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Abstract

Matching markets are often organized in a multi-stage and decentralized manner.
Moreover, participants in real-world matching markets often have uncertain prefer-
ences. This article develops a framework for learning optimal strategies in such
settings, based on a nonparametric statistical approach and variational analysis. We
propose an efficient algorithm, built upon concepts of “lower uncertainty bound”
and “calibrated decentralized matching,” for maximizing the participants’ expected
payoff. We show that there exists a welfare-versus-fairness trade-off that is charac-
terized by the uncertainty level of acceptance. Participants will strategically act in
favor of a low uncertainty level to reduce competition and increase expected payoff.
We prove that participants can be better off with multi-stage matching compared
to single-stage matching. We demonstrate aspects of the theoretical predictions
through simulations and an experiment using real data from college admissions.

1 Introduction

Two-sided matching markets have played an important role in microeconomics for several decades
[34]. Matching markets are used to allocate indivisible “goods” to multiple decision-making agents
based on mutual compatibility as assessed via sets of preferences. Such a market does not clear
through prices. For example, a student applicant cannot simply demand the college she prefers but
must also be chosen by the college. Matching markets are often organized in a decentralized way.
Each agent makes their decision independently of others’ decisions, and each agent can have multiple
stages of interactions with the other side of the market. College admissions with waiting lists and
academic job markets are notable examples. We refer to such markets as multi-stage decentralized
matching markets.

Uncertain preference is ubiquitous in multi-stage decentralized matching markets. For instance,
colleges competing for students lack information on students’ preferences. An admitted student
may receive offers from other colleges. She needs to accept one or reject all offers within a short
period during each stage of early, regular, and waiting-list admissions [5]. This admission process
provides little opportunity for colleges to learn students’ preferences, which are uncertain due to
competition among colleges and variability in the relative popularity of colleges over time. Such
uncertain preferences pose a challenge for colleges in their attempt to formulate an optimal admission
strategy. Consequently, colleges may end up enrolling too many or too few students relative to their
capacity or having enrolled students overly far from the attainable optimum in quality.

This paper addresses the following two research questions: (i) Given the uncertain preferences on
one side of the market (e.g., students), how can agents (e.g., colleges) learn an optimal strategy that
maximizes expected payoffs based on historical data? (ii) What are the fundamental implications
of multi-stage decentralized matching on the welfare and fairness for both sides of the market? We
study these two questions using nonparametric statistical methodology and variational analysis.
We propose a new algorithm for maximizing agents’ expected payoffs that is based on learning
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stage-wise optimal strategies and calibrating state parameters based on historical data. In particular,
our algorithm balances the opportunity cost and the penalty for exceeding the quota for calibration.
Based on the calibrated state, the algorithm efficiently learns an optimal strategy using statistical
machine learning methods. The statistical model not only provides a foundation for the algorithm
but it also provides an analytical framework for understanding the implications of the approach for
welfare and fairness. We show that agents will favor arms with realistic and stable opportunities for
matching instead of only targeting the top-ranked arms. Moreover, we show that agents are better off
with multi-stage decentralized matching as compared to single-stage decentralized matching.

Adopting literature from the bandit literature, our model has a set of agents, each with limited capacity,
and a set of arms. Each agent values two attributes of an arm: a “score" that is common to all agents
and a “fit" that is agent-specific and independent across agents. Agents rank arms according to their
scores and fits. An agent’s strategy consists of how many and which arms to pull at each stage. On
the other hand, there is no restriction on the preferences of arms. The model allows uncertainty in the
preferences, which is incorporated into the arms’ stage-wise acceptance probabilities. The acceptance
probability depends on the unknown state of the world and the competition of agents at each stage.
We consider a simple timeline for multi-stage markets. At each stage, agents simultaneously pull sets
of arms. Each arm accepts at most one of the agents that pulled it. The arms have to make irreversible
decisions at each stage without knowing which other agents might select them in later stages.

Our contributions There are two main contributions in this paper, which correspond to the two
questions above. Our first contribution is to propose a new algorithm that maximizes the agent’s
expected payoff in multi-stage decentralized matching markets. The algorithm sequentially learns
the optimal strategy at each stage and is built upon notions of lower uncertainty bound (LUB) and
calibrated decentralized matching (CDM). The key idea is to calibrate the state parameter in a
data-driven approach and take the opportunity cost and penalty for exceeding the quota into account.
The calibration can be performed under both average-case and worst-case metrics, depending on
whether we are maximizing the averaged or minimal expected payoff with respect to the uncertain
state. Given the calibrated state, the algorithm efficiently learns the optimal strategy using historical
data via statistical machine learning methods.

