
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LUNCH: ADAPTIVE BALANCING OF CONTINUAL
LEARNING VIA HYPERPARAMETER UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) is characterized by learning sequentially arriving tasks
and behaving as if they were observed simultaneously. In order to prevent catas-
trophic forgetting of old tasks when learning new tasks, representative CL meth-
ods usually employ additional loss terms to balance their contributions (e.g., reg-
ularization and replay), modulated by deterministic hyperparameters. However,
this strategy struggles to accommodate real-time changes in data distributions and
is also lack of robustness to subsequent unseen tasks, especially in online sce-
narios where CL is performed with a one-pass data stream. Inspired by adap-
tive weighting in multi-task learning, we propose an innovative approach named
Learning UNCertain Hyperparameters (LUNCH) for adaptive balancing of task
contributions in CL. Specifically, we formulate each CL-relevant hyperparame-
ter as a function of optimizable uncertainty under homoscedastic assumption and
ensure its training stability through the exponential moving average of network
parameters. We further devise an evaluation protocol that moderately adjusts the
hyperparameter values and reports their impact on performance, so as to analyze
the sensitivity of these sub-optimal values in realistic applications. We perform
extensive experiments to demonstrate the effectiveness and robustness of our ap-
proach, which significantly improves online CL in a plug-in manner (e.g., up to
11.26% and 5.64% on Split CIFAR-100 and Split Mini-ImageNet, respectively)
as well as offline CL.1

1 INTRODUCTION

The ability of continual learning (CL) is critical for artificial intelligence systems to accommodate
real-world changes, yet limited by catastrophic forgetting of old tasks when learning new tasks
(Wang et al., 2024a; McClelland et al., 1995). In order to strike an appropriate balance between task
contributions within the same parameter space, representative CL methods often employ additional
loss terms to preserve previously learned knowledge, such as regularization of parameter changes
(Kirkpatrick et al., 2017; Zenke et al., 2017) and replay of a few old training samples (Buzzega et al.,
2020; Rebuffi et al., 2017). In general, the strength of these loss terms is regulated by deterministic
hyperparameters obtained from a grid search (Chaudhry et al., 2018; Wang et al., 2023a). However,
this strategy is sub-optimal in performance as it struggles to adapt to real-time changes of data
distributions within the observed task sequence, and is also lacking robustness to subsequent unseen
tasks. These critical challenges tend to be more significant in online CL where each task is learned
from a one-pass data stream (Fini et al., 2020; Zhang et al., 2022).

In this regard, we analyze in depth the role of CL-relevant hyperparameters in balancing task con-
tributions. We first formulate representative CL methods with a shared mathematical form of the
loss function. Besides a loss term for learning the current task, the loss function typically involves
additional loss terms that preserve previously learned knowledge in terms of the parameter space
and the output space with corresponding hyperparameters. These loss terms amount to approxi-
mate multi-task learning (MTL) for all tasks ever seen, i.e., the upper bound of CL, while largely
avoiding the use of old training samples. In MTL, adaptive weighting of task contributions in hy-
perparameters has been shown to be an effective strategy compared to fixed weighting (i.e., using
deterministic hyperparameters) (Kendall et al., 2018; Liu et al., 2019; 2022; Lin et al., 2021), but

1Our code is included in Supplementary Materials for examination and will be released upon acceptance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

remains under-explored and highly non-trivial for CL due to the dynamic and unpredictable nature
of data distribution.

Based on the above analysis, we present Learnable UNCertain Hyperparameters (LUNCH), an inno-
vative approach that enables adaptive balancing of task contributions in CL. Specifically, we formu-
late each CL-relevant hyperparameter as a function of optimizable uncertainty, which is initialized
high and then decreases during the learning of changes in data distributions. Under the homoscedas-
tic uncertainty assumption, we derive probabilistic implementations for the loss terms of the param-
eter space and output space, corresponding to regression and classification problems, respectively.
Whenever a new task is introduced, the uncertain hyperparameters need to be refreshed to re-balance
the contributions, resulting in a performance degradation known as the “stability gap” (De Lange
et al., 2022). In this regard, we perform exponential moving average of network parameters along
the training trajectory, so as to stabilize training upon reinitialization.

We perform extensive experiments to evaluate our approach. Beyond the widely-used average accu-
racy for overall performance, we consider two additional evaluation metrics including the average
anytime accuracy and the worst-case accuracy for real-time changes in data distributions. We further
evaluate the sensitivity of sub-optimal hyperparameter values through analyzing their impact under
moderate adjustments. Our approach demonstrates outstanding performance with significant im-
provements in effectiveness and robustness across various online CL benchmarks, benefiting recent
strong baselines in a plug-in manner (e.g., up to 11.26% and 5.64% on Split CIFAR-100 and Split
Mini-ImageNet, respectively) and also remarkably facilitate offline CL.

Our contributions can be summarized as follows: (1) We perform an in-depth analysis of CL-relevant
hyperparameters under a unified framework of representative CL methods and task balancing strate-
gies in MTL; (2) We propose an innovative approach that incorporates optimizable uncertainty into
CL-relevant hyperparameters for adaptive balancing of task contributions, coupled with exponential
moving average of network parameters to address the stability gap; and (3) Our approach signifi-
cantly improves the effectiveness and robustness of CL, validated by extensive experiments.

2 RELATED WORK

Continual Learning (CL), also known as incremental learning or lifelong learning, aims to over-
come catastrophic forgetting of old tasks when learning new tasks (Wang et al., 2024a; McClelland
et al., 1995). Numerous efforts have been devoted into addressing this challenging issue. A majority
of representative methods attempt to strike an appropriate balance between task contributions within
the same parameter space. For example, regularization-based methods employ explicit regulariza-
tion terms to stabilize network parameters and simulate behaviors of the old model (Kirkpatrick
et al., 2017; Buzzega et al., 2020; Li & Hoiem, 2017). Meanwhile, replay-based methods approx-
imate and recover the old data distributions through preserving a small memory buffer or learning
a generative model (Buzzega et al., 2020; Shin et al., 2017; Aljundi et al., 2019). Other methods
that optimize network parameters in different parameter spaces are often collectively referred to as
architecture-based methods (Serra et al., 2018; Kang et al., 2022; Rusu et al., 2016), which explicitly
avoid the problem of balancing task contributions. However, this kind of method typically requires
the oracle of task identity at test time in order to select an appropriate parameter space, and is there-
fore not prioritized in this work. Based on the availability of training samples, the widely-used CL
setups can be categorized into online CL and offline CL (detailed in Section 3.1), with the former
being considered realistic yet much more challenging.

