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Abstract
Semi-supervised learning (SSL) has made no-
table advancements in medical image segmen-
tation (MIS), particularly in scenarios with lim-
ited labeled data and significantly enhancing data
utilization efficiency. Previous methods primar-
ily focus on complex training strategies to uti-
lize unlabeled data but neglect the importance
of graph structural information. Different from
existing methods, we propose a graph-based clus-
tering for semi-supervised medical image seg-
mentation (GraphCL) by jointly modeling graph
data structure in a unified deep model. The pro-
posed GraphCL model enjoys several advantages.
Firstly, to the best of our knowledge, this is
the first work to model the data structure infor-
mation for semi-supervised medical image seg-
mentation (SSMIS). Secondly, to get the clus-
tered features across different graphs, we inte-
grate both pairwise affinities between local image
features and raw features as inputs. Extensive ex-
perimental results on three standard benchmarks
show that the proposed GraphCL algorithm out-
performs state-of-the-art semi-supervised med-
ical image segmentation methods. The source
code is available at https://github.com/
dreamkily/GraphCL

1. Introduction
Medical image segmentation derives from computed tomog-
raphy (CT) (Buzug, 2011) or magnetic resonance imaging
(MRI) (Glover, 2011), plays a crucial role in various clinical
applications (Tang et al., 2021a;b; Wang et al., 2024b;c;a).
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Figure 1. We apply graph neural networks (GNN) to address SS-
MIS challenges. Specifically, we create a graph representation to
capture the data structure, and then use GNN-based clustering to
group the graphs.

However, obtaining large medical datasets with precise la-
bels for training segmentation models is challenging, as a
substantial amount of labeled images can only be provided
by experts. This significantly limits the development of
medical image segmentation algorithms and poses substan-
tial challenges for further research due to the scarcity of
labeled data. To address these challenges, semi-supervised
medical image segmentation (SSMIS) (Bai et al., 2023; Wu
et al., 2022; Shi et al., 2021) has emerged as an effective
approach, enabling segmentation models to learn from a
small set of labeled examples in conjunction with easily
accessible unlabeled data.

In the field of SSMIS, although labeled and unlabeled data
are theoretically expected to come from the same distribu-
tion, in practice, due to the extremely limited availability
of labeled data, it is challenging to accurately infer the true
distribution of the data. This often leads to the issue of dis-
tribution mismatch between the large amount of unlabeled
data and the small set of labeled data (Wang et al., 2019). To
address this challenge, several SSMIS techniques have been
developed. For example, BCP (Bai et al., 2023) enhances
data consistency by randomly cropping regions in labeled
images (as foreground) and pasting them onto unlabeled
images (as background), and vice versa. TI-ST (Gham-
sarian et al., 2023) proposes a semi-supervised learning
strategy called transformation-invariant self-training, which
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improves domain adaptation by evaluating the reliability of
pixel-level pseudo-labels and excluding unreliable predic-
tions during the self-training process. ContrastMask (Wang
et al., 2022) implements dense contrastive learning on both
labeled and unlabeled data. Recent advancements in the
field have shown promising results, especially in traditional
graph theory applications such as object detection (Zhao
et al., 2021; Song et al., 2023) and tracking (Li et al., 2020a;
Hyun et al., 2023). However, all of these methods overlook
the role of graph information in enhancing semi-supervised
medical image segmentation.

Recently, GraphNet (Pu et al., 2018) make an innovative
attempt in the supervised semantic segmentation field by
applying Graph Convolutional Networks (GCN)(Kipf &
Welling, 2016; Wang et al., 2025) to the task. The re-
searchers transformed images into unweighted graph struc-
tures by aggregating pixels from superpixel techniques into
graph nodes(Achanta et al., 2012). These graphs were then
fed into a standard GCN equipped with a cross-entropy loss
function to generate pseudo-labels. A2GNN (Zhang et al.,
2021) propose an innovative affinity-based convolutional
neural network capable of converting images into weighted
graph forms. While these graph neural network-based meth-
ods have shown outstanding performance in traditional im-
age tasks, they have received limited attention in the med-
ical image domain. Medical image segmentation presents
unique challenges, such as complex biological structures
and high sensitivity to pathological changes. Moreover, no
research has explored SSMIS specifically from the perspec-
tive of data structure.

