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Abstract001

Embodied Question Answering (EQA)002
has primarily focused on indoor environ-003
ments, leaving the complexities of urban004
settings—spanning environment, action, and005
perception—largely unexplored. To bridge this006
gap, we introduce CityEQA, a new task where007
an embodied agent answers open-vocabulary008
questions through active exploration in009
dynamic city spaces. To support this task, we010
present CityEQA-EC, the first benchmark011
dataset featuring 1,412 human-annotated012
tasks across six categories, grounded in a013
realistic 3D urban simulator. Moreover, we014
propose Planner-Manager-Actor (PMA),015
a novel agent tailored for CityEQA. PMA016
enables long-horizon planning and hierarchical017
task execution: the Planner breaks down018
the question answering into sub-tasks, the019
Manager maintains an object-centric cognitive020
map for spatial reasoning during the process021
control, and the specialized Actors handle navi-022
gation, exploration, and collection sub-tasks.023
Experiments demonstrate that PMA achieves024
60.7% of human-level answering accuracy,025
significantly outperforming competitive base-026
lines. While promising, the performance gap027
compared to humans highlights the need for028
enhanced visual reasoning in CityEQA. This029
work paves the way for future advancements in030
urban spatial intelligence. Dataset and code031
are available at https://anonymous.4open.032
science/r/CityEQA-3027.033

1 Introduction034

Embodied Question Answering (EQA) (Das et al.,035

2018) represents a challenging task at the inter-036

section of natural language processing, computer037

vision, and robotics, where an embodied agent (e.g.,038

a UAV) must actively explore its environment to039

answer questions posed in natural language. While040

most existing research has concentrated on indoor041

EQA tasks (Gao et al., 2023; Peña-Narvaez et al.,042

2023) or traditional indoor/outdoor Visual Ques- 043

tion Answering (VQA) tasks (Sun et al., 2024), rel- 044

atively little attention has been dedicated to EQA 045

tasks in open-ended city space, as shown in Table 046

1. Nevertheless, extending EQA to city space is 047

crucial for numerous real-world applications, in- 048

cluding autonomous systems (Kalinowska et al., 049

2023), urban region profiling (Yan et al., 2024), 050

and city planning (Gao et al., 2024). 051

EQA tasks in city space (referred to as CityEQA) 052

introduce a unique set of challenges that fundamen- 053

tally differ from those encountered in indoor en- 054

vironments. Compared to indoor EQA, CityEQA 055

faces three main challenges: 056

1) Environmental complexity with ambiguous 057

objects: Urban environments are inherently more 058

complex, featuring a diverse range of objects and 059

structures, many of which are visually similar and 060

difficult to distinguish without detailed semantic 061

information (e.g., buildings, roads, and vehicles). 062

This complexity makes it challenging to construct 063

task instructions and specify the desired informa- 064

tion accurately (Ji et al., 2025; Xu et al., 2025). 065

2) Action complexity in cross-scale space: 066

The vast geographical scale of city space compels 067

agents to adopt larger movement amplitudes to en- 068

hance exploration efficiency. However, it might 069

risk overlooking detailed information within the 070

scene. Therefore, agents require cross-scale action 071

adjustment capabilities to effectively balance long- 072

distance path planning with fine-grained movement 073

and angular control. 074

3) Perception complexity with observation dy- 075

namics: Observations can vary greatly depending 076

on distance, orientation, and perspective. For ex- 077

ample, an object may look completely different up 078

close than it does from afar or from different angles. 079

These differences pose challenges for consistency 080

and can affect the accuracy of answer generation, 081

as embodied agents must adapt to the dynamic and 082

complex nature of urban environments. 083
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Invalid Question: What color is the car?

CityEQA Question:  There is a building to the 
south of you. To the east of the building is a shop
with a yellow signboard. Please tell me What 
color is the car parked in front of the shop?

Step 2
E building_1 is to my south…I find it!

Step 7
N I'm going to the east side of the building_1, 

because that's where the target might be.

I need to find the shop_1 … 
Oh, I find it!

Step 14
EC In front of the shop_1, Let 

me see what color is the 
car… The car is red!

Step 32

To answer the question, I have a plan…

Ok, I will take care of the whole 
process…

Figure 1: The typical workflow of the PMA to address City EQA tasks. There are two cars in this area, thus a valid
question must contain landmarks and spatial relationships to specify a car. Given the task, PMA will sequentially
complete multiple sub-tasks to find the answer.

Table 1: CityEQA-EC vs existing benchmarks.

