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Abstract
Recent studies of the computational power of
recurrent neural networks (RNNs) reveal a hier-
archy of RNN architectures, given real-time
and finite-precision assumptions. Here we
study auto-regressive Transformers with lin-
earised attention, a.k.a. linear Transformers
(LTs) or Fast Weight Programmers (FWPs).
LTs are special in the sense that they are equiv-
alent to RNN-like sequence processors with
a fixed-size state, while they can also be ex-
pressed as the now-popular self-attention net-
works. We show that many well-known results
for the standard Transformer directly transfer
to LTs/FWPs. Our formal language recogni-
tion experiments demonstrate how recently pro-
posed FWP extensions such as recurrent FWPs
and self-referential weight matrices success-
fully overcome certain limitations of the LT,
e.g., allowing for generalisation on the parity
problem. Our code is public.1

1 Introduction

Recurrent neural networks (RNNs) are Turing-
complete, given assumptions of infinite precision
and unbounded computation (Siegelmann and Son-
tag (1991) for the sigmoid activation; Chen et al.
(2018) for ReLU; see also an alternative setting of
Chung and Siegelmann (2021)). This insight has a
certain theoretical value, however, its implication
for practical, real-world scenarios is limited. In con-
trast, many recent works (e.g., Weiss et al. (2018b);
Suzgun et al. (2019a); Merrill et al. (2020); Bhat-
tamishra et al. (2020a)) strive to obtain results of
practical relevance on the computational power of
sequence-processing neural networks (NNs). Typi-
cal assumptions of such studies are finite precision
and “input-bound” computation (i.e., the number of
computational steps is determined by and limited to
the number of input tokens; a.k.a. real-time assump-
tion), essentially reflecting the reality of practical

† Work done at IDSIA.
1https://github.com/IDSIA/fwp-formal-lang

RNNs. Although such analyses typically further as-
sume models to be saturated (Merrill et al. (2020);
which is not always the case for real-world RNNs),
they provide useful results and insights that can
be empirically confirmed, e.g., on formal language
recognition tasks. For example, the long short-
term memory (LSTM; Hochreiter and Schmidhu-
ber (1997)) can learn to solve and generalise on
certain counter-language tasks (Gers and Schmid-
huber (2001); Schmidhuber et al. (2002); Weiss
et al. (2018b); Suzgun et al. (2019a)), unlike its
simplified versions such as the gated recurrent unit
(GRU; Cho et al. (2014); Gers et al. (2000)), the
Quasi-RNN (Bradbury et al. (2017); see Merrill
et al. (2020)) or the simple sigmoid RNN (Elman,
1988). Tools from the theory of computation (see,
e.g., Sipser (1996)) provide a formalism to com-
pare the practical computational power of these
NN architectures, allowing for categorisation into
a hierarchy (Merrill et al. (2020); see Appendix A
for further references).

More recent works (Bhattamishra et al., 2020a,b;
Ebrahimi et al., 2020; Yao et al., 2021) derive
results for the now-popular Transformer (Vaswani
et al., 2017). For example, Bhattamishra et al.
(2020a) show (we review in Sec. 3) that Transform-
ers can learn to solve and generalise on certain
counter-language tasks (including the context-
sensitive anbncn), while they fail to learn certain
simple regular languages (many examples of which
are non-star-free languages) including the parity
task (see also Chiang and Cholak (2022)). For
further theoretical studies, we refer to, e.g., Hahn
(2020); Merrill et al. (2022); Hao et al. (2022).

Here we focus on auto-regressive Transformers
with linearised attention a.k.a. linear Transformers
(LTs; Katharopoulos et al. (2020); Choromanski
et al. (2021); Peng et al. (2021)) or Fast Weight
Programmers (FWPs; Schmidhuber (1991, 1992a);
Schlag et al. (2021); Irie et al. (2021)). LTs are
special, as they can be equivalently expressed as
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an RNN-like sequence processor with a constant-
size state (the FWPs from the 1990s; Schmidhuber
(1991, 1993)), while they are originally formulated
as self-attention networks. This property is interest-
ing for discussions of computational power, since
it removes one of the classic distinctions between
Transformers and RNNs: RNNs are “automata-like”
constant-size stateful models, while Transformers
are not. Building upon Weiss et al. (2018b); Bhat-
tamishra et al. (2020a); Merrill et al. (2020), we
show that many existing results on Transformers
directly transfer to LTs/FWPs. Also, prior work
proposes several extensions to LTs inspired by its
RNN-like form, including recurrence (Irie et al.,
2021) and self-reference (Irie et al., 2022c), show-
ing their practical benefits on actual real-world
tasks (e.g., reinforcement learning in game envi-
ronments). Here we demonstrate how both recur-
rent and self-referential extensions enhance LTs’
practical computational power on formal language
recognition tasks.