To address this issue, we propose a graph-based clustering
for semi-supervised medical image segmentation (GraphCL)
by jointly modeling graph data structure in a unified deep
model. When modeling data structures in the deep learn-
ing network, we create a dense instance graph reflecting
the structural similarity of the samples based on CNN fea-
tures. Each node in the graph corresponds to the CNN
features of a sample, which are extracted using a standard
convolutional neural network. Then, we deploy a Graph
Convolutional Network (GCN) on this instance graph, al-
lowing the structural information to be propagated through
learnable weighted edges in the network design. To fur-
ther improve segmentation accuracy, we introduce a k-less
clustering strategy that eliminates the need to specify the
number of clusters k, enabling similar nodes to automati-
cally form clusters (see Figure 1). This strategy significantly
enhances the flexibility and adaptability of the model. The
core contributions of this study are summarized as follows:

• We propose a graph-based clustering for semi-
supervised medical image segmentation by modeling
data structure in a unified network. To the best of our
knowledge, this is the first work to model the data

structure information in graph for SSMIS.

• We design a graph clustering objective as a loss func-
tion to optimize the correlation clustering task in SS-
MIS.

• Extensive experiments on popular medical image seg-
mentation benchmarks show that GraphCL achieves
superior performance.

2. Method
2.1. Notations and Definitions

In medical image segmentation (MIS), a 3D volume is rep-
resented as X ∈ MC×W×H×D, where C, W , H , and
D correspond to the channel, width, height, and depth,
respectively. The goal of semi-supervised segmentation
is to predict a pixel-wise label map Ŷ ∈ {0, 1, . . . , k −
1}C×W×H×D, indicating the distribution of background
and target classes, with k representing the number of
classes. The training set S comprises labeled data A and a
much larger unlabeled dataset B, such that S = Sl ∪ Su,
where Sl = {(Xl

i,Y
l
i)}Ai=1 is the labeled subset, and

Su = {Xu
j }

A+B
j=A+1 is the unlabeled subset.

During training, we generate mixed samples by selecting
two labeled images (Xl

j ,X
l
k) and two unlabeled images

(Xu
m,Xu

n). A foreground region is randomly cropped from
Xl

j and pasted onto Xu
n to produce the mixed image Xout,

while another crop from Xu
m is pasted onto Xl

k to form Xin.
These mixed samples allow the network to learn compre-
hensive semantic information, leveraging both inward (Xin)
and outward (Xout) perspectives.

Our method is built upon a teacher-student framework (Bai
et al., 2023), where both networks adopt an encoder-decoder
architecture. In the encoder, we incorporate a structure-
aware graph network to explicitly capture structural relation-
ships between the inward and outward images. This graph
network models spatial and semantic correlations, improv-
ing the model’s ability to understand the inherent structures
within medical images. Additionally, the extracted features
dynamically optimize the graph structure, refining cluster
assignments to better represent shared and distinct charac-
teristics across labeled and unlabeled data. Finally, both
Xin and Xout are passed through the student network to
predict the segmentation masks Ŷin and Ŷout, which are
supervised by the teacher network’s predictions on the unla-
beled images and the ground truth labels from the labeled
images. The pipeline of our proposed method is illustrated
in Figure 2.

2.2. Bidirectional Copy-Paste Framework

The Bidirectional Copy-Paste (BCP) framework integrates
a teacher network T (Xu

m,Xu
n; Θt) and a student network
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Figure 2. The proposed Graph-based Clustering for Semi-supervised Medical Image Segmentation (GraphCL) architecture consists of two
core graph mechanisms: GCN alignment and clustering graph construction. In the GCN alignment phase, a data structure analysis network
generates structured scores containing structural information, while the CNN is responsible for feature extraction. These structured scores
are combined with the CNN-extracted features to construct a dense instance graph for the GCN. After merging the features from both
CNN and GCN, the system inputs them to align data from the same category. Regarding the clustering graph construction, we create a
similarity matrix based on the similarity between local features, which is then used as the adjacency matrix for the graph. Finally, we
utilize this adjacency matrix and deep features as node features to complete the graph construction.

S(Xin,Xout; Θs) (Tarvainen & Valpola, 2017) to enhance
semi-supervised medical image segmentation (SSMIS)
through a coordinated training strategy, where Θt and Θs

are parameters. Initially, the student network is pre-trained
using only labeled data to build a supervised model and
teacher network leverage the pre-trained model to generate
pseudo-labels for unlabeled data during self-training. In the
pre-training phase, we adapt the following strategy:

Ŷ u
m = T (Xu

m,Θt) (1)

Ŷ u
n = T (Xu

n ,Θt) (2)

where Xu
m and Xu

n are the unlabeled images, and Ŷ u
m, Ŷ u

n

are the corresponding probability maps. The pseudo-labels
are initialized using thresholding or argmax operations, de-
pending on whether the task involves binary or multi-class
segmentation.

