
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PGLEARN – AN OPEN-SOURCE LEARNING TOOLKIT
FOR OPTIMAL POWER FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine Learning (ML) techniques for Optimal Power Flow (OPF) problems
have recently garnered significant attention, reflecting a broader trend of lever-
aging ML to approximate and/or accelerate the resolution of complex optimiza-
tion problems. These developments are necessitated by the increased volatility
and scale in energy production for modern and future grids. However, progress
in ML for OPF is hindered by the lack of standardized datasets and evaluation
metrics, from generating and solving OPF instances, to training and benchmark-
ing machine learning models. To address this challenge, this paper introduces
PGLearn, a comprehensive suite of standardized datasets and evaluation tools for
ML and OPF. PGLearn provides datasets that are representative of real-life op-
erating conditions, by explicitly capturing both global and local variability in the
data generation, and by, for the first time, including time series data for several
large-scale systems. In addition, it supports multiple OPF formulations, includ-
ing AC, DC, and second-order cone formulations. Standardized datasets are made
publicly available to democratize access to this field, reduce the burden of data
generation, and enable the fair comparison of various methodologies. PGLearn
also includes a robust toolkit for training, evaluating, and benchmarking machine
learning models for OPF, with the goal of standardizing performance evaluation
across the field. By promoting open, standardized datasets and evaluation met-
rics, PGLearn aims at democratizing and accelerating research and innovation in
machine learning applications for optimal power flow problems.

1 INTRODUCTION

The rapid evolution of energy systems, driven by mass integration of renewable and distributed
energy resources, is creating new challenges in the maintenance, expansion, and operation of power
grids. The increased volatility and scale of power generation in modern and future grids calls for
innovative solutions to manage uncertainty and ensure reliability (Zhang et al., 2021). Machine
learning (ML) has emerged as a powerful tool in this context, offering the potential to address key
problems such as optimizing grid operations and predicting power demand, enabling the use of
previously intractable applications such as real-time risk analysis (Chen et al., 2024). However, the
success of ML models depends on the availability of high-quality data, which is essential for training
accurate and reliable models (Khaloie et al., 2024; Lovett et al., 2024).

Optimal Power Flow (OPF) is a fundamental problem in power systems operations, focusing on how
to efficiently operate a power transmission system while satisfying physics, engineering, and oper-
ations constraints. Most market-clearing algorithms for real-time electricity markets are based on
OPF, which makes it paramount to real-time operations. In addition, OPF forms the building block
of security-constrained unit commitment (SCUC) formulations used in day-ahead markets (Chen
et al., 2023), as well as transmission expansion planning problems. In practice, many instances of
OPF need to be solved at once in order to account for uncertainties in renewable power genera-
tion and/or demand, making it a computationally intensive task – especially given the non-convex
physics of AC power flow. Besides its real-world applications, OPF has also garnered significant
attention as a test-bed for research methods integrating mathematical programming and machine
learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ML4OPF

ML for OPF Utilities

Standard Evaluation

PGLearn.jl

OPF Formulations

Dataset Pipeline

SOC DC

AC

Figure 1: The PGLearn Toolkit: publicly available AC, DC, and SOC optimal power flow datasets,
PGLearn.jl for data generation, and the ML4OPF ML toolkit.

The key motivation for using ML to address parametric OPF stems from the increased volatility and
scale in power generation in modern and future grids. Indeed, the growing use of intermittent renew-
able energy sources such as wind and solar generation is driving significant growth in operational
uncertainty. This motivates a shift from deterministic to, e.g., stochastic optimization formulations
that explicitly consider uncertainty. Such a change results in OPF problems that are, or will be,
orders of magnitude larger than today’s instances. In addition, the risk of energy shortage, conges-
tion, and voltage issues has become substantially larger and requires novel methods to manage in
real-time. Machine learning offers some hope in addressing these challenges by moving much of the
computational burden offline and delivering orders of magnitude speedups for real-time operations.

This research avenue is further justified by the fact that practitioners often solve OPF instances on
very similar – or even identical – transmission systems, with only renewable generation and/or power
demand varying across instances. Readers are referred to Hasan et al. (2020); Khaloie et al. (2024)
for a detailed review of prior works in machine learning for OPF. Note that many of the works therein
do not consider the non-convex AC-OPF formulation directly, but rather focus on more tractable,
i.e., convex, OPF formulations, such as the DC-OPF linear approximation or second-order cone
relaxation (Molzahn and Hiskens, 2019). Although these relaxed formulations do not capture the
exact physics, they more closely match the problems that real power market operators and partici-
pants solve every day (Ma et al., 2009). For example, Chen (2023) uses a linear formulation inspired
by problem solved by the Midcontinent Independent System Operator (MISO) to clear its real-time
market.

1.1 MOTIVATION: DATA SCARSITY IN ML FOR OPF RESEARCH

Despite strong interest from industry, real, industry-scale data is scarce, mainly due to regulatory
barriers that restrict the sharing of sensitive information on power grids. Thus, most previous ML
for OPF works generate their own artificial datasets, often based on the Power Grid Lib Optimal
Power Flow (PGLib-OPF) (Babaeinejadsarookolaee et al., 2019) benchmark library – a collection
of grid snapshots originally designed for benchmarking AC-OPF optimization algorithms.

While machine learning methods usually require many thousands of data points to train accurate
models, PGLib-OPF only provides a single snapshot per grid. Hence, a data augmentation strategy
is needed to “sample around” the provided snapshots in a realistic fashion. There is however no
consensus in prior literature for how to perform this sampling, which has led to a highly fragmented
ecosystem where it is impossible to directly compare results from different works due to the use of
very different data distributions (Khaloie et al., 2024). Indeed, the characteristics of the learning
problem may vary substantially when considering different augmentation schemes, for example
correlated versus uncorrelated noise.

