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ABSTRACT

Machine Learning (ML) techniques for Optimal Power Flow (OPF) problems
have recently garnered significant attention, reflecting a broader trend of lever-
aging ML to approximate and/or accelerate the resolution of complex optimiza-
tion problems. These developments are necessitated by the increased volatility
and scale in energy production for modern and future grids. However, progress
in ML for OPF is hindered by the lack of standardized datasets and evaluation
metrics, from generating and solving OPF instances, to training and benchmark-
ing machine learning models. To address this challenge, this paper introduces
PGLearn, a comprehensive suite of standardized datasets and evaluation tools for
ML and OPF. PGLearn provides datasets that are representative of real-life op-
erating conditions, by explicitly capturing both global and local variability in the
data generation, and by, for the first time, including time series data for several
large-scale systems. In addition, it supports multiple OPF formulations, includ-
ing AC, DC, and second-order cone formulations. Standardized datasets are made
publicly available to democratize access to this field, reduce the burden of data
generation, and enable the fair comparison of various methodologies. PGLearn
also includes a robust toolkit for training, evaluating, and benchmarking machine
learning models for OPF, with the goal of standardizing performance evaluation
across the field. By promoting open, standardized datasets and evaluation met-
rics, PGLearn aims at democratizing and accelerating research and innovation in
machine learning applications for optimal power flow problems.

1 INTRODUCTION

The rapid evolution of energy systems, driven by mass integration of renewable and distributed
energy resources, is creating new challenges in the maintenance, expansion, and operation of power
grids. The increased volatility and scale of power generation in modern and future grids calls for
innovative solutions to manage uncertainty and ensure reliability (Zhang et al., 2021). Machine
learning (ML) has emerged as a powerful tool in this context, offering the potential to address key
problems such as optimizing grid operations and predicting power demand, enabling the use of
previously intractable applications such as real-time risk analysis (Chen et al., 2024). However, the
success of ML models depends on the availability of high-quality data, which is essential for training
accurate and reliable models (Khaloie et al., 2024; Lovett et al., 2024).

Optimal Power Flow (OPF) is a fundamental problem in power systems operations, focusing on how
to efficiently operate a power transmission system while satisfying physics, engineering, and oper-
ations constraints. Most market-clearing algorithms for real-time electricity markets are based on
OPF, which makes it paramount to real-time operations. In addition, OPF forms the building block
of security-constrained unit commitment (SCUC) formulations used in day-ahead markets (Chen
et al., 2023), as well as transmission expansion planning problems. In practice, many instances of
OPF need to be solved at once in order to account for uncertainties in renewable power genera-
tion and/or demand, making it a computationally intensive task – especially given the non-convex
physics of AC power flow. Besides its real-world applications, OPF has also garnered significant
attention as a test-bed for research methods integrating mathematical programming and machine
learning.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ML4OPF

ML for OPF Utilities
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OPF Formulations
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Figure 1: The PGLearn Toolkit: publicly available AC, DC, and SOC optimal power flow datasets,
PGLearn.jl for data generation, and the ML4OPF ML toolkit.

The key motivation for using ML to address parametric OPF stems from the increased volatility and
scale in power generation in modern and future grids. Indeed, the growing use of intermittent renew-
able energy sources such as wind and solar generation is driving significant growth in operational
uncertainty. This motivates a shift from deterministic to, e.g., stochastic optimization formulations
that explicitly consider uncertainty. Such a change results in OPF problems that are, or will be,
orders of magnitude larger than today’s instances. In addition, the risk of energy shortage, conges-
tion, and voltage issues has become substantially larger and requires novel methods to manage in
real-time. Machine learning offers some hope in addressing these challenges by moving much of the
computational burden offline and delivering orders of magnitude speedups for real-time operations.

This research avenue is further justified by the fact that practitioners often solve OPF instances on
very similar – or even identical – transmission systems, with only renewable generation and/or power
demand varying across instances. Readers are referred to Hasan et al. (2020); Khaloie et al. (2024)
for a detailed review of prior works in machine learning for OPF. Note that many of the works therein
do not consider the non-convex AC-OPF formulation directly, but rather focus on more tractable,
i.e., convex, OPF formulations, such as the DC-OPF linear approximation or second-order cone
relaxation (Molzahn and Hiskens, 2019). Although these relaxed formulations do not capture the
exact physics, they more closely match the problems that real power market operators and partici-
pants solve every day (Ma et al., 2009). For example, Chen (2023) uses a linear formulation inspired
by problem solved by the Midcontinent Independent System Operator (MISO) to clear its real-time
market.

1.1 MOTIVATION: DATA SCARSITY IN ML FOR OPF RESEARCH

Despite strong interest from industry, real, industry-scale data is scarce, mainly due to regulatory
barriers that restrict the sharing of sensitive information on power grids. Thus, most previous ML
for OPF works generate their own artificial datasets, often based on the Power Grid Lib Optimal
Power Flow (PGLib-OPF) (Babaeinejadsarookolaee et al., 2019) benchmark library – a collection
of grid snapshots originally designed for benchmarking AC-OPF optimization algorithms.

While machine learning methods usually require many thousands of data points to train accurate
models, PGLib-OPF only provides a single snapshot per grid. Hence, a data augmentation strategy
is needed to “sample around” the provided snapshots in a realistic fashion. There is however no
consensus in prior literature for how to perform this sampling, which has led to a highly fragmented
ecosystem where it is impossible to directly compare results from different works due to the use of
very different data distributions (Khaloie et al., 2024). Indeed, the characteristics of the learning
problem may vary substantially when considering different augmentation schemes, for example
correlated versus uncorrelated noise.

To ensure that ML for OPF research is useful in practice, it is important to carefully consider the
choices involved in designing a data augmentation scheme. For example, most works surveyed in
Khaloie et al. (2024) sample instances by perturbing individual loads independently of each other.
Figure 2 illustrates the limitations the resulting data distribution, for a system with 1354 buses. The
figure shows that, i) the resulting distribution displays a very narrow range of total demand, and ii)
the resulting OPF solutions exhibit simplistic patterns that do not capture global dynamics over a
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Figure 2: Limitations of sampling strategies that do not consider correlations across individual loads.
Left: histogram of total demand: the absence of correlations yields a narrow range of total demand.
Right: active power flow on branch 200; the absence of correlations in input data leads to datasets
with low variance and diversity.

wider range of total demand. As a consequence, ML models trained on data that does not capture
correlations can only be expected to perform well for a small total demand range, severely limiting
their usability in practice.

Finally, the lack of publicly available standardized datasets requires individual teams to expend con-
siderable computational resources to generate new datasets. This comes at a high financial and envi-
ronmental cost, and results in most academic studies considering small, synthetic power grids which
incur lower data generation costs, but are irrelevant to industry practitioners. More importantly, it
represents a significant barrier to entry to teams without substantial computational resources.

1.2 RELATED WORK

Due to strong interest from academia and industry, several OPF datasets and data generation pack-
ages have been released in recent years. However, none simultaneously meet the requirements of
being actively maintained, considering large power networks, and using realistic sampling schemes.