Hyperparameter of CL. For representative CL methods, an appropriate management of hyper-
parameters (e.g., learning rates, regularization strengths, memory buffer sizes, etc.) is critical for
achieving outstanding performance across tasks. A primary consideration is task balancing, which
ensures that the model maintains performance on old tasks while learning new ones (Cha & Cho,
2024; Yildirim et al., 2023). As the upper bound of CL, multi-task learning (MTL) attempts to
address this problem through various weighting strategies: fixed weighting assigns constant impor-
tance to each task, while adaptive weighting adjusts the importance based on task difficulty or model
performance (Kendall et al., 2018; Liu et al., 2019; 2022; Lin et al., 2021). Despite the effectiveness
in MTL, adaptive weighting of CL-relevant hyperparameters is remarkably challenging due to the
dynamic and unpredictable nature of data distribution, and therefore remains largely under-explored
in literature.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

In this section, we first describe the problem formulation of CL with a unified framework of rep-
resentative methods. We then analyze the selection of hyperparameter(s) in CL on the basis of the
inherent connections between CL and MTL.

3.1 PROBLEM FORMULATION

Let us consider a sequence of tasks defined by a collection of respective training sets S =
{D1, · · · ,DT }, where Dt for each task t consists of several data-label pairs (xt, yt) with xt ∈ Xt

and yt ∈ Yt. The goal of CL is to learn a mapping fθ :
⋃T

t=1 Xt →
⋃T

t=1 Yt parameterized by
trainable parameters θ with sequentially arriving Dt, so as to achieve superior performance on all
observed tasks (Wang et al., 2024a). Since previous training samples are often unavailable at the
current training stage, it remains extremely challenging to strike an appropriate balance between old
and new tasks, resulting in catastrophic forgetting (i.e., fθ abruptly and dramatically forget previ-
ously learned knowledge upon new information). Regarding specific setups, training samples for
each task can be reused for multiple epochs in offline CL, but arrive as a one-pass data stream in
online CL, which greatly adds to the challenge.

To alleviate catastrophic forgetting when optimizing θ within the same parameter space, many repre-
sentative methods have been proposed for CL. These methods can be classified into regularization-
based methods, which incorporate additional regularization term(s) to stabilize knowledge of the
parameter space and the output space (Kirkpatrick et al., 2017; Li & Hoiem, 2017), as well as
replay-based methods (Aljundi et al., 2019; Zhang et al., 2022), which preserve some old train-
ing samples with a small memory buffer. In particular, replay is often coupled with regularization
(Buzzega et al., 2020; Rebuffi et al., 2017) to encourage the current model fθ to mimic the behaviors
of the old model fθ∗ with parameters θ∗ when processing old training samples.

Following a recent work (Wang et al., 2024b), these two kinds of methods can be described as shared
mathematical forms under a unified framework:

LCL = λn Ln(x, y)︸ ︷︷ ︸
new task

+λo Lo (fθ(x), z)︸ ︷︷ ︸
output space

+λp Lp (θ, θ
∗)︸ ︷︷ ︸

parameter space

, (1)

where Ln denotes the loss function for learning each new task. Lo and Lp restrict update rates
in output space and parameter space, respectively. The example definitions of Lo and Lp will be
described latter in Table 1. It can be seen that the contributions of new and old tasks are explicitly
regulated by the hyperparameters {λn, λo, λp}.

3.2 HYPERPARAMETERS IN CONTINUAL LEARNING

With Eq. (1), we further analyze the selection of hyperparameters in representative CL methods.
Similar to regular machine learning methods, the optimal hyperparameter values for CL are usu-
ally obtained by repeated iterations of the task sequence S = {D1, · · · ,DT }, which can be further
divided into two strategies. One is to run the first several tasks iteratively to determine the hyperpa-
rameter values and use them to learn subsequent tasks (Chaudhry et al., 2018; Pham et al., 2021); the
other is to run the entire task sequence iteratively in different orders to determine the hyperparameter
values and provide a sensitivity analysis of them (Yildirim et al., 2023; Cha & Cho, 2024; Van de
Ven et al., 2022). Both strategies assume relatively stable changes in data distribution and employ
deterministic hyperparameters for CL, making it difficult to adapt to real-world scenarios that are
highly dynamic and unpredictable (Semola et al., 2024; Cha & Cho, 2024). In addition, manually
adjusting these hyperparameters over time is both costly and impractical.

In fact, MTL is often considered to be the upper bound of CL. Both CL and MTL aim to achieve
the same objective, i.e., to find a solution θ that performs well for all observed tasks, with the main
difference being whether S is provided sequentially or simultaneously. Formally, the objective of
MTL can be defined as follows:

LMTL =
∑
i

wiLi, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Definition of representative CL methods that target the same parameter space. F is the
Fisher information matrix to approximate the importance of the network parameters. M denotes
the memory buffer consisting of a few old training samples. xaug is the augmentation of x. z is the
output logit of the old models in the training trajectory.

Method Regularization Loss Replay Loss

EWC (Kirkpatrick et al., 2017) (θ − θ∗)⊤F (θ − θ∗) -
ER (Shin et al., 2017) - E(x,y)∈M (L(x, y))

MIR (Aljundi et al., 2019) - maxE(x,y)∈M (L(x, y))
DER (Buzzega et al., 2020) E(x,y)∈M (∥fθ(x)− z∥22) -

DER++ (Boschini et al., 2022) E(x,y)∈M (∥fθ(x)− z∥22) E(x,y)∈M (L(x, y))
RAR (Zhang et al., 2022) - E(x,xaug,y)∈M (L(xaug, y))

where Li corresponds to the loss function for learning each task, and wi denotes the hyperparameter
that regulates the task weight. The loss function of CL in Eq. (1) can be seen as an approximation
of Eq. (2), with the use of old training samples largely avoided.