2 Background

Here we briefly review LTs and FWPs. Let din, dout,
dkey, t be positive integers, and ⊗ denote outer
product. An FWP (Schmidhuber, 1991, 1992a)
is a sequence-processing NN that, at each time
step t, transforms an input xt ∈ Rdin to an output
yt ∈ Rdout as follows:

qt,kt,vt = W slowxt (1)

Wt = Wt−1 + vt ⊗ ϕ(kt) (2)

yt = Wtϕ(qt) (3)

where kt, qt ∈ Rdkey , vt ∈ Rdout , and W slow ∈
R(2dkey+dout)×din is a weight matrix (the “slow”
weights), and ϕ is an activation function. The “fast”
weight matrix Wt ∈ Rdout×dkey is initially set to
0, i.e., W0 = 0. This can be viewed as a system
of two NNs where one net (the slow net; Eq. 1)
learns to “program” the fast net (Eq. 3) by gen-
erating its weight changes (Eq. 2). This xt-to-yt

transformation can be also expressed as linear at-
tention using ϕ(kt),vt, ϕ(qt) as key, value, query
vectors (Katharopoulos et al. (2020); Schlag et al.
(2021); Ba et al. (2016); see also our brief review in
Appendix B). To be more specific, such FWPs cor-
respond to unnormalised LTs. LTs with normalised
linear attention (NLTs; Katharopoulos et al. (2020);
Choromanski et al. (2021); Peng et al. (2021)) use

the following additional computation:

zt = zt−1 + ϕ(kt) (4)

yt =
1

zt · ϕ(qt)
Wtϕ(qt) (5)

where zt ∈ Rdkey with z0 = 0, and · denotes dot
product, i.e., zt · ϕ(qt) ∈ R, replacing Eq. 3. In
practice, this normalisation can be removed with-
out loss of performance (Schlag et al., 2021; Irie
et al., 2021), which is convenient as no extra vector
zt needs to be stored. All standard Transformer
components including feedforward blocks, residual
connections, and layer-norm are used in LTs.

This equivalence has inspired a series of
extensions to Transformers. Here we highlight
three such examples: delta-rule, recurrence, and
self-reference, which we study in Sec. 4.

Delta-rule. Schlag et al. (2021) replace the
purely additive update rule of Eq. 2 by the clas-
sic delta-rule for error correction (Widrow and
Hoff, 1960); Eq. 8 below. The slow weight ma-
trix in the resulting model, called DeltaNet, is
Wslow ∈ R(2∗dkey+dout+1)×din that also generates
a dynamic learning rate βt ∈ R (to which we apply
the sigmoid function σ). With the delta rule, ϕ’s
output elements need to be positive and sum up to
one (e.g., we use softmax) for stability.

qt,kt,vt, βt = W slowxt (6)

v̄t = Wt−1ϕ(kt) (7)

Wt = Wt−1 + σ(βt)(vt − v̄t)⊗ ϕ(kt) (8)

Note that this introduces an extra dependency to
LTs; the update term σ(βt)(vt − v̄t) ⊗ ϕ(kt) in
Eq. 8 is a function of Wt−1 unlike in Eq. 2. We’ll
empirically illustrate how this modification intro-
duces an explicit forget mechanism to the LT, using
the “reset Dyck-1” language (Sec. 4).

Recurrence. One trivial extension to the
LTs/DeltaNet above is to add “proper recurrent
connections” by feeding back the output yt−1

from the previous step t − 1 as an input at step t
(for other recurrent extensions we refer to Irie et al.
(2021)). The resulting Recurrent DeltaNet (Irie
et al., 2021) (or Recurrent Delta) is obtained by
replacing Eq. 6 in the DeltaNet by:

qt,kt,vt, βt = W slow[xt, tanh(yt−1)] (9)

where Wslow ∈ R(2∗dkey+dout+1)×(din+dout), and
[xt, tanh(yt−1)] ∈ Rdin+dout denotes concatena-
tion of the two vectors.