Some prior works (Donon et al., 2020; Chatzos et al., 2022; Klamkin et al., 2024) report results
on industry-based datasets, i.e., using data obtained from transmission system operators. Although
these works report more closely match real-world systems, the corresponding datasets are not pub-
licly available due to regulations around privacy and security.

Despite a growing literature on ML for OPF, few datasets have been made publicly available. The
datasets initially released alongside the OPFSampler (Robson et al., 2019) codebase are no longer
available, and the code is unmaintained. The OPFLearn library (Joswig-Jones et al., 2022) provides
data augmentation tools built on top of PowerModels Coffrin et al. (2018), as well as a collection
of 10,000 samples of AC-OPF instances and their solution for five systems with up to 118 buses.
This code is no longer maintained, only considers uncorrelated demand perturbations, and reports
incomplete primal/dual solutions. More recently, and closest to this paper, OPFData (Lovett et al.,
2024) is a collection of AC-OPF datasets which considers systems with up to 13,659 buses. The col-
lection also includes instances with perturbed topology, obtained by randomly removing individual
lines or generators in the system. The main limitation of OPFData, however, is that it only considers
uncorrelated demand perturbation, leading to simplistic data distributions as illustrated in Figure 2.
Additionally, OPFData only reports AC-OPF solutions, does not include dual solutions nor metadata
such as solve times, and does not include the source code used to generate and solve samples.

1.3 CONTRIBUTIONS AND OUTLINE

To address the above challenges, this paper proposes PGLearn, a collection of datasets and tools for
ML and OPF. The contributions of PGLearn are as follows:
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• PGLearn provides a collection of standardized datasets for large-scale OPF instances, gen-
erated using a realistic and reproducible data augmentation methodology. The entire col-
lection totals over 10,000,000 OPF samples, split between training and testing data to allow
for direct comparison of results. Crucially, PGLearn is also the first OPF dataset to incor-
porate realistic time-series data for large-scale power systems.

• Each PGLearn dataset comprises complete primal and dual solutions for several OPF for-
mulations, a unique feature compared to existing literature.

• PGLearn provides several evaluation metrics for objective and fair comparison of various
ML methodologies for OPF problems, together with guidelines on performance bench-
marking.

• The PGLearn.jl Julia (Bezanson et al., 2017) library containing the source code to gen-
erate the PGLearn datasets. The modular design of PGLearn.jl simplifies the imple-
mentation and execution of new data augmentation schemes and OPF formulations.

• The ML4OPF PyTorch (Ansel et al., 2024) library containing data parsers, optimized GPU-
friendly implementations of the supported OPF formulations (objective, constraints, etc.),
and other utilities for developing new ML methods for OPF.

The code used to generate PGLearn is fully open-source and relies only on open-source solvers,
allowing to interrogate, reproduce, and extend each part of the dataset generation process. By openly
distributing these tools and datasets, PGLearn seeks to lower the barrier of entry for researchers in
the field, promoting innovation and accelerating the development of ML techniques for OPF and
optimization more broadly.

The rest of this paper is structured as follows. Section 2 describes each OPF formulation included
in PGLearn. Section 3 introduces the data augmentation procedure, and Section 4 presents relevant
features of the PGLearn.jl and ML4OPF libraries. Section 5 provides recommendations for
evaluation metrics and their reporting. Section 6 reviews the limitations of PGLearn, and Section 7
concludes the paper.

2 OPF FORMULATIONS IN PGLEARN

A unique feature of PGLearn is that it provides, for each OPF instance, solutions to several OPF
formulations. This allows to compare, for the same input data, the performance of ML models
trained using different formulations. Namely, PGLearn currently supports the nonlinear, non-convex
AC-OPF, the second-order cone relaxation SOC-OPF, and the linear approximation DC-OPF. A brief
summary of each formulation is provided below. Due to space considerations, full OPF formulations
are stated in Appendix A.

2.1 OPF FORMULATIONS

AC-OPF The AC-OPF is considered the “full” steady-state optimal power flow formulation.
PGLearn uses the rectangular-power polar-voltage form, matching the ACPPowerModel formu-
lation implemented in PowerModels (Coffrin et al., 2018). This formulation includes non-convex
AC power flow physics to accurately model the power system. The full non-linear programming
formulation is included in Model 1.

SOC-OPF The SOC-OPF is a second-order-cone relaxation of the AC-OPF proposed by Jabr
(2006a). The SOC-OPF better approximates the full-physics AC-OPF compared to the linear DC-
OPF, but is more complicated to solve. A description of how to derive the SOC-OPF, and its full
conic programming formulation, is included with Model 2.

DC-OPF The DC-OPF is a sparse linear approximation to the AC-OPF (Christie et al., 2000). It
is commonly used in industry to approximate AC-OPF in cases where solving AC-OPF within time
constraints is intractable. Among other simplifications, it considers only active power and fixes all
voltage magnitudes to 1. A list of all assumptions required to derive the DC-OPF, and its full linear
programming formulation, is included with Model 4.
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Table 1: Summary statistics of the PGLearn datasets.

Case name |N | |L| |G| |E| Total PD Total PG Global range
14 ieee 14 11 5 20 0.3 GW 0.4 GW 70% – 110%
30 ieee 30 21 6 41 0.3 GW 0.4 GW 60% – 100%
57 ieee 57 42 7 80 1.3 GW 2 GW 60% – 100%
89 pegase 89 35 12 210 6 GW 10 GW 60% – 100%
118 ieee 118 99 54 186 4 GW 7 GW 80% – 120%
300 ieee 300 201 69 411 24 GW 36 GW 60% – 100%

1354 pegase 1354 673 260 1991 73 GW 129 GW 70% – 110%
NewYork2030 1576 1446 323 2427 33 GW 42 GW 70% – 110%
1888 rte 1888 1000 290 2531 59 GW 89 GW 70% – 110%
2869 pegase 2869 1491 510 4582 132 GW 231 GW 60% – 100%

6470 rte 6470 3670 761 9005 97 GW 118 GW 60% – 100%
Texas7k 6717 4541 637 9140 75 GW 97 GW 80% – 120%
9241 pegase 9241 4895 1445 16049 312 GW 530 GW 60% – 100%

13659 pegase 13659 5544 4092 20467 381 GW 981 GW 60% – 100%
Midwest24k 23643 11727 5646 33739 104 GW 318 GW 90% – 130%

2.2 DUAL OPF FORMULATIONS AND SOLUTIONS

Another unique feature of PGLearn is that it provides, for each OPF formulation, complete primal
and dual solutions. This novel capability is motivated by the recent interest in leveraging dual infor-
mation in ML contexts. For instance, Qiu et al. (2024) and Tanneau and Van Hentenryck (2024) both
consider learning dual optimization proxies, wherein an ML model outputs dual-feasible solutions
to conic optimization problems. In a similar fashion, Kotary and Fioretto (2024) leverage insights
from Augmented Lagrangian methods to learn Lagrange multipliers for nonlinear problems. Finally,
several recent works attempt to predict dual solutions in the context of mixed-integer optimization,
with the aim of obtaining high-quality dual bounds through Lagrangian duality Parjadis et al. (2023);
Demelas et al. (2024).