To ensure that ML for OPF research is useful in practice, it is important to carefully consider the
choices involved in designing a data augmentation scheme. For example, most works surveyed in
Khaloie et al. (2024) sample instances by perturbing individual loads independently of each other.
Figure 2 illustrates the limitations the resulting data distribution, for a system with 1354 buses. The
figure shows that, i) the resulting distribution displays a very narrow range of total demand, and ii)
the resulting OPF solutions exhibit simplistic patterns that do not capture global dynamics over a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Limitations of sampling strategies that do not consider correlations across individual loads.
Left: histogram of total demand: the absence of correlations yields a narrow range of total demand.
Right: active power flow on branch 200; the absence of correlations in input data leads to datasets
with low variance and diversity.

wider range of total demand. As a consequence, ML models trained on data that does not capture
correlations can only be expected to perform well for a small total demand range, severely limiting
their usability in practice.

Finally, the lack of publicly available standardized datasets requires individual teams to expend con-
siderable computational resources to generate new datasets. This comes at a high financial and envi-
ronmental cost, and results in most academic studies considering small, synthetic power grids which
incur lower data generation costs, but are irrelevant to industry practitioners. More importantly, it
represents a significant barrier to entry to teams without substantial computational resources.

1.2 RELATED WORK

Due to strong interest from academia and industry, several OPF datasets and data generation pack-
ages have been released in recent years. However, none simultaneously meet the requirements of
being actively maintained, considering large power networks, and using realistic sampling schemes.

Some prior works (Donon et al., 2020; Chatzos et al., 2022; Klamkin et al., 2024) report results
on industry-based datasets, i.e., using data obtained from transmission system operators. Although
these works report more closely match real-world systems, the corresponding datasets are not pub-
licly available due to regulations around privacy and security.

Despite a growing literature on ML for OPF, few datasets have been made publicly available. The
datasets initially released alongside the OPFSampler (Robson et al., 2019) codebase are no longer
available, and the code is unmaintained. The OPFLearn library (Joswig-Jones et al., 2022) provides
data augmentation tools built on top of PowerModels Coffrin et al. (2018), as well as a collection
of 10,000 samples of AC-OPF instances and their solution for five systems with up to 118 buses.
This code is no longer maintained, only considers uncorrelated demand perturbations, and reports
incomplete primal/dual solutions. More recently, and closest to this paper, OPFData (Lovett et al.,
2024) is a collection of AC-OPF datasets which considers systems with up to 13,659 buses. The col-
lection also includes instances with perturbed topology, obtained by randomly removing individual
lines or generators in the system. The main limitation of OPFData, however, is that it only considers
uncorrelated demand perturbation, leading to simplistic data distributions as illustrated in Figure 2.
Additionally, OPFData only reports AC-OPF solutions, does not include dual solutions nor metadata
such as solve times, and does not include the source code used to generate and solve samples.

1.3 CONTRIBUTIONS AND OUTLINE

To address the above challenges, this paper proposes PGLearn, a collection of datasets and tools for
ML and OPF. The contributions of PGLearn are as follows:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• PGLearn provides a collection of standardized datasets for large-scale OPF instances, gen-
erated using a realistic and reproducible data augmentation methodology. The entire col-
lection totals over 10,000,000 OPF samples, split between training and testing data to allow
for direct comparison of results. Crucially, PGLearn is also the first OPF dataset to incor-
porate realistic time-series data for large-scale power systems.

• Each PGLearn dataset comprises complete primal and dual solutions for several OPF for-
mulations, a unique feature compared to existing literature.

• PGLearn provides several evaluation metrics for objective and fair comparison of various
ML methodologies for OPF problems, together with guidelines on performance bench-
marking.

• The PGLearn.jl Julia (Bezanson et al., 2017) library containing the source code to gen-
erate the PGLearn datasets. The modular design of PGLearn.jl simplifies the imple-
mentation and execution of new data augmentation schemes and OPF formulations.

• The ML4OPF PyTorch (Ansel et al., 2024) library containing data parsers, optimized GPU-
friendly implementations of the supported OPF formulations (objective, constraints, etc.),
and other utilities for developing new ML methods for OPF.

The code used to generate PGLearn is fully open-source and relies only on open-source solvers,
allowing to interrogate, reproduce, and extend each part of the dataset generation process. By openly
distributing these tools and datasets, PGLearn seeks to lower the barrier of entry for researchers in
the field, promoting innovation and accelerating the development of ML techniques for OPF and
optimization more broadly.

The rest of this paper is structured as follows. Section 2 describes each OPF formulation included
in PGLearn. Section 3 introduces the data augmentation procedure, and Section 4 presents relevant
features of the PGLearn.jl and ML4OPF libraries. Section 5 provides recommendations for
evaluation metrics and their reporting. Section 6 reviews the limitations of PGLearn, and Section 7
concludes the paper.

2 OPF FORMULATIONS IN PGLEARN

A unique feature of PGLearn is that it provides, for each OPF instance, solutions to several OPF
formulations. This allows to compare, for the same input data, the performance of ML models
trained using different formulations. Namely, PGLearn currently supports the nonlinear, non-convex
AC-OPF, the second-order cone relaxation SOC-OPF, and the linear approximation DC-OPF. A brief
summary of each formulation is provided below. Due to space considerations, full OPF formulations
are stated in Appendix A.

2.1 OPF FORMULATIONS

AC-OPF The AC-OPF is considered the “full” steady-state optimal power flow formulation.
PGLearn uses the rectangular-power polar-voltage form, matching the ACPPowerModel formu-
lation implemented in PowerModels (Coffrin et al., 2018). This formulation includes non-convex
AC power flow physics to accurately model the power system. The full non-linear programming
formulation is included in Model 1.