Self-Reference. Another extension of the
DeltaNet above is the modern self-referential
weight matrix (SRWM). Motivated by recursive
self-improvement (Good, 1965; Schmidhuber,
1987) and the original SRWM (Schmidhuber,
1992b), Irie et al. (2022c) extend the FWP that
generates weight changes for another NN to obtain
an NN that modifies itself. At each time step t,
an SRWM Wt−1 ∈ R(dout+2∗din+1)×din transforms
an input xt ∈ Rdin to an output yt ∈ Rdout , and
updates itself to Wt as follows:

yt,kt, qt, βt = Wt−1xt (10)

vt = Wt−1ϕ(qt); v̄t = Wt−1ϕ(kt) (11)

Wt = Wt−1 + σ(βt)(vt − v̄t)⊗ ϕ(kt) (12)

where vt, v̄t ∈ R(dout+2∗din+1), qt,kt ∈ Rdin and
βt ∈ R. The initial values W0 are the only train-
able parameters of this layer. Note that it is straight-
forward to further extend this model with recur-
rence as in Eq. 9. Here we focus on this specific
self-referential extension.

3 Expressive Power of LTs

Here we revisit several existing results on the prac-
tical computational power of Transformers for nor-
malised LTs (NLTs; Eqs. 1-2;4-5). Results in
this section directly build upon prior work (Bhat-
tamishra et al., 2020a; Merrill et al., 2020). As
we’ll see, some of the results are not obvious from
Eqs. 1-2;4-5. However, their connection to Trans-
formers allows us to trivially derive them. While
one can come up with certain custom positional
encoding methods that empower Transformers to
specifically recognise certain languages, here we
focus on generic Transformers without positional
encoding (Bhattamishra et al., 2020a; Irie et al.,
2019; Tsai et al., 2019).

We start by noticing that the hidden “state” up-
date of NLTs (Eq. 2) is element-wise. This is remi-
niscent of simplified LSTMs such as Quasi-RNNs
(Bradbury et al., 2017), which are known to be
limited (Merrill et al., 2020): in particular, Quasi-
RNNs are rationally recurrent (Peng et al. (2018)).
However, we have the following result:

Proposition 3.1 (“Rational Recurrence”). NLTs
are not rationally recurrent.

Proof. Merrill et al. (2020)’s proof by construction
for their Theorem 15 remains valid for NLTs.

It should be noted that the actual output of NLTs
is yt (Eq. 5), not Wt. In fact, NLTs can recognise
certain counter languages, inheriting the properties
of the Transformer:

Proposition 3.2 (“Simple Counter Languages”).
NLTs can recognise certain counter languages.

Proof. Bhattamishra et al. (2020a)’s proof for their
Proposition 4.1 is valid for NLTs: NLTs can recog-
nise Shuffle-Dyck languages.

However, similar to Transformers, NLTs are fun-
damentally limited:

Proposition 3.3 (“Regular Languages”). NLTs can
not recognise certain regular languages.

Proof. Bhattamishra et al. (2020a)’s proof for their
Lemma C.4 remains valid for NLTs; NLTs can not
recognise the regular language (aa)∗.

Finally, we comment on the “state complexity”
as defined by Merrill et al. (2020):

Proposition 3.4 (“State complexity”). The state
complexity of a single-layer NLT is O(log(n))
(same as the regular self-attention and LSTM).

Proof. Merrill et al. (2020)’s proof for Theorem 16
remains valid for normalised linear attention.

Given the original proofs by Bhattamishra et al.
(2020a) and Merrill et al. (2020), the proofs above
are straightforward for normalised LTs. For further
discussions on these proofs and their extension for
unnormalised LTs (Eqs. 1-3), we refer to Appendix
C.1. In sum, these statements on the expressiveness
of Transformers remain valid for both normalised
and unnormalised LTs.

4 Experiments

Here we provide several empirical results on
capabilities and limits of unnormalised LTs/FWPs
and their extensions, using formal languages.