PGLearn leverages Lagrangian duality for nonlinear, non-convex problems such as AC-OPF, and
conic duality for convex relaxations and approximations such as SOC-OPF and DC-OPF. Dual for-
mulations for SOC-OPF and DC-OPF are stated in Appendix A. Note that a key advantage of conic
(convex) relaxations is that dual-feasible solutions provide valid certificates of optimality, which can
be used to validate the quality of primal predictions.

Dual solutions are also at the core of price formation in electricity markets. Hence, by systematically
providing dual solutions, PGLearn will support future research at the intersection of optimization,
machine learning, and the economics of electricity markets.

3 THE PGLEARN COLLECTION OF DATASETS FOR LEARNING OPF

Like most prior work in the field, PGLearn uses a sampling scheme to convert static snapshots to
datasets of OPF instances. PGLearn considers a total of 14 snapshots, split into four categories based
on the number of buses:

Small (<1k): 14 ieee, 30 ieee, 57 ieee, 89 pegase, 118 ieee, 300 ieee
Medium (<5k): 1354 pegase, NewYork2030, 1888 rte, 2869 pegase
Large (<10k): 6470 rte, Texas7k, 9241 pegase
Extra-Large (>10k): 13659 pegase, Midwest24k

The 89 pegase, 1354 pegase, 2869 pegase, 9241 pegase, and 13659 pegase cases
from Fliscounakis et al. (2013) are based on the European power grid, the 1888 rte and
6470 rte cases from Josz et al. (2016) are based on the French power grid, the nyiso 2030 v11
case from University of Wisconsin-Madison (2024) is based on the planned 2030 New York power
grid, and the Texas7k and Midwest24k cases from Kunkolienkar et al. (2024) are based on the
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Texas power grid and the US Midwest power grid, respectively. The smaller 14 ieee, 30 ieee,
118 ieee, and 300 ieee cases from University of Washington, Dept. of Electrical Engineering
(1999) are synthetic. These cases are chosen to span a range of scales and to match cases used in
prior ML for OPF literature.

Table 1 reports statistics of each snapshot used in the PGLearn collection. Namely, for each ref-
erence snapshot, the table reports: the number of buses |N |, the number of loads |L|, the number
of generators |G|, the number of branches |E|, which includes power lines and transformers, the
total active power demand in the reference case (Total PD), the total maximum active power gener-
ation (Total PG), and the range of the global scaling factor used in the data augmentation scheme
described next (Global range).

Demand Sampling The PGLearn datasets sample each load’s active and reactive demand by com-
bining a global (per-sample) correlation term with local (per-load per-sample) noise. The power
factor of each load is varied by sampling the local noise independently for the active and reactive
components. This sampling procedure mimics real power system behavior since in practice, machine
learning training takes time, so models are trained day-ahead on demand ranges given by forecasting
systems for the next day (Chen et al., 2022). The local noise is applied to generate diverse samples at
all values of total load, ensuring the usability of the machine learning system under various demand
settings. The global correlation is important to ensure that the model captures a wide total demand
range rather than being specialized to a particular total demand level. This captures more operating
regimes of the power system, as shown in Figure 2. The demand sampling process is described in
Algorithm 1. The Global Range column in Table 1 contains the values for bl and bu for each case.
ϵ is set to 20% for all cases. The width of the global range is fixed to 40% with bu determined by
incrementally scaling the reference load values in 10% steps until an infeasible case is hit.

Algorithm 1 Demand Sampling
Input: Reference demand (pd, qd), global range (bl, bu), noise level ϵ
Output: Sampled demand (p̃d, q̃d)

1: b ∼ Uniform(bl, bu)
2: for i = 1 . . . |L| do
3: ϵp

i ∼ Uniform(1− ϵ, 1 + ϵ)

4: ϵq
i ∼ Uniform(1− ϵ, 1 + ϵ)

5: p̃d
i ← b · ϵp

i · pd
i

6: q̃d
i ← b · ϵq

i · qd
i

7: end for
8: return (p̃d, q̃d)

Status Sampling To generate the N − 11 datasets, disabled branches/generators are sampled fol-
lowing the procedure used in OPFData (Lovett et al., 2024). Either one generator or one (non-bridge,
to preserve connectedness of the network) branch is disabled per instance.

Time-Series Sampling There are several public resources, i.e. ENTSO-E Hirth et al. (2018) and
OEDI2, which provide time-series power demand information. Some system operators, e.g. RTE,
also publish load information in real-time.3 Although these data sources are useful for e.g. power
demand forecasting studies, they are not detailed enough to formulate an OPF; namely a full de-
scription of the power system and load-level demand information is required. Motivated by this
mismatch, the Texas7k and Midwest24k cases include one year of synthetic time-series data at
an hourly granularity. Readers are referred to Li et al. (2020a) for details on how the coarse time-
series data is created. PGLearn uses cubic spline interpolation to augment the coarse time-series in
order to provide AC, DC, and SOC-OPF solutions at a five-minute granularity for Texas7k and
ten-minute granularity for Midwest24k.

1N − 1 refers to the common security requirement that the system remain stable under any single failure;
here, N refers to the number of components which are susceptible to failure (branches and generators).

2https://data.openei.org/s3_viewer?bucket=arpa-e-perform
3https://www.rte-france.com/en/eco2mix/market-data
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Train-Test Split The training and testing sets contain only feasible input samples, i.e. those inputs
for which a solution was found for all formulations. The feasible samples are then shuffled using
a seeded random number generator (MersenneTwister(42) from Julia 1.11.5). Then, the first
80% of the shuffled feasible samples are selected as training data and the remaining 20% as testing
data. Users should further split the training data to create validation and/or calibration sets as needed;
the testing data should be kept unchanged to allow for direct comparison of reported results. This
creates three datasets – train, test, and infeasible, where samples in infeasible are
those for which a (locally) optimal solution could not be found for at least one of the formulations
considered.

4 OPEN-SOURCE IMPLEMENTATIONS

PGLearn leverages two MIT-licensed open-source repositories: PGLearn.jl to generate datasets
and ML4OPF to build machine learning models.

4.1 PGLEARN.JL: OPF DATA GENERATION

The PGLearn.jl repository contains the JuMP (Lubin et al., 2023) implementations of the
OPF formulations as well as utilities for sampling and solving datasets of instances. For each
case, it first uses the make basic network function from PowerModels (Coffrin et al., 2018)
to parse and pre-process the corresponding raw Matpower (Zimmerman et al., 2010) file. The
MathOptSymbolicAD (LANL-ANSI, 2022) automatic differentiation backend is used to accel-
erate derivative calculations. PGLearn.jl leverages the GNUparallel utility (Tange, 2022) for
parallelization across CPU cores and the SLURM workload manager (Jette and Wickberg, 2023) for
parallelization across nodes.

4.2 ML4OPF: MODEL TRAINING, EVALUATION AND BENCHMARKING

The ML4OPF library – specifically the parsers submodule – is the standard way to work with the
PGLearn datasets. ML4OPF also includes several other submodules that allow researchers to quickly
combine and modify existing methods, implement new methods, and easily compare results to prior
works. The layers submodule contains implementations of several useful differentiable layers
implemented in PyTorch (Ansel et al., 2024) for producing predictions which satisfy constraints.
The functional submodule contains PyTorch JIT implementations of each formulation’s con-
straints, objective, and incidence matrices. formulations contains a higher-level API which
makes some common assumptions (e.g. only pd and qd vary per sample) to simplify common
workflows. models contains ready-to-train implementations of various optimization proxy model
architectures including the Lagrangian Dual Framework (Fioretto et al., 2021), a penalty method,
and the E2ELR network from Chen (2023).

