offset the bias. Specifically, we
collect models along the training trajectory with exponential moving average (EMA), denoted as
foema. For the current model fy parameterized by trainable 6, the EMA at step ¢ is defined as:

ema _ t
pome = DA U= D00 gegema 51— )i, (10)
i=1

1- Bt

where 3 controls the strength of EMA, 3? denotes 3 raised to the power of ¢, and the parameter 6;
is at the ¢-th step in the training trajectory before ¢ step. The temporal ensemble of different models
can enhance the stability of online CL, which has also been observed in a recent study (Soutif-
Cormerais et al., 2023). To stabilize training when refreshing hyperparameters, the EMA strategy
implicitly integrates hyperparameters from different training stages of the old tasks, providing an
adaptive benefit for implementing the optimizable uncertainty.

Finally, we describe the LUNCH training procedure with a pseudo-code in Algorithm[I] The gray
area highlights the key procedure. As can be seen, our approach is easy to implement and compatible
with many representative CL methods, such as ER (Rolnick et al. 2019), DER (Buzzega et al.,
2020), RAR (Zhang et al.,[2022), etc.

5 EXPERIMENTS
In this section, we briefly describe the experimental setups and then analyze the experimental results.

5.1 EXPERIMENTAL SETUPS

Benchmark. Here we consider several benchmarks that are commonly used in the literature of
online CL (Wang et al.,[2023b)). Specifically, CIFAR-10 dataset includes 10 classes of images sized
32 x 32, randomly divided into 5 disjoint tasks with 2 classes each. CIFAR-100 dataset includes
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Algorithm 1 Learnable UNCertain Hyperparameters (LUNCH) for CL

I: Input: Deep model fy with parameters ; uncertainty {0202
{D1,---,Dr}.

2: Inmitialization: 5™ = 0i,;;; & = 1 for online CL; &/ > 1 for offline CL.

3: fortaskt =1,--- ,T do

02,00}, datasets S =

4 if £ = 1 then
5 for epoche=1,--- | E do
6: Update the parameters 6 of fy only with loss £,,
7 end for
8 Save the parameters 6 of fy as 7™
9 else
10: for epoche =1,--- | E do
11: Calculate the unified CL loss by Eq. (8).
12: Update the parameters 6 of fy and the uncertainty {o7.,02, 07
13: Update 6™ by Eq. .
14: end for
15: Refresh the uncertainty {o7,,02, 07} in Eq. (H)
16: end if
17: end for

100 classes of images sized 32 x 32, randomly divided into 20 disjoint tasks with 5 classes each.
Mini-ImageNet dataset includes 100 classes of images sized 84 x 84, randomly split into 20 disjoint
tasks with 5 classes each. The common image resolution for the ImageNet-R dataset is 224 x 224,
randomly divided into 20 disjoint tasks with 10 classes each (Hendrycks et al.| 2021)).

Implementation. We use Empirical Replay (ER) (Rolnick et al. 2019), Dark Experience Re-
play (DER) (Buzzega et al.l [2020) and Repeated Augmented Rehearsal (RAR) (Zhang et al., 2022)
as the main baselines for CL. Following the implementation of RAR (Zhang et al.| [2022), we train a
ResNet-32 backbone with an SGD optimizer of learning rate 0.1 in all experiments. The batch size
is set to 32 for Split CIFAR-10/100, and 64 for both Split Mini-ImageNet and Split ImageNet-R.
The memory buffer is unified to maintain 2000 training samples in total. For offline CL, the number
of epochs is set to 100 that is sufficient for convergence on each task.

Evaluation Metric. We consider multiple evaluation metrics to provide a comprehensive analysis
of CL. We first define the Final Average Accuracy (FAA) to effectively evaluate the overall perfor-
mance after learning the last task Dr. Formally, D; represents the ¢-th task, while fp, denotes the
model parameterized by trainable 6; at the i-th task:

T
FAA = — Z (Di, for). (1)

However, FAA only provides a snapshot of the state after learning all tasks, ignoring performance
during task transitions. To provide a more comprehensive assessment, we therefore consider two
other metrics. One is the Average Anytime Accuracy (AAA), which measures the average perfor-
mance on all observed tasks (De Lange et al., 2022).