4.1 Tasks

We evaluate LT models on formal language
recognition tasks using several non-star-free
regular languages—parity, (aa)∗, (abab)∗—, and
counter languages—anbn, anbncn, Shuffle-2,
and reset Dyck-1. This choice is guided by
Bhattamishra et al. (2020a)’s results on the
standard Transformers to specifically evaluate LTs’
capabilities and limits. Following prior work (Gers
and Schmidhuber, 2001), for anbn and anbncn,



Table 1: Accuracies of various models on the formal language recognition tasks.

Non-Star-Free Regular Counter

Parity (aa)∗ (abab)∗ anbn anbncn Shuffle-2

Model Bin0 Bin1 Bin0 Bin1 Bin0 Bin1 Bin0 Bin1 Bin0 Bin1 Bin0 Bin1

LSTM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
e-LSTM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.0 100.0 22.0 100.0 85.7
Transformer 47.1 0.1 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0

Linear 77.9 0.2 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0
DeltaNet 97.3 11.8 0.0 0.0 0.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0
Recurrent Delta 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SRWM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

we define the language recognition task as the
next character prediction task. For example, for
the context-free language anbn, if the input to the
model is aaabbb, the model has to output NNNbbS
where N denotes “cannot-predict-yet” token, and
S denotes the sequence-end token. Appendix C.2
contains corresponding descriptions for other tasks.
We train models on positive examples of up to a cer-
tain length, and validate them on positive examples
with longer lengths. We denote the corresponding
data splits as “Bin0” (sequences with lengths seen
during training) and “Bin1” (longer sequences).

For evaluation, for each position of the sequence,
we define the model prediction as the token that is
the most likely according to the model. We re-
port accuracy on the sequence level; we count
a sequence as correctly recognised only if the
model prediction is correct for all tokens in the
sequence. Further experimental details (e.g., hyper-
parameters) can be found in Appendix C.2.

4.2 Results

Main Results. Table 1 shows our main results.
The top part of the table shows three reference
baselines: LSTM, Transformer, and an LSTM with
element-wise recurrence and tied input-forget gate
(denoted as e-LSTM; see details in Appendix C.3).
Table 1/Left shows the results for the regular lan-
guage tasks: parity, (aa)∗, and (abab)∗, on which
Bhattamishra et al. (2020a) report Transformers
to fail. Inheriting their properties, the standard LT
fail on all these tasks (recall, however, as stated by
Bhattamishra et al. (2020a): non-star-free regular
languages are not the strict set of regular languages
on which Transformers fail). We also confirm that
the delta rule is not enough to help LTs succeed in
these tasks. In contrast, both the recurrent (Recur-
rent Delta) and self-referential (SRWM) extensions
successfully solve and generalise on these tasks.

Table 2: Accuracies of single-layer models.

Dyck-1 Reset Dyck-1

Model Bin0 Bin1 Bin0 Bin1

Linear 100.0 100.0 44.5 41.1
DeltaNet 100.0 100.0 100.0 100.0
Recurrent Delta 100.0 100.0 100.0 100.0
SRWM 100.0 100.0 100.0 100.0

We also confirm that all LT variants can learn
representative counter languages that the original
Transformer can learn (Table 1/Right). One inter-
esting empirical trend (not reflected in Table 1)
is that the base Transformer and LT tend to more
easily find solutions that generalise. For DeltaNet,
Recurrent Delta and SRWM, many configurations
achieve 100% accuracy on Bin0, without achieving
exactly 100% on Bin1.

Reset Dyck-1. The main experiment above does
not emphasize the benefits of the delta-rule which
by itself cannot help LTs to recognise parity, (aa)∗

and (abab)∗. However, the delta rule is typically
reported to be crucial across many practical tasks
(including reinforcement learning in game environ-
ments (Irie et al., 2021), image generation (Irie
and Schmidhuber, 2023), or long time-series clas-
sification (Irie et al., 2022b)). Here we use reset
Dyck-1 to illustrate its benefits. Bhattamishra et al.
(2020a) prove that a one-layer self-attention net-
work cannot recognise reset Dyck-1 as it has no
mechanism to rewrite memory. As shown in Table
2, the delta-rule by itself allows LTs to recognise
this language.