In the bidirectional supervision phase, mixed images
X in and Xout are constructed using a mask M ∈
{0, 1}C×W×H×D, indicating whether a voxel originates
from the foreground or background. These images are gen-
erated as follows:

X in = X l
j ⊙M+Xu

m ⊙ (1−M) (3)

Xout = Xu
n ⊙M+X l

k ⊙ (1−M) (4)

where X l
j and X l

k are labeled images, and ⊙ denotes
element-wise multiplication. The corresponding pseudo-
labels and ground truth labels are then combined to super-
vise the student network using the following supervisory
signals:

Y in = Y l
j ⊙M+ Ŷ u

m ⊙ (1−M) (5)

Y out = Ŷ u
n ⊙M+ Y l

k ⊙ (1−M) (6)

We use a weight α to control the contribution of unlabeled
image pixels to the loss function. The loss functions for Xin

and Xout are computed respectively by

Lin = Lseg
(
Qin,Yin)⊙M+αLseg

(
Qin,Yin)⊙ (1−M)

(7)
Lout = Lseg

(
Qout,Yout)⊙(1−M)+αLseg

(
Qout,Yout)⊙M

(8)
where Lseg is the linear combination of dice loss and cross-
entropy loss. Qin and Qout are computed by:

Qin = Ss

(
Xin; Θs

)
, Qout = Ss

(
Xout; Θs

)
(9)

At each iteration, we update the parameters Θs in the stu-
dent network by stochastic gradient descent with the loss
function:

Lall = Lin + Lout (10)
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Afterwards, teacher network parameters Θ(k+1)
t at the (k +

1)-th iteration are updated:

Θ
(k+1)
t = λΘ

(k)
t + (1− λ)Θ(k)

s (11)

where λ is the smoothing coefficient parameter.

2.3. Structural Graph Model for Segmentation

In fact, existing studies (Zhou et al., 2023; Robert et al.,
2023; Huang et al., 2023) focus on modeling the data
structure information for semantic segmentation and have
achieved remarkable success, which further emphasizes the
critical role of data structure information. To effectively
model data structures in semi-supervised medical image seg-
mentation (SSMIS), we propose a graph-based clustering for
semi-supervised medical image segmentation (GraphCL).

To address the challenge of effectively integrating both
labeled and unlabeled medical images within the semi-
supervised medical image segmentation (SSMIS) frame-
work, we propose a Structural Graph Model (SGM). The
model is based on the idea that the spatial and semantic
structure of images can be efficiently abstracted into a graph,
where nodes represent the features of image regions, and
edges describe the relationships between these regions. This
graph structure enables flexible information propagation,
which is crucial for enhancing segmentation accuracy, par-
ticularly when labeled data is limited.

2.3.1. STRUCTURE-AWARE ALIGNMENT

In our graph construction framework, each sample in a mini-
batch is treated as a node, and the relationships between
nodes are modeled using a Data Structure Analyzer (DSA).
This component generates structure scores that quantify the
similarity between different samples based on their internal
spatial structure, as derived from the learned CNN features.
Formally, the feature extraction process for each 3D medical
image Xbatch is expressed as:

X = CNN(Xbatch) (12)

where X represents the graph signal, encoding the features
of individual samples. These features are crucial in defining
the graph adjacency matrix Â, computed as:

Â = XsaX
⊤
sa (13)

where Xsa ∈ Rw×h are the structure scores output by the
DSA network, with w denoting the batch size and h the
dimension of the structure features. The intuition is that
samples with similar structural characteristics should have
stronger connections in the graph, which facilitates effective
feature propagation during the segmentation task.

Once the graph is constructed, we employ a Graph Convolu-
tional Network (GCN) to perform feature propagation across

nodes. The GCN operates on the instance graph, with the
goal of refining the feature representations by aggregating
information from neighboring nodes, thereby capturing both
local and global structural patterns within the mini-batch.
The graph convolution is performed as:

Z = D̂− 1
2 ÂD̂− 1

2XW (14)

where Z is the output feature matrix, W is the learnable
weight matrix, and D̂ is the degree matrix associated with
the adjacency matrix Â. This operation ensures that each
node in the graph aggregates feature information from its
neighbors, weighted by the structural similarities encoded in
Â. This propagation mechanism allows the network to ex-
ploit contextual information across the batch, improving its
ability to segment complex anatomical structures in medical
images, where the relationships between different regions
are critical for accurate segmentation.