The second contribution is providing an analytical framework for understanding the welfare and
fairness implications. We show that agents favor arms with low uncertainty in levels of acceptance,
suggesting that agents prefer arms with a realistic and stable chance for matching instead of only
targeting the top-ranked arms. Such strategic behavior improves the agent’s expected payoff since
otherwise, by the time that arms have rejected that agent, the next-best arms that the agent has in mind
may already have accepted other agents. However, the strategic behavior leads to unfair outcomes for
arms because some arms are not pulled by their favorite agents even though these agents pull arms
ranked below them. We prove that agents are better off in multi-stage decentralized matching markets
compared to single-stage decentralized matching markets.

Related work This paper is related to three strands of literature. The first line is on matching
markets. Most theoretical work on matching markets traces back to [21] that formulated a model of
two-sided matching without side payments, and [37] that formulated a model of two-sided matching
with side payments. The model in [37] is also related to the maximum weighted bipartite matching
and its to stochastic and online generalizations [27]. Our goal is to design algorithms for maximizing
the agent’s welfare under the model of [21], given the uncertain preferences of arms. This is different
from the goal of finding a matching with the largest size in maximum matching literature [37, 27]. The
second strand of literature is on the decentralized interactions in matching markets [15–17, 30, 35]
and search literature [28, 31]. Our paper contributes to this strand of literature via its analysis of
multi-stage markets that allow uncertain preferences. We also study the economic implications for
strategic behaviors in multi-stage decentralized markets. The third related body of literature is on
algorithmic studies of college admissions. The celebrated work in [21] introduced the deferred
acceptance algorithm implemented under central clearinghouses. Recent works have been focused
on equilibrium admissions, students’ efforts, and students’ information acquisition costs in forming
preferences; see, [7, 11–13, 18, 20, 22, 24]. In contrast, we emphasize students’ multidimensional
abilities and multiple colleges competing for students. The students’ preferences are uncertain due to
the competition among colleges and variability in the relative popularity of colleges over time. We
develop a statistical model for learning the optimal strategies using historical data.
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2 Problem Formulation

Multi-stage decentralized matching markets Let P = {P1, P2, . . . , Pm} be a set of m agents.
Let A = {A1, A2, . . . , An} the a set of n arms. Here P and A are the sets of participants on the two
sides of the matching market. Each agent Pi has a quota qi � 1. We assume that q1+q2+· · ·+qm  n.
There are total of K � 1 stages of the matching process. At each stage, an agent who has not
used up its quota can pull available arms in the market. When multiple agents select the same
arm, only one agent can successfully pull the arm according to the arm’s preference. We denote
[m] ⌘ {1, . . . ,m}, [n] ⌘ {1, . . . , n}, and [K] ⌘ {1, . . . ,K}. Decentralized matching markets
require participants to make their decisions independently of others’ decisions [33, 35]. Notable
examples of such markets include college admissions in the United States, Korea, and Japan, where P
and A represent the sets of colleges and students, respectively [5, 6]. Our goal is to learn the agent’s
optimal strategy for maximizing the expected payoff. A strategy consists of deciding how many and
which arms to pull at each stage. Agent’s decision-making in decentralized markets faces incomplete
information about other agents’ decisions and arms’ preferences.

Participants’ preferences The agents’ preferences are based on the arms’ latent utilities. Consider
the following latent utility model:

Ui(Aj) = vj + eij , 8i 2 [m], j 2 [n], (1)

where vj 2 [0, 1] is arm Aj’s systematic score considered by all agents, and eij 2 [0, 1] is an
agent-specific idiosyncratic fit considered only by agent Pi, i 2 [m]. A utility model with a similar
separable structure has been widely used in the matching market literature [4, 13, 15].

The arms’ preferences have no restrictions and can involve uncertainty. From an agent’s perspective,
arms accept offers with probabilities dependent on opponents’ strategies and arms’ preferences. Let
the parameter si,k 2 [0, 1] be the state of the world [36] for agent Pi, such that the probability
that an arm Aj accepts Pi at stage k is ⇡i,k(si,k, vj), 8i 2 [m], j 2 [n], k 2 [K]. Since agents
compete for arms with a higher score, the acceptance probability ⇡i,k(si,k, vj) models the agents’
competition through the dependence on the score vj . Moreover, ⇡i,k(si,k, vj) incorporates the arm’s
uncertain preference into the state si,k. It is known that there exists a valid probability mass function
⇡i,k(si,k, vj) [15]. We assume that ⇡i,k(si,k, vj) is strictly increasing and continuous in si,k. Thus, a
larger value of the state si,k corresponds to the case that agent Pi is more popular. In practice, the
true state is unknown a priori to Pi and needs to be estimated from data. For instance, the yield in
college admissions is defined as the rate at which a college’s admitted students accept the offers.
However, the yield is unknown a priori to the college in the current year [13]. Colleges can only
estimate the distribution of the yield from historical data. In this paper, we study a nonparametric
model of ⇡i,k(·, ·) by assuming it belongs to a reproducing kernel Hilbert space (RKHS) [3, 39].
Later, in Section 3.2, we propose an algorithm for calibrating si,k and efficiently estimating ⇡i,k(·, ·)
using historical data. Given the latent utility Ui(Aj) and the acceptance probability ⇡i,k(si,k, vj),
agent Pi’s expected utility of pulling arm Aj at stage k is (vj + eij)⇡i,k(si,k, vj).