5 Outlook: Self-Modifying Automata

Here we discuss a potentially interesting perspec-
tive for further studying SRWM models. Self-
Modifying Automata (SMAs) and Self-Modifying



Finite Automata (SMFAs; Rubinstein and Shutt
(1993, 1995); Shutt (1995); Wang et al. (1999))2 are
“FAs” with capabilities to modify their transition
function at runtime. Despite its name containing
“finite automata,” they are provably computation-
ally more powerful than FAs: the least restricted
versions thereof are Turing-complete, certain re-
stricted ones can still recognise certain context-
sensitive languages (meta-linear languages). It
may be interesting to connect SMFAs with SR-
WMs in future work. For example, we may try to
extract SMFAs from SRWMs trained on certain
meta-linear/counter languages.

6 Conclusion

We discuss the computational power of Trans-
formers with linearised attention in the context
of formal languages. We show that such linear
Transformers (LTs) a.k.a. Fast Weight Program-
mers (FWPs) inherit several capabilities and
limitations of Transformers. We demonstrate
that their recurrent and self-referential extensions
successfully overcome some of those limitations.
We hope this work will inspire the development
of formally more powerful Transformer models.

Limitations

Our study follows prior work on the computational
power of RNNs, in particular, Bhattamishra et al.
(2020a)’s results on Transformers, and Merrill et al.
(2020)’s discussion of state-complexity and ratio-
nal recurrence. Naturally, this is not an exhaus-
tive study of LT properties, and we cannot defini-
tively compare the expressivity of LTs to the one
of standard Transformers solely based on what is
presented here. Also, while it is rather obvious that
the recurrent extension enhances the computational
power of LTs, future work should provide more
insights on the power of self-reference; see also
our outlook Sec. 5 on self-modifying automata. A
comparison of such models to memory-augmented
RNNs (Graves et al., 2016; Suzgun et al., 2019b;
Delétang et al., 2023) is also left for future work.

We focus on eight tasks by Bhattamishra et al.
(2020a) to illustrate the capabilities and limitations
of Transformers (and thus, those of LTs). Future
work will extend experimental results to more

2These SMFAs are different from another model with the
same name by Moulin (1992, 1999, 2006) which is not a
formal model of computation, unlike SMFAs.

diverse tasks, e.g., those presented in Delétang
et al. (2023).
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A RNNs and Theory of Computation

RNNs have been related to Finite Automata (FAs)
for many decades (McCulloch and Pitts, 1943;
Kleene, 1956; Cleeremans et al., 1989; Siegelmann,
1996; Weiss et al., 2019; Korsky, 2019). Many
works explore the extraction of FAs from trained
RNNs (Giles et al., 1992; Das and Mozer, 1993;
Kolen, 1993; Omlin and Giles, 1996; Giles et al.,
1999; Weiss et al., 2018a) (note that our work
hints at the possibility to extract FAs also from
LTs). Others use synthetic and formal languages



to benchmark RNNs (Allen, 1990; Schmidhuber
et al., 1999). The connection between RNNs and
FAs also motivates certain architectural enhance-
ments of RNNs, such as stack-augmented RNNs
(Pollack, 1990; Das et al., 1992; Sun et al., 1993;
Joulin and Mikolov, 2015; Grefenstette et al., 2015;
DuSell and Chiang, 2020).

For further references on theoretical works study-
ing RNNs, see also Merrill (2019, 2020); Acker-
man and Cybenko (2020), and for Transformers,
see also Hahn (2020); Weiss et al. (2021); Liu et al.
(2022); Yun et al. (2020); Pérez et al. (2021).

B Review of Linear Attention vs. FWPs

Here we briefly review the formal connection be-
tween the “RNN-form” of LTs shown in Sec. 2 and
attention (Katharopoulos et al., 2020; Schlag et al.,
2021; Ba et al., 2016). Starting from Eq. 5, using
the definition of Wt (Eq. 2) and zt (Eq. 4),

yt =
1

zt · ϕ(qt)
Wtϕ(qt) (13)

=

(∑t
τ=1 vτ ⊗ ϕ(kτ )

)
ϕ(qt)(∑t

τ ′=1 ϕ(kτ ′)
)⊺

ϕ(qt)
(14)