2.3.2. GRAPH NEURAL NETWORK CLUSTERING

To further cluster the same graph nodes, for each 3D image
volume in a mini-batch, we first extract deep features, re-
sulting in a feature tensor F ∈ R(B×C×W×H×D), where
B is the batch size. Each voxel in the 3D volume serves
as a graph node, with the feature dimensions (W,H,D)
representing the spatial extent of the nodes. To capture re-
lationships across the volume, we construct a graph where
each node represents a voxel and edges connect spatially
adjacent nodes or nodes with high feature similarity.

Specifically, the matrix W for the graph is derived based on
spatial and semantic affinity between patches, calculated as
follows:

W = F · F⊤ − Max(F · F⊤)

τ
(15)

where F is the feature matrix and τ controls clustering sen-
sitivity. τ is used to adapt the cluster selection process in
correlation clustering. Since the number of clusters cannot
be directly selected in correlation clustering, this parameter
allows us to control the sensitivity of the process, where
higher values of τ correspond to more clusters. This graph
construction preserves important volumetric features, en-
abling the GNN to recognize spatial and semantic relation-
ships within the medical data.

Let N̂ denote as the node feature matrix, which is derived
by applying one or more layers of Graph Neural Network
(GNN) convolution on a graph G defined by an adjacency
matrix W . Here, we use a single-layer Graph Convolutional
Network (GCN) to perform the feature extraction. The
adjacency matrix W is constructed from the patch-wise
correlation matrix based on features obtained from encoder.
These correlations capture the relational structure of the
patches within the visual data, thereby enabling the GNN
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to leverage spatial dependencies. Formally, the GNN layer
maps the input node features N into a refined node feature
matrix N̂ by learning the underlying data structure:

N̂ = GNN(N,W ; ΘGNN ) (16)

where ΘGNN represents the trainable parameters of the
GNN layer. Following the GNN, we utilize a Multi-Layer
Perceptron (MLP) with a softmax activation applied to N̂ to
produce the final output S, which is the cluster assignment
matrix. Each row of S corresponds to a node and represents
the probability distribution over clusters, essentially encod-
ing the likelihood of each node belonging to a particular
cluster:

S = MLP (N̂; ΘMLP ) (17)

where ΘMLP are the MLP’s trainable parameters. The
optimization of the GNN model is driven by a clustering
objective, with a loss function proposed to enforce distinct
clustering properties.

We employ a correlation clustering loss in this work, which
directly promotes intra-cluster coherence and inter-cluster
separation. This loss is defined as:

LCC = −Tr(WSST ) (18)

where W is redefined according to the specific correlation
clustering requirements. This loss encourages nodes with
high similarity (as per W) to be assigned to the same cluster
(positive affinities), while penalizing connections between
dissimilar nodes (negative affinities). Consequently, this
approach is advantageous for scenarios where clusters have
distinct internal structures or where cluster boundaries are
less clearly defined.

At each training iteration, we update the parameters Θs in
the student network by stochastic gradient descent with the
loss function(based on Eq.(10)):

Lall = Lin + Lout + κ ∗ LCC (19)

We use a weight κ to control the contribution of graph
clustering to the loss function. Afterwards, teacher network
parameters Θ(k+1)

t at the (k + 1)-th iteration are updated.

3. Experiments
3.1. Datasets and Evaluation Metrics

All experiments are performed on three public datasets
with different imaging modalities and segmentation tasks:
Automatic Cardiac Diagnosis Challenge dataset (ACDC)
(Bernard et al., 2018), Atrial Segmentation Challenge
dataset (LA) (Xiong et al., 2021) and Pancreas-NIH dataset
(Roth et al., 2015). Four metrics are used for evaluation,
including the Dice Score (%), Jaccard Score (%), 95% Haus-
dorf Distance (95HD), and the average surface distance

Method Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

V-Net (Milletari et al., 2016) 4(5%) 0 52.55 39.69 47.05 9.87
V-Net (Milletari et al., 2016) 8(10%) 0 82.74 71.72 13.35 3.26
V-Net (Milletari et al., 2016) 80(All) 0 91.47 84.36 5.48 1.51