Platform Reference Place Open Vocab Active

EQA-v1 House3D (Das et al., 2018) Indoor ✗ ✓

IQUAD AI2-THOR (Gordon et al., 2018) Indoor ✗ ✓

MP3D-EQA Matterport3D (Wijmans et al., 2019) Indoor ✗ ✓

MT-EQA House3D (Yu et al., 2019) Indoor ✗ ✓

K-EQA AI2-THOR (Tan et al., 2023) Indoor ✗ ✓

HM-EQA HM3D (Ren et al., 2024) Indoor ✗ ✓

S-EQA VirtualHome (Dorbala et al., 2024) Indoor ✗ ✓

NoisyEQA - (Wu et al., 2024) Indoor ✓ ✓

OpenEQA ScanNet/HM3D (Majumdar et al., 2024) Indoor ✓ ✓

City-3DQA - (Sun et al., 2024) Outdoor ✓ ✗

EarthVQA - (Wang et al., 2024) Outdoor ✓ ✗

Open3DVQA - (Zhan et al., 2025) Outdoor ✓ ✗

CityEQA-EC EmbodiedCity - Outdoor ✓ ✓

As an initial step toward CityEQA, we devel-084

oped CityEQA-EC, a benchmark dataset to eval-085

uate embodied agents’ performance on CityEQA086

tasks. The distinctions between this dataset and087

other EQA benchmarks are summarized in Table088

1. CityEQA-EC comprises six task types charac-089

terized by open-vocabulary questions. These tasks090

utilize urban landmarks and spatial relationships091

to delineate the expected answer, adhering to hu-092

man conventions while addressing object ambigu-093

ity. This design introduces significant complex-094

ity, turning CityEQA into long-horizon tasks that095

require embodied agents to identify and use land-096

marks, explore urban environments effectively, and097

refine observation to generate high-quality answers.098

To address CityEQA tasks, we introduce the099

Planner-Manager-Actor (PMA), a novel baseline100

agent powered by large models, designed to emu-101

late human-like rationale for solving long-horizon102

tasks in urban environments, as illustrated in Fig-103

ure 1. PMA employs a hierarchical framework to104

generate actions and derive answers. The Planner 105

module parses tasks and creates plans consisting 106

of three sub-task types: navigation, exploration, 107

and collection. The Manager oversees the exe- 108

cution of these plans while maintaining a global 109

object-centric cognitive map (Deng et al., 2024). 110

This 2D grid-based representation enables precise 111

object identification (retrieval) and efficient man- 112

agement of long-term landmark information. The 113

Actor generates specific actions based on the Man- 114

ager’s instructions through its components: Navi- 115

gator, Explorer, and Collector. Notably, the Collec- 116

tor integrates the Vision Language Model (VLM) 117

as its Vision Language Action (VLA) module to 118

refine observations and generate high-quality an- 119

swers. PMA’s performance is assessed against five 120

types of baselines, including humans. Results show 121

that humans perform best in CityEQA, while PMA 122

achieves 60.73% of human accuracy in answering 123

questions, highlighting both the challenge and va- 124

lidity of the proposed benchmarks. 125

In summary, this paper makes the following sig- 126

nificant contributions: 127

• To the best of our knowledge, we present the 128

first open-ended embodied question answering 129

benchmark for city space, namely CityEQA-EC. 130

• We propose a novel baseline model, PMA, which 131

is capable of solving long-horizon tasks for 132

CityEQA tasks with a human-like rationale. 133

• Experimental results demonstrate that our ap- 134

proach outperforms existing baselines in tack- 135

ling the CityEQA task. However, the gap with 136
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Object Recognitiona)

Existence Judgement Spatial Reasoning

Q: …Can I get coffee  
from the shop with 
brown awning?
A: Yes.

World Knowledge

Q: …Is it a sedan or an 
SUV parked in front of the 
NYC sign?                                                 
A: SUV  

Q: …How many 
cars are parked in 
the parking lot?
A: Eight

Q: …Is there any cars 
parked in front of the store 
with the yellow signboard?
A: Yes

Q: …What is the name 
of the store to the right 
of the yellow signboard? 
A: Cheesspod
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Attribute Recognition

Q: …What is the 
color of the Jeep?

A: Yellow

Figure 2: Task examples and dataset statistics of the CityEQA-EC.

human performance highlights opportunities for137

future research to improve visual thinking and138

reasoning in embodied agents for city spaces.139

2 CityEQA-EC Dataset140

In this section, we outline the formulation of the141

EQA task and describe the dataset collection pro-142

cess for CityEQA-EC. To address real-world de-143

mands, such as urban governance and public ser-144

vices, we draw upon previous research (Majumdar145

et al., 2024; Das et al., 2018) to define six distinct146

task types. Examples and statistics of the dataset147

are presented in Figure 2.148

2.1 Task Formulation149

An instance of the EQA task is defined by the 4-150

tuple: ξ = (e, q, y, p0), where e is the simulated or151

real 3D scene that agent can interact with, q is the152

question, and y is the ground truth answer. The p0153

denotes the agent’s initial pose, including 3D posi-154

tion and orientation. Given the instance ξ, the goal155

is for the embodied agent (e.g., drones) to com-156

plete the task by gathering the required information157

from e and generating the answer ŷ in response to158

q. Specifically, the agent starts at the initial pose p0159

and interacts with the scene e step by step. At each160

time step t, the agent can move to a specific pose pt,161

and obtain an observation ot = (Irgbt , Idt ) from the162

scene, where Irgbt ∈ RH×W×3 is the RGB image163

and Idt ∈ RH×W is the depth image. Based on164

these observations, the agent generates the answer165

ŷ. The key challenge is to produce a high-quality166

answer while minimizing the time steps required.167

2.2 Dataset Collection and Validation 168

To obtain a high-quality dataset, we employed Em- 169

bodiedCity (Gao et al., 2024), which is a highly 170

realistic 3D simulation platform based on the build- 171

ings, roads, and other elements in a real city. It 172

is implemented using Unreal Engine 4 (Sanders, 173

2016) and Microsoft AirSim plugins (Shah et al., 174

2018). The collection process is to determine 175

the 4-tuple elements ξ = (e, p0, q, y) of each in- 176

stance. Unlike indoor simulators with many differ- 177

ent scenes, EmbodiedCity is a coherent and exten- 178

sive scene. As a result, for all instances, their scene 179

e corresponds to EmbodiedCity. 180

The dataset collection process involves two steps, 181

completed by five human annotators. The first step 182

is raw Q&A generation, where raw questions and 183

answers are created. The second step is task supple- 184

mentation, which includes determining the agent’s 185

initial pose and and refining the question descrip- 186

tions accordingly. Once these steps are completed, 187

the dataset undergoes validation and filtering. More 188

details can be found in Appendix A.1. 189

Raw Q&A Generation We instructed human 190

annotators to explore the EmbodiedCity environ- 191

ment freely and generate question-answer pairs 192

based on their observations of RGB images. The 193

raw questions qr and answers y are presented as 194

open-vocabulary text. In addition to documenting 195

the question-answer pairs, annotators were also re- 196

quired to record the pose pobs from which the RGB 197

images were captured, along with the pose ptar of 198

the target object referenced in each question. These 199
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information can be leveraged for a comprehensive200