Timeline of the matching First, Nature draws a state such that arms’ preferences are realized.
Denote by s

⇤

i,k the true state for agent Pi at stage k. Next, arms display their interests to all agents.
For example, students apply to colleges in a given period. Under the assumption that students incur
negligible application costs, submitting applications to all colleges is the dominant strategy as students
lack information on how colleges evaluate their academic ability or personal essays [6, 13]. Next,
at each stage k 2 [K], agents simultaneously pull available arms that have not previously rejected
them. Each arm either accepts one of the agents that pulled it (if any) or rejects all. An arm exits
the market once it accepts an agent, and agents are allowed to exit the market at any time. The
arms act simultaneously at each stage. They cannot “hold" offers for accepting or rejecting at a later
stage. Hence, agents make “exploding" offers, and arms have to make irreversible decisions without
knowing what other offers are coming in later stages. Finally, this multi-stage matching process ends
when all agents have exited or when a pre-specified number of stages has been reached. If there
remain arms in the market when the matching has terminated, these arms are unmatched.

Agent’s expected payoff An agent’s goal is to maximize the expected payoff, which consists of
two parts: the expected utilities and the penalty for exceeding the quota. Let Ak be the set of arms
that are available in the market at stage k 2 [K]. Suppose that agent Pi pulls arms from the set
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Bi,k ✓ {Ak \ [lk�1Bi,l} at stage k, where A \ B denotes that set A minus set B. Let Ci,k ✓ Bi,k

be the set of arms that accept Pi at stage k. Then Ci,k is unknown until stage k+1, where k  K�1,
and Ci,K is unknown until the end of the matching process. Then Pi’s expected payoff at stage
k 2 [K] is lower bounded by

Ui,k[Bi,k] ⌘
X

j2Bi,k

(vj + eij)⇡i,k(s
⇤

i,k, vj)� �i max{Ni,k(Bi,k)� qi, 0}. (2)

Here Ni,k(Bi,k) ⌘
P

j2Bi,k
⇡i,k(s⇤i,k, vj) + card([lk�1Ci,l), and s

⇤

i,k is the true state for agent Pi

at stage k. We assume that the marginal penalty �i satisfies �i > maxj2A{vj + eij}, which implies
that the penalty is greater than arm’s latent utility. Since our model involves unknown strategies of the
opponents and uncertain arms’ preferences, we consider the optimal expected payoff in (2) instead of
the optimal realized payoff. Similar expected payoff have been studied in [13, 15].

3 Statistical Learning of the Optimal Strategy

We consider a variational formulation of the optimal strategy in Section 3.1 and propose a two-step
algorithm using a statistical machine learning method in Section 3.2.

3.1 Variational formulation

The problem of finding the optimal set of arms, and the corresponding optimal value Ūi, can be
described as follows:

Ūi = max
Bi,k✓{Ak\[lk�1Bi,l},k2[K]

X

k2[K]

Ui,k[Bi,k], (3)

where the expected payoff Ui,k is defined in (2). Finding and checking an optimal solution to (3)
is difficult. Suppose that an arm set [k2[K]B̄i,k is given and that it is claimed to be the optimal
solution to (3). It is clear that the problem of verifying that [k2[K]B̄i,k is optimal is computationally
intractable; because we need to individually check a significant fraction of the combinations of
card([k2[K]Ak) arms to determine which combination might give a larger expected payoff than the
given arm set [k2[K]B̄i,k. Since the number of combinations grows exponentially with the number
of arms, the complexity of any systematic algorithm becomes impractically large. Moreover, the
expected payoff Ui,k depends on the unknown true state s

⇤

i,k, which creates yet another layer of
difficulty for finding and checking an optimal solution.

Variational problem We introduce the following notation: �i,k(v) ⌘
1
2 [maxsi,k ⇡i,k(si,k, v) �

minsi,k ⇡i,k(si,k, v)], which measures the uncertainty of the acceptance probability with respect to
the unknown state. Using this notation, we show that a variational formulation gives a practical
methodology for finding the optimal strategy.
Theorem 1. There exist parameters ⌘i,k > 0, for k  K � 1, and ⌘i,K = 0 such that with high
probability, the minimizer of the following variational loss, 8k 2 [K],

L
†

i,k[Bi,k] =
X

j2Bi,k

(vj + eij) [⌘i,k�i,k(vj)� ⇡i,k(s
⇤

i,k, vj)] + �i max{Ni,k(Bi,k)� qi, 0}, (4)

gives a maximizer of the total expected payoff
PK

k=1 Ui,k[Bi,k]. Here the expected payoff Ui,k[Bi,k]
is given in (2), and Bi,k ✓ {Ak \ [lk�1Bi,l} for any k 2 [K].