T J

11
AAA:T;;;A(Di»Jc@j)- (12)

Another is the Worst-Case Accuracy (WCA), which evaluates the performance of CL methods in
the worst-case scenarios (De Lange et al.2022)). WCA first obtains the average minimum accuracy
called minAcc in previous tasks and then combines it with the performance of current task (i.e., the
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Table 2: Overall performance of online CL. The results
with different random seeds and task orders.

of all methods are averaged over five runs

T

i A 4)
Benchmark Method | FAA(T) WC%Q(T) AAA(T) | FAA(T) WCA(1) AAA(T) [FAA(T) WCA(1) AAA(D)
ER 4351040 38584501  57.12:xa06 | 34.77x801  32.97x647 54981267 | 34.78x322  32.97+223 4326132
w/ Ours | 47.50+058 40.59+496 59.73+338 | 45.64+114  39.24+304 58221368 | 47.644390 39.244287  53.07+365
A1) 3.99 2.01 2.61 10.87 6.27 3.24 12.86 6.27 9.81
DER 36.55+02  36.05+022 35.69:023 | 47.63+481 41.46+815  56.57x0s4 | 15.92+084  15.91+084  30.92:054
Split CIFAR-10 w/ Ours | 39.02+177  38.97+183  42.70+336 ‘ 54984355  45.78+625 58.46+079 | 19.52+142  18.66+130  34.59+207
A1) 2.47 2.92 7.01 7.35 4.32 1.89 3.60 2.75 3.67
RAR 35594281 27.21+436  46.15+240 | 31.974500 24341373 36.67+312 | 33351300 31.69+647  41.46+267
w/ Ours | 41.72+250  32.36+336  52.11+527 ‘ 34.02+284  28.89+128  42.71x215 | 44.04+104  39.244304  53.46+368
A1) 6.13 5.15 5.96 2.05 4.55 6.04 10.69 7.55 12.00
ER 9.99+238 522413 12914251 | 9.66+180  5.27+133 12844174 | 9.66+180 5214133 12.84+174
w/ Ours | 15.33+s563  7.79+360 16.68+573 ‘ 20924320  10.95+210  20.66x218 | 20.90+320 10954210  20.67+2.18
A1) 5.34 2.57 3.77 11.26 5.68 7.82 11.24 5.74 7.83
DER 4.83+0.13 5.83+0.3 7.24+0.8 7.83+0.12 7.13+0.3 7.07+0.8 7.83+0.12 7.33+0.12 9.79+0.18
Split CIFAR-100 w/ Ours | 9.59+043  7.59+043 10.34+048 | 12.59+043  9.59+043 14.44 5047 | 13.59+033 12.59+044 14.34:048
A1) 4.76 1.76 3.10 4.76 2.46 7.37 5.76 5.26 4.55
RAR 4.46+042 3.34+03s 9.49+1m 8.42+238 4.82+115 10.49+148 | 7.69+0.16 7.97+01 7.51+105
w/ Ours | 6.01+010  5.83+017 11.29+067 | 15.54+410 7.82+178 15714313 | 1427+0n 11.32+012  13.51+104
A1) 1.55 2.49 1.80 7.12 3.00 522 6.58 3.35 6.00
ER 2.13x004  3.11x093  8.71xin 2.75+03  2.63z023  8.63x066 | 2.91x026  2.76x026  6.78+156
w/ Ours | 5.83+0.3 5.78+0.12 10.61+119 | 7.01+016 6.18+0.16 11.38+033 | 7.21+092 5.97+0s6 11.37+136
A(T) 3.70 2.67 1.90 4.26 3.55 275 4.30 3.21 4.59
DER 342131 2.53x0n 421+060 | 2.02x048  3.13x04s  4.84x020 | 3.77x030  3.26x037  4.28z07
Split Mini-ImageNet | w/ Ours | 6.58=071 5.55+073  9.73x00: ‘ 7.66x077  6.74x077 8.19+000 6.42+018  6.12z0m 7.05+037
A1) 3.16 3.02 5.52 5.64 3.61 3.35 2.65 2.86 2.78
RAR 3.68+022 3481019  8.29:i10:2 2251046 2991045  6.50+0s6 3291097 3.15+089  7.64+1101
w/ Ours | 6.82+048 7.31+0n 11.68+108 | 7.67+0.14 6.47+0.13 9.71+069 6.97+1.18 6.48+1.17 10.53+070
A1) 3.14 3.83 3.39 5.42 3.48 321 3.68 3.33 2.89
minimum accuracy retained after learning the current task):
t—1
. 1 .
minAcc;, = —— min Acc (Di, fo. ) ,
t—1~i<j<t !
i=1 ( 13)
1 1 .
WCA = T Acc(Dr, fo,) + |1 — T minAccr .