evaluation of the agent’s performance. After basic201

revision process, we have finally collected a total202

of 443 such instances, with each raw task instance203

denoted as ξr = (qr, y, pobs, ptar).204

Task Supplementation Building upon the raw205

task instances, we further established the agent’s206

initial pose and refined the questions accordingly.207

For each raw task, the initial pose p0 of the agent208

was set within a 200-meter range of the target ob-209

ject’s pose ptar. Given the complexity of urban210

environments, and to ensure that each expected211

answer is unique, we enriched the questions with212

descriptions based on landmarks. An example of213

this process is illustrated in Figure 1. For each raw214

task, we generated at least four distinct initial poses215

and transformed each raw question into at least four216

different inquiries. Ultimately, this process yielded217

a total of 2,212 task instances.218

Dataset Validation Each task instance created219

by human annotators was rigorously evaluated by220

two independent human reviewers. These review-221

ers were responsible for determining whether the222

questions posed were answerable and clear, as well223

as verifying the uniqueness and accuracy of the tar-224

get objects and their corresponding answers. Any225

task instance identified with issues was excluded.226

The final dataset comprises 1,412 task instances,227

with detailed statistics presented in Figure 2.228

3 PMA: A Hierarchical LLM Agent for229

CityEQA Task230

3.1 Overview231

An overview of the proposed PMA agent for232

CityEQA tasks is shown in Figure 3. The PMA233

comprises three major modules: Planner, Man-234

ager, and Actor, all powered by pre-trained foun-235

dation models. Planner is responsible for parsing236

the question q and formulating an executable plan237

before any actions are taken. Manager serves as the238

core module, receiving structured information from239

Planner and processing observations at each time240

step to maintain an object-centric cognitive map241

using an VLM. Additionally, through a process242

control module, Manager issues task instructions243

to Actor, which then utilizes various action gener-244

ators to execute the required responses. Once the245

plan is completed, Manager generates an answer246

based on its accumulated memory.247

3.2 Planner Module 248

The question descriptions in CityEQA tasks contain 249

extensive information, including several objects, 250

spatial relationships, and the information that needs 251

to be collected. To address the open-ended question 252

descriptions, we leveraged pre-trained LLMs and 253

designed a few-shot prompt that employs a three- 254

step Chain of Thought (CoT) reasoning (Wei et al., 255

2022) to parse the question and formulate a plan. 256

As illustrated in Figure 3, all objects and spatial 257

relationships mentioned in the question are first ex- 258

tracted. Simultaneously, the information necessary 259

to answer the question is identified as correspond- 260

ing requirements. Based on these requirements, a 261

plan is created consisting of three distinct types 262

of sub-tasks: (1) Collection sub-tasks gather the 263

requisite information, (2) Exploration sub-tasks 264

identify landmarks or target objects, and (3) Navi- 265

gation sub-tasks enable efficient access to specific 266

areas, thereby narrowing the exploration scope. To 267

ensure the plan is executable, we have developed 268

several strategies to guide the LLMs, with details 269

provided in Appendix A.2. 270

3.3 Manager Module 271

The Manager possesses the capability to oversee 272

and manage the gradual implementation of long- 273

term plans. This is made possible by its Memory 274

module and Map module, which facilitate the orga- 275

nized storage of observations and track execution 276

progress as the plan unfolds. 277

Object-Centric Cognitive Map The object- 278

centric cognitive map takes the initial pose of the 279

agent as the origin, uses 2D grids to discretize 280

the surrounding environment, and records the dis- 281

tribution of landmark objects based on grid in- 282

dices. The map at time step t-1 is represented as 283

Mt−1={obj_1, obj_2, ...}, where the obj_1 and 284

obj_2 are the object IDs corresponding to spe- 285

cific objects in the environment. At each time 286

step t, the agent leverages egocentric observa- 287

tions represented as ot = (Irgbt , Idt ) to construct 288

the added map mt to record the landmark ob- 289

jects appeared at current observation, denoting as 290

mt = Construct(ot, pt). To implement the func- 291

tionality of Construct(), we utilized the Ground- 292

SAM model (Bousselham et al., 2024) for ground- 293

ing and segmenting landmark objects from Irgbt . 294

By integrating pose information with depth data 295

from Idt , we can obtain a 3D point cloud repre- 296

sentation of these objects, subsequently projected 297
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Question • Step 1.  Parse the question

   OBJECT:  [ <drone>,  <landmark_1> ,  <target_1> ,  …]

   RELATIONSHIP:  [ <relat ionship _1>,  <relat ionship _2> ,  …]

• Step 2.  Propose Information Requirements

REQUIREMENT : [<req_1>,  < req_2> ,  …]

• Step 3. Formulate a Plan

PLAN: [Navigat ion( …) ,  Explorat ion( …) ,  Col lect ion( …),  …]

Manager

Planner

Action
Navigator

Explorer

Process 
Control

RGB Image

Depth Image

Pose

Observation

Collector

Actor

Object-centric Cognitive Map

Object_set = 

{

id_1: {type: …, grid:[…, …]},

id_2: {type: …, grid:[…, …]},

…

}

N

E

C

There is a building to the 
south of you. To the east of 
the building is a shop with a 
yellow signboard. Please tell 
me what color is the car 
parked in front of the shop?

Answer

The car is red. Answer Generation

Req_info Object_info

Memory

History

Figure 3: The overview of our proposed PMA agent.