UA-MT (Yu et al., 2019) 82.26 70.98 13.71 3.82
SASSNet (Li et al., 2020b) 81.60 69.63 16.16 3.58

DTC (Luo et al., 2021a) 81.25 69.33 14.90 3.99
URPC (Luo et al., 2021b) 4(5%) 76(95%) 82.48 71.35 14.65 3.65
MC-Net (Wu et al., 2021) 83.59 72.36 14.07 2.70
SS-Net (Wu et al., 2022) 86.33 76.15 9.97 2.31

BCP (Bai et al., 2023) 87.07 77.42 8.83 2.15
GraphCL 88.80↑1.73 80.00↑2.58 7.16↓1.67 2.10↓0.05

UA-MT (Yu et al., 2019) 87.79 78.39 8.68 2.12
SASSNet (Li et al., 2020b) 87.54 78.05 9.84 2.59

DTC (Luo et al., 2021a) 87.51 78.17 8.23 2.36
URPC (Luo et al., 2021b) 8(10%) 72(90%) 86.92 77.03 11.13 2.28
MC-Net (Wu et al., 2021) 87.62 78.25 10.03 1.82
SS-Net (Wu et al., 2022) 88.55 79.62 7.49 1.90

BCP (Bai et al., 2023) 89.39 80.92 7.26 1.76
GraphCL 90.24↑0.85 82.31↑1.39 6.42↓0.84 1.71↓0.05

Table 1. Comparisons with state-of-the-art semi-supervised seg-
mentation methods on LA dataset. Improvements compared with
the second best results are emphasized in bold.

(ASD). Given two object regions, Dice and Jaccard mainly
compute the percentage of overlap between them, 95HD
measures the closest point distance between them and ASD
computes the average distance between their boundaries.
We have highlighted the results in bold when our proposed
method outperforms the original counterparts.

3.2. Implementation Details

All experiments use default settings of α = 0.5, κ = 0.01
and τ = 2, with fixed random seeds. LA Dataset experi-
ments run on an NVIDIA A800 GPU, while Pancreas-NIH
and ACDC datasets use an NVIDIA 3090 GPU.

LA dataset. Following SS-Net (Wu et al., 2022), we apply
rotation and flip augmentations. Training uses SGD with an
initial learning rate of 0.01, decaying by 10% every 2.5K
iterations. We adopt a 3D V-Net backbone, with patches
cropped to 112× 112× 80 and the size of the zero-value re-
gion of mask M is 74×74×53. Batch size is 8, split equally
between labeled and unlabeled patches, with pre-training
and self-training at 5K and 15K iterations, respectively.

ACDC dataset. Consistent with SS-Net (Wu et al., 2022),
we use a 2D U-Net backbone with patch sizes of 256× 256
and the size of the zero-value region of mask M is 170×170.
The batch size is 24, with pre-training and self-training at
10K and 30K iterations.

Pancreas-NIH. Based on CoraNet (Shi et al., 2021), data is
augmented via rotation, rescaling, and flipping. A four-layer
3D V-Net is trained with Adam (Kingma, 2014), using an
initial learning rate of 0.001. Cropped patches are 96 ×
96× 96, with the size of zero-value regions of mask M is
64 × 64 × 64. Batch size, pre-training, and self-training
epochs are 8, 60, and 200, respectively.
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Method Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

U-Net (Ronneberger et al., 2015) 3(5%) 0 47.83 37.01 31.16 12.62
U-Net (Ronneberger et al., 2015) 7(10%) 0 79.41 68.11 9.35 2.70
U-Net (Ronneberger et al., 2015) 70(All) 0 91.44 84.59 4.30 0.99

UA-MT (Yu et al., 2019) 46.04 35.97 20.08 7.75
SASSNet (Li et al., 2020b) 57.77 46.14 20.05 6.06

DTC (Luo et al., 2021a) 56.90 45.67 23.36 7.39
URPC (Luo et al., 2021b) 3(5%) 67(95%) 55.87 44.64 13.60 3.74
MC-Net (Wu et al., 2021) 62.85 52.29 7.62 2.33
SS-Net (Wu et al., 2022) 65.83 55.38 6.67 2.28

BCP (Bai et al., 2023) 86.83 77.64 8.71 2.47
GraphCL 88.68↑1.85 80.32↑2.68 3.12↓5.59 0.88↓1.59

UA-MT (Yu et al., 2019) 81.65 70.64 6.88 2.02
SASSNet (Li et al., 2020b) 84.50 74.34 5.42 1.86