SOC-OPF The SOC-OPF is a second-order-cone relaxation of the AC-OPF proposed by Jabr
(2006a). The SOC-OPF better approximates the full-physics AC-OPF compared to the linear DC-
OPF, but is more complicated to solve. A description of how to derive the SOC-OPF, and its full
conic programming formulation, is included with Model 2.

DC-OPF The DC-OPF is a sparse linear approximation to the AC-OPF (Christie et al., 2000). It
is commonly used in industry to approximate AC-OPF in cases where solving AC-OPF within time
constraints is intractable. Among other simplifications, it considers only active power and fixes all
voltage magnitudes to 1. A list of all assumptions required to derive the DC-OPF, and its full linear
programming formulation, is included with Model 4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Summary statistics of the PGLearn datasets.

Case name |N | |L| |G| |E| Total PD Total PG Global range
14 ieee 14 11 5 20 0.3 GW 0.4 GW 70% – 110%
30 ieee 30 21 6 41 0.3 GW 0.4 GW 60% – 100%
57 ieee 57 42 7 80 1.3 GW 2 GW 60% – 100%
89 pegase 89 35 12 210 6 GW 10 GW 60% – 100%
118 ieee 118 99 54 186 4 GW 7 GW 80% – 120%
300 ieee 300 201 69 411 24 GW 36 GW 60% – 100%

1354 pegase 1354 673 260 1991 73 GW 129 GW 70% – 110%
NewYork2030 1576 1446 323 2427 33 GW 42 GW 70% – 110%
1888 rte 1888 1000 290 2531 59 GW 89 GW 70% – 110%
2869 pegase 2869 1491 510 4582 132 GW 231 GW 60% – 100%

6470 rte 6470 3670 761 9005 97 GW 118 GW 60% – 100%
Texas7k 6717 4541 637 9140 75 GW 97 GW 80% – 120%
9241 pegase 9241 4895 1445 16049 312 GW 530 GW 60% – 100%

13659 pegase 13659 5544 4092 20467 381 GW 981 GW 60% – 100%
Midwest24k 23643 11727 5646 33739 104 GW 318 GW 90% – 130%

2.2 DUAL OPF FORMULATIONS AND SOLUTIONS

Another unique feature of PGLearn is that it provides, for each OPF formulation, complete primal
and dual solutions. This novel capability is motivated by the recent interest in leveraging dual infor-
mation in ML contexts. For instance, Qiu et al. (2024) and Tanneau and Van Hentenryck (2024) both
consider learning dual optimization proxies, wherein an ML model outputs dual-feasible solutions
to conic optimization problems. In a similar fashion, Kotary and Fioretto (2024) leverage insights
from Augmented Lagrangian methods to learn Lagrange multipliers for nonlinear problems. Finally,
several recent works attempt to predict dual solutions in the context of mixed-integer optimization,
with the aim of obtaining high-quality dual bounds through Lagrangian duality Parjadis et al. (2023);
Demelas et al. (2024).

PGLearn leverages Lagrangian duality for nonlinear, non-convex problems such as AC-OPF, and
conic duality for convex relaxations and approximations such as SOC-OPF and DC-OPF. Dual for-
mulations for SOC-OPF and DC-OPF are stated in Appendix A. Note that a key advantage of conic
(convex) relaxations is that dual-feasible solutions provide valid certificates of optimality, which can
be used to validate the quality of primal predictions.

Dual solutions are also at the core of price formation in electricity markets. Hence, by systematically
providing dual solutions, PGLearn will support future research at the intersection of optimization,
machine learning, and the economics of electricity markets.

3 THE PGLEARN COLLECTION OF DATASETS FOR LEARNING OPF

Like most prior work in the field, PGLearn uses a sampling scheme to convert static snapshots to
datasets of OPF instances. PGLearn considers a total of 14 snapshots, split into four categories based
on the number of buses:

Small (<1k): 14 ieee, 30 ieee, 57 ieee, 89 pegase, 118 ieee, 300 ieee
Medium (<5k): 1354 pegase, NewYork2030, 1888 rte, 2869 pegase
Large (<10k): 6470 rte, Texas7k, 9241 pegase
Extra-Large (>10k): 13659 pegase, Midwest24k

The 89 pegase, 1354 pegase, 2869 pegase, 9241 pegase, and 13659 pegase cases
from Fliscounakis et al. (2013) are based on the European power grid, the 1888 rte and
6470 rte cases from Josz et al. (2016) are based on the French power grid, the nyiso 2030 v11
case from University of Wisconsin-Madison (2024) is based on the planned 2030 New York power
grid, and the Texas7k and Midwest24k cases from Kunkolienkar et al. (2024) are based on the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Texas power grid and the US Midwest power grid, respectively. The smaller 14 ieee, 30 ieee,
118 ieee, and 300 ieee cases from University of Washington, Dept. of Electrical Engineering
(1999) are synthetic. These cases are chosen to span a range of scales and to match cases used in
prior ML for OPF literature.

Table 1 reports statistics of each snapshot used in the PGLearn collection. Namely, for each ref-
erence snapshot, the table reports: the number of buses |N |, the number of loads |L|, the number
of generators |G|, the number of branches |E|, which includes power lines and transformers, the
total active power demand in the reference case (Total PD), the total maximum active power gener-
ation (Total PG), and the range of the global scaling factor used in the data augmentation scheme
described next (Global range).

Demand Sampling The PGLearn datasets sample each load’s active and reactive demand by com-
bining a global (per-sample) correlation term with local (per-load per-sample) noise. The power
factor of each load is varied by sampling the local noise independently for the active and reactive
components. This sampling procedure mimics real power system behavior since in practice, machine
learning training takes time, so models are trained day-ahead on demand ranges given by forecasting
systems for the next day (Chen et al., 2022). The local noise is applied to generate diverse samples at
all values of total load, ensuring the usability of the machine learning system under various demand
settings. The global correlation is important to ensure that the model captures a wide total demand
range rather than being specialized to a particular total demand level. This captures more operating
regimes of the power system, as shown in Figure 2. The demand sampling process is described in
Algorithm 1. The Global Range column in Table 1 contains the values for bl and bu for each case.
ϵ is set to 20% for all cases. The width of the global range is fixed to 40% with bu determined by
incrementally scaling the reference load values in 10% steps until an infeasible case is hit.