=

∑t
τ=1 vτϕ(kτ )

⊺ϕ(qt)∑t
τ ′=1 ϕ(kτ ′)⊺ϕ(qt)

(15)

=
t∑

τ=1

αt,τvτ (16)

where αt,τ =
ϕ(kτ )

⊺ϕ(qt)∑t
τ ′=1 ϕ(kτ ′)⊺ϕ(qt)

. We can recog-

nise that this is effectively attention with nor-
malised weights αt,τ using ϕ(kt),vt, ϕ(qt) as key,
value, query vectors. For LTs/FWPs without nor-
malisation of Eq. 5 (i.e., Eqs. 1-3), the derivation
above is similar, but the corresponding attention
weights are not normalised.

Note that this relation is analogous to the one
that connects the perceptron to kernel machines
(Aizerman et al., 1964; Irie et al., 2022a).

C Further details

C.1 Further Comments on Proofs
Here we provide some more comments on the
proofs of our propositions presented in Sec. 3.

For both Proposition 3.1 and Proposition 3.2,
the original proofs, i.e., the proof of Merrill et al.
(2020)’s Theorem 15 and that of Bhattamishra et al.
(2020a)’s Proposition 4.1 respectively, consist
in constructing a self-attention layer capable of

solving certain counting tasks—a task checking
whether two alphabets appear the same number of
times in a sequence, in the former, and the Shuffle-
k languages in the latter. In both cases, as softmax
is not explicitly required for computing normalised
attention weights, the proofs directly remain
valid for NLTs. Now, the question is whether
they still hold for ULTs: is the normalisation of
attention weights required? The answer is no in
both constructions. The core function of the layer
consists in counting and comparing the occurrence
of two symbols (e.g., opening and closing brackets
in the case of Shuffle-k). The actual comparison
is done by computing the difference between the
two counts and comparing it against zero. This
function is preserved without normalisation of
attention weights. Therefore, these proofs can be
directly adopted for ULTs.

For Proposition 3.3, the original proof of Bhat-
tamishra et al. (2020a)’s Lemma C.4 shows that
Transformers without positional encoding can not
recognise (aa)∗ because the output of the Trans-
former is the same for all steps for this language
defined using a single symbol. There is no way to
distinguish between odd and even steps, which is
essential to recognise (aa)∗. While this remains
true for normalised linear attention resulting in uni-
form attention weights, this argument does not di-
rectly hold for unnormalised variants. Nevertheless,
if we assume an extra layer normalisation layer fol-
lowing the self-attention layer (which is typically
the case in practice), the constant-output argument
also holds for unnormalised linear attention.

Finally, for Proposition 3.4, Merrill et al.
(2020)’s proof for their Theorem 16 consists in
“counting” the number of configurations of layer
activations. This is independent of normalisation
schemes, and remains valid for both unnormalised
and normalised linear Transformers.

C.2 Experimental Details

Task Definition. For parity, (aa)∗, and (abab)∗,
the output to be predicted at each step is the result
for the prefix presented so far. For example for
parity, if the input sequence is 0010, the output
sequence should be TTFF, where T and F denote
‘true’ and ‘false’ for parity. For Shuffle-2 (Suzgun
et al. (2019a): a mixture of two Dyck-1 languages,
i.e., with two kinds of parentheses), we encode the
task as follows. By denoting the parenthesis () as
type-0 and [] as type-1, we consider four cases: ‘0’



Table 3: Hyper-parameter search space.

Parameters Values

Number of layers {1, 2, 4}
Hidden size {8, 16, 32}

Feedforward block multiplier {1, 2, 4}
Number of heads {1, 2, 4}

Learning rate {1e-2, 2e-2, 3e-2, 1e-3, 2e-3, 3e-3}
Batch size {16, 32, 64}

(both are closed), ‘1’ (type-0 is open), ‘2’ (type-1
is open), ‘3’ (both are open); for example, for the
input ([]), the output should be 2320.

Dataset. We use the official (pre-generated)
dataset made publicly available by Bhattamishra
et al. (2020a), except for reset Dyck-1 which we
generate ourselves using their official public code.
“Bin0” split contains sequences of “lengths” shorter
than 50, while “Bin1” contains those with “lengths”
between 51 and 100. The exact definition of
“length” above depends on the tasks; for tasks such
as parity, it directly refers to the actual sequence
length; for tasks such as anbncn, it refers to n, i.e.,
the actual lengths of Bin0 sequences are up to 150
for anbncn, while they are between 153 and 300
for Bin1 sequences.