DTC (Luo et al., 2021a) 84.29 73.92 12.81 4.01
URPC (Luo et al., 2021b) 7(10%) 63(90%) 83.10 72.41 4.84 1.53
MC-Net (Wu et al., 2021) 86.44 77.04 5.50 1.84
SS-Net (Wu et al., 2022) 86.78 77.67 6.07 1.40

BCP (Bai et al., 2023) 88.84 80.61 4.42 1.38
GraphCL 89.31↑0.47 81.33↑0.72 2.10↓2.32 0.66↓0.72

Table 2. Comparisons with state-of-the-art semi-supervised seg-
mentation methods on ACDC dataset. Improvements compared
with the second best results are emphasized in bold.

Method Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

V-Net (Milletari et al., 2016)

12(20%) 50(80%)

69.96 55.55 14.27 1.64
DAN (Zhang et al., 2017) 76.74 63.29 11.13 2.97

ADVNET (Vu et al., 2019) 75.31 61.73 11.72 3.88
UA-MT (Yu et al., 2019) 77.26 63.82 11.90 3.06

SASSNet (Li et al., 2020b) 77.66 64.08 10.93 3.05
DTC (Luo et al., 2021a) 78.27 64.75 8.36 2.25

CoraNet (Shi et al., 2021) 79.67 66.69 7.59 1.89
BCP (Bai et al., 2023) 81.12 68.81 8.11 2.34

GraphCL 83.15↑2.03 71.42↑2.61 6.87↓1.24 2.12↑0.22

Table 3. Comparisons with state-of-the-art semi-supervised seg-
mentation methods on Pancreas-NIH dataset. Improvements com-
pared with the second best results are emphasized in bold.

3.3. Comparison with State-of-the-Art

We evaluate our framework on the LA and ACDC datasets,
comparing it with several state-of-the-art methods, includ-
ing UA-MT (Yu et al., 2019), SASSNet (Li et al., 2020b),
DTC (Luo et al., 2021a), URPC (Luo et al., 2021b), MC-
Net (Wu et al., 2021), and SS-Net (Wu et al., 2022). Addi-
tionally, for the LA dataset, we include comparisons with
V-Net (Milletari et al., 2016), while for the ACDC dataset,
we compare with U-Net (Ronneberger et al., 2015). Fol-
lowing the protocol in SS-Net, we conduct semi-supervised
experiments with different labeled data ratios (i.e., 5% and
10%). For Pancreas-NIH dataset, we evaluate with a la-
beled ratio of 20% (Luo et al., 2021a; Shi et al., 2021).
We benchmark our method, denoted as GraphCL, against
various state-of-the-art models, including V-Net (Milletari
et al., 2016), DAN (Zhang et al., 2017), ADVENT (Vu et al.,
2019), UA-MT (Yu et al., 2019), SASSNet (Li et al., 2020b),
DTC (Luo et al., 2021a), and CoraNet (Shi et al., 2021).

LA dataset. To ensure a fair comparison, we adopt the
identical experimental setup used in SS-Net. As shown in
Table 1, our approach achieves superior performance across
all four evaluation metrics, completely outperforming com-
peting approaches. Specifically, when the labeled ratio is

set to 10%, GraphCL outperforms the second-best approach
by an average of 3.85% across all four evaluation metrics.
With the labeled ratio of 5%, we maintain a strong advan-
tage, showing an average improvement of 6.64 % over the
second-best results across these metrics. This suggests that
when the number of labeled volume is particularly limited,
the knowledge from labeled data can be more effectively
transferred to the unlabeled data. This phenomenon likely
explains the superior performance gains observed when the
labeled ratio is set to 5%. This observation also holds true
for the ACDC dataset.

ACDC dataset. We also adopt the identical experimen-
tal setup used in SS-Net. The averaged performance re-
sults are shown in Table 2 on the ACDC dataset for four-
class segmentation. Our approach consistently outperforms
all state-of-the-art methods across all evaluation metrics.
With the labeled ratio is set to 10%, GraphCL outperforms
the second-best approach by an average of 26.01% across
all four evaluation metrics. With the labeled ratio of 5%,
GraphCL outperforms an average improvement of 29.65%
over the second-best results across these metrics. Our ap-
proach leverages graph-based representations within the
encoder and incorporates a graph neural network clustering
loss LCC, which significantly contributes to the performance
gains. Specifically, the integration of graph structures en-
ables the encoder to capture complex spatial relationships
and contextual dependencies among voxels, facilitating a
more holistic understanding of the input data. LCC encour-
ages similar voxels to be grouped together while enforcing
separation between distinct regions, thereby enhancing intra-
cluster coherence and inter-cluster separability. Specifically,
as can be seen in Figure 6, GraphCL can segment the fine
details of the target organ, especially the edge details that
are easily misrecognized or missed.