5 BENCHMARKING MACHINE LEARNING MODELS FOR OPF

This section describes evaluation metrics for optimization proxies, catering to the specific context
of learning the solution maps of optimization problems. It also provides guidelines for comparing
and benchmarking models. It is important to recognize that there is no universal metric, and that re-
searchers should report a combination of metrics to accurately capture the behavior and performance
of their models, keeping in mind the downstream use-cases of their contribution.

5.1 ACCURACY METRICS

The following lists several important metrics in the evaluation of optimization proxy models, i.e.
models that predict the output of a parametric optimization problem given the parameters. They are
stated below on a per-instance basis; aggregations should be performed by taking the mean/standard
deviation and maximum (e.g. over the test set samples).

7
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Optimality gap This metric reports how close the predicted objective value (i.e. the objective
value of the predicted solution) is to the true optimal value. It is important to note that predicted
solutions are often infeasible, hence it is not fair to assess solutions based on optimality gap alone.

Constraint violations This metric reports the magnitude of constraint violation, aggregated per
group of constraints. Here, “group” refers to constraint of the same type, e.g. the |N | Kirch-
hoff’s current law constraints in DC-OPF. In addition to average/maximum violation magnitude,
researchers should also report (for each group of constraints) the proportion of constraints violated
and the total violation (the sum of violations within each group).

Distance to feasible set This metric reports how far the predicted solution is from the closest fea-
sible point. This requires solving the corresponding projection problem for each instance (replacing
the objective with ∥x − x⋆∥ where x⋆ is the predicted solution and x is subject to the original
constraints).

Distance to optimal solution This metric reports how far the predicted solution is from the op-
timal solution. Note that a solution can exhibit small residuals but large distance to feasibility. In
real-life, this can mean that a solution with small residual may need large changes to become feasi-
ble, with potentially a large increase in cost.

5.2 COMPUTATIONAL PERFORMANCE METRICS

These metrics evaluate how fast the proxy models are, compared to optimization solvers. It’s im-
portant to recognize that ML proxies are only heuristics, whereas optimization solvers have stronger
guarantees. Two types of metrics should be reported: computing time for applications where a single
instance is solved at a time and throughput for applications that need to solve large batches of in-
stances (e.g. large-scale simulations). Timing results should be reported using CPU/GPU.hour (i.e.
2 CPU cores for 1 hour corresponds to 2 CPU.hr). Similarly to the accuracy metrics, aggregated
timing results should report both the mean/standard deviation and the maximum across samples.
Finally, in line with general guidelines for reporting ML results, researchers should always report
the device (CPU and/or GPU) used for running experiments.

Data-generation time This metric reports the total time spent obtaining the ground-truth pri-
mal/dual solutions required for the training (and validation) set of the proxy model – the time spent
generating the test set can be excluded.

Training time This metric reports the time spent training the optimization proxy model. In addi-
tion, researchers should comment on how often the model would need to be re-trained in a practical
application. For instance, it is not realistic to train a model every hour if the training time is 6 hours.

Inference time This metric reports the time spent producing a solution to a single instance. This
is useful if the downstream application involves solving instances sequentially, for instance, when
solving a market-clearing problem every 5 minutes. Researchers should report the maximum time
across samples, especially for architectures that involve an iterative scheme such as gradient correc-
tion (Donti et al., 2021), implicit layers (Agrawal et al., 2019), or optimization solvers, because of
performance variability.

Instance throughput This metric reports how many instances can be processed per unit of time
with a fixed computational resource budget. This metric is relevant for settings where a large number
of instances need to be evaluated, e.g., when running large-scale simulations that require solving
multiple OPF instances. In addition, it better captures the batched processing advantages of GPU
devices.

The solve time metadata included with the PGLearn datasets can be used to obtain data-
generation time and instance throughput for optimization solvers. However, it is important to note
that PGLearn datasets are generated using a single thread per instance, and utilize multiple processes
per machine. Such settings are known to have an adverse impact on the performance of optimiza-
tion solvers. Hence, the solving times reported in the metadata are likely over-estimates compared
to solving one instance at a time in a “clean” environment or with multi-threaded solvers.
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6 LIMITATIONS

6.1 DATA LIMITATIONS

In the absence of publicly-available, granular datasets released directly by system operators,
PGLearn is limited like prior works to using synthetic time-series and data augmentation schemes
to generate samples. Nevertheless, it is important to note that the reference snapshots selected for
PGLearn are based on real power grids in France, Europe, Texas, and the American midwest (Josz
et al., 2016; Fliscounakis et al., 2013; Kunkolienkar et al., 2024; University of Wisconsin-Madison,
2024), and the time-series used are based on real-world characteristics Li et al. (2020b).

Another limitation of PGLearn is the limited variety of topologies, and the nature of topology
changes. Namely, PGLearn considers topology variations by removing individual lines or gener-
ators. In contrast, real-life operations include multiple categories of topology changes, such as
switching multiple lines and reconfiguring buses within a substation. Additional research is needed
to better capture this lesser-studied facet of power grid operations.

6.2 FUTURE COLLECTIONS

PGLearn aims to provide curated datasets that are updated over time, to integrate new data-
generation procedures and OPF formulations. To that end, future versions of PGLearn will comprise
OPF formulations that include elements present in market-clearing formulations used by system op-
erators. This includes, for instance, the integration of reserve products and support for piece-wise
linear production curves Ma et al. (2009).

7 CONCLUSION

This paper has introduced PGLearn, an open-source learning toolkit for optimal power flow.
PGLearn addresses the lack of standardized datasets for ML and OPF by releasing several datasets
of large-scale OPF instances. It is the first collection that comprises complete primal and dual so-
lutions for multiple OPF formulations. In addition to releasing public datasets, PGLearn provides
open-source tools for data generation, and for the training and evaluation of ML models. These
open-source tools enable reproducible and fair evaluation of methods for ML and OPF, thereby
democratizing access to the field.

The PGLearn collection contains, in its initial release, over 10,000,000 OPF samples. It is re-
leased alongside extensive documentation and code, allowing users to generate additional datasets
as needed, and to benchmark the performance of ML models. The paper has also provided several
performance metrics and guidelines on how to report them. These guidelines aim at capturing spe-
cific aspects of ML for OPF that fall outside the scope of traditional ML applications. This includes,
for instance, the fundamental importance of measuring and reporting constraint violations, as well as
accurate reporting of data-generation, training and inference times when evaluating computational
performance.

Finally, PGLearn aims to democratize access to research on ML and OPF by removing the barrier to
entry caused by the computational requirements of large-scale data generation. It also aims to align
academic research more closely to the scale and complexity of real-world power systems. This will,
in turn, unlock the potential for modern AI techniques to assist in making future energy systems
more efficient, reliable, and sustainable.