Although many MTL methods also employ deterministic hyperparameters selected from a grid
search, even simplified into an unweighted form wi = wj , adaptive balancing of task contribu-
tions has proven to be a superior strategy (Kendall et al., 2018; Liu et al., 2019; 2022). In particular,
the corresponding {wi} can be modeled as an optimizable function related to the relative confidence
between tasks (Liu et al., 2019; Kendall & Gal, 2017). However, these adaptive weighting strategies
remain under-explored and highly non-trivial for CL, due to the dynamic and unpredictable proper-
ties of data distributions. To this end, we aim to provide an innovative approach to address the above
challenges, as detailed below.

4 LEARNABLE UNCERTAIN HYPERPARAMETERS (LUNCH)

In this section, we design an innovative adaptive weighting strategy for CL that optimizes CL-
relevant hyperparameters according to training progress. We incorporate optimizable uncertainty
into CL-relevant hyperparameters under the unified framework of representative CL methods, and
further rectify the “stability gap” introduced by uncertainty refresh.

We first define the specific forms of several representative CL methods with Eq. (1), as shown in
Table 1. These methods mainly focus on addressing the problem of catastrophic forgetting by lim-
iting model updates in either parameter space or output space, so as to preserve previously learned
knowledge. For adaptive balancing of task contributions, we propose to incorporate optimizeable
parameters σ2 (called “uncertainty”) into the hyperparameter set {λn, λo, λp} in Eq. (1). From
a Bayesian perspective, such uncertainty can capture the model’s confidence in different types of
tasks and accordingly adjust the CL process to balance new and old tasks (Guo et al., 2011). During
the learning of each task in CL, the confidence in the predictive distribution p(y|x, θ) should grad-
ually increase, and corresponding uncertainty σ2 should gradually decrease from large to small and
eventually stabilize at a certain value (Kendall & Gal, 2017).

In particular, we observe that the loss terms Ln, Lo and Lp correspond to addressing a regres-
sion or classification problem (Bishop & Nasrabadi, 2006). Specifically, the classification problem
predicts discrete labels (e.g., DER employs a cross-entropy loss Lo with a small memory buffer),
while the regression problem predicts continuous numerical value (e.g., EWC employs a weighted
squared loss Lp to stabilize parameter changes). Here we focus on homoscedastic aleatoric uncer-
tainty (Kendall & Gal, 2017), whose corresponding hyperparameters {λn, λo, λp} do not depend on
specific input data, rather stay constant for all inputs and vary only between different tasks.

For regression problems, the predictive distribution can be defined as a Gaussian distribution under
the Laplace approximation (Bishop & Nasrabadi, 2006), finding a Gaussian approximation to a
continuous probability density:

p (y | fθ(x)) = N
(
fθ(x), σ

2
)
, (3)

where σ2 denotes the homoscedastic aleatoric uncertainty. Due to the space limit, the detailed
derivation can be found in Appendix A.1. When using the mean squared error as the loss function

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Zebra

 Elephant

Current

Task

Parameter

Space

Output

Space

Logit
Memory

BufferStripe Nose

Session 1

Stripe Nose

Regularization

Mouth PlumeZebra

Elephant

Hare

RobinReplay

Mouth Plume

Stripe Nose

Memory

Buffer

Session 2

Regularization

Replay

…

Session 3

Zebra

Elephant

Hare

Robin

Dog

Cat

Memory

Buffer

Figure 1: Demonstration of our approach. Session 2 and Session 3 shows that the proposed LUNCH
incorporates optimizable uncertainty into CL-relevant hyperparameters, enabling adaptive balancing
of task contributions in both parameter space and output space.

L for regression problem, the corresponding log-likelihood becomes:

− log p (y | fθ(x)) ∝
1

2σ2
∥y − fθ(x)∥2 +

1

2
log σ2. (4)

For classification problems, we use a Gibbs distribution to capture the predictive distribution scaled
by the learnable “temperature” σ2, which determines the flatness of discrete distribution (i.e., en-
tropy) (Bishop & Nasrabadi, 2006):

p (y | fθ(x)) = Softmax

(
1

σ2
fθ(x)

)
, (5)

where the σ2 determines the degree of entropy divergence in the deterministic discrete distribution.
Then, the corresponding log-likelihood becomes:

log p (y = c | fθ(x)) =
1

σ2
fθ(x)− log

[∑
c′=1

exp

(
1

σ2
f c′

θ (x)

)]
, (6)

where f c′

θ denotes the c′-th logit. To simplify the derivation in CL regarding its dynamic and un-

predictable nature, the explicit trick 1
σ2

∑c
c′=1 exp

(
1
σ2 f

c′

θ (x)
)
≈
(∑c

c′=1 exp
(

1
σ2 f

c′

θ (x)
)) 1

σ2

be-

comes an equality when σ2 → 1, which has been verified in empirically improving the performance.
Due to the space limit, the derivation is detailed in Appendix A.2. Then, the overall log-likelihood
of the predictive distribution is:

− log p (y | fθ(x)) ≈
1

σ2
log Softmax (y, fθ(x)) + log σ2. (7)

Then, we can reformulate each CL-relevant hyperparameter in Eq. (1) as a function λ(σ2) of ho-
moscedastic aleatoric uncertainty σ2 based on the training progress. The overall objective function
log p