onto 2D grids. After denoising and filtering, we298

obtained the finalized added map, denoted by mt.299

The added map mt will be fused with the Mt-1300

by merging the same object observed at different301

time steps, so objects are guaranteed to be unique302

in the map, denoting as Mt = Merge(mt,Mt−1).303

More details can be found in Appendix A.2.304

Other Modules Memory module records impor-305

tant information in the perceptual process, which306

mainly includes three aspects. Req_info records307

the collected information, and Object_info records308

object information, such as the object’s ID in the309

map. History records the completion progress of310

sub-tasks and the execution results of actions.311

Process Control is designed to determine the312

next sub-task to be executed based on the current313

progress of the plan. It also serves as the inter-314

face for interaction with the Actor. Once all sub-315

tasks in the plan have been completed, Process316

Control invokes the Answer Generation module to317

produce the final response. The Answer Genera-318

tion process is also driven by LLMs, employing a319

zero-shot prompt specifically crafted to generate320

answers based on the Req_info stored in memory.321

3.4 Actor Module322

To address the distinct objectives of the three types323

of sub-tasks, we introduce three specialized low-324

level action generators: Navigator, Explorer, and325

Collector. The Navigator and Explorer rely on326

distinct deterministic policies to generate actions327

based on the cognitive map. In contrast, the Col- 328

lector uses a VLA policy, which directly derives 329

actions from RGB images. These action models 330

serve as fundamental baselines and provide a foun- 331

dation for future research enhancements. 332

Navigator The navigation sub-task instructions 333

specify a landmark and a directional relationship. 334

For instance, Navigation(building_1, west) indi- 335

cates that building_1 serves as the landmark, with 336

navigation directed to the west of it, where the 337

target object is likely located. The Navigator iden- 338

tifies the nearest navigation point on the map by 339

analyzing the landmark’s distribution in conjunc- 340

tion with its spatial relationship. It then employs 341

the A* algorithm to plan a path from the agent’s 342

current position to this navigation point. Given the 343

potential incompleteness of recorded landmarks on 344

the map, a multi-step approach is adopted, restrict- 345

ing each step’s path length Lnav to 10 meters. The 346

navigation point is updated following each cogni- 347

tive map update. 348

Explorer The typical exploration sub-task is de- 349

scribed as Exploration(building_1, west, red_car), 350

which means the goal is to explore the west side 351

of building_1 to find a red car. The explorer uses 352

the Move and Look Around strategy due to the 353

complexity of outdoor environments, where re- 354

observing previously explored areas from differ- 355

ent angles can yield different results. The explo- 356

ration area is defined on the map based on land- 357

5



mark distribution and spatial relationships. A set358

of exploration points is generated within this area,359

maintaining a fixed distance of Lexp = 10 meters360

between them. At each point, the agent thoroughly361

observes its surroundings by looking in four direc-362

tions: front, back, left, and right. After completing363

observations at one point, the agent moves to the364

next closest point and continues until either the365

target object is found or all points are covered. A366

VLM is employed to determine whether the target367

appears in any given observation.368

Collector The collection sub-task instructions369

only include an information requirement. We pro-370

vide a VLM-driven Collector to gather the required371

information from observations. Additionally, the372

Collector can select an action from a predefined ac-373

tion set to fine-tune its observation view, enabling374

the collection of higher-quality information. More375

details of Collector is presented in Appendix A.2.376

4 Experiment377

4.1 Experiment setup378

Evaluation Metrics In CityEQA, we adopted379

three widely used metrics for evaluating EQA tasks380

(Das et al., 2018): Question Answering Accuracy381

(QAA) assesses the correctness of the answers by382

comparing them to the ground truth. The open-383

vocabulary nature of the CityEQA task poses chal-384

lenges for evaluation. Inspired by OpenEQA (Ma-385

jumdar et al., 2024), we employed an LLM as the386

judge to assign scores θ ∈ {1, 2, ..., 5} to the an-387

swers. For detailed information, please refer to the388

Appendix A.3. Navigation Error (NE) is measured389

by the distance between the agent’s final position390

and the target object ptar upon task completion,391

reflecting whether the agent successfully located392

and approached the target. Mean Time Step (MTS)393

is calculated as the average number of time steps394

required to complete all tasks, indicating the effi-395

ciency of the embodied agent’s action strategy.396

Implementation Details For each task, the397

object-centric cognitive map is constructed cen-398

tered around the agent’s initial pose, with a side399

length of 400 meters and a resolution of 1 meter.400

The dimension of the images obtained by the agent401

is 640×480, and we considered buildings as land-402

marks and accounted for four spatial relationships:403

north, south, east, and west. Additionally, the total404

number of time steps for navigation and exploration405

is limited to 50 steps and the maximum steps for406

collection is 10. GPT-4o and GPT-4 are the de- 407

fault VLM and LLM used in the PMA. Due to API 408

limitations, 200 tasks are randomly selected from 409

CityEQA-EC for the experiments. 410

Baselines We compare various models in a zero- 411

shot setting, including five categories of baselines 412

that are widely used in studies of EQA tasks. More 413

details of baselines can be found in Appendix A.3. 414

• Blind Agents (Majumdar et al., 2024) generate 415

answers based solely on the text of questions 416

without obtaining any visual inputs. It serves as 417

a reference for assessing the extent to which one 418

can rely purely on prior world knowledge and/or 419

random guessing. 420

• Socratic Agents (Jiang et al., 2025) use the 421

VLM (GPT-4o) to convert the visual input during 422

the exploration process into image captions, and 423

then uses LLMs to generate answers based on 424

these descriptions. 425

• VQA Agents bypass the active exploration pro- 426

cess and is directly provided with the RGB image 427

obtained from the pobs to answer the questions. 428

This approach aims to assess the visual percep- 429

tion and reasoning capabilities of VLMs in urban 430

environments, while eliminating the interference 431

of embodied actions. 432

• Exploring Agents (Ren et al., 2024) actively 433

acquire visual inputs using Random Exploration 434

(RE) and Frontier-Based Exploration (FBE), both 435

commonly used as indoor baselines. 436

• Human Agents are employed to establish 437

human-level performance metrics on our bench- 438

mark. We categorize human agents as H-VQA 439

or H-EQA, depending on whether they actively 440

acquire visual inputs. 441

4.2 Comparison with State-of-the-art 442

As shown in Table 2, human agents in both 443

VQA and EQA settings achieve the highest QAA 444

scores—4.87±0.72 for H-VQA and 4.94±0.21 445

for H-EQA—representing the upper bound for 446

answer quality. They also demonstrate excep- 447

tional efficiency, with the lowest navigation error 448

(38.72±40.17m) and completion steps (9.31±6.32), 449

setting the gold standard for both quality and effi- 450

ciency. 451

For automated methods, VQA agents like GPT- 452

4o reach QAA scores up to 4.37±1.35, approaching 453

human performance in answer quality, but lack ac- 454

tive exploration abilities, preventing assessment of 455
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Table 2: Performance of baselines and the proposed
PMA on the CityEQA tasks.