Evaluation Protocol. To evaluate the practical performance of each method, we devise a novel
evaluation protocol that reflects the impact of sub-optimal hyperparameter values. Specifically, we
evaluate CL models across different hyperparameter scales, i.e., {%)\, A, kAL k > 1, where A rep-
resents the optimal hyperparameter values obtained from a grid search, and k is a scale factor. By
varying the scale of A, we are able to examine whether the CL model generalizes well beyond the
desired conditions of hyperparameters. In practice, we set k = 4 for {%)\, A, kA}, which usually
provides a sufficient and meaningful range for examination.

5.2 EXPERIMENTAL RESULTS

Overall Performance. Table 2] shows the overall performance of online CL, where A represents
the optimal value of each hyperparameter obtained from a search on the grid. It is evident that the
improvement in FAA is consistently significant (e.g., ER is improved by {5.34%, 11.26%, 11.24%}
on Split CIFAR-100), indicating the remarkable benefit of LUNCH plugin through adaptive task
weighting. It also shows significant improvements in AAA and WCA (e.g., RAR is improved by
{5.52%, 3.35%,2.78%} in AAA on Split Mini-ImageNet and by {5.15%,4.55%, 7.55%} in WCA
on Split CIFAR-10), suggesting that LUNCH improves the performance of deep models across the
training trajectory and in worst-case scenarios. Additionally, each CL method shows considerable
variation with different hyperparameters initializations, thus the results from our protocol can be
considered as the expected performance of each CL method when applied in real-world scenarios to
comprehensively evaluate the generalizability of CL methods.

Additionally, LUNCH significantly improves the performance of the baseline CL methods on differ-
ent scale benchmarks. Fig. [3|shows the average results and standard deviations of five runs on Split
CIFAR-100 and Split ImageNet-R. RAR w/ Ours consistently outperforms the original RAR in terms
of AAA in a series of continual learning tasks. Due to the page limit, additional empirical results in
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Figure 3: Performance curves of AAA on benchmark of different scales.

Table 3: Overall performance of offline CL with FAA as the evaluation metric. The results of all
methods are averaged over five runs with different random seeds and task orders.

Dataset ER ER w/Ours A(?1) | DER DER w/Ours  A(1) | RAR RAR w/Ours A1
Split CIFAR-10 | 65.26+048  69.49+099 423 | 71.53+049 T74.15+038 2.62 | 73.52+065 77.12+059 3.60
Split CIFAR-100 | 45.14+065 48.21+073 3.07 | 57.85+057 61.07+043 322 | 60.64+100  63.61+095 2.97

WCA and FAA are provided in Appendix and these empirical results are consistent with those
in AAA.

On the other hand, Table (3| shows the mean and standard deviation of five runs after applying our
approach to all baselines (e.g., up to ~ 4% in FAA) in the offline scenarios. From Table 2| and Ta-
ble 3] we observe that RAR w/ Ours often achieves superior performance gains compared to other
baselines, mainly because it effectively utilizes advanced data augmentation to capture useful visual
information (Zhang et al.| |2022). Therefore, we will use RAR as the primary baseline for further
analysis in the sequel.

Ablation Study We conduct an ab-
lation study to demonstrate the ef-

. . Table 4: Ablation study of LUNCH with RAR as baseline.
fectiveness of each component, in-

cluding the uncertain hyperparam- Dataset Metric | RAR w/EMA w/Unc w/Ours

d the temporal ensemblin FAA | 4207 4679 4925  55.28
eters and the p ng Split CIFAR-10 | WCA | 37.41  37.81 4581  49.97
strategy EMA. We compared several AAA | 5823 6005 5923  61.06
variants to analyze their individual FAA | 0.19 943 933 11.77

contributions. As shown in Table Split CIFAR-100 \Zgﬁ 15i2718 152'9337 152'5157 1743798

RAR w/ Unc introduces optimizable FAA [ 321 174 143 T4
uncertainty into CL-relevant hyper-  Split Mini-ImageNet | WCA | 326  3.32 4.69 712
parameters without temporal ensem- AAA | 1062 1162 1299  16.12

bling, RAR w/ EMA only incorporates

the temporal ensembling strategy with deterministic hyperparameters, and RAR w/ Ours represents
the full version of LUNCH that leverages both components. It is obvious that both the learnable
uncertain hyperparameters and the temporal ensembling strategy contribute to CL, and removing
either results in performance degradation.