Algorithm 1 Demand Sampling
Input: Reference demand (pd, qd), global range (bl, bu), noise level ϵ
Output: Sampled demand (p̃d, q̃d)

1: b ∼ Uniform(bl, bu)
2: for i = 1 . . . |L| do
3: ϵp

i ∼ Uniform(1− ϵ, 1 + ϵ)

4: ϵq
i ∼ Uniform(1− ϵ, 1 + ϵ)

5: p̃d
i ← b · ϵp

i · pd
i

6: q̃d
i ← b · ϵq

i · qd
i

7: end for
8: return (p̃d, q̃d)

Status Sampling To generate the N − 11 datasets, disabled branches/generators are sampled fol-
lowing the procedure used in OPFData (Lovett et al., 2024). Either one generator or one (non-bridge,
to preserve connectedness of the network) branch is disabled per instance.

Time-Series Sampling There are several public resources, i.e. ENTSO-E Hirth et al. (2018) and
OEDI2, which provide time-series power demand information. Some system operators, e.g. RTE,
also publish load information in real-time.3 Although these data sources are useful for e.g. power
demand forecasting studies, they are not detailed enough to formulate an OPF; namely a full de-
scription of the power system and load-level demand information is required. Motivated by this
mismatch, the Texas7k and Midwest24k cases include one year of synthetic time-series data at
an hourly granularity. Readers are referred to Li et al. (2020a) for details on how the coarse time-
series data is created. PGLearn uses cubic spline interpolation to augment the coarse time-series in
order to provide AC, DC, and SOC-OPF solutions at a five-minute granularity for Texas7k and
ten-minute granularity for Midwest24k.

1N − 1 refers to the common security requirement that the system remain stable under any single failure;
here, N refers to the number of components which are susceptible to failure (branches and generators).

2https://data.openei.org/s3_viewer?bucket=arpa-e-perform
3https://www.rte-france.com/en/eco2mix/market-data

6

https://data.openei.org/s3_viewer?bucket=arpa-e-perform
https://www.rte-france.com/en/eco2mix/market-data

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Train-Test Split The training and testing sets contain only feasible input samples, i.e. those inputs
for which a solution was found for all formulations. The feasible samples are then shuffled using
a seeded random number generator (MersenneTwister(42) from Julia 1.11.5). Then, the first
80% of the shuffled feasible samples are selected as training data and the remaining 20% as testing
data. Users should further split the training data to create validation and/or calibration sets as needed;
the testing data should be kept unchanged to allow for direct comparison of reported results. This
creates three datasets – train, test, and infeasible, where samples in infeasible are
those for which a (locally) optimal solution could not be found for at least one of the formulations
considered.

4 OPEN-SOURCE IMPLEMENTATIONS

PGLearn leverages two MIT-licensed open-source repositories: PGLearn.jl to generate datasets
and ML4OPF to build machine learning models.

4.1 PGLEARN.JL: OPF DATA GENERATION

The PGLearn.jl repository contains the JuMP (Lubin et al., 2023) implementations of the
OPF formulations as well as utilities for sampling and solving datasets of instances. For each
case, it first uses the make basic network function from PowerModels (Coffrin et al., 2018)
to parse and pre-process the corresponding raw Matpower (Zimmerman et al., 2010) file. The
MathOptSymbolicAD (LANL-ANSI, 2022) automatic differentiation backend is used to accel-
erate derivative calculations. PGLearn.jl leverages the GNUparallel utility (Tange, 2022) for
parallelization across CPU cores and the SLURM workload manager (Jette and Wickberg, 2023) for
parallelization across nodes.

4.2 ML4OPF: MODEL TRAINING, EVALUATION AND BENCHMARKING

The ML4OPF library – specifically the parsers submodule – is the standard way to work with the
PGLearn datasets. ML4OPF also includes several other submodules that allow researchers to quickly
combine and modify existing methods, implement new methods, and easily compare results to prior
works. The layers submodule contains implementations of several useful differentiable layers
implemented in PyTorch (Ansel et al., 2024) for producing predictions which satisfy constraints.
The functional submodule contains PyTorch JIT implementations of each formulation’s con-
straints, objective, and incidence matrices. formulations contains a higher-level API which
makes some common assumptions (e.g. only pd and qd vary per sample) to simplify common
workflows. models contains ready-to-train implementations of various optimization proxy model
architectures including the Lagrangian Dual Framework (Fioretto et al., 2021), a penalty method,
and the E2ELR network from Chen (2023).

5 BENCHMARKING MACHINE LEARNING MODELS FOR OPF

This section describes evaluation metrics for optimization proxies, catering to the specific context
of learning the solution maps of optimization problems. It also provides guidelines for comparing
and benchmarking models. It is important to recognize that there is no universal metric, and that re-
searchers should report a combination of metrics to accurately capture the behavior and performance
of their models, keeping in mind the downstream use-cases of their contribution.

5.1 ACCURACY METRICS

The following lists several important metrics in the evaluation of optimization proxy models, i.e.
models that predict the output of a parametric optimization problem given the parameters. They are
stated below on a per-instance basis; aggregations should be performed by taking the mean/standard
deviation and maximum (e.g. over the test set samples).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Optimality gap This metric reports how close the predicted objective value (i.e. the objective
value of the predicted solution) is to the true optimal value. It is important to note that predicted
solutions are often infeasible, hence it is not fair to assess solutions based on optimality gap alone.