REPRODUCIBILITY STATEMENT

Since the entire pipeline for generating the PGLearn datasets is open-source, the dataset is com-
pletely reproducible. The Julia random number generator MersenneTwister is used to ensure
random number generation is consistent across machines. The ML4OPF repository similarly makes
use of seeded random number generators, e.g. when instantiating neural network weights and shuf-
fling training data. Besides allowing to fully recreate the PGLearn datasets, the focus on repro-
ducibility also allows practitioners to easily extend or modify the dataset, for example generating
new datasets based on custom formulations.
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A FORMULATIONS

A.1 BACKGROUND MATERIAL

This section provides a brief overview of Lagrangian and conic duality. PGLearn uses the former
for nonlinear non-convex problems such as AC-OPF, and the latter for convex formulations such as
SOC-OPF and DC-OPF.

A.1.1 NONLINEAR OPTIMIZATION

Consider a nonlinear, non-convex optimization problem of the form

min
x

f(x) (1a)

s.t. g(x) ≥ 0 (1b)
h(x) = 0 (1c)

where f : Rn 7→ R, g : Rn 7→ Rm and h : Rn 7→ Rp are continuous functions, assumed to be
differentiable over their respective domains.

Denote by µ ∈ Rm and λ ∈ Rp the Lagrange multipliers associated to constraints (1b) and (1c),
respectively. The first order Karush-Kuhn-Tucker optimality conditions read

Jh(x)
⊤λ+ Jg(x)

⊤µ = ∇xf(x) (2a)
g(x) ≥ 0 (2b)
h(x) = 0 (2c)

µ ≥ 0 (2d)

µ⊤g(x) = 0 (2e)

where Jh(x) = ∇xh(x) and Jg(x) = ∇xg(x) denote the Jacobian matrices of h and g, respectively.

Given Lagrange multipliers λ, µ, the following Lagrangian bound is a valid lower bound on the
optimal value of problem (1):

L(λ, µ) = min
x

f(x)− λ⊤h(x)− µ⊤g(x). (3)

Note that computing this Lagrangian bound requires solving a nonlinear, non-convex problem,
which is NP-hard in general. Hence, it is generally intractable to compute valid dual bounds from
Lagrangian duality in the context of non-convex problems.

A.1.2 CONIC OPTIMIZATION

Consider a conic optimization problem of the form

min
x

c⊤x (4a)

s.t. Ax ⪰K b (4b)

where A ∈ Rm×n and K is a proper cone, i.e., a closed, pointed, convex cone with non-empty
interior. The corresponding conic dual problem reads

max
y

b⊤y (5a)

s.t. A⊤y = c (5b)
y ∈ K∗ (5c)

whereK∗ is the dual cone ofK. The reader is referred to Ben-Tal and Nemirovski (2001) for a more
complete overview of conic optimization and duality.

As shown by Tanneau and Van Hentenryck (2024), in many real-life applications, it is straightfor-
ward to obtain dual-feasible solutions. This is the case, for instance, when all primal variables have
finite lower and upper bounds, as is the case for all formulations considered in this work. By weak
conic duality, such dual-feasible solutions then yield valid dual bounds.
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A.2 OPF FORMULATIONS

This section presents the optimization models for each OPF formulation in PGLearn. Readers are
referred to the Matpower manual (Zimmerman and Murillo-Sánchez, 2024) for a general introduc-
tion to power systems, as well as the underlying concepts and relevant notations. Readers are also
referred to the build opf functions in the PGLearn.jl source code for implementations of
each using the JuMP (Lubin et al., 2023) modeling language, and to the extract primal and
extract dual functions for how primal and dual solutions are extracted and stored.

To formulate OPF problems, the following sets are introduced. The set of buses is denoted by N .
The sets of generators and loads attached to bus i ∈ N are denoted by Gi and Li, respectively.
The set of branches, i.e., power lines and transformers, is denoted by E . Each edge e ∈ E is
associated with a pair of buses (i, j) corresponding to the edge’s origin and destination. Note that
power grids often include parallel branches, i.e., two branches may have identical endpoints. For
ease of reading, using a slight abuse of notation, edges are identified with their endpoints using the
notation e = (i, j) ∈ E ; this indicates that branch e has endpoints i, j. The set of edges leaving
(resp. entering) bus i ∈ N is denoted by Ei (resp. ERi ). Finally, each branch e is characterized by its
complex admittance matrix

Ye =

(
Y ff
e Y ft

e

Y tf
e Y tt

e

)
=

(
gff
e + jbff

e gft
e + jbft

e

gtf
e + jbtf

e gtt
e + jbtt

e

)
∈ C2×2 (6)

where j is the imaginary unit, i.e., j2 = −1.

A.2.1 AC OPTIMAL POWER FLOW

Model 1 states the nonlinear programming formulation of AC-OPF used in PGLearn.

Model 1 AC Optimal Power Flow (AC-OPF)

min
pg,qg,pf,qf,pt,qt,v,θ

∑
i∈N

∑
j∈Gi

cjp
g
j (7a)

s.t.
∑
j∈Gi

pg
j −

∑
j∈Li

pd
j − gs

iv
2
i =

∑
e∈Ei

pf
e +

∑
e∈ER

i

pt
e ∀i ∈ N (7b)

∑
j∈Gi

qg
j −

∑
j∈Li

qd
j + bs

iv
2
i =

∑
e∈Ei

qf
e +

∑
e∈ER

i

qt
e ∀i ∈ N (7c)

pf
e = gff

ev
2
i + gft

evivj cos(θi − θj) + bft
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7d)

qf
e = −bff

ev
2
i − bft

evivj cos(θi − θj) + gft
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7e)

pt
e = gtt

ev
2
j + gtf

evivj cos(θi − θj)− btf
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7f)

qt
e = −btt

ev
2
j − btf

evivj cos(θi − θj)− gtf
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7g)

(pf
e)

2 + (qf
e)

2 ≤ Se
2 ∀e ∈ E (7h)

(pt
e)

2 + (qt
e)

2 ≤ Se
2 ∀e ∈ E (7i)

∆θe ≤ θi − θj ≤ ∆θe ∀e = (i, j) ∈ E (7j)
θref = 0 (7k)

pg
i
≤ pg

i ≤ pg
i ∀i ∈ G (7l)

qg
i
≤ qg

i ≤ qg
i ∀i ∈ G (7m)

vi ≤ vi ≤ vi ∀i ∈ N (7n)

−Se ≤ pf
e ≤ Se ∀e ∈ E (7o)

−Se ≤ qf
e ≤ Se ∀e ∈ E (7p)

−Se ≤ pt
e ≤ Se ∀e ∈ E (7q)

−Se ≤ qt
e ≤ Se ∀e ∈ E (7r)
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The decision variables comprise active and reactive power dispatch pg and qg, active and reactive
power flows in the forward and reverse direction pf,qf,pt,qt, and voltage magnitude and angle v
and θ, respectively. The objective (7a) minimizes the production costs; PGLearn currently supports
linear objective functions. Constraints (7b) and (7c) encode the active and reactive power balance
physics constraints given by Kirchhoff’s current law. Constraints (7d)-(7g) express active and reac-
tive power flow following Ohm’s law. Constraints (7h)-(7i) and (7j) enforce the engineering limits of
the transmission lines, namely, their thermal capacity and maximum voltage angle difference. Con-
straint (7k) fixes the reference bus’ (slack bus) voltage angle to zero. Finally, constraints (7l) and
(7m) encode each generator’s minimum and maximum active and reactive power outputs, constraint
(7n) enforces the voltage magnitude bounds, and constraints (7o), (7p), (7q), (7r) enforce bounds on
the power flow variables.