Table 5: Impact of sub-optimal hyperparameter values in terms of batch size, learning rate decay and
weight decay. We report FAA averaged over five runs with different random seeds and task orders.

Dataset ER ER w/Ours  A(1) DER DER w/ Ours ~ A(1) RAR RAR w/ Ours  A(?)
Split CIFAR-10 | 23.11+121  27.38+113 427 | 24.11+137 29.84+034 5.73 | 33.11+196 38.49+204 5.38
Split CIFAR-100 | 8.74+1.00 14.99+1.41 3.25 | 1031+1n 13.42+049 3.11 11.47+073 15214112 3.74

Additionally, we evaluate the computational costs of different methods integrating LUNCH (i.e.,
w/ Ours) or not (i.e., w/o Ours). As shown in Fig. 4] it is evident that there is minimal difference in
time between the w/o Ours and w/ Ours cases. Our method enhances performance without signif-
icantly increasing the extra computational costs, thus making it practical for CL applications with
limited computational resources.
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Sensitivity Analysis. We further extend our evalua-
tion protocol to verify the effectiveness of LUNCH
in improving the robustness of other hyperparame-
ters, such as the learning rate decay, batch size, and
weight decay. These hyperparameters are also rel-
evant to CL yet in an implicit manner (Mirzadeh E 1000

et al., 2020; |(Cha & Chol [2024). For ease of imple-
mentation, we randomly sample a set of sub-optimal 500
hyperparameters from predefined values (i.e., mod-

ER

erate!y rescaling optimal hyper.parameters in Ap- 0 CER BAR
pendix [B.2), and average multiple runs to evalu- Methods

ate the practical performance of each method, thus ) )
avoiding overestimation of CL capabilities in prac- Figure 4: Comparison of extra computational
tical use. As shown in Table [5} we observe that our time with and without LUNCH (Ours).
approach achieves better performance compared to

the corresponding baselines, and in particular the improvement of RAR is more significant. Aligning
with the results of previous analysis, LUNCH can significantly alleviate hyperparameter sensitivity,
especially with more advanced methods.

Z= w/ o Ours T
2000 | BN w/ Ours 7—

1500

Time (s)

Of note, the above results pose the particular challenge of hyperparameter sensitivity in CL. A
majority of CL methods are developed with the “optimal” hyperparameter values obtained from a
grid search, and thus may fail to produce desirable results based on such hyperparameter values when
there exist large changes in data distribution. In contrast, our protocol of evaluating hyperparameter
sensitivity can faithfully reflect this issue, and the proposed LUNCH can effectively address it as a
plug-in manner.

6 DISCUSSION AND CONCLUSION

In this work, we propose an innovative approach for adaptive weighting of task contributions in CL,
which optimizes CL-relevant hyperparameters according to training progress and thus alleviates
catastrophic forgetting. In particular, we formulate each CL-relevant hyperparameter as a function
of learnable uncertainty under homoscedastic assumption, and ensure training stability via the ex-
ponential moving average of network parameters along the training trajectory. Extensive empirical
results demonstrate the benefits of our approach in improving the effectiveness and robustness of
the corresponding baselines in a variety of CL scenarios. We hope that this work will inspire more
explorations of adaptive weighting in CL scenarios and shed light on building general, practical, and
effective CL methods in this field.

This work also has some potential limitations. First, we follow the implementations of represen-
tative online CL methods, which mainly employ ResNet-based backbone. We leave examining the
effectiveness of uncertain hyperparameters with ViT-based backbone as a potential future work. Sec-
ond, we focus on CL methods within the same parameter space. Therefore, the proposed uncertain
hyperparameters are not applicable to many architecture-based CL methods that focus on multiple
parameter spaces. Since this work is essentially a fundamental research in machine learning, the
potential negative impact is not obvious at the current stage.