Constraint violations This metric reports the magnitude of constraint violation, aggregated per
group of constraints. Here, “group” refers to constraint of the same type, e.g. the |N | Kirch-
hoff’s current law constraints in DC-OPF. In addition to average/maximum violation magnitude,
researchers should also report (for each group of constraints) the proportion of constraints violated
and the total violation (the sum of violations within each group).

Distance to feasible set This metric reports how far the predicted solution is from the closest fea-
sible point. This requires solving the corresponding projection problem for each instance (replacing
the objective with ∥x − x⋆∥ where x⋆ is the predicted solution and x is subject to the original
constraints).

Distance to optimal solution This metric reports how far the predicted solution is from the op-
timal solution. Note that a solution can exhibit small residuals but large distance to feasibility. In
real-life, this can mean that a solution with small residual may need large changes to become feasi-
ble, with potentially a large increase in cost.

5.2 COMPUTATIONAL PERFORMANCE METRICS

These metrics evaluate how fast the proxy models are, compared to optimization solvers. It’s im-
portant to recognize that ML proxies are only heuristics, whereas optimization solvers have stronger
guarantees. Two types of metrics should be reported: computing time for applications where a single
instance is solved at a time and throughput for applications that need to solve large batches of in-
stances (e.g. large-scale simulations). Timing results should be reported using CPU/GPU.hour (i.e.
2 CPU cores for 1 hour corresponds to 2 CPU.hr). Similarly to the accuracy metrics, aggregated
timing results should report both the mean/standard deviation and the maximum across samples.
Finally, in line with general guidelines for reporting ML results, researchers should always report
the device (CPU and/or GPU) used for running experiments.

Data-generation time This metric reports the total time spent obtaining the ground-truth pri-
mal/dual solutions required for the training (and validation) set of the proxy model – the time spent
generating the test set can be excluded.

Training time This metric reports the time spent training the optimization proxy model. In addi-
tion, researchers should comment on how often the model would need to be re-trained in a practical
application. For instance, it is not realistic to train a model every hour if the training time is 6 hours.

Inference time This metric reports the time spent producing a solution to a single instance. This
is useful if the downstream application involves solving instances sequentially, for instance, when
solving a market-clearing problem every 5 minutes. Researchers should report the maximum time
across samples, especially for architectures that involve an iterative scheme such as gradient correc-
tion (Donti et al., 2021), implicit layers (Agrawal et al., 2019), or optimization solvers, because of
performance variability.

Instance throughput This metric reports how many instances can be processed per unit of time
with a fixed computational resource budget. This metric is relevant for settings where a large number
of instances need to be evaluated, e.g., when running large-scale simulations that require solving
multiple OPF instances. In addition, it better captures the batched processing advantages of GPU
devices.

The solve time metadata included with the PGLearn datasets can be used to obtain data-
generation time and instance throughput for optimization solvers. However, it is important to note
that PGLearn datasets are generated using a single thread per instance, and utilize multiple processes
per machine. Such settings are known to have an adverse impact on the performance of optimiza-
tion solvers. Hence, the solving times reported in the metadata are likely over-estimates compared
to solving one instance at a time in a “clean” environment or with multi-threaded solvers.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 LIMITATIONS

6.1 DATA LIMITATIONS

In the absence of publicly-available, granular datasets released directly by system operators,
PGLearn is limited like prior works to using synthetic time-series and data augmentation schemes
to generate samples. Nevertheless, it is important to note that the reference snapshots selected for
PGLearn are based on real power grids in France, Europe, Texas, and the American midwest (Josz
et al., 2016; Fliscounakis et al., 2013; Kunkolienkar et al., 2024; University of Wisconsin-Madison,
2024), and the time-series used are based on real-world characteristics Li et al. (2020b).

Another limitation of PGLearn is the limited variety of topologies, and the nature of topology
changes. Namely, PGLearn considers topology variations by removing individual lines or gener-
ators. In contrast, real-life operations include multiple categories of topology changes, such as
switching multiple lines and reconfiguring buses within a substation. Additional research is needed
to better capture this lesser-studied facet of power grid operations.

6.2 FUTURE COLLECTIONS

PGLearn aims to provide curated datasets that are updated over time, to integrate new data-
generation procedures and OPF formulations. To that end, future versions of PGLearn will comprise
OPF formulations that include elements present in market-clearing formulations used by system op-
erators. This includes, for instance, the integration of reserve products and support for piece-wise
linear production curves Ma et al. (2009).

7 CONCLUSION

This paper has introduced PGLearn, an open-source learning toolkit for optimal power flow.
PGLearn addresses the lack of standardized datasets for ML and OPF by releasing several datasets
of large-scale OPF instances. It is the first collection that comprises complete primal and dual so-
lutions for multiple OPF formulations. In addition to releasing public datasets, PGLearn provides
open-source tools for data generation, and for the training and evaluation of ML models. These
open-source tools enable reproducible and fair evaluation of methods for ML and OPF, thereby
democratizing access to the field.

The PGLearn collection contains, in its initial release, over 10,000,000 OPF samples. It is re-
leased alongside extensive documentation and code, allowing users to generate additional datasets
as needed, and to benchmark the performance of ML models. The paper has also provided several
performance metrics and guidelines on how to report them. These guidelines aim at capturing spe-
cific aspects of ML for OPF that fall outside the scope of traditional ML applications. This includes,
for instance, the fundamental importance of measuring and reporting constraint violations, as well as
accurate reporting of data-generation, training and inference times when evaluating computational
performance.

Finally, PGLearn aims to democratize access to research on ML and OPF by removing the barrier to
entry caused by the computational requirements of large-scale data generation. It also aims to align
academic research more closely to the scale and complexity of real-world power systems. This will,
in turn, unlock the potential for modern AI techniques to assist in making future energy systems
more efficient, reliable, and sustainable.