We make four remarks regarding this theorem. First, the parameter ⌘i,k � 0 in (4) is induced by the
hierarchical structure in the sense that the arms available at subsequent stages are worse than the
current ones; see Appendix B.1. Hence, each agent prefers arms with a stable acceptance probability,
and for which ⌘i,k controls the penalty on the uncertainty. Second, ⌘i,k serves as a regularization
parameter in the optimization (4) for the uncertainty measure �i,k. In practice, we may choose a large
value of ⌘i,k if the agents’ competition is tense, as the arms available at subsequent stages are much
worse than the current ones. Third, we note that the multi-stage decentralized matching problem
is different from the multi-armed bandit problem [10, 25, 26]. A bandit problem is a sequential
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allocation problem in which an environment repeatedly provides an agent with a fixed set of arms.
Although similar in that it involves sequential decision making under limited information, the multi-
stage matching market involves multiple agents competing for arms. An arm exits the market once
it accepts an offer. The competition induces a hierarchical structure which makes the optimization
in (4) different from the optimization in multi-armed bandits. Finally, there exists a fundamental
difference between the multi-stage matching when K > 1 and the single-stage matching when
K = 1. In particular, when K > 1, the optimization (4) has a regularization term ⌘i,k�i,k(vj) > 0
on the uncertainty of the acceptance probability. In contrast, this term vanishes when K = 1 as
⌘i,K = 0. As a result, the optimal strategy in multi-stage matching in Section 3.2 and its economic
consequences in Section 4 are distinct from those in single-stage matching [15].

Greedy strategy Although the variational problem in (4) requires only stage-wise optimization
and can be solved sequentially for each k 2 [K], the finding and checking of an optimal solution is
still computationally intractable. This is because we need to individually check a significant fraction
of the combinations of card(Ak \ [lk�1Bi,l) arms at each stage k 2 [K] to determine the optimal
solution for (4). The number of combinations grows exponentially with card(Ak \ [lk�1Bi,l) for
k 2 [K].

We propose a greedy algorithm that gives an approximate solution to the optimization problem in
(4). Suppose the true state is fixed at s⇤i,k = si,k. We refer to (vj + eij)[⇡i,k(si,k, vj)� ⌘i,k�i,k(vj)]
as arm Aj’s variational expected utility. For each Aj 2 {Ak \ [lk�1Bi,l}, the greedy algorithm
computes the variational expected utility per unit of acceptance probability, that is,

r(Aj) ⌘ (vj + eij)[⇡i,k(si,k, vj)� ⌘i,k�i,k(vj)]/⇡i,k(si,k, vj).

Then the algorithm ranks arms according to its associated value of r so that r(1) � r(2) · · · �

r(card(Ak\[lk�1Bi,l)). Starting with the first arm corresponding to r(1) and continuing in order, the
algorithm selects the arm if its variational expected utility is larger than the expected penalty of
exceeding the quota. This algorithm terminates when it arrives at a cutoff value of r. Then only arms
whose associated r value are better than or equal to the cutoff are selected for agent Pi to pull at stage
k 2 [K]. We present the formalized cutoff r = r⇤ in Appendix B.2. Then using the greedy algorithm,
agent Pi pulls arms from the following set,

bBi,k(si,k) = {j |Aj 2 {Ak \ [lk�1Bi,l} satisfying r(Aj) � r⇤} . (5)

Theorem 2. Suppose the true state is fixed at s⇤i,k = si,k. The arm set bBi,k(si,k) in (5) is near-optimal
as its loss satisfies

min
Bi,k✓{Ak\[lk�1Bi,l}

L
†

i [Bi,k]  L
†

i [
bBi,k(si,k)]  min

Bi,k✓{Ak\[lk�1Bi,l}

L
†

i [Bi,k] + UE†
,

where the loss function L
†

i is defined in (4). The quantity UE†
� 0 and it equals 0 if there is a

continuum of arms and ⇡i,k(·, v) is continuous in v.

3.2 A two-step learning algorithm

Since the true state and the acceptance probability are unknown a priori in practice, the greedy
strategy in (5) is unknown a priori to the agent Pi. We propose a two-step algorithm to learning
the greedy strategy by using historical data and statistical machine learning methods. The two-step
algorithm is built upon the concepts of lower uncertainty bound (LUB) and calibrated decentralized
matching (CDM) [15]. In the first step, we compute an estimated expected utility of each arm and its
lower uncertainty bound. Many machine learning methods can be applied here for the modeling of
historical data. In the second step, we calibrate the state parameter in a data-driven approach that
takes the opportunity cost and penalty for exceeding the quota into account. Based on the calibrated
state, an agent selects arms with the largest lower uncertainty bounds of the expected utility. The key
idea is to select arms which have large expected utility or little uncertainty in the expected utility.