7 REPRODUCIBILITY

The source code of our experiments is included in the supplymentary materials. The theoretical
results, including key assumptions and proofs, are provided in Appendix |A| The specific hyperpa-
rameters used in our experiments can be found in Section[5.1]and the associated yml configuration
files are provided in the source code. These resources allow for a comprehensive replication of our
results.
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A UNCERTAINTY DERIVATION

A.1 REGRESSION TASKS

The derivation of uncertainty in regression is shown in followings.

p(y | fo(z),0%) = Lap (fo(x),0%),
1 ly = fo()]”

1
logp (y | fo(z),0%) = =—5 ly = fo(w)| — log 207,
1
—logp (y | fo(2),0%) = — ly — fo(x)| +log 207,

1 2

x =5 |y — fo(z)| +logo’.
o)

Thus, we can derive the joint distribution of multiple regression tasks:

p(yi,y2s. .| fo(x),07,05,..) =p (1 | fo(),07) -p(y2 | fo(x),03)
= Lap (y1; fo(x),07) - Lap (ya; fo(x),03) -

1 1
—logp (y1,y2,--- | fo(w), 0%, 03 ..) o< Iy = f5 (@) + o5 ly2 = fi @)]?
1

+logo? +logos + ...
A.2 CLASSIFICATION TASKS

We use the maximum likelihood estimation as our objective function:

exp (fg(a:)/JQ)
> exp (fy (2)/0?)’

0w (s =< | fulo),0%) = 25 f5(0) ~Tox S exp 5@

p(y=c| fo(z),0%) =

For classification problems, we use the cross entropy loss function:

p(y = c|z,0) = —log (Softmax (y = ¢, fo(x))) ,
logp(y = c | 20) = log (Z exp(f§ (x))) — f§(@).
We can rewrite and derive the corresponding forms:
g (1 = ¢ | f0).0%) = T 1j(a) —1og Y exp 55 )
+ g log Y exp (foa)) ~ 5 loe Y exp (fo(w)

1 1
— gfce(x) - logZeXP(fe(z))

Q

+log (Z exp (Mm))) - log > exp (12f5’ (x))

1 rc
= _iﬁ(y =c,0) —log > exp (215 ()

o* (X, exp (f5(2)))7*

~—

N‘H
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1
Under the assumption (ZC, exp ( fgl (x))) 7~ 2> exp (% fg/ (x)) that allows us to simplify
the objective function:

1
—logp (y=c|f9(a:),02) %ﬁp(y:c|x,9)—|—log02. (20)

Thus, we can derive the joint distribution of multiple classification tasks (take two tasks as exam-
ples):

1 1
p(0,01,03) ?Cl(ﬂ) + ?EQ(Q) +logo? +logos + ..., 21
i 2

1 1
P (yl7 yo | folx), 0%, Ug) = Softmax (yl; ?fg (sc)) - Softmax (yg; szg(x)) , (22)
1 2

1 1
—logp (yl, yo | fol(x), 0%, ag) = log Softmax (yl; ?fg (a:)) + log Softmax (yg; UQfg(x))
1 2

1 1 1 1
—logp (yhyg... | fg(x),of,ag...) = —251(0)+?£2(9)+ ilogof—i—ilogog—&—.... (24)
2

B MORE EXPERIMENTAL DETAILS

B.1 MORE EXPERIMENTAL RESULTS ABOUT PERFORMANCE CURVES

Fig. 5] shows the average results and standard deviations of five runs in WCA and AAA on Split
CIFAR-100 and Split ImageNet-R. RAR w/ Ours achieves superior performance in both WCA and
FAA compared to RAR, aligning with the main results of AAA in Fig.[3

0.5+ — RAR 0.7 —— RAR
—— RAR W/ Ours —— RAR w/ Ours

00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 20.0
Tasks Tasks
(a) WCA on Split CIFAR-100 (b) WCA on Split ImageNet-R
0.5 — RAR 0.7 — RAR
—— RARw/ Ours —— RAR w/ Ours
0.6-
0.4-
S
<0234
<
=
0.2
0.1-
00 25 50 75 100 125 150 175 20.0 00 25 50 75 100 125 150 17.5 20.0
Tasks Tasks
(c) FAA on Split CIFAR-100 (d) FAA on Split ImageNet-R

Figure 5: The performance curves of WCA and FAA for RAR with LUNCH plugin.
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B.2 HYPERPARAMETER SETS

All hyperparameters for the sensitivity analysis in our proposed protocol were sampled from the
hyperparameter set in Table [6]

Table 6: The pre-defined set of hyperparameter values.

Hyperparameters Value sets
Learning rate decay [0.025, 0.05, 0.1, 0.2, 0.4]
Batch size [32, 64, 128, 256, 512]
Weight decay [0.0005, 0.001, 0.002, 0.004]
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