QAA (1-5) ↑ NE (m) ↓ MTS ↓
Blind Agents

GPT-4 1.90±1.64 - -
Qwen-2.5 2.34±1.88 - -
LLaMA-v3.1-8b 2.31±1.72 - -
DeepSeek-v3 2.03±1.41 - -

Socratic Agents (VLM/LLM)

GPT-4o/GPT-4 2.71±1.72 - -
GPT-4o/Qwen-2.5 2.77±1.49 - -
GPT-4o/LLaMA-v3.1-8b 2.70±1.71 - -
GPT-4o/DeepSeek-v3 2.82±1.53 - -

VQA Agents

GPT-4o 4.37±1.35 - -
Qwen-2.5 4.00±1.67 - -
LLaVA-v1.5-7b 3.81±2.01 - -

Exploring Agents

RE 2.19±2.64 73.31±45.43 46.41±10.41
FEB 2.31±2.54 86.92±53.71 39.31±32.17

Human Agents

H-VQA 4.87±0.72 - -
H-EQA 4.94±0.21 38.72±40.87 9.31±6.32

PMA (ours) 3.00±1.96 46.56±36.39 24.44±14.39

their overall task efficiency. Blind and Socratic456

agents perform significantly worse, with QAA be-457

tween 1.90 and 2.82, showing the shortcomings of458

methods without visual information or with only459

language-based reasoning.460

Exploring agents such as RE and FEB can han-461

dle active exploration and answering, but their462

QAA scores are low (2.19–2.31) and their NA and463

MTS are much higher (e.g., FEB: 86.92±53.71m,464

39.31±32.17), resulting in less effective execution.465

In contrast, PMA achieves a balanced performance:466

its QAA of 3.00±1.96 is higher than all explor-467

ing, blind, and Socratic agents, though still just468

60.73% that of H-EQA. Importantly, PMA’s navi-469

gation error (46.56±36.39m) and completion step470

(24.44±14.39) are dramatically less than traditional471

exploring agents, demonstrating notable practical472

gains.473

Overall, the comparison with baselines reveals474

that accurate visual inputs and reasoning are cru-475

cial for improving performance in CityEQA tasks.476

Additionally, obtaining accurate visual inputs relies477

on the efficient exploration using landmarks and478

spatial relationships in urban environments.479

4.3 Ablation Studies480

We conduct ablation studies on the Object-Centric481

Cognitive Map, navigator, and explorer modules482

in PMA, as shown in Table 3. Removing any of483

these modules leads to a significant decline in per-484

formance. Without the map, the agent becomes485

Table 3: Ablation results.

QAA (1-5) ↑ NE (m) ↓ MTS ↓
PMA w/o map 2.31±1.82 76.41±48.64 43.27±31.92
PMA w/o navigator 2.33±1.64 68.31±46.91 38.83±27.71
PMA w/o explorer 2.68±1.87 57.13±41.43 20.62±15.11
PMA 3.00±1.96 46.56±36.39 24.44±14.39

confused by similar landmarks in the environment 486

and fails to perform effective active perception, re- 487

sulting in the worst ablation outcome. Furthermore, 488

the absence of the navigator is more detrimental 489

than that of the explorer, further highlighting the 490

importance of landmark-based navigation in urban 491

environments. 492

4.4 Effectiveness of Collector Module 493

This section further investigates the effectiveness of 494

the collector module, specifically the impact of fine- 495

grained observation adjustments on performance. 496

We recorded the observation at each step (10 steps 497

in total) during the collection phase and calculated 498

relevant metrics, as shown in Figure 4. 499
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Figure 4: The performance of the Collector module at
different steps.