REPRODUCIBILITY STATEMENT

Since the entire pipeline for generating the PGLearn datasets is open-source, the dataset is com-
pletely reproducible. The Julia random number generator MersenneTwister is used to ensure
random number generation is consistent across machines. The ML4OPF repository similarly makes
use of seeded random number generators, e.g. when instantiating neural network weights and shuf-
fling training data. Besides allowing to fully recreate the PGLearn datasets, the focus on repro-
ducibility also allows practitioners to easily extend or modify the dataset, for example generating
new datasets based on custom formulations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Junshan Zhang, Yonghong Chen, Mohammad Faqiry, Bernard Knueven, Manuel Joseph Garcia, and
Roger Treinen. Future of grid operations and markets: Uncertainty management., 2021. URL
https://www.osti.gov/biblio/1861473.

Wenbo Chen, Mathieu Tanneau, and Pascal Van Hentenryck. Real-time risk analysis with optimiza-
tion proxies. Electric Power Systems Research, 235:110822, 2024.

Hooman Khaloie, Mihaly Dolanyi, Jean-Francois Toubeau, and François Vallée. Review of machine
learning techniques for optimal power flow. Available at SSRN 4681955, May 2024. doi: 10.2139/
ssrn.4681955.

Sean Lovett, Miha Zgubic, Sofia Liguori, Sephora Madjiheurem, Hamish Tomlinson, Sophie Elster,
Chris Apps, Sims Witherspoon, and Luis Piloto. OPFData: Large-scale datasets for AC optimal
power flow with topological perturbations. arXiv preprint arXiv:2406.07234, 2024.

Yonghong Chen, Feng Pan, Feng Qiu, Alinson S Xavier, Tongxin Zheng, Muhammad Marwali,
Bernard Knueven, Yongpei Guan, Peter B. Luh, Lei Wu, Bing Yan, Mikhail A. Bragin, Haiwang
Zhong, Anthony Giacomoni, Ross Baldick, Boris Gisin, Qun Gu, Russ Philbrick, and Fangxing
Li. Security-constrained unit commitment for electricity market: Modeling, solution methods,
and future challenges. IEEE Transactions on Power Systems, 38(5):4668–4681, 2023. doi: 10.
1109/TPWRS.2022.3213001.

Fouad Hasan, Amin Kargarian, and Ali Mohammadi. A survey on applications of machine learning
for optimal power flow. In 2020 IEEE Texas Power and Energy Conference (TPEC), pages 1–6.
IEEE, 2020.

Daniel K. Molzahn and Ian A. Hiskens. A survey of relaxations and approximations of the
power flow equations. Foundations and Trends® in Electric Energy Systems, 4(1-2):1–221,
2019. ISSN 2332-6557. doi: 10.1561/3100000012. URL http://dx.doi.org/10.1561/
3100000012.

Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, and Eugene Zak. The
security-constrained commitment and dispatch for midwest iso day-ahead co-optimized energy
and ancillary service market. In 2009 IEEE Power & Energy Society General Meeting, pages
1–8. IEEE, 2009.

Wenbo Chen. End-to-end feasible optimization proxies for large-scale economic dispatch. IN-
FORMS Annual meeting, 2023.

Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D Christie, Carleton Coffrin, Christopher
DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke Huang,
et al. The Power Grid Library for benchmarking AC optimal power flow algorithms. arXiv
preprint arXiv:1908.02788, 2019.

Balthazar Donon, Rémy Clément, Benjamin Donnot, Antoine Marot, Isabelle Guyon, and Marc
Schoenauer. Neural networks for power flow: Graph neural solver. Electric Power Systems
Research, 189:106547, 2020.

Minas Chatzos, Mathieu Tanneau, and Pascal Van Hentenryck. Data-driven time series reconstruc-
tion for modern power systems research. Electric Power Systems Research, 212:108589, 2022.

Michael Klamkin, Mathieu Tanneau, Terrence WK Mak, and Pascal Van Hentenryck. Bucketized
active sampling for learning ACOPF. Electric Power Systems Research, 235:110697, 2024.

Alex Robson, Mahdi Jamei, Cozmin Ududec, and Letif Mones. Learning an optimally reduced
formulation of OPF through meta-optimization. arXiv preprint arXiv:1911.06784, 2019.

Trager Joswig-Jones, Kyri Baker, and Ahmed S Zamzam. OPF-Learn: An open-source framework
for creating representative AC optimal power flow datasets. In 2022 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT), pages 1–5. IEEE, 2022.

10

https://www.osti.gov/biblio/1861473
http://dx.doi.org/10.1561/3100000012
http://dx.doi.org/10.1561/3100000012

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin. Powermodels.jl: An
open-source framework for exploring power flow formulations. In 2018 Power Systems Compu-
tation Conference (PSCC), pages 1–8, June 2018. doi: 10.23919/PSCC.2018.8442948.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65–98, 2017. doi: 10.1137/141000671. URL https:
//epubs.siam.org/doi/10.1137/141000671.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
machine learning through dynamic Python bytecode transformation and graph compilation. In
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Rabih A Jabr. Radial distribution load flow using conic programming. IEEE transactions on power
systems, 21(3):1458–1459, 2006a.

Richard D Christie, Bruce F Wollenberg, and Ivar Wangensteen. Transmission management in the
deregulated environment. Proceedings of the IEEE, 88(2):170–195, 2000.

Guancheng Qiu, Mathieu Tanneau, and Pascal Van Hentenryck. Dual conic proxies for ac optimal
power flow. Electric Power Systems Research, 236:110661, 2024.

Mathieu Tanneau and Pascal Van Hentenryck. Dual lagrangian learning for conic optimization.
arXiv preprint arXiv:2402.03086, 2024.

James Kotary and Ferdinando Fioretto. Learning constrained optimization with deep augmented
lagrangian methods. arXiv preprint arXiv:2403.03454, 2024.