Step 1: Lower uncertainty bound Let At = {A
t
1, A

t
2, . . . , A

t
nt} be the arm set at t 2 [T ] ⌘

{1, . . . , T}. Let sti,k be the state of agent Pi at stage k and time t. The state s
t
i,k is unknown until

the next stage or the next time point, and the state s
t
i,k varies over time. For instance, the yield rate

of a college may change over the years. For any arm A
t
j 2 A

t, there are an associated pair of the
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score and fit values (vtj , e
t
ij) obtained from (1), where i 2 [m], j 2 [nt]. Let (vtj , etij) denote the

attributes of arm A
t
j . Define the set Bt

i,k = {j | Pi pulls arm A
t
j at time t and step k, 1  j  n

t
},

where card(Bt
i,k) = n

t
i,k  n

t. For any j 2 B
t
i,k, the outcome that Pi observes is whether an arm A

t
j

accepted Pi, that is, ytij = 1{At
j accepts Pi}. We want to estimate ⇡i,k based on the historical data,

D = {(sti,k, v
t
j , e

t
ij , y

t
ij) : i 2 [m]; j 2 [

K
k=1B

t
i,k; t 2 [T ]}.

A wide range of machine learning methods, e.g., reproducing kernel methods, random forests, or
neural networks, can be applied here to learn ⇡i,k (cf. [23]). For concreteness, we consider a penalized
estimator in RKHS. Let the log odds ratio fi,k(si,k, v) = log{⇡i,k(si,k, v)/[1�⇡i,k(si,k, v)]}, which
is assumed to reside in an RKHS HKi,k with the kernel Ki,k. Then we solve for bfi,k 2 HKi,k that
minimizes the objective function:

TX

t=1

1

nt
i,k

X

j2B
t
i,k

⇥
�y

t
ijfi,k(s

t
i,k, v

t
j) + log

�
1 + exp

�
fi,k(s

t
i,k, v

t
j)
��⇤

+ �i,kkfi,kk
2
HKi,k

,

where �i,k � 0 is a tuning parameter. Consider the tensor product structure of HKi,k , where
Ki,k((si, v), (s0i, v

0)) = K
s
i,k(si, s

0

i)K
v
i,k(v, v

0) with some kernel functions Ks
i,k and K

v
i,k [40]. It is

known that bfi,k is minimax rate-optimal and satisfies E[( bfi,k � fi,k)2]  cf [T (log T )�1]�2r/(2r+1)

for any i 2 [m] (cf. [15]). Here, cf > 0 is a constant independent of T , and r � 1 denotes the order
of smoothness. The value of learning from historical data is particularly significant when a new arm
is introduced into the problem. Let AT+1 = {A1, . . . , An} be the new arm set at time T + 1, where
Aj has attributes obtained from (1). Then the probability that Aj accepts Pi at stage k is estimated by
b⇡i,k(si,k, vj) = {1 + exp[� bfi,k(si,k, vj)]}�1. The expected utility of Aj is b⇡i,k(si,k, vj)(vj + eij)
for any j 2 [n]. Finally, we construct a lower uncertainty bound for ⇡i,k(si,k, vj) as,

b⇡L
i,k(si,k, vj) =

8
><

>:

b⇡i,k(si,k, vj)� ⌘i,k
b�i,k(vj),

if vj 2 [min{vtj | j 2 [
T
t=1B

t
i},max{vtj | j 2 [

T
t=1B

t
i}];

1, o.w.,
(6)

where b�i,k(vj) = 1
2 [maxsi,k b⇡i,k(si,k, vj)�minsi,k b⇡i,k(si,k, vj)]. The parameter ⌘i,k � 0 is defined

in (4). Note that (6) assigns probability one to arms with scores that agent Pi has never pulled. Hence
it encourages the exploration of previously untried arms. A lower uncertainty bound for the expected
utility is then given by b⇡L

i,k(si,k, vj)(vj + eij) for any j 2 [n].

The prediction of match compatibility is also possible in another direction that an arm Aj can also
learn how much an agent Pi may like itself by predicting the probability that Aj can be pulled by Pi.
The arms would make the decisions based on the prediction that if they have a realistic potential of
being pulled by a better agent. This feature also distinguishes the two-sided matching platform from
a one-sided recommendation engine that only considers which arms an agent may like, but not which
arms may also like the agent in return.