The Collector significantly affects outcomes: as 500

steps increase, NE decreases and QAA rises, help- 501

ing the agent approach targets and improve ac- 502

curacy. However, QAA plateaus, with Step 10 503

slightly lower than Step 9, possibly due to "over- 504

adjustment" degrading visual input quality. 505

We further analyzed the Collector’s taken ac- 506

tions, as detailed in Appendix A.3. The most 507

frequent action was KeepStill, reflecting effective 508

Navigation and Exploration sub-tasks that help the 509

agent successfully approach the target object. Addi- 510

tionally, the proportions of MoveForward, TurnLeft, 511

and TurnRight were also relatively high. Case anal- 512

ysis revealed that when a target object enters the 513

agent’s view, it tends to stop, possibly cause the 514

object too far away or only partially visible. In 515

7



such instances, the agent must either MoveForward516

to reduce distance or use TurnLeft and TurnRight517

to adjust its orientation for better observation and518

information gathering about the target object. How-519

ever, these adjustments remain limited, as illus-520

trated in two cases presented in Appendix A.3.521

5 Related Works522

5.1 QA and EQA523

Early research on using language to guide percep-524

tion from given input is known as Question An-525

swering (QA), such as Visual QA (VQA) (Ishmam526

et al., 2024) and 3DQA (Zhan et al., 2025). These527

QA tasks require agents to answer questions based528

solely on provided information (images or cloud529

points) (Chandrasegaran et al., 2024). In contrast,530

EQA involves agents actively exploring within an531

environment to seek visual inputs and enhance an-532

swer reliability (Das et al., 2018). Due to cost and533

hardware limitations, several virtual indoor simula-534

tors have been developed for EQA tasks (Liu et al.,535

2024a), resulting in indoor-focused datasets such as536

EQA-v1 (Das et al., 2018) and MT-EQA (Yu et al.,537

2019). However, although there are already several538

QA task datasets for outdoor environments, such539

as City-3DQA (Sun et al., 2024) and Open3DVQA540

(Zhan et al., 2025), EQA tasks have yet to be ex-541

tended to outdoor settings, as shown in Table 1.542

Recently, urban environment simulators like Em-543

bodiedCity (Gao et al., 2024), CityNav (Lee et al.,544

2024), and AerialVLN (Liu et al., 2023) have545

emerged, though they mainly focus on naviga-546

tion task. EmbodiedCity provides an urban EQA547

dataset, but it functions more like VQA and ig-548

nores the active perception. Moreover, due to the549

limited generalization capabilities of models at the550

time, only simple questions about basic attributes551

of objects were considered in these indoor datasets552

(Ren et al., 2024). However, with the continuous553

improvement in the understanding and reasoning554

capabilities of pre-trained VLMs for visual inputs,555

several open-ended EQA datasets have recently556

been released, such as Express-bench (Jiang et al.,557

2025) and OpenEQA (Majumdar et al., 2024). In558

comparison, this paper is the first to study the EQA559

tasks in city space and introduces the benchmark560

CityEQA-EC — a high-quality dataset featuring561

diverse, open-vocabulary questions.562

5.2 LLMs-driven Embodied Agents 563

The indoor EQA tasks mainly involve exploration 564

and answer generation sub-tasks (Ren et al., 2024). 565

In early work (Duan et al., 2022; Das et al., 2018; 566

Lu et al., 2019), the two sub-tasks are mainly ad- 567

dressed by building and fine-tuning various deep 568

neural networks. Recently, researchers attempt to 569

utilize pre-trained LLMs to solve EQA tasks with- 570

out any additional fine-tuning (Mu et al., 2024; 571

Xiang et al., 2024; Huang et al., 2024). Nav- 572

iLLM employed a scheme-based instruction that 573

flexibly casts various tasks into generation prob- 574

lems, including the EQA task (Zheng et al., 2024). 575

OpenEQA employed a Frontier-Based Exploration 576

(FBE) strategy for indoor environment exploration 577

and tested the performance of various VLMs on 578

the answer generation (Majumdar et al., 2024). Be- 579

sides, VLMs was also used to determine which 580

room to explore in indoor environment based their 581

commonsense reasoning capabilities (Yin et al., 582

2025). 583

These agents, however, cannot be directly used 584

for CityEQA tasks. Unlike indoor spaces, which 585

are confined and divided into rooms, city spaces are 586

vast and open. Agents in cities must navigate using 587

landmarks and spatial relationships for long-term 588

exploration (Liu et al., 2024b). The proposed PMA 589

addresses this by breaking down and planning for 590

long-horizon CityEQA tasks, using large models 591

across multiple modules to effectively handle open- 592

ended questions and unseen environments. 593

6 Conclusion 594

This paper pioneers the exploration of EQA tasks in 595

outdoor urban environments. First, we introduced 596

CityEQA-EC, the inaugural open-ended bench- 597

mark for CityEQA, comprising 1,412 tasks divided 598

into six distinct categories. Second, we proposed a 599

novel agent model (the PMA), designed to tackle 600

long-horizon tasks through hierarchical planning, 601

sensing, and execution. Experimental results vali- 602

dated the effectiveness of PMA, achieving 60.73% 603

accuracy relative to human performance and out- 604

performing traditional methods such as the FBE 605

Agent. Nevertheless, challenges remain, includ- 606

ing efficiency discrepancies (24.44 vs. 9.31 mean 607

time steps taken by humans) and limitations in vi- 608

sual thinking capabilities. Future research could 609

focus on enhancing PMA with self-reflection and 610

error-correction mechanisms to mitigate error ac- 611

cumulation that can arise in long-horizon tasks. 612
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7 Limitations613

The work primarily focuses on object-centric614

question-answering tasks, such as identifying spe-615

cific objects (e.g., buildings, vehicles) within city616

spaces. Further, while our approach is effective for617

tasks involving static physical entities, it overlooks618

the importance of social interactions and dynamic619

events, which are also critical in urban settings. For620

instance, questions related to dynamic events (e.g.,621

"Is there a traffic jam on Main Street?"), or envi-622

ronmental conditions (e.g., "Is the park crowded623

right now?") are not considered up to now. These624

types of questions require some different sets of625

reasoning capabilities, such as temporal reasoning,626

event detection, and social context understanding,627

which are not currently supported by the Planner-628

Manager-Actor (PMA) agent. Future work should629

expand the scope of CityEQA to include these non-630

entity-based tasks, further extending PMA and en-631

abling embodied agents to handle a broader range632

of urban spatial intelligence challenges.633

8 Ethics Statement634

In the data collection, we ensure there is no identi-635

fiable information about individuals (faces, license636

plates) or private properties. Thus, there is no ethi-637

cal concern.638
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A Appendix843

A.1 Dataset Collection and Validation844

The collection and validation process of the845

CityEQA-EC dataset is shown in Figure 5, includ-846

ing Initialization (Step 1), Raw Q&A Generation847

(Step 2 to 4), Task Supplementation (Step 5 to 6),848

and Dataset Validation (Step 7).849

In the initialization phase, human annotators850

were provided with comprehensive briefings and851

training, during which they were introduced to six852

distinct types of tasks. Subsequently, in the raw853

question-and-answer generation stage, annotators854

were randomly placed within the environment, al-855

lowing them to move freely and explore in order to856

generate questions and answers. Additionally, both857

the target pose ptar and observed pose pobs were858

recorded manually. Then, each question-answer859

pair was then reviewed by two additional annota-860

tors to identify specific issues: (1) Task Duplica-861

tion, indicating that a similar instance had already862

been collected; (2) Task Invalidity, meaning that863

there was no match between the question and an-864

swer based on the image. Any tasks identified as865

problematic were discarded. Furthermore, to en-866

sure the accuracy of pose annotations, we randomly867

selected 20% of raw task examples for two rounds868

of verification regarding their pose annotations.869

In the task supplementation phase human anno-870

tators were asked to add the initial pose for the task871

and expand the question. Buildings are primarily872

used as landmark objects to expand the question.873

Then, in the validation stage, each task was inde-874

pendently evaluated by two human reviewers. The875

details of the review policy are as follows:876

• Spelling and grammar check is conducted.877

• The target object must be uniquely identifiable878

based on descriptions of landmarks and spatial879

positions.880

• The distance between the initial pose and the881

target pose must be less than 200 meters.882

• The initial pose is located at a movable posi-883

tion rather than within an obstacle.884

Any tasks identified as problematic were re-885

moved. To ensure the annotation consistency in886

the data collection and validation, we conducted887

Kappa statistical analyses for the raw annotation888

data from both Question and Answer revision phase889

and the task validation phase. The Kappa coeffi- 890

cients κ for the two phases were 0.93 and 0.89, 891

respectively, indicating a high level of agreement 892

among annotators. 893

A.2 PMA Agent Details 894

Details of Planner We present the detailed CoT 895

used by the Planner here. 896

Figure 5: The collection and validation process of the
CityEQA dataset.