Augustin Parjadis, Quentin Cappart, Bistra Dilkina, Aaron Ferber, and Louis-Martin Rousseau.
Learning lagrangian multipliers for the travelling salesman problem, 2023. URL https:
//arxiv.org/abs/2312.14836.

Francesco Demelas, Joseph Le Roux, Mathieu Lacroix, and Axel Parmentier. Predicting la-
grangian multipliers for mixed integer linear programs. In Ruslan Salakhutdinov, Zico Kolter,
Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, ed-
itors, Proceedings of the 41st International Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pages 10368–10384. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/demelas24a.html.

Stéphane Fliscounakis, Patrick Panciatici, Florin Capitanescu, and Louis Wehenkel. Contingency
ranking with respect to overloads in very large power systems taking into account uncertainty,
preventive, and corrective actions. IEEE Transactions on Power Systems, 28(4):4909–4917, 2013.

Cédric Josz, Stéphane Fliscounakis, Jean Maeght, and Patrick Panciatici. AC power flow data
in MATPOWER and QCQP format: iTesla, RTE snapshots, and PEGASE. arXiv preprint
arXiv:1603.01533, 2016.

University of Wisconsin-Madison. University of Wisconsin-Madison ARPA-E PERFORM
Electric Grid Test Cases, 2024. URL https://electricgrids.engr.tamu.edu/
university-of-wisconsin-madison-perform-cases/.

Sanjana Kunkolienkar, Farnaz Safdarian, Jonathan Snodgrass, Adam Birchfield, and Thomas Over-
bye. A description of the Texas A&M University Electric Grid Test Case Repository for power
system studies. In 2024 IEEE Texas Power and Energy Conference (TPEC), pages 1–6. IEEE,
2024.

11

https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://pytorch.org/assets/pytorch2-2.pdf
https://arxiv.org/abs/2312.14836
https://arxiv.org/abs/2312.14836
https://proceedings.mlr.press/v235/demelas24a.html
https://electricgrids.engr.tamu.edu/university-of-wisconsin-madison-perform-cases/
https://electricgrids.engr.tamu.edu/university-of-wisconsin-madison-perform-cases/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

University of Washington, Dept. of Electrical Engineering. Power systems test case archive, 1999.
URL http://www.ee.washington.edu/research/pstca/.

Wenbo Chen, Seonho Park, Mathieu Tanneau, and Pascal Van Hentenryck. Learning optimization
proxies for large-scale security-constrained economic dispatch. Electric Power Systems Research,
213:108566, 2022.

Lion Hirth, Jonathan Mühlenpfordt, and Marisa Bulkeley. The entso-e transparency platform – a
review of europe’s most ambitious electricity data platform. Applied Energy, 225:1054–1067,
2018. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2018.04.048. URL https:
//www.sciencedirect.com/science/article/pii/S0306261918306068.

Hanyue Li, Ju Hee Yeo, Ashly L Bornsheuer, and Thomas J Overbye. The creation and validation
of load time series for synthetic electric power systems. IEEE Transactions on Power Systems, 36
(2):961–969, 2020a.

Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoı̂t Legat, and Juan Pablo
Vielma. JuMP 1.0: Recent improvements to a modeling language for mathematical optimization.
Mathematical Programming Computation, 2023. doi: 10.1007/s12532-023-00239-3.

Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas. MAT-
POWER: Steady-state operations, planning, and analysis tools for power systems research and
education. IEEE Transactions on power systems, 26(1):12–19, 2010.

LANL-ANSI. MathOptSymbolicAD.jl, 2022. URL https://github.com/lanl-ansi/
MathOptSymbolicAD.jl.

Ole Tange. GNU Parallel 20220522 (’NATO’), May 2022. URL https://doi.org/10.
5281/zenodo.6570228.

Morris A Jette and Tim Wickberg. Architecture of the Slurm workload manager. In Workshop on
Job Scheduling Strategies for Parallel Processing, pages 3–23. Springer, 2023.

Ferdinando Fioretto, Pascal Van Hentenryck, Terrence WK Mak, Cuong Tran, Federico Baldo, and
Michele Lombardi. Lagrangian duality for constrained deep learning. In Machine Learning and
Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Confer-
ence, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part V, pages
118–135. Springer, 2021.

Priya Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with hard
constraints. In International Conference on Learning Representations, 2021.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Hanyue Li, Jessica L Wert, Adam Barlow Birchfield, Thomas J Overbye, Tomas Gomez San Ro-
man, Carlos Mateo Domingo, Fernando Emilio Postigo Marcos, Pablo Duenas Martinez, Tarek
Elgindy, and Bryan Palmintier. Building highly detailed synthetic electric grid data sets for com-
bined transmission and distribution systems. IEEE Open Access Journal of Power and Energy, 7:
478–488, 2020b.

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algo-
rithms, and engineering applications. SIAM, 2001.

Ray D. Zimmerman and Carlos E. Murillo-Sánchez. Matpower user’s manual, May 2024. URL
https://doi.org/10.5281/zenodo.11212313.

Lorenz T Biegler and Victor M Zavala. Large-scale nonlinear programming using Ipopt: An integrat-
ing framework for enterprise-wide dynamic optimization. Computers & Chemical Engineering,
33(3):575–582, 2009.

Iain S Duff and John K Reid. MA27 - a set of Fortran subroutines for solving sparse symmetric sets
of linear equations. UKAEA Atomic Energy Research Establishment, 1982.

12

http://www.ee.washington.edu/research/pstca/
https://www.sciencedirect.com/science/article/pii/S0306261918306068
https://www.sciencedirect.com/science/article/pii/S0306261918306068
https://github.com/lanl-ansi/MathOptSymbolicAD.jl
https://github.com/lanl-ansi/MathOptSymbolicAD.jl
https://doi.org/10.5281/zenodo.6570228
https://doi.org/10.5281/zenodo.6570228
https://doi.org/10.5281/zenodo.11212313

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

J Fowkes, A Lister, A Montoison, and D Orban. LibHSL: the ultimate collection for large-scale
scien-tific computation. Les Cahiers du GERAD ISSN, 711:2440, 2024.