(
y | x;σ2

n, σ
2
o , σ

2
p

)
is defined as follows:

log
(
p | x, y;σ2

n, σ
2
o , σ

2
p

)
= exp

(
− log σ2

n

)
Ln(x, y)︸ ︷︷ ︸

new task

+exp
(
− log σ2

o

)
Lo (hθ(x), z)︸ ︷︷ ︸

output space

+ exp
(
− log σ2

p

)
Lp (θ, θ

∗)︸ ︷︷ ︸
parameter space

+ log σ2
n + log σ2

o + log σ2
p,

(8)

where Ln(x, y), Lo(x, y) and Lp(x, y) represent the loss terms for CL. {λn(σ
2
n) =

exp
(
− log σ2

n

)
, λo(σ

2
o) = exp

(
− log σ2

o

)
, λp(σ

2
p) = exp

(
− log σ2

p

)
} represent aforementioned

uncertain hyperparameters. As uncertainty σ2 increases, the relative weights of the loss function L
decrease, and vice versa. The additional term log σ2 discourages rapid changes in σ2, thus stabi-
lizing the norm of relative weights. We also use the exponential mapping trick (Murphy, 2012) to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

（b）Accuracy Curve on the Split CIFAR-10

0 50 100 150 200

10

20

30

Steps

A
cc

ur
ac

y
(%

)

Uncertainy

Fixed

（a）Uncertainty Curve on Split CIFAR-10

0 50 100 150
0.0

0.2

0.4

0.6

Steps

U
nc
er
ta
in
ty

Regression

Classification

Figure 2: CL suffers substantial forgetting as each new task is introduced, followed by a phase of
performance recovery. The experiment is performed with RAR on Split CIFAR-10.

ensure numerical stability, letting fθ directly predict the log variance σ2 to avoid division by zero.
As shown in Fig. 2 (left), when they gradually learn representative features in a new task, the corre-
sponding uncertainty about the predictive distribution gradually decreases and ultimately stabilizes
at a fixed local optima (Kendall & Gal, 2017).

With significant changes in data distribution over the course of training (e.g., switching from Dt−1

to Dt), we need to refresh the uncertain hyperparameters for adaptation (i.e., the uncertainty is re-
raised, and then gradually decreased):

λn

(
σ2
n

)
= λn

(
σ2
n,init

)
;λo

(
σ2
o

)
= λo

(
σ2
o,init

)
;λp

(
σ2
p

)
= λp

(
σ2
p,init

)
. (9)

This is accompanied by a critical challenge called the “stability gap” (De Lange et al., 2022): fθ
suffers substantial forgetting when starting to learn new tasks, followed by a phase of performance
recovery (see Fig. 2, right).

To alleviate the mismatch between the refreshed hyperparameters and the current training progress,
we employ the temporal ensemble (Laine & Aila, 2016) strategy to offset the bias. Specifically, we
collect models along the training trajectory with exponential moving average (EMA), denoted as
fθema . For the current model fθ parameterized by trainable θ, the EMA at step t is defined as:

θema
t =

βθema
t−1 + (1− β)θt

1− βt
= βtθema

0 +

t∑
i=1

(1− β)βt−iθi, (10)

where β controls the strength of EMA, βt denotes β raised to the power of t, and the parameter θi
is at the i-th step in the training trajectory before t step. The temporal ensemble of different models
can enhance the stability of online CL, which has also been observed in a recent study (Soutif-
Cormerais et al., 2023). To stabilize training when refreshing hyperparameters, the EMA strategy
implicitly integrates hyperparameters from different training stages of the old tasks, providing an
adaptive benefit for implementing the optimizable uncertainty.

Finally, we describe the LUNCH training procedure with a pseudo-code in Algorithm 1. The gray
area highlights the key procedure. As can be seen, our approach is easy to implement and compatible
with many representative CL methods, such as ER (Rolnick et al., 2019), DER (Buzzega et al.,
2020), RAR (Zhang et al., 2022), etc.

5 EXPERIMENTS

In this section, we briefly describe the experimental setups and then analyze the experimental results.

5.1 EXPERIMENTAL SETUPS

Benchmark. Here we consider several benchmarks that are commonly used in the literature of
online CL (Wang et al., 2023b). Specifically, CIFAR-10 dataset includes 10 classes of images sized
32 × 32, randomly divided into 5 disjoint tasks with 2 classes each. CIFAR-100 dataset includes

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Learnable UNCertain Hyperparameters (LUNCH) for CL
1: Input: Deep model fθ with parameters θ; uncertainty {σ2

n, σ
2
o , σ

2
p}; datasets S =

{D1, · · · ,DT }.
2: Initialization: θema

0 = θinit; E = 1 for online CL; E > 1 for offline CL.
3: for task t = 1, · · · , T do
4: if t = 1 then
5: for epoch e = 1, · · · , E do
6: Update the parameters θ of fθ only with loss Ln

7: end for
8: Save the parameters θ of fθ as θema

1

9: else
10: for epoch e = 1, · · · , E do
11: Calculate the unified CL loss by Eq. (8).
12: Update the parameters θ of fθ and the uncertainty {σ2

n, σ
2
o , σ

2
p}

13: Update θema
t by Eq. (10)

14: end for
15: Refresh the uncertainty {σ2

n, σ
2
o , σ

2
p} in Eq. (9)

16: end if
17: end for

100 classes of images sized 32 × 32, randomly divided into 20 disjoint tasks with 5 classes each.
Mini-ImageNet dataset includes 100 classes of images sized 84×84, randomly split into 20 disjoint
tasks with 5 classes each. The common image resolution for the ImageNet-R dataset is 224 × 224,
randomly divided into 20 disjoint tasks with 10 classes each (Hendrycks et al., 2021).

Implementation. We use Empirical Replay (ER) (Rolnick et al., 2019), Dark Experience Re-
play (DER) (Buzzega et al., 2020) and Repeated Augmented Rehearsal (RAR) (Zhang et al., 2022)
as the main baselines for CL. Following the implementation of RAR (Zhang et al., 2022), we train a
ResNet-32 backbone with an SGD optimizer of learning rate 0.1 in all experiments. The batch size
is set to 32 for Split CIFAR-10/100, and 64 for both Split Mini-ImageNet and Split ImageNet-R.
The memory buffer is unified to maintain 2000 training samples in total. For offline CL, the number
of epochs is set to 100 that is sufficient for convergence on each task.