Step 1. All the objects mentioned in the ques- 897

tion are extracted, along with the spatial relation- 898

ships between them. Each object is assigned a 899

unique identifier to ensure distinction. Addition- 900

ally, the state of each object is marked as Unknown 901

as their locations remain uncertain. The agent itself 902

is treated as a special object, with its state marked 903

as Known, allowing it to serve as a unique initial 904

landmark. 905

Step 2. The information necessary to answer the 906

question is extracted as corresponding information 907

requirements. This step forms the purpose for the 908

following plan generation, as the entire perception 909

process is driven by the need to gather this critical 910

information. 911

Step 3. An executable plan is formulated by 912

combining three types predefined sub-tasks based 913

on information requirements. To guide LLMs rea- 914

soning and constructing an executable plan, we 915

establish a set of simple rules. First, collecting 916

information requires the Collection sub-task. How- 917

ever, before executing this sub-task, the states of 918

the relevant objects must be Known, meaning the 919

objects must already have been located in the en- 920

vironment. Second, the Exploration sub-task can 921

transition an object’s state from Unknown to Known. 922

Third, before performing Exploration, the Naviga- 923

tion sub-task can be employed to leverage a Known 924

object as the landmark, enabling the agent to effi- 925

ciently reach specific locations. This sub-task can 926
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Figure 6: The workflow of the construction of the added map.

reduce the exploration scope and enhances overall927

efficiency.928

Details of Object-Centric Cognitive Map The929

processing procedure of the function Construct()930

is illustrated in Figure 6. Firstly, the GroundSAM931

model is utilized to process the RGB image to932

obtain object segmentation masks and captions.933

Meanwhile, the pose and depth image are com-934

bined with the camera intrinsic parameters to ob-935

tain 3D point cloud data. Then, these two data936

are merged to obtain the object-centric 3D point937

cloud. Further, this data is projected onto a 2D grid,938

and the point cloud data outside the map range is939

filtered out to obtain the object-centric 2D grids.940

Finally, objects with repetitive grids are fused to941

obtain the object-centric added map.942

The purpose of the function Merge() is to fuse943

the added objects in added map into the global map.944

This is to ensure that the same object observed from945

different views is uniquely recorded and retrieved946

on the map. Therefore, for each added object, we947

first determine whether the distribution of the ob-948

ject overlaps or is adjacent to any object in the949

global map. If so, the two objects are merged; if950

not, the object is directly added to the global map.951

This paper adopts a simple and effective strategy952

to determine whether objects are adjacent: when at953

least one pair of grids in which the two objects are954

distributed are adjacent, they are considered to have955

an adjacent relationship. Additionally, it should be956

noted that multiple object merges may occur in957

the same round, so the merged object needs to be958

judged against all other objects in the global map959

in another round.960

Details of Collector The prompt provided for 961

MM-LLM in Collector is presented in Figure 7. 962

The Collector needs to complete two tasks in se- 963

quence. The first is the VQA task, which involves 964

answering the corresponding questions based on 965

the provided RGB image. The second is action 966

selection, which requires choosing an appropriate 967

action from a discrete set of actions to adjust the ob- 968

servation. The action set used in this study includes 969

{MoveForward, MoveBack, MoveLeft, MoveRight, 970

MoveUp, MoveDown, TurnLeft, TurnRight, Keep- 971

Still}. 972

A.3 Experiments Details 973

LLM Scoring For QAA, we designed an LLM- 974

based automated scoring method by referring to the 975

LLM-Match mechanism in OpenEQA (Majumdar 976

et al., 2024). We show the designed prompt for 977

LLM in Figure 8. 978

To investigate the validation of using the LLM 979

as judge, a double blind study is conducted. We 980

randomly sampled 100 answers from the results 981

including the answer generated by the 4 baselines 982

and PMA. Then 2 human evaluators are required to 983

provide their score of the answers while using the 984

prompt in Figure 8 as the task instruction. Since 985

the distribution of scores did not conform to a 986

normal distribution, Spearman’s correlation anal- 987

ysis was adopted. The results indicated a signifi- 988

cant positive correlation between the scores given 989

by human evaluators and those by LLM judges 990

(Rs = 0.85, p = 0.002). This suggests that us- 991

ing LLMs as judges can effectively evaluate open- 992

ended question-answering results and align well 993

with human judgments. 994
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You are an autonomous UAV (Unmanned Aerial Vehicle) tasked with 
performing visual perception operations in an urban environment. 
For each step, you will receive the following inputs:
-Image: An RGB image representing your current view.
-Question: A query requiring specific information to be extracted 
from the Image.
-Reference answer: An answer generated during the previous step.

Your mission consists of completing the following two tasks in 
sequence:

Task 1: Visual Q&A
Analyze the content of the current Image and provide a concise and 
meaningful answer to the Question.
Guidelines:
-If the image is insufficient to answer the Question, use reasoning 
and common sense to guess an answer.
-Your answer must be meaningful and informative. Avoid vague 
responses like "It is not legible/visible..." or "It is not possible to 
determine...".
-Provide a concise response without including explanations, 
reasoning, or thought processes.
-Compare your answer to the Reference Answer and select the better 
one as your final answer.
-Do not consider Task 2 until you have completed Task 1.

Task 2: Action Selection
Please, select one action from the following 9 actions
…

Guidelines:
-Analyze the drawback of the current image, such as occlusion, 
sidelong view, too far away, etc., and then select the appropriate 
action to adjust you view to obtain a better image.
-Think this step is your last step to adjust view, so choose the most 
urgent action.
-If the object mentioned in the question is on the edge of the image, 
you can use a TurnLeft or a TurnRight to make the object fully appear 
in the image.
-Keep the current view if the answer is clear and confident.
-Use TurnLeft or TurnRight to look around if the current image does 
not contain the answer.

Figure 7: The prompt used for Collector.

You are an AI assistant who will help me to evaluate the response 
given the question and the correct answer. To mark a response, you 
should output a single integer between 1 and 5 (including 1, 5).5 
means that the response perfectly matches the answer.1 means that 
the response is completely different from the answer, or the answer 
is meaningless, such as "It's not possible to determine...“

Output format:
{
    "mark": <integer>
}

Example 1:
Question: What's the name of the shop to the left of the supermarket?
Answer: Starbucks
Response: Starbuks
Output: 
{
    "mark": 4
}

Example 2:
   ……

Your Turn:
Question: {question}
Answer: {answer}
Response: {prediction}

Figure 8: The prompt used for LLM scoring.

0

0.5

1

1.5

2

2.5

3

3.5

41

43

45

47

49

51

53

55

Q
A
A

N
A

0 1 2 3 4 5

Object
Recognition

Attribute
Recognition

Counting

Existence
Judgement

Spatial
Reasoning

World
Knowledge

QAA

Figure 9: Categroy-level performance of the proposed
PMA.