Step 2: Calibrated decentralized matching Since the true state s
⇤

i,k is unknown in practice,
a natural question is how to calibrate the state parameter si,k in (5). Consider the average-case
loss, Es⇤i,k

{L
†

i,k[
bBi,k(si,k)]}, where the loss L

†

i,k is defined in (4). Define the marginal set as
@ bBi,k(si,k) ⌘ lim�s!0+{

bBi,k(si,k � �s) \ bBi,k(si,k)}. Hence @ bBi,k(si,k) represents the change of
bBi,k(si,k) with a perturbation of si,k.

Theorem 3. The average-case loss Es⇤i,k
{L

†

i,k[
bBi,k(si,k)]} is minimized if si,k 2 (0, 1) is chosen as

the solution to

P(s⇤i,k 6= si,k)
X

j2@ bBi,k(si,k)

(vj + eij)Es⇤i,k

⇥
⇡i,k(s

⇤

i,k, vj)� ⌘i,k�i,k(vj) | s
⇤

i,k 6= si,k

⇤

= �i[1� Fs⇤i,k
(si,k)]

X

j2@ bBi,k(si,k)

Es⇤i,k
[⇡i,k(s

⇤

i,k, vj) | si,k < s
⇤

i,k  1],
(7)

where Fs⇤i,k
is the cumulative distribution function of s⇤i,k 2 [0, 1].
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Algorithm 1 The two-step algorithm for multi-stage decentralized matching

1: Inputs: Historical data for an agent Pi: {(sti,k, v
t
j , e

t
ij , y

t
ij) : j 2 B

t
i,k; t = 1, 2, . . . , T}; New

arm set AT+1 at time T + 1, where the arms have attributes {(vj , eij) : j 2 [n]}; Penalty �i for
exceeding the quota. Regularization parameter ⌘i,k � 0.

2: for stage k = 1, 2, . . . ,K do
3: Construct the lower uncertainty bound b⇡L

i,k(si,k, vj) by (6)
4: Estimate the distribution Fs⇤i,k

(·) by the kernel density method [38]
5: Calibrate the state si,k according to Theorem 3
6: Determine the arm set bBL

i,k(si,k) in (8)
7: Calculate the remaining quota: qi � card([lk�1Ci,l) and the available arms
8: end for
9: Outputs: The arm set bBL

i,k(si,k) for agent Pi at each stages.

The key idea of (7) is to balance the trade-off between opportunity cost and penalty for exceeding
the quota. If (7) has more than one solution, then si,k is chosen as the largest one. If the distribution
Fs⇤i,k

has discrete support, the objective in Theorem 3 needs to be changed as follows: choosing
the minimal si,k 2 [0, 1] such that the left side of (7) is not less than the right side of (7), where
the search of si,k starts from the maximum value in the support and decreases to the minimal value.
Moreover, instead of the average-case loss in Theorem 3, we can also perform the calibration under
the worst-case loss, which is discussed in Appendix B.3.

Summary of the two-step algorithm Using (6) and (7), we can obtain the cutoff estimate br⇤ and
calibrated state si,k, which suggests agent Pi to pull arms from the following set at stage k:

bBL
i,k(si,k) = {j |Aj 2 {A

T+1
k \ [lk�1Bi,l} satisfying r(Aj) � br⇤

 
. (8)

Here A
T+1
k is the set of arms that are available at stage k of time T + 1. Due to the minimax

optimality of bfi,k, we have the consistency result that bBL
i,k(si,k) !

bBi,k(si,k) as T ! 1, where the
set bBi,k(si,k) is defined in (5). We summarize the above two-step algorithm in Algorithm 1. We
also remark that although the negligible application costs is assumed in Section 2, Algorithm 1 is
applicable to non-negligible application costs, in which different agents (i.e., colleges) would have
different sets of available arms (i.e., student applicants).

4 Strategic Behavior and Economic Implications

Agents in a multi-stage decentralized matching markets cannot observe other agents’ quotas or
the choices of the arms that accept other agents. Each agent only observes the arms that are left
in the market at each stage. Theorem 1 implies that agents prefer arms with stable acceptance
probability. This preference lead to strategic behavior on the part of the agents as follows. Define
the uncertainty level as the uncertainty measure �i,k(v) in Section 3.1 relative to the acceptance
probability ⇡i,k(si,k, v). That is,

uncertainty level ⌘ �i,k(v)/⇡i,k(si,k, v). (9)

We show in Appendix B.2 that the cutoff r⇤ in (5) is strictly increasing in the uncertainty level for
any v 2 [0, 1] and k  K � 1, which implies that an agent favors arms with a low uncertainty
level. Hence, an agent’s strategic behavior in this market is to strategically select arms with a low
uncertainty level. We now study the implications of such strategic behavior on fairness and welfare.