Evaluation Metric. We consider multiple evaluation metrics to provide a comprehensive analysis
of CL. We first define the Final Average Accuracy (FAA) to effectively evaluate the overall perfor-
mance after learning the last task DT . Formally, Di represents the i-th task, while fθi denotes the
model parameterized by trainable θi at the i-th task:

FAA =
1

T

T∑
i=1

A(Di, fθT). (11)

However, FAA only provides a snapshot of the state after learning all tasks, ignoring performance
during task transitions. To provide a more comprehensive assessment, we therefore consider two
other metrics. One is the Average Anytime Accuracy (AAA), which measures the average perfor-
mance on all observed tasks (De Lange et al., 2022).

AAA =
1

T

T∑
j=1

1

j

j∑
i=1

A
(
Di, fθj

)
. (12)

Another is the Worst-Case Accuracy (WCA), which evaluates the performance of CL methods in
the worst-case scenarios (De Lange et al., 2022). WCA first obtains the average minimum accuracy
called minAcc in previous tasks and then combines it with the performance of current task (i.e., the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Overall performance of online CL. The results of all methods are averaged over five runs
with different random seeds and task orders.

1
4λ λ 4λ

Benchmark Method FAA(↑) WCA(↑) AAA(↑) FAA(↑) WCA(↑) AAA(↑) FAA (↑) WCA (↑) AAA (↑)

Split CIFAR-10

ER 43.51±0.40 38.58±5.01 57.12±4.06 34.77±8.01 32.97±6.47 54.98±2.67 34.78±3.22 32.97±2.23 43.26±3.24

w/ Ours 47.50±0.58 40.59±4.96 59.73±3.38 45.64±1.14 39.24±3.04 58.22±3.68 47.64±3.99 39.24±2.87 53.07±3.65

∆(↑) 3.99 2.01 2.61 10.87 6.27 3.24 12.86 6.27 9.81
DER 36.55±0.22 36.05±0.22 35.69±0.23 47.63±4.81 41.46±8.15 56.57±0.84 15.92±0.84 15.91±0.84 30.92±0.54

w/ Ours 39.02±1.77 38.97±1.83 42.70±3.36 54.98±3.55 45.78±6.25 58.46±0.79 19.52±1.42 18.66±1.39 34.59±2.07

∆(↑) 2.47 2.92 7.01 7.35 4.32 1.89 3.60 2.75 3.67
RAR 35.59±2.81 27.21±4.36 46.15±2.49 31.97±5.01 24.34±3.73 36.67±3.12 33.35±3.01 31.69±6.47 41.46±2.67

w/ Ours 41.72±2.59 32.36±3.36 52.11±5.27 34.02±2.84 28.89±1.28 42.71±2.15 44.04±1.14 39.24±3.04 53.46±3.68

∆(↑) 6.13 5.15 5.96 2.05 4.55 6.04 10.69 7.55 12.00

Split CIFAR-100

ER 9.99±2.38 5.22±1.32 12.91±2.51 9.66±1.89 5.27±1.33 12.84±1.74 9.66±1.89 5.21±1.33 12.84±1.74

w/ Ours 15.33±5.63 7.79±3.69 16.68±5.73 20.92±3.29 10.95±2.10 20.66±2.18 20.90±3.29 10.95±2.10 20.67±2.18

∆(↑) 5.34 2.57 3.77 11.26 5.68 7.82 11.24 5.74 7.83
DER 4.83±0.13 5.83±0.13 7.24±0.18 7.83±0.12 7.13±0.13 7.07±0.18 7.83±0.12 7.33±0.12 9.79±0.18

w/ Ours 9.59±0.43 7.59±0.43 10.34±0.48 12.59±0.43 9.59±0.43 14.44±0.47 13.59±0.33 12.59±0.44 14.34±0.48

∆(↑) 4.76 1.76 3.10 4.76 2.46 7.37 5.76 5.26 4.55
RAR 4.46±0.42 3.34±0.35 9.49±1.72 8.42±2.38 4.82±1.15 10.49±1.48 7.69±0.16 7.97±0.11 7.51±1.05

w/ Ours 6.01±0.19 5.83±0.17 11.29±0.67 15.54±4.10 7.82±1.78 15.71±3.13 14.27±0.11 11.32±0.12 13.51±1.04

∆(↑) 1.55 2.49 1.80 7.12 3.00 5.22 6.58 3.35 6.00

Split Mini-ImageNet

ER 2.13±0.94 3.11±0.93 8.71±1.11 2.75±0.39 2.63±0.23 8.63±0.66 2.91±0.26 2.76±0.26 6.78±1.56

w/ Ours 5.83±0.13 5.78±0.12 10.61±1.19 7.01±0.16 6.18±0.16 11.38±0.33 7.21±0.92 5.97±0.86 11.37±1.86

∆(↑) 3.70 2.67 1.90 4.26 3.55 2.75 4.30 3.21 4.59
DER 3.42±1.31 2.53±0.11 4.21±0.69 2.02±0.48 3.13±0.46 4.84±0.29 3.77±0.39 3.26±0.37 4.28±0.73

w/ Ours 6.58±0.71 5.55±0.73 9.73±0.02 7.66±0.77 6.74±0.77 8.19±0.09 6.42±0.18 6.12±0.31 7.05±0.37

∆(↑) 3.16 3.02 5.52 5.64 3.61 3.35 2.65 2.86 2.78
RAR 3.68±0.22 3.48±0.19 8.29±1.02 2.25±0.46 2.99±0.45 6.50±0.86 3.29±0.97 3.15±0.89 7.64±1.01

w/ Ours 6.82±0.48 7.31±0.11 11.68±1.08 7.67±0.14 6.47±0.13 9.71±0.69 6.97±1.18 6.48±1.17 10.53±0.70

∆(↑) 3.14 3.83 3.39 5.42 3.48 3.21 3.68 3.33 2.89

minimum accuracy retained after learning the current task):

minAcct =
1

t− 1

t−1∑
i=1

min
i<j≤t

Acc
(
Di, fθj

)
,

WCA =
1

T
Acc (DT , fθT) +

(
1− 1

T

)
minAccT .