Pancreas-NIH Dataset. For the Pancreas-NIH dataset, we
benchmark GraphCL against DAN (Zhang et al., 2017),
ADVENT (Vu et al., 2019), UA-MT (Yu et al., 2019),
SASSNet (Li et al., 2020b), DTC (Luo et al., 2021a), and
CoraNet (Shi et al., 2021), all trained in a semi-supervised
setup using both labeled and unlabeled data. V-Net is used
as the backbone for our model and baseline methods, while
V-Net alone is trained in a fully supervised manner as a
lower bound. Table 3 shows that our approach achieves sub-
stantial improvements in Dice, Jaccard, and 95HD metrics,
outperforming the second-best method by 2.50%, 3.79%,
and 0.72%, respectively.

3.4. Ablation Studies

To analyze the effectiveness of each component in our pro-
posed framework GraphCL, we conduct a series of ablation
studies across three datasets (LA, ACDC, and Pancreas-
NIH) with varying labeled data ratios. The detailed results
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LA ACDC
Baseline SA LCC Scans used Metrics Scans used Metrics

Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓ Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓
✔ ✘ ✘ 87.07 77.42 8.83 2.15 86.83 77.64 8.71 2.47
✔ ✔ ✘ 4(5%) 76(95%) 88.13 78.93 7.46 1.93 3(5%) 67(95%) 88.13 79.46 5.26 1.45
✔ ✘ ✔ 88.34 79.24 8.68 2.27 87.80 78.93 2.58 0.93
✔ ✔ ✔ 88.80 80.00 7.16 2.10 88.68 80.32 3.12 0.88
✔ ✘ ✘ 89.39 80.92 7.26 1.76 88.84 80.61 4.42 1.38
✔ ✔ ✘ 8(10%) 72(90%) 90.00 81.88 6.87 1.74 7(10%) 63(90%) 89.52 81.61 3.27 0.97
✔ ✘ ✔ 88.79 80.05 8.24 2.19 89.53 81.68 2.98 0.89
✔ ✔ ✔ 90.24 82.31 6.42 1.71 89.31 81.33 2.10 0.66

Table 4. Ablation study. The best results are emphasized in bold.

Pancreas-NIH
Baseline SA LCC Scans used Metrics

Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓
✔ ✘ ✘ 81.12 68.81 8.11 2.34
✔ ✔ ✘ 12(20%) 50(80%) 82.47 70.53 7.15 2.42
✔ ✘ ✔ 82.32 70.34 10.56 3.63
✔ ✔ ✔ 83.15 71.42 6.87 2.12

Table 5. Ablation study. The best results are emphasized in bold.

Layers Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

1 0.030 0.016 80.51 45.53
2 72.59 61.30 17.12 5.22
3 3(5%) 67(95%) 87.83 79.04 3.24 0.98
4 88.05 79.35 4.17 1.19
5 88.68 80.32 3.12 0.88
1 0.008 0.004 40.94 23.73
2 72.35 59.20 15.14 4.32
3 7(10%) 63(90%) 88.72 80.40 4.01 1.15
4 89.10 80.99 5.94 1.43
5 89.31 81.33 2.10 0.66

Table 6. Ablation study on ACDC. The best results are emphasized
in bold.

are presented in Table 4, Table 5, and Table 6.

Effectiveness of Components. In these experiments, we ex-
amine the contribution of two key components: the structure-
aware alignment (denoted as SA) and the graph neural net-
work clustering loss (LCC). As shown in Table 4, adding
SA or LCC individually improves performance compared to
the baseline. Specifically, incorporating both SA and LCC
achieves the best results, with notable improvements in met-
rics such as Dice Score, Jaccard Index, 95HD, and ASD. For
instance, on the LA dataset with a 10% labeled data ratio,
GraphCL with both components achieves a Dice Score of
90.24%, outperforming the baseline by a substantial margin.