PGLearn supports any nonlinear optimization solver supported by JuMP. The default configuration
solves AC-OPF instances using Ipopt (Biegler and Zavala, 2009) with the MA27 linear solver (Duff
and Reid, 1982) via LibHSL (Fowkes et al., 2024). Note that, unless a global optimization solver is
used, global optimality of AC-OPF solutions is not guaranteed. Nevertheless, previous experience
suggests that solutions obtained by Ipopt are typically close to optimal Gopinath et al. (2020).

A.2.2 SOC OPTIMAL POWER FLOW

PGLearn also implements the second-order cone relaxation of AC-OPF proposed by Jabr in (Jabr,
2006b; 2007), herein referred to as SOC-OPF. This convex relaxation can be solved in polynomial
time using, e.g., an interior-point algorithm, and is exact on radial networks Molzahn and Hiskens
(2019).

The SOC-OPF relaxation is obtained by introducing variables

wi = v2
i (8a)

wre
e = vivj cos(θi − θj) (8b)

wim
e = vivj sin(θi − θj) (8c)

together with the valid (non-convex) constraint

(wre
e )

2 + (wim
e )2 = wiwj , ∀e = (i, j) ∈ E . (9)

Then, constraints (7b), (7c), (7d), (7e), (7f), (7g), (7j), and (7n) are reformulated using these new
variables, and constraint (9) is convexified into the so-called Jabr inequality

(wre
e )

2 + (wim
e )2 ≤ wiwj , ∀e = (i, j) ∈ E . (10)

Finally, valid lower and upper bounds for wre,wim variables are derived from (7n), (7j) and (9),
using the same strategy as Coffrin et al. (2018). Model 2 states the resulting SOC-OPF formulation,
in conic form.

The implementation in PGLearn slighly differs from Coffrin et al. (2018) in the definition of
wre,wim variables. Namely, in Coffrin et al. (2018), wre,wim variables are defined per bus-pair,
defined as a pair of buses (i, j) linked by at least one branch e = (i, j) ∈ E . In contrast, PGLearn de-
fines wre,wim variables for each branch; the two formulations are equivalent unless parallel branches
are present. This design choice was motivated by the simplicity of the branch-level formulation and
the corresponding data formats, and was found to have a marginal impact on the quality of the
relaxation.

The dual SOC-OPF model is stated in Model 3. Dual variables λp, λq, λpf, λqf, λpt, λqt are associated
to equality constraints (11b), (11c), (11d), (11e), (11f), (11e), and are therefore unrestricted. Dual
conic variables νf, ν t and ω are associated to conic constraints (11h), (11i) and (11j), respectively.
Dual variables µθ and µ̄θ are associated to the lower and upper side of voltage angle difference
constraint (11k). Finally, dual variables µw, µ̄w, µpg, µ̄pg, µqg, µ̄qg, µpf, µ̄pf, µqf, µ̄qf, µpt, µ̄pt, µqt, µ̄qt,
µwr, µ̄wr, µwi, µ̄wi are associated to lower and upper bounds on variables w, pg,qg, pf,qf,pt,qt,
wre,wim, respectively.

Note that users need not interact with the dual SOC-OPF problem directly, as interior-point solvers
typically report both primal and dual information. The formulation in Model 3 is stated for complete-
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Model 2 SOC Optimal Power Flow (SOC-OPF)

min
pg,qg,pf,qf,pt,qt,w,wre,wim

∑
i∈N

∑
j∈Gi

cjp
g
j (11a)

s.t.
∑
j∈Gi

pg
j −

∑
j∈Li

pd
j − gs

iwi =
∑
e∈Ei

pf
e +

∑
e∈ER

i

pt
e ∀i ∈ N (11b)

∑
j∈Gi

qg
j −

∑
j∈Li

qd
j + bs

iwi =
∑
e∈Ei

qf
e +

∑
e∈ER

i

qt
e ∀i ∈ N (11c)

pf
e = gff

ewi + gft
ew

re
e + bft

ew
im
e ∀e = (i, j) ∈ E (11d)

qf
e = −bff

ewi − bft
ew

re
e + gft

ew
im
e ∀e = (i, j) ∈ E (11e)

pt
e = gtt

ewj + gtf
ew

re
e − btf

ew
im
e ∀e = (i, j) ∈ E (11f)

qt
e = −btt

ewj − btf
ew

re
e − gtf

ew
im
e ∀e = (i, j) ∈ E (11g)

(Se, p
f
e, q

f
e) ∈ Q3 ∀e ∈ E (11h)

(Se, p
t
e, q

t
e) ∈ Q3 ∀e ∈ E (11i)

(
wi√
2
,
wj√
2
, wre

e , w
im
e ) ∈ Q4

r ∀e = (i, j) ∈ E (11j)

tan(∆θe)w
re
e ≤ wim

e ≤ tan(∆θe)w
re
e ∀e ∈ E (11k)

(vi)
2 ≤ wi ≤ (vi)

2 ∀i ∈ N (11l)

pg
i ≤ pg

i ≤ pg
i ∀i ∈ G (11m)

qg
i
≤ qg

i ≤ qg
i ∀i ∈ G (11n)

−Se ≤ pf
e ≤ Se ∀e ∈ E (11o)

−Se ≤ qf
e ≤ Se ∀e ∈ E (11p)

−Se ≤ pt
e ≤ Se ∀e ∈ E (11q)

−Se ≤ qt
e ≤ Se ∀e ∈ E (11r)

wre
e ≤ wre

e ≤ wre
e ∀e ∈ E (11s)

wim
e ≤ wim

e ≤ wim
e ∀e ∈ E (11t)

ness and to support research on predicting dual solutions. PGLearn supports the use of any JuMP-
supported conic solver. By default, PGLearn solves SOC-OPF instances using Clarabel (Goulart
and Chen, 2024).
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Model 3 Dual of SOC-OPF

max
λ,µ,ν,ω

∑
i∈N

λp
i

∑
j∈Li

(
pd
j

)
+ λq

i

∑
j∈Li

(
qd
j

)
+

∑
j∈Gi

(
pg
j
µpg
j
+ pg

j µ̄
pg
j + qg

j
µqg
j
+ qg

j µ̄
qg
j

)
+ v2

iµ
w
i
+ v2

i µ̄
w
i


+

∑
e∈E

(
−s̄e

(
µpf
e
− µ̄pf

e + µqf
e
− µ̄qf

e + µpt
e
− µ̄pt

e + µqt
e
− µ̄qt

e + νsf
e + νst

e

)
+wre

eµ
wr
e
+wre

e µ̄
wr
e +wim

e µwi
e
+wim

e µ̄wi
e

)
(12a)

s.t. λp
i + µpg

g
+ µ̄pg

g = cg ∀i ∈ N ,∀g ∈ Gi (12b)