No justified envy The fairness studied here is defined in terms of no justified envy [1, 8]. Specifi-
cally, an arm Aj has justified envy if, at a stage k 2 [K], Aj prefers an agent Pi0 to another agent
Pi that pulls Aj , even though Pi0 pulls an arm Aj0 which ranks below Aj according to the true
preference of Pi0 . We define a multi-stage matching procedure to be fair if there is no arm having
justified envy at any stage.
Proposition 1. The probability that an arm has justified envy is strictly increasing in the arm’s
uncertainty level defined in (9).
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The fairness issue has been noted in practical multi-stage matching markets. For example, candidates
in job markets may “fall through the cracks"—an employer that values a candidate highly perceives
that the candidate is unlikely to accept the job offer and hence declines to conduct an interview with
the candidate; hence, candidates may have justified envy [14]. Besides our ex-ante definition of no
justified envy, there are other choices of no justified envy, including ex-post definition, which could
lead to a different set of technical results [19].

Fairness vs. welfare trade-off We note that by Theorem 1, an agent has increased expected payoff
under ⌘i,k > 0 than under ⌘i,k = 0 for all stages k  K � 1. Define the number of arms with
justified envy to be the level of justified envy of the matching outcome. Then if the level of justified
envy is zero, the matching outcome is fair for arms.

Proposition 2. The level of justified envy is strictly increasing in ⌘i,k � 0.

This proposition implies a trade-off between welfare and fairness since both the level of justified
envy and welfare increase when changing ⌘i,k = 0 to ⌘i,k > 0. We give an example of two-stage
decentralized matching, that is, K = 2. Such two-stage matching is typical in college admissions,
which may include regular admissions and waiting-list admissions. By Theorems 1 and 2, agents in
the first stage would strategically pull arms with low uncertainty levels by taking ⌘i,1 > 0. In this
way, agents would reduce head-on competition. Next, agents in the second stage would act according
to their true preferences and pull available arms with top latent utilities by taking ⌘i,2 = 0. Theorem
1 shows that agents’ strategic behavior in the first stage increases the welfare compared to acting
according to their true preferences, whereas in the second stage, agents acting according to their true
preferences suffices. Proposition 2 shows that agents’ strategic behavior in the first stage results in
increased welfare, but at the cost of arms’ fairness.

Comparison with single-stage matching markets Different from multi-stage matching markets,
the optimal strategy in single-stage matching gives a fair outcome for arms [15]. However, we show
that agents are better off in multi-stage markets compared to single-stage markets.

Proposition 3. Agents have improved welfare under multi-stage decentralized matching than under
single-stage decentralized matching.

We provide an empirical example in Appendix A.4 to illustrate the gap between multi-stage welfare
and single-stage welfare.

Comparison with centralized matching markets Many centralized matching markets are im-
plemented by employing the celebrated deferred acceptance (DA) algorithm [21]; see examples
in [1, 32]. In the arm-proposing version of DA (e.g., student-proposing in college admissions),
agents and arms report their ordinal preferences to a clearinghouse, which simulates the following
multi-stage procedure. Every arm shows its interest to the most preferred agent that has not yet
rejected it at each stage. Every agent tentatively pulls the most preferred arms up to its quota limit
and permanently rejects the remaining arms that have indicated their interest to the agent. Once
the process terminates, each arm is assigned to the agent that has tentatively pulled it or otherwise
remains unmatched. The multi-stage decentralized matching is different from DA in practice, mainly
due to the acceptance is not tentative (i.e., non-deferrable) in decentralized matching. Moreover,
there is usually a restriction on the number of stages in decentralized matching due to the time cost at
each stage of multi-stage decentralized matching is not negligible. We show in a numerical example
of Appendix A.3 that some agents are better off in decentralized markets than centralized markets.
This finding gives a partial explanation of the prevalence of decentralized college admissions in many
countries.

5 Numerical Studies

In this section we demonstrate aspects of the theoretical predictions through a simulation and a real
data application in college admissions. We provide extensive numerical comparisons of Algorithm 1
with other methods in Appendix. We also give additional real data analysis in Appendix. The total
computing hour is within one hour in personal laptop with Intel Core i5.
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Simulated graduate school admissions Consider 50 graduate schools from three tiers of col-
leges: five top colleges {P1, . . . , P5}, ten good colleges {P6, . . . , P15}, and 35 other colleges
{P16, . . . , P50}. Each has the same quota q = 5 and penalty � = 2.5. The simulation generates
students’ preferences with ten different states {s1, . . . , s10} ⇢ [0, 1]. For any state, students’ pref-
erences for colleges from the same tier are random. However, students prefer top colleges to good
colleges, and the other colleges are the least favorite. The random preferences depend on the state
due to colleges’ uncertain reputation and popularity in the current year. We consider varying numbers
of students {250, 260, 270, 280, 290, 300}. For each size of students, there are ten students having
score vj chosen uniformly and i.i.d. from [0.9, 1] and 100 students having score vj i.i.d. uniformly
chosen from [0.7, 0.9). The rest of the students have score vj randomly chosen from [0, 0.7). The fits
eij for all college-student pairs are drawn uniformly and i.i.d. from [0, 1].
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Figure 1: Performance of the proposed Algorithm 1 (i.e., LUB-CDM) and the Simple Cutoff Strategies
with varying numbers of students. The results are averaged over 500 data replications. (a): College
P1 from tier 1. (b): College P6 from tier 2. (c): College P16 from tier 3.