(13)

Evaluation Protocol. To evaluate the practical performance of each method, we devise a novel
evaluation protocol that reflects the impact of sub-optimal hyperparameter values. Specifically, we
evaluate CL models across different hyperparameter scales, i.e., { 1

kλ, λ, kλ}, k > 1, where λ rep-
resents the optimal hyperparameter values obtained from a grid search, and k is a scale factor. By
varying the scale of λ, we are able to examine whether the CL model generalizes well beyond the
desired conditions of hyperparameters. In practice, we set k = 4 for { 1

kλ, λ, kλ}, which usually
provides a sufficient and meaningful range for examination.

5.2 EXPERIMENTAL RESULTS

Overall Performance. Table 2 shows the overall performance of online CL, where λ represents
the optimal value of each hyperparameter obtained from a search on the grid. It is evident that the
improvement in FAA is consistently significant (e.g., ER is improved by {5.34%, 11.26%, 11.24%}
on Split CIFAR-100), indicating the remarkable benefit of LUNCH plugin through adaptive task
weighting. It also shows significant improvements in AAA and WCA (e.g., RAR is improved by
{5.52%, 3.35%, 2.78%} in AAA on Split Mini-ImageNet and by {5.15%, 4.55%, 7.55%} in WCA
on Split CIFAR-10), suggesting that LUNCH improves the performance of deep models across the
training trajectory and in worst-case scenarios. Additionally, each CL method shows considerable
variation with different hyperparameters initializations, thus the results from our protocol can be
considered as the expected performance of each CL method when applied in real-world scenarios to
comprehensively evaluate the generalizability of CL methods.

Additionally, LUNCH significantly improves the performance of the baseline CL methods on differ-
ent scale benchmarks. Fig. 3 shows the average results and standard deviations of five runs on Split
CIFAR-100 and Split ImageNet-R. RAR w/ Ours consistently outperforms the original RAR in terms
of AAA in a series of continual learning tasks. Due to the page limit, additional empirical results in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

（a）AAA on Split CIFAR-100 （b）AAA on Split ImageNet-R

Figure 3: Performance curves of AAA on benchmark of different scales.

Table 3: Overall performance of offline CL with FAA as the evaluation metric. The results of all
methods are averaged over five runs with different random seeds and task orders.

Dataset ER ER w/ Ours ∆(↑) DER DER w/ Ours ∆(↑) RAR RAR w/ Ours ∆ ↑
Split CIFAR-10 65.26±0.48 69.49±0.99 4.23 71.53±0.49 74.15±0.38 2.62 73.52±0.65 77.12±0.59 3.60

Split CIFAR-100 45.14± 0.65 48.21± 0.73 3.07 57.85±0.57 61.07± 0.43 3.22 60.64±1.01 63.61±0.95 2.97

WCA and FAA are provided in Appendix B.1, and these empirical results are consistent with those
in AAA.

On the other hand, Table 3 shows the mean and standard deviation of five runs after applying our
approach to all baselines (e.g., up to ∼ 4% in FAA) in the offline scenarios. From Table 2 and Ta-
ble 3, we observe that RAR w/ Ours often achieves superior performance gains compared to other
baselines, mainly because it effectively utilizes advanced data augmentation to capture useful visual
information (Zhang et al., 2022). Therefore, we will use RAR as the primary baseline for further
analysis in the sequel.

Table 4: Ablation study of LUNCH with RAR as baseline.
Dataset Metric RAR w/ EMA w/ Unc w/ Ours

Split CIFAR-10
FAA 42.07 46.79 49.25 55.28
WCA 37.41 37.81 45.81 49.97
AAA 58.23 60.05 59.23 61.06

Split CIFAR-100
FAA 9.19 9.43 9.33 11.77
WCA 5.21 5.93 5.55 7.39
AAA 11.78 12.37 12.17 14.78

Split Mini-ImageNet
FAA 3.21 4.74 4.43 7.42
WCA 3.26 3.32 4.69 7.12
AAA 10.62 11.62 12.99 16.12

Ablation Study We conduct an ab-
lation study to demonstrate the ef-
fectiveness of each component, in-
cluding the uncertain hyperparam-
eters and the temporal ensembling
strategy EMA. We compared several
variants to analyze their individual
contributions. As shown in Table 4,
RAR w/ Unc introduces optimizable
uncertainty into CL-relevant hyper-
parameters without temporal ensem-
bling, RAR w/ EMA only incorporates
the temporal ensembling strategy with deterministic hyperparameters, and RAR w/ Ours represents
the full version of LUNCH that leverages both components. It is obvious that both the learnable
uncertain hyperparameters and the temporal ensembling strategy contribute to CL, and removing
either results in performance degradation.

Table 5: Impact of sub-optimal hyperparameter values in terms of batch size, learning rate decay and
weight decay. We report FAA averaged over five runs with different random seeds and task orders.

Dataset ER ER w/ Ours ∆(↑) DER DER w/ Ours ∆(↑) RAR RAR w/ Ours ∆(↑)
Split CIFAR-10 23.11±1.21 27.38±1.13 4.27 24.11±1.37 29.84±0.84 5.73 33.11±1.96 38.49±2.04 5.38
Split CIFAR-100 8.74±1.09 14.99±1.41 3.25 10.31±1.11 13.42±0.49 3.11 11.47±0.73 15.21±1.12 3.74

Additionally, we evaluate the computational costs of different methods integrating LUNCH (i.e.,
w/ Ours) or not (i.e., w/o Ours). As shown in Fig. 4, it is evident that there is minimal difference in
time between the w/o Ours and w/ Ours cases. Our method enhances performance without signif-
icantly increasing the extra computational costs, thus making it practical for CL applications with
limited computational resources.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ER DER RAR
Methods

0

500

1000

1500

2000

Ti
m

e
(s

)

w/ o Ours
w/ Ours

Figure 4: Comparison of extra computational
time with and without LUNCH (Ours).