λq
i + µqg

g
+ µ̄qg

g = 0 ∀i ∈ N ,∀g ∈ Gi (12c)

− λp
i − λpf

e + νpf
e + µpf

e
+ µ̄pf

e = 0 ∀e = (i, j) ∈ E (12d)

− λq
i − λqf

e + νqf
e + µqf

e
+ µ̄qf

e = 0 ∀e = (i, j) ∈ E (12e)

− λp
j − λpt

e + νpt
e + µpt

e
+ µ̄pt

e = 0 ∀e = (i, j) ∈ E (12f)

− λq
j − λqt

e + νqt
e + µqt

e
+ µ̄qt

e = 0 ∀e = (i, j) ∈ E (12g)

− gsi λ
p
i + bsiλ

q
i +

∑
e∈E+

i

(
gff
eλ

pf
e − bff

eλ
qf
e +

ωf
e√
2

)
+

∑
e∈E−

i

(
gtt
eλ

pt
e − btt

eλ
qt
e +

ωt
e√
2

)
+ µw

i
+ µ̄w

i = 0 ∀i ∈ N (12h)

gft
eλ

pf
e + gtf

eλ
pt
e − bft

eλ
qf
e − btf

eλ
qt
e − tan(∆θe)µ

θ

e
+ tan(∆θe)µ̄

θ
e + ωre

e + µwr
e
+ µ̄wr

e = 0 ∀e ∈ E (12i)

bft
eλ

pf
e − btf

eλ
pt
e + gft

eλ
qf
e − gtf

eλ
qt
e + µθ

e
− µ̄θ

e + ωim
e + µwi

e
+ µ̄wi

e = 0 ∀e ∈ E (12j)

νf
e = (νsf

e , ν
pf
e , ν

qf
e ) ∈ Q3, ν t

e = (νst
e , ν

pt
e , ν

qt
e ) ∈ Q3 ∀e ∈ E (12k)

ωe =
(
ωf
e, ω

t
e, ω

re
e , ω

im
e

)
∈ Q4

r ∀e ∈ E (12l)

µpg, µqg, µw, µθ, µpf, µqf, µpt, µqt ≥ 0 (12m)

µ̄pg, µ̄qg, µ̄w, µ̄θ, µ̄pf, µ̄qf, µ̄pt, µ̄qt ≤ 0 (12n)
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A.2.3 DC OPTIMAL POWER FLOW

The DC-OPF is a popular linear approximation of AC-OPF, which underlies most electricity mar-
kets. The DC approximation is motivated by several assumptions, whose validity mainly holds for
transmission systems. Namely, the DC approximation assumes that all voltage magnitudes are fixed
to one per-unit, voltage angles are assumed to be small (i.e. sin(θ) ≈ θ), and that reactive power and
power losses can be neglected. The reader is referred to Molzahn and Hiskens (2019) for additional
background on the DC approximation.

Model 4 states the DC-OPF formulation used in PGLearn. Constraint (13b) enforces nodal power
balance through Kirchhoff’s current law. Constraint (13c) expresses active power flows on each
branch according to Ohm’s law, and constraint (13d) restricts the voltage angle difference between
each branch’s endpoints. Constraint (13e) fixes the reference bus’ voltage angle to zero. Finally,
constraints (13f) and (13g) enforce lower and upper limits on active power generation and active
power flows.

Model 4 DC Optimal Power Flow (DC-OPF)

min
pg,pf,θ

∑
i∈N

∑
j∈Gi

cjp
g
j (13a)

s.t.
∑
j∈Gi

pg
j −

∑
e∈Ei

pf
e +

∑
e∈ER

i

pf
e =

∑
j∈Li

pd
j + gs

i ∀i ∈ N (13b)

−be(θi − θj)− pf
e = 0 ∀e = (i, j) ∈ E (13c)

∆θe ≤ θi − θj ≤ ∆θe ∀e = (i, j) ∈ E (13d)
θref = 0 (13e)

pg
i ≤ pg

i ≤ pg
i ∀i ∈ G (13f)

−Se ≤ pf
e ≤ Se ∀e ∈ E (13g)

The dual DC-OPF problem is stated in Model 5. Dual variables λp and λpf are associated to equality
constraints (13b) and (13c), respectively. Dual variables µθ, µ̄θ are associated to lower and upper
sides of the voltage angle difference constraint (13d). Finally, dual variables µpg, µ̄pg, µpf, µ̄pf are
associated to lower and upper bounds on variables pg and pf.

Model 5 Dual of DC-OPF

max
λ,µ

∑
i∈N

λp
i(g

s
i +

∑
j∈Li

pd
j) +

∑
i∈N

∑
j∈Gi

(
pg
j
µpg
j
+ pg

j µ̄
pg
j

)
+

∑
e∈E

(
∆θeµ

θ

e
+∆θeµ̄

θ
e − s̄eµ

pf
e
+ s̄eµ̄

pf
e

)
(14a)

s.t. λp
i + µpg

g
+ µ̄pg

g = cg ∀i ∈ N ,∀g ∈ Gi (14b)

− λp
i + λp

j − λpf
e + µpf

e
+ µ̄pf

e = 0 ∀e = (i, j) ∈ E (14c)∑
e∈E+

i

(
µθ

e
− beλ

pf
e

)
+

∑
e∈E−

i

(
µ̄θ
e + beλ

pf
e

)
= 0 ∀i ∈ N (14d)

µθ, µpg, µpf ≥ 0 (14e)

µ̄θ, µ̄pg, µ̄pf ≤ 0 (14f)

PGLearn supports any linear programming solver supported by JuMP. By default, PGLearn solves
DC-OPF instances using HiGHS (Huangfu and Hall, 2018).
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B DATASET FORMAT

This section contains tables describing the format for the case file, the input data files, and the meta-
data, primal solution, and dual solution files for each of the formulations. Besides the JSON case
file, all data is stored in the HDF5 format (The HDF Group, 2024). Each dataset within PGLearn is
structured following the diagram below, where <case> refers to the snapshot name, <split> is
“train”, “test”, or “infeasible”, and <formulation> is “ACOPF”, “DCOPF”, or “SOCOPF”:

<case>
| - case.json
| - <split>
| | - input.h5
| | - <formulation>
| | | - primal.h5
| | | - dual.h5
| | | - meta.h5

The main data in the input.h5 files are stored under the data key, with metadata (seed numbers
and the configuration file used to generate the dataset) stored under the meta key. The structure of
the input data tables is given in Table 2. The structure of the metadata for each formulation (stored
in the meta.h5 files), is described in Table 3. The reference case data stored in case.json is
described in Table 7.