Hyper-parameter search spaces for all Trans-
former family models (i.e., all models except
LSTM and e-LSTM) are shown in Table 3. Note
that “Feedforward block multiplier” refers to the
factor Nff that relates the hidden size dmodel of the
Transformer to its feedforward up-projection size
dff, i.e., dff = Nffdmodel. For LSTM and e-LSTM,
we use the same search space except that the num-
ber of layers is in {1, 2}, and the hidden size is
in {8, 16, 32, 64}, and irrelevant parameters (i.e.,
the feedforward block multiplier and the number
of heads) are ignored. The reported results are the
best performance across all the hyper-parameter
search, as done in previous work (Bhattamishra
et al., 2020a). Tables 4 and 5 display the best
hyper-parameter configurations on each task for
Recurrent Delta and SRWM models, respectively.
For further details, we refer to our public code.

Any other configurations for the SRWM fol-
low those of Irie et al. (2022c), except that we
initialise the ‘query’ projection sub-matrix in the
self-referential weight matrix using a normal dis-
tribution with a mean value of 0 and a standard

deviation of 0.01/
√
dhead while other sub-matrices

use an std of 1/
√
dhead (this is motivated by the fact

that a generated query vector is immediately mul-
tiplied with the same SRWM to produce a value
vector).

C.3 Details of e-LSTM
In the main text, we evaluate the element-wise
LSTM with tied input-forget gates (e-LSTM; Irie
et al. (2023)) as an illustrative example of compu-
tationally limited RNNs. e-LSTM is essentially an
LSTM with only element-wise recurrence, which
can be seen as a Quasi-RNN (Bradbury et al., 2017)
with element-wise recurrent gate functions. Here
we provide its detailed description. Let din and
dout denote positive integers. At each time step t,
e-LSTM transforms an input vector x(t) ∈ Rdin to
a recurrent hidden state c(t) ∈ Rdout as follows:

f(t) = σ(Fx(t) +wf ⊙ c(t− 1)) (17)

z(t) = tanh(Zx(t) +wz ⊙ c(t− 1)) (18)

c(t) = f(t)⊙ c(t− 1) + (1− f(t))⊙ z(t)
(19)

o(t) = σ(Ox(t) +W oc(t)) (20)

h(t) = o(t)⊙ c(t) (21)

where f(t) ∈ Rdout , z(t) ∈ Rdout , and o(t) ∈ Rdout

are activations, F ∈ Rdout×din , Z ∈ Rdout×din , O ∈
Rdout×din and W o ∈ Rdout×dout are trainable weight
matrices, and finally, wf ∈ Rdout and wz ∈ Rdout

are trainable weight vectors.



Table 4: Best hyper-parameters for Recurrent Delta. When there are more than one best configurations, we report
the one that converges the fastest.

Parameters Parity (aa)∗ (abab)∗ anbn anbncn Shuffle-2 Dyck-1 Reset Dyck-1

Number of layers 1 1 2 1 1 4 1 1
Hidden size 4 8 8 8 16 16 16 8

Feedforward block multiplier 1 1 1 1 1 2 1 1
Number of heads 1 2 2 4 4 4 2 4

Learning rate 2e-2 2e-2 2e-2 3e-2 2e-2 2e-2 3e-2 3e-2
Batch size 16 16 16 16 16 32 16 16

Table 5: Best hyper-parameters for SRWM. When there are more than one best configurations, we report the one
that converges the fastest.

Parameters Parity (aa)∗ (abab)∗ anbn anbncn Shuffle-2 Dyck-1 Reset Dyck-1

Number of layers 1 2 1 2 1 1 1 1
Hidden size 8 16 16 16 8 8 16 16

Feedforward block multiplier 1 1 1 2 2 2 2 2
Number of heads 2 4 2 4 2 2 8 2

Learning rate 3e-2 2e-2 3e-2 1e-2 2e-2 3e-2 3e-2 3e-2
Batch size 16 16 16 16 16 32 16 16