Baselines Details This section provides addi- 995

tional details for the baselines. 996

• Blind Agents. We choose four State-of-the-Art 997

LLMs as blind agents, including GPT-4, Qwen- 998

2.5, LLaMA-v3.1-8b, and DeepSeek-v3. They 999

generate the answer purely based on the question, 1000

formulated as ŷ = LLMs(q). 1001

• Socratic Agents. We sample efficient trajecto- 1002

ries generated by H-EQA to simulate the obser- 1003

vations available to Socratic Agents. Specifically, 1004

we select the last five frames from each trajectory 1005

and use GPT-4o to generate image captions C. 1006

Different LLMs—including GPT-4, Qwen-2.5, 1007

LLaMA-v3.1-8b, and DeepSeek-v3—are then 1008

used to produce the final answers, formulated as 1009

ŷ = LLMs(q, C). 1010

• VQA Agents. They have direct access to im- 1011

ages containing the answers. We use GPT-4o, 1012

Qwen-2.5, and LLaVA-v1.5-7b as VLMs to gen- 1013

erate answers based on the images and questions, 1014

formulated as ŷ = VLMs(q, pobs). 1015

• Exploring Agents. They are guided by differ- 1016

ent exploration strategies such as RE and FBE, 1017

and generate the answer based on the visual in- 1018

put I at the termination position, formulated as 1019

ŷ = VLMs(q, I). RE randomly selects an action 1020

from {MoveForward, TurnLeft, TurnRight, Stop} 1021

at each step. The angles for TurnLeft and Turn- 1022

Right are set at 30°, and the distance for Move- 1023

Forward is 10 meters, consistent with the setting 1024

of the Navigator in the PMA. FBE identifies the 1025

frontiers between explored and unexplored re- 1026

gions, samples one as the navigation point, and 1027

employs the A* algorithm to find a path. The 1028

maximum path length is also limited as 10 me- 1029

ters. To avoid excessive exploration, GPT-4o is 1030

employed to decide when to stop. 1031
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Q: There is a building to the east of you. To the east of the building, there is a shop with a yellow  
     signboard. Please tell me What's the name of the shop with a yellow signboard? 
A: FamilyMart.

Explore building_1 Navigate to the east of building_1

Explore shop_1 Collect the name of shop_1

a) 
PMA

√ 

b) 
H-EQA

√ 

c) 
FBE

×

Figure 10: Examples of different EQA methods.

• Human Agents. At each step, H-EQA can only1032

access the RGB image of the current pose and1033

must choose one action from {MoveForward,1034

TurnLeft, TurnRight, Stop}. The angles for Turn-1035

Left and TurnRight are set at 30°. When selecting1036

MoveForward, the agent must also provide an1037

integer distance within 10 meters. When choos-1038

ing Stop, the H-EQA is required to provide the1039

answer.1040

Categroy-level performance of the PMA The1041

category-level performance of the proposed PMA1042

is shown in Figure 9, and it varies across task1043

types. PMA achieves the highest QAA on World1044

Knowledge tasks, likely because these tasks rely1045

partially on the LLM’s inherent knowledge and re-1046

quire minimal visual inputs. However, it performs1047

the worst on Object Recognition tasks due to their1048

open-ended answers and greater reliance on visual1049

inputs.1050

Comparison between different EQA methods 1051

We present the trajectories of PMA, H-EQA, and 1052

FBE to illustrate the different strategies adopted by 1053

them when searching for the answer to the same 1054

question, as shown in Figure 10. PMA finds the an- 1055

swer by decomposing the perception process into 1056

several sub-tasks and completing them step by step. 1057

H-EQA, with its stronger visual understanding and 1058

spatial reasoning abilities, can locate the answer in 1059

fewer steps. Moreover, H-EQA is often able to de- 1060

termine the answer from a greater distance, likely 1061

due to its extensive world knowledge, which allows 1062

it to fill in missing information even with incom- 1063

plete observations. In contrast, FBE, lacking the 1064

ability to utilize landmarks such as building_1 and 1065

shop_1, can only fully explore the environment, 1066

resulting in lower perception efficiency. This high- 1067

lights the differences between performing EQA 1068

tasks in urban spaces versus indoor environments. 1069
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Q: …What is the color of the car next to the red car? A: Black

H-VQA: Gray                                              H-EQA: Black  

Figure 11: Examples of the H-VQA and H-EQA.

Comparison among Human Agents In Figure1070

11, we provide a case to illustrate why the perfor-1071

mance of H-EQA is superior to that of HVQA. The1072

given question is "What is the color of the car next1073

to the red car?" The ground truth answer is "Black".1074

HVQA was provided with the RGB image on the1075

left for question answering. However, in this im-1076

age, due to the influence of outdoor lighting, the1077

originally black car appears gray, thus H-VQA pro-1078

vided an incorrect answer. In contrast, H-EQA can1079

actively adjust the observation pose, observing the1080

side of the car to reduce the impact of the lighting,1081

and thereby providing the correct answer.1082

Analysis of Collector’s action The statistics of1083

various actions taken by Collector are shown in1084

Figure 12. Besides, we present two cases to illus-1085

trate the effect of the collector. In the first case,1086

as shown in Figure 13 (a), since the shop with1087

black signboard was discovered too early in the1088

Exploration stage, the starting pose of the collector1089

was far from the target pose. Even after moving1090

10 steps promptly, it still failed to recognize the1091

text on the black signboard. In the second case, as1092

shown in Figure 13 (b), the yellow signboard that1093

the collector needed to recognize was on the left1094

side of the picture and seemed not to be fully dis-1095

played. At this time, the collector took the TurnLeft1096

action, thus observing the entire yellow signboard1097

and easily providing the correct answer.1098

56.83%

19.76% 10.00%

9.76%

2.20%

0.49% 0.49%

0.24%

0.24%3.66%

TurnRight

Others

KeepStill

MoveRight

Moveup MoveLeft

MoveBack

MoveDown

MoveForward

TurnLeft

Figure 12: The proportion of different actions taken by
Collector.

Q: …What is the name of the shop with black signboard? A: Exchange

PMA: I don’t know PMA: EXC

Q: …What is the name of the shop with yellow signboard? A: Pharmacy

a)

√

b)

×

Without Collector With Collector

PMA: Oharmacy PMA: Pharmacy

Without Collector With Collector

Figure 13: Examples of the Collection phase.
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