Table 2: Input Data Format

Key Shape Meaning

pd (N , |L|) pd – Active power demand
qd (N , |L|) qd – Reactive power demand

branch status (N , |E|) 0 if branch is disabled, 1 otherwise
gen status (N , |G|) 0 if generator is disabled, 1 otherwise

Table 3: Metadata Format

Key Size Meaning
formulation (N , 1) Formulation name

termination status (N , 1) MOI.TerminationStatusCode
primal status (N , 1) MOI.ResultStatusCode for primal solution
dual status (N , 1) MOI.ResultStatusCode for dual solution
solve time (N , 1) Time spent in solver
build time (N , 1) Time spent building JuMP model

extract time (N , 1) Time spent extracting solution
primal objective value (N , 1) Primal objective value
dual objective value (N , 1) Dual objective value

seed (N , 1) MersenneTwister seed
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Table 4: AC-OPF Data Format

Primal Key Size Variable

pg (N , |G|) pg

qg (N , |G|) qg

vm (N , |N |) v
va (N , |N |) θ
pf (N , |E|) pf

qf (N , |E|) qf

pt (N , |E|) pt

qt (N , |E|) qt

Dual Key Size Constraint

slack bus (N , 1) (7k)
kcl p (N , |N |) (7b)
kcl q (N , |N |) (7c)
ohm pf (N , |E|) (7d)
ohm qf (N , |E|) (7e)
ohm pt (N , |E|) (7f)
ohm qt (N , |E|) (7g)
sm fr (N , |E|) (7h)
sm to (N , |E|) (7i)

va diff (N , |E|) (7j)
pg lb / pg ub (N , |G|) (7l)
qg lb / qg ub (N , |G|) (7m)
vm lb / vm ub (N , |N |) (7n)
pf lb / pf ub (N , |E|) (7o)
qf lb / qf ub (N , |E|) (7p)
pt lb / pt ub (N , |E|) (7q)
qt lb / qt ub (N , |E|) (7r)

Table 5: SOC-OPF Data Format

Primal Key Size Variable

pg (N , |G|) pg

qg (N , |G|) qg

w (N , |N |) w
wr (N , |E|) wre

wi (N , |E|) wim

pf (N , |E|) pf

pt (N , |E|) pt

qf (N , |E|) qf

qt (N , |E|) qt

Dual Key Size Constraint

kcl p (N , |N |) (11b)
kcl q (N , |N |) (11c)
ohm pf (N , |E|) (11d)
ohm qf (N , |E|) (11e)
ohm pt (N , |E|) (11f)
ohm qt (N , |E|) (11g)
sm fr (N , |E|, 3) (11h)
sm to (N , |E|, 3) (11i)
jabr (N , |E|, 4) (11j)

va diff lb / va diff ub (N , |E|) (11k)
w lb / w ub (N , |N |) (11l)

wr lb / wr ub (N , |E|) (11s)
wi lb / wi ub (N , |E|) (11t)
pg lb / pg ub (N , |G|) (11m)
qg lb / qg ub (N , |G|) (11n)
pf lb / pf ub (N , |E|) (11o)
qf lb / qf ub (N , |E|) (11p)
pt lb / pt ub (N , |E|) (11q)
qt lb / qt ub (N , |E|) (11r)

Table 6: DC-OPF Data Format

Primal Key Size Variable

pg (N , |G|) pg

va (N , |N |) θ
pf (N , |E|) pf

Dual Key Size Constraint

slack bus (N , 1) (13e)
kcl (N , |N |) (13b)
ohm (N , |E|) (13c)

va diff (N , |E|) (13d)
pg lb / pg ub (N , |G|) (13f)
pf lb / pf ub (N , |E|) (13g)

21



1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

Under review as a conference paper at ICLR 2026

Table 7: Case JSON Format

Key Size Description

case – Snapshot name
N 1 Number of buses (|N |)
E 1 Number of edges (|E|)
L 1 Number of loads (|L|)
G 1 Number of generators (|G|)

ref bus 1 Index of reference/slack bus (1-based)
base mva 1 Base MVA to convert from per-unit
vnom |N | Nominal voltage
pd |L| Reference active power load (pd)
qd |L| Reference reactive power load (qd)
A (|E|, |N |) Branch incidence matrix in COO format
Ag (|N |, |G|) Generator incidence matrix in COO format

bus arcs fr |N | Indices of branches leaving each bus (Ei)
bus arcs to |N | Indices of branches entering each bus (ERi )
bus gens |N | Indices of generators at each bus (Gi)
bus loads |N | Indices of loads at each bus (Li)

gs |N | Nodal shunt conductance (gs)
bs |N | Nodal shunt susceptance (bs)

vmin |N | Voltage magnitude lower bound (v)
vmax |N | Voltage magnitude upper bound (v)
dvamin |E| Minimum voltage angle difference (∆θ)
dvamax |E| Maximum voltage angle difference (∆θ)
smax |E| Branch thermal limit (S)
pgmin |G| Minimum active power generation (pg)
pgmax |G| Maximum active power generation (pg)
qgmin |G| Minimum reactive power generation (qg)
qgmax |G| Maximum reactive power generation (qg)
c1 |G| Linear cost coefficient

gen bus |G| Bus index of each generator (1-based)
load bus |L| Bus index of each load (1-based)
bus fr |E| From bus index for each branch (i) (1-based)
bus to |E| To bus index for each branch (j) (1-based)

g |E| Branch conductance
b |E| Branch susceptance

gff |E| From-side branch conductance (gff)
gft |E| From-to branch conductance (gft)
gtf |E| To-from branch conductance (gtf)
gtt |E| To-side branch conductance (gtt)
bff |E| From-side branch susceptance (bff)
bft |E| From-to branch susceptance (bft)
btf |E| To-from branch susceptance (btf)
btt |E| To-side branch susceptance (btt)
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C DATA LOADING TUTORIAL

PGLearn is compatible with the datasets Python library enabling powerful features such
as streaming and compatibility with many major ML frameworks. For example, to use the
1354 pegase dataset, one can run the following code:

from datasets import load_dataset

ds = load_dataset(
"PGLearn/PGLearn-Medium-1354_pegase",
split="test", # train or test
streaming=True, # optional; download samples on-demand
columns=[ # optional; only download some columns

"input/pd", "ACOPF/primal/pg",
]

)

sample = next(iter(ds))
print(len(sample["input/pd"])) # 673
print(len(sample["ACOPF/primal/pg"])) # 260

# example torch usage with torch.utils.data.DataLoader
import torch
dl = torch.utils.data.DataLoader(

ds.with_format("torch"),
batch_size=8

)
batch = next(iter(dl))
print(batch["ACOPF/primal/pg"].shape) # torch.Size([8, 260])

The HDF5 files can also be downloaded directly from the script revision:

from huggingface_hub import snapshot_download

# download the compressed HDF5 files
snapshot_download(

"PGLearn/PGLearn-Small-14_ieee",
local_dir="./data",
repo_type="dataset", revision="script",
# optional; filter what files to download
allow_patterns=[

"*/DCOPF/*", "*input*"
],
ignore_patterns=[

"*dual.h5.gz", "infeasible/*"
],

)

# optional; pre-decompress all files using gzip
from pathlib import Path
import gzip, shutil
for src in Path("./data").rglob("*.h5.gz"):

dest = src.with_suffix("")
with gzip.open(src, "rb") as fsrc, open(dest, "wb") as fdest:

shutil.copyfileobj(fsrc, fdest)
src.unlink() # optional; delete the compressed files

# read using h5py
import h5py
h5py.File("./data/train/DCOPF/primal.h5")['pg'].shape # (756205, 5)
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