Sensitivity Analysis. We further extend our evalua-
tion protocol to verify the effectiveness of LUNCH
in improving the robustness of other hyperparame-
ters, such as the learning rate decay, batch size, and
weight decay. These hyperparameters are also rel-
evant to CL yet in an implicit manner (Mirzadeh
et al., 2020; Cha & Cho, 2024). For ease of imple-
mentation, we randomly sample a set of sub-optimal
hyperparameters from predefined values (i.e., mod-
erately rescaling optimal hyperparameters in Ap-
pendix B.2), and average multiple runs to evalu-
ate the practical performance of each method, thus
avoiding overestimation of CL capabilities in prac-
tical use. As shown in Table 5, we observe that our
approach achieves better performance compared to
the corresponding baselines, and in particular the improvement of RAR is more significant. Aligning
with the results of previous analysis, LUNCH can significantly alleviate hyperparameter sensitivity,
especially with more advanced methods.

Of note, the above results pose the particular challenge of hyperparameter sensitivity in CL. A
majority of CL methods are developed with the “optimal” hyperparameter values obtained from a
grid search, and thus may fail to produce desirable results based on such hyperparameter values when
there exist large changes in data distribution. In contrast, our protocol of evaluating hyperparameter
sensitivity can faithfully reflect this issue, and the proposed LUNCH can effectively address it as a
plug-in manner.

6 DISCUSSION AND CONCLUSION

In this work, we propose an innovative approach for adaptive weighting of task contributions in CL,
which optimizes CL-relevant hyperparameters according to training progress and thus alleviates
catastrophic forgetting. In particular, we formulate each CL-relevant hyperparameter as a function
of learnable uncertainty under homoscedastic assumption, and ensure training stability via the ex-
ponential moving average of network parameters along the training trajectory. Extensive empirical
results demonstrate the benefits of our approach in improving the effectiveness and robustness of
the corresponding baselines in a variety of CL scenarios. We hope that this work will inspire more
explorations of adaptive weighting in CL scenarios and shed light on building general, practical, and
effective CL methods in this field.

This work also has some potential limitations. First, we follow the implementations of represen-
tative online CL methods, which mainly employ ResNet-based backbone. We leave examining the
effectiveness of uncertain hyperparameters with ViT-based backbone as a potential future work. Sec-
ond, we focus on CL methods within the same parameter space. Therefore, the proposed uncertain
hyperparameters are not applicable to many architecture-based CL methods that focus on multiple
parameter spaces. Since this work is essentially a fundamental research in machine learning, the
potential negative impact is not obvious at the current stage.

7 REPRODUCIBILITY

The source code of our experiments is included in the supplymentary materials. The theoretical
results, including key assumptions and proofs, are provided in Appendix A. The specific hyperpa-
rameters used in our experiments can be found in Section 5.1 and the associated yml configuration
files are provided in the source code. These resources allow for a comprehensive replication of our
results.

REFERENCES

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In H. Wal-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, pp. 11849–11860. 2019.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE transactions on pattern analysis
and machine intelligence, 45(5):5497–5512, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark expe-
rience for general continual learning: a strong, simple baseline. Advances in Neural Information
Processing Systems, 33:15920–15930, 2020.

Sungmin Cha and Kyunghyun Cho. Hyperparameters in continual learning: a reality check. arXiv
preprint arXiv:2403.09066, 2024.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In International Conference on Learning Representations, 2018.

Matthias De Lange, Gido van de Ven, and Tinne Tuytelaars. Continual evaluation for lifelong
learning: Identifying the stability gap. arXiv preprint arXiv:2205.13452, 2022.

Enrico Fini, Stéphane Lathuiliere, Enver Sangineto, Moin Nabi, and Elisa Ricci. Online continual
learning under extreme memory constraints. In European Conference on Computer Vision, pp.
720–735. Springer, 2020.

Shengbo Guo, Onno Zoeter, and Cedric Archambeau. Sparse bayesian multi-task learning. Ad-
vances in Neural Information Processing Systems, 24, 2011.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. The many faces
of robustness: A critical analysis of out-of-distribution generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 8340–8349, 2021.

Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hikmawan Madjid, Jaehong Yoon, Mark
Hasegawa-Johnson, Sung Ju Hwang, and Chang D Yoo. Forget-free continual learning with win-
ning subnetworks. In International Conference on Machine Learning, pp. 10734–10750. PMLR,
2022.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in neural information processing systems, 30, 2017.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2017.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W Tsang. Reasonable effectiveness of random weight-
ing: A litmus test for multi-task learning. arXiv preprint arXiv:2111.10603, 2021.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871–1880, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shikun Liu, Stephen James, Andrew J Davison, and Edward Johns. Auto-lambda: Disentangling
dynamic task relationships. arXiv preprint arXiv:2202.03091, 2022.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological Review, 102(3):419, 1995.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning. Advances in Neural Information Pro-
cessing Systems, 33:7308–7320, 2020.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Quang Pham, Chenghao Liu, and HOI Steven. Continual normalization: Rethinking batch normal-
ization for online continual learning. In International Conference on Learning Representations,
2021.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Rudy Semola, Julio Hurtado, Vincenzo Lomonaco, and Davide Bacciu. Adaptive hyperparameter
optimization for continual learning scenarios. arXiv preprint arXiv:2403.07015, 2024.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in Neural Information Processing Systems, 30, 2017.

Albin Soutif-Cormerais, Antonio Carta, and Joost Van de Weijer. Improving online continual learn-
ing performance and stability with temporal ensembles. In Conference on Lifelong Learning
Agents, pp. 828–845. PMLR, 2023.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185–1197, 2022.

Liyuan Wang, Xingxing Zhang, Qian Li, Mingtian Zhang, Hang Su, Jun Zhu, and Yi Zhong. Incor-
porating neuro-inspired adaptability for continual learning in artificial intelligence. arXiv preprint
arXiv:2308.14991, 2023a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. arXiv preprint arXiv:2302.00487, 2023b.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024a.

Zhenyi Wang, Yan Li, Li Shen, and Heng Huang. A unified and general framework for continual
learning. arXiv preprint arXiv:2403.13249, 2024b.