Optimal Placement of GCN Layers. We further inves-
tigate the impact of placing the Graph Convolutional Net-
work (GCN) layers at different depths within the encoder,
as shown in Table 6. The results indicate that inserting the

GCN layers at deeper levels (specifically at the fifth layer)
leads to the highest performance gains. For example, with
a labeled ratio of 10% on the ACDC dataset, inserting the
GCN at the fifth layer results in a Dice Score of 89.31%
and an ASD of 0.66, which are significantly better than
inserting GCN at shallower layers. This demonstrates that
deeper placement of GCNs allows the model to capture more
complex spatial dependencies and contextual information,
thereby enhancing segmentation accuracy.

Dataset-Specific Observations. Each dataset demonstrates
unique performance patterns based on the labeled data ra-
tio and the presence of SA and LCC. For example, on the
Pancreas-NIH dataset (Table 5), combining SA and LCC
results in improvements of 2.50% in Dice Score and 0.72
in 95HD over the baseline. The clustering loss LCC con-
tributes substantially to boundary delineation by enforcing
inter-cluster separability, which is particularly beneficial for
segmenting complex anatomical structures.

These ablation studies highlight the importance of each
component in GraphCL, demonstrating that the combination
of structure-aware alignment and graph-based clustering
significantly improves segmentation results across various
medical image datasets.
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Figure 3. Sensitivity analysis on the ACDC dataset with the labeled
ratio of 3(5%) .

3.5. Impacts of Hyper-parameters

To further verify the effectiveness of the proposed method,
we also conduct sensitivity analysis on the ACDC dataset
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Figure 4. Sensitivity analysis on the ACDC dataset with the labeled
ratio of 7(10%) .

GraphCLBCPSSNetSASSNet

Figure 5. Kernel dense estimations of different methods, trained
on 5% labeled ACDC dataset. Top to bottom are kernel-dense esti-
mations of features belonging to three different classes of ACDC:
left ventricle, myocardium, and right ventricle.

to evaluate the impact of hyperparameters κ and τ , with
labeled data ratios of 5% and 10% (Figure 3 and Figure 4).

Effect of κ (Figure 3 (a) and Figure 4 (a)). κ controls
the weight of the structure-aware alignment. Increasing κ
initially improves the Dice and Jaccard scores, reaching a
peak around 0.01, after which performance declines slightly.
This indicates that a moderate κ achieves the best balance
between alignment and segmentation quality.

Effect of τ (Figure 3 (b) and Figure 4 (b)). τ controls
clustering sensitivity for the clustering loss LCC. τ = 2
yields the most consistent overall performance across multi-
ple metrics, with Dice, Jaccard, 95HD, and ASD showing
stable, favorable results. Although there are instances where
certain metrics reach peak values at τ = 6 and τ = 10,
the variation in results between these values and τ = 2 is
relatively small. Therefore, τ = 2 can be considered an
optimal choice, as it offers reliable performance without sig-
nificant trade-offs, making it a robust setting for clustering
sensitivity.

GT SSNet BCP GraphCL

Figure 6. Visualizations of several semi-supervised segmentation
methods with 5% labeled data and ground truth on ACDC dataset.
The blue, red, and orange lines represent the 25%, 50%, and 75%
locations of the segmented area, respectively.

3.6. Visualization Analysis

Figure 5 and Figure 6 display presents kernel density es-
timations and segmentation results for different methods
trained on the ACDC dataset, trained with 5% labeled data.
In Figure 5, among all three cardiac structures, GraphCL
has the best alignment of feature distributions between la-
beled and unlabeled data. This is evident when compared
to SASSNet, SSNet, and BCP. Figure 6 illustrates that the
segmentation results from GraphCL are notably more accu-
rate and precise. In contrast to SSNet and BCP, GraphCL
presents tighter and more distinct boundaries, demonstrating
a closer alignment with the ground truth (GT). These find-
ings underscore GraphCL’s superior capability in capturing
critical features and enhancing segmentation performance,
particularly in scenarios with limited labeled data.

4. Conclusion
In this paper, we propose a novel graph-based clustering for
semi-supervised medical image segmentation (SSMIS) that
models graph data structures within a unified framework.
Our approach leverages CNN-derived features from samples
to construct a densely connected instance graph, based on
the structural similarity, which effectively captures semantic
representations for SSMIS. Additionally, we introduce a
graph clustering mechanism to utilize more information
during the clustering process, enabling implicit semantic
part segmentation. Extensive experiments demonstrate the
effectiveness of our proposed approach. For future work,
we will explore methods to generate more reliable labels
and enhance graph accuracy, aiming to reduce noise within
the input graph.
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