We compare the college’s expected payoff achieved by the proposed Algorithm 1 with the simple
cutoff strategy, where the latter method has each college choosing the most preferred students up to
the remaining quota at each stage. The training data are simulated from colleges’ random proposing
by pulling a random number of arms according to the latent utilities. The training data consists
of 20 times of random proposing under each of the arms’ preference structures with the two-stage
admissions. This training data simulates the graduate school admissions over 20 years. The testing
data draws a random state from {s1, . . . , s10} which gives the corresponding arms’ preferences. Then
we apply Algorithm 1 with ⌘i,1 = 0.1, ⌘i,2 = 0 and �i = 2.5. Figure 1 reports the averaged payoffs
of three colleges P1, P6, and P16 over 500 data replications. Here colleges P1, P6, and P16 belong to
the three different tiers, respectively. In Figure 1, all colleges except P1 use Algorithm 1 while P1

uses one of the two methods: Algorithm 1 and the simple cutoff strategy. It is seen that Algorithm
1 gives the largest average payoffs for all of P1, P6 and P16. In particular, Algorithm 1 performs
significantly better for P6 and P16 compared to the simple cutoff strategy.

U.S. college admissions We study a public data on college admissions from the New York Times
“The Choice" blog. In this dataset, 37 U.S. colleges reported their admission yields and waiting list
offers for 2015–17 applicants without personally identifiable information. As we discussed in Section
2, a college’s yield is a proxy for the state si,k as it indicates the college’s popularity. The set of 37
colleges consists of liberal arts colleges, national universities, and other undergraduate programs.

We estimate the uncertainty level �i,k(v)⇡�1
i,k (si,k, v) defined in (9) and study colleges’ strategic

responses. While conclusive evidence on the individual students’ acceptance probability is difficult to
obtain, we estimate the college-wise uncertainty on the yield:

p
Var(si,k)s�1

i,k . Since the choice set
for admitted students differs across years, the yield’s uncertainty underestimates the uncertainty facing
a college. Figure 2 shows that colleges’ uncertainty levels are much smaller than one, which, together
with Theorem 1, implies that students face limited unfairness. In particular, the yield uncertainty is
robust to the size of admitted students; see the left plot of Figure 2. On the other hand, top-ranked
national universities may have higher uncertainty levels; see the right plot of Figure 2, where the
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Figure 2: Regression of uncertainty level on the size of admitted class and the ranking, respectively.
Two dashed curves are fitted using smoothing splines with the tuning parameter chosen by GCV.

outlier is the University of Chicago at the .19 uncertainty level. We verify the higher uncertainty
level for top universities using the waiting list data. We perform Fisher’s exact test for the rank data
on the difference of rates of accepted waiting list students to total enrolled students over 2015–16.
This statistic reflects the uncertainty on both the regular admission yield and the wait-listed students’
quality. We reject the null hypothesis that the uncertainty of acceptance is the same for all national
universities at the .05 significance level. The higher uncertainty for top-ranked national universities
may arise due to the intense competition. Those universities are better off by employing strategic
admission to reduce the enrollment uncertainty. This result implies that students are more likely to
experience unfairness when applying for top national universities.

6 Conclusion

This paper develops a nonparametric statistical model to learn optimal strategies in multi-stage
decentralized matching markets. The model provides insight into the interplay between learning
and economic objectives in decentralized matching markets. In the model, arms have uncertain
preferences that depend on the unknown state of the world and competition among the agents. We
propose an algorithm, built upon the concepts of lower uncertainty bound and calibrated decentralized
matching, for learning optimal strategies using historical data. We find that agents act strategically
in favor of arms with low uncertainty levels of acceptance. The strategic targeting improves an
agent’s welfare but leads to unfairness for arms. Our theory allows analytical comparisons between
single-stage decentralized markets and centralized markets.

For future directions, it is of interest to study algorithmic strategies when agents’ preferences show
complementarities or indifference. These settings have important applications, as firms may demand
workers that complement one another in terms of their skills and roles, or some applicants are
indistinguishable to a firm. We leave these questions for future work.

The problem of machine learning in economics has become increasingly important in many applica-
tion domains. In this work, we aim to deepen the understanding of decentralized matching markets
from a learning perspective and propose an efficient and scalable algorithm to solve optimal strategies.
We do not foresee any negative impact to society from our work.
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