Elif Ceren Gok Yildirim, Murat Onur Yildirim, Mert Kilickaya, and Joaquin Vanschoren. Adaptive
regularization for class-incremental learning. arXiv preprint arXiv:2303.13113, 2023.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert Bifet, Nick Jin Sean Lim, and Yunzhe Jia. A
simple but strong baseline for online continual learning: Repeated augmented rehearsal. Advances
in Neural Information Processing Systems, 35:14771–14783, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A UNCERTAINTY DERIVATION

A.1 REGRESSION TASKS

The derivation of uncertainty in regression is shown in followings.

p
(
y | fθ(x), σ2

)
= Lap

(
fθ(x), σ

2
)
,

=
1

2σ2
exp

(
−∥y − fθ(x)∥2

σ2

)
log p

(
y | fθ(x), σ2

)
= − 1

σ2
|y − fθ(x)| − log 2σ2,

− log p
(
y | fθ(x), σ2

)
=

1

σ2
|y − fθ(x)|+ log 2σ2,

∝ 1

σ2
|y − fθ(x)|+ log σ2.

(14)

Thus, we can derive the joint distribution of multiple regression tasks:

p
(
y1, y2, . . . | fθ(x), σ2

1 , σ
2
2 , . . .

)
= p

(
y1 | fθ(x), σ2

1

)
· p
(
y2 | fθ(x), σ2

2

)
· . . .

= Lap
(
y1; fθ(x), σ

2
1

)
· Lap

(
y2; fθ(x), σ

2
2

)
· . . .

(15)

− log p
(
y1, y2, . . . | fθ(x), σ2

1 , σ
2
2 . . .

)
∝ 1

σ2
1

∥y1 − f1
θ (x)∥2 +

1

σ2
∥y2 − f2

θ (x)∥2

+ log σ2
1 + log σ2

2 + . . .

(16)

A.2 CLASSIFICATION TASKS

We use the maximum likelihood estimation as our objective function:

p
(
y = c | fθ(x), σ2

)
=

exp
(
f c
θ (x)/σ

2
)∑

c′ exp
(
f c′
θ (x)/σ2

) ,
log p

(
y = c | fθ(x), σ2

)
=

1

σ2
f c
θ (x)− log

∑
c′

exp

(
1

σ2
f c′

θ (x)

)
.

(17)

For classification problems, we use the cross entropy loss function:

p(y = c | x, θ) = − log (Softmax (y = c, fθ(x))) ,

log p(y = c | xθ) = log

(∑
c′

exp(f c′

θ (x))

)
− f c

θ (x).
(18)

We can rewrite and derive the corresponding forms:

log p
(
y = c | fθ(x), σ2

)
=

1

σ2
f c
θ (x)− log

∑
c′

exp

(
1

σ2
f c′

θ (x)

)
+

1

σ2
log
∑
c′

exp (fθ(x))−
1

σ2
log
∑
c′

exp (fθ(x))

=
1

σ2
f cθ (x)− 1

σ2
log
∑
c′

exp (fθ(x))

+ log

(∑
c′

exp (fθ(x))

) 1
σ2

− log
∑
c′

exp

(
1

σ2
f c′

θ (x)

)

= − 1

σ2
L(y = c, θ)− log

∑
c′ exp

(
1
σ2 f

c
θ (x)

)
(
∑

c′ exp (f
′
θ(x)))

1
σ2

.

(19)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Under the assumption
(∑

c′ exp
(
f c′

θ (x)
)) 1

σ2

≈ 1
σ2

∑
c′ exp

(
1
σ2 f

c′

θ (x)
)

that allows us to simplify
the objective function:

− log p
(
y = c | fθ(x), σ2

)
≈ 1

σ2
p(y = c | x, θ) + log σ2. (20)

Thus, we can derive the joint distribution of multiple classification tasks (take two tasks as exam-
ples):

p
(
θ, σ2

1 , σ
2
2

)
∝ 1

σ2
1

L1(θ) +
1

σ2
2

L2(θ) + log σ2
1 + log σ2

2 + . . . , (21)

p
(
y1, y2 | fθ(x), σ2

1 , σ
2
2

)
= Softmax

(
y1;

1

σ2
1

fθ(x)

)
· Softmax

(
y2;

1

σ2
2

fθ(x)

)
, (22)

− log p
(
y1, y2 | fθ(x), σ2

1 , σ
2
2

)
= log Softmax

(
y1;

1

σ2
1

fθ(x)

)
+ log Softmax

(
y2;

1

σ2
2

fθ(x)

)
(23)

− log p
(
y1, y2 . . . | fθ(x), σ2

1 , σ
2
2 . . .

)
=

1

σ2
1

L1(θ) +
1

σ2
2

L2(θ) +
1

2
log σ2

1 +
1

2
log σ2

2 + (24)

B MORE EXPERIMENTAL DETAILS

B.1 MORE EXPERIMENTAL RESULTS ABOUT PERFORMANCE CURVES

Fig. 5 shows the average results and standard deviations of five runs in WCA and AAA on Split
CIFAR-100 and Split ImageNet-R. RAR w/ Ours achieves superior performance in both WCA and
FAA compared to RAR, aligning with the main results of AAA in Fig. 3.

（a）WCA on Split CIFAR-100 （b）WCA on Split ImageNet-R

（a）FAA on Split CIFAR-100 （b）FAA on Split ImageNet-R（c） （d）

Figure 5: The performance curves of WCA and FAA for RAR with LUNCH plugin.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 HYPERPARAMETER SETS

All hyperparameters for the sensitivity analysis in our proposed protocol were sampled from the
hyperparameter set in Table 6.

Table 6: The pre-defined set of hyperparameter values.
Hyperparameters Value sets

Learning rate decay [0.025, 0.05, 0.1, 0.2, 0.4]
Batch size [32, 64, 128, 256, 512]

Weight decay [0.0005, 0.001, 0.002, 0.004]

16

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	Hyperparameters in Continual Learning

	Learnable UNCertain Hyperparameters (LUNCH)
	Experiments
	Experimental Setups
	Experimental Results

	Discussion and Conclusion
	Reproducibility
	Uncertainty derivation
	Regression Tasks
	Classification Tasks

	More Experimental Details
	More experimental results about performance curves
	Hyperparameter sets