S. Gopinath, H.L. Hijazi, T. Weisser, H. Nagarajan, M. Yetkin, K. Sundar, and R.W. Bent. Prov-
ing global optimality of acopf solutions. Electric Power Systems Research, 189:106688, 2020.
ISSN 0378-7796. doi: https://doi.org/10.1016/j.epsr.2020.106688. URL https://www.
sciencedirect.com/science/article/pii/S0378779620304910.

R. A. Jabr. Radial distribution load flow using conic programming. IEEE Transactions on Power
Systems, 21(3):1458–1459, Aug 2006b. ISSN 0885-8950. doi: 10.1109/TPWRS.2006.879234.

Rabih A Jabr. A conic quadratic format for the load flow equations of meshed networks. IEEE
Transactions on Power Systems, 22(4):2285–2286, 2007.

Paul J. Goulart and Yuwen Chen. Clarabel: An interior-point solver for conic programs with
quadratic objectives. arXiv prepring arXiv:2405.12762, 2024.

Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method. Mathematical Pro-
gramming Computation, 10(1):119–142, 2018. doi: 10.1007/s12532-017-0130-5.

The HDF Group. Hierarchical Data Format, version 5, 2024. URL https://github.com/
HDFGroup/hdf5.

13

https://www.sciencedirect.com/science/article/pii/S0378779620304910
https://www.sciencedirect.com/science/article/pii/S0378779620304910
https://github.com/HDFGroup/hdf5
https://github.com/HDFGroup/hdf5

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A FORMULATIONS

A.1 BACKGROUND MATERIAL

This section provides a brief overview of Lagrangian and conic duality. PGLearn uses the former
for nonlinear non-convex problems such as AC-OPF, and the latter for convex formulations such as
SOC-OPF and DC-OPF.

A.1.1 NONLINEAR OPTIMIZATION

Consider a nonlinear, non-convex optimization problem of the form

min
x

f(x) (1a)

s.t. g(x) ≥ 0 (1b)
h(x) = 0 (1c)

where f : Rn 7→ R, g : Rn 7→ Rm and h : Rn 7→ Rp are continuous functions, assumed to be
differentiable over their respective domains.

Denote by µ ∈ Rm and λ ∈ Rp the Lagrange multipliers associated to constraints (1b) and (1c),
respectively. The first order Karush-Kuhn-Tucker optimality conditions read

Jh(x)
⊤λ+ Jg(x)

⊤µ = ∇xf(x) (2a)
g(x) ≥ 0 (2b)
h(x) = 0 (2c)

µ ≥ 0 (2d)

µ⊤g(x) = 0 (2e)

where Jh(x) = ∇xh(x) and Jg(x) = ∇xg(x) denote the Jacobian matrices of h and g, respectively.

Given Lagrange multipliers λ, µ, the following Lagrangian bound is a valid lower bound on the
optimal value of problem (1):

L(λ, µ) = min
x

f(x)− λ⊤h(x)− µ⊤g(x). (3)

Note that computing this Lagrangian bound requires solving a nonlinear, non-convex problem,
which is NP-hard in general. Hence, it is generally intractable to compute valid dual bounds from
Lagrangian duality in the context of non-convex problems.

A.1.2 CONIC OPTIMIZATION

Consider a conic optimization problem of the form

min
x

c⊤x (4a)

s.t. Ax ⪰K b (4b)

where A ∈ Rm×n and K is a proper cone, i.e., a closed, pointed, convex cone with non-empty
interior. The corresponding conic dual problem reads

max
y

b⊤y (5a)

s.t. A⊤y = c (5b)
y ∈ K∗ (5c)

whereK∗ is the dual cone ofK. The reader is referred to Ben-Tal and Nemirovski (2001) for a more
complete overview of conic optimization and duality.

As shown by Tanneau and Van Hentenryck (2024), in many real-life applications, it is straightfor-
ward to obtain dual-feasible solutions. This is the case, for instance, when all primal variables have
finite lower and upper bounds, as is the case for all formulations considered in this work. By weak
conic duality, such dual-feasible solutions then yield valid dual bounds.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 OPF FORMULATIONS

This section presents the optimization models for each OPF formulation in PGLearn. Readers are
referred to the Matpower manual (Zimmerman and Murillo-Sánchez, 2024) for a general introduc-
tion to power systems, as well as the underlying concepts and relevant notations. Readers are also
referred to the build opf functions in the PGLearn.jl source code for implementations of
each using the JuMP (Lubin et al., 2023) modeling language, and to the extract primal and
extract dual functions for how primal and dual solutions are extracted and stored.

To formulate OPF problems, the following sets are introduced. The set of buses is denoted by N .
The sets of generators and loads attached to bus i ∈ N are denoted by Gi and Li, respectively.
The set of branches, i.e., power lines and transformers, is denoted by E . Each edge e ∈ E is
associated with a pair of buses (i, j) corresponding to the edge’s origin and destination. Note that
power grids often include parallel branches, i.e., two branches may have identical endpoints. For
ease of reading, using a slight abuse of notation, edges are identified with their endpoints using the
notation e = (i, j) ∈ E ; this indicates that branch e has endpoints i, j. The set of edges leaving
(resp. entering) bus i ∈ N is denoted by Ei (resp. ERi). Finally, each branch e is characterized by its
complex admittance matrix

Ye =

(
Y ff
e Y ft

e

Y tf
e Y tt

e

)
=

(
gff
e + jbff

e gft
e + jbft

e

gtf
e + jbtf

e gtt
e + jbtt

e

)
∈ C2×2 (6)

where j is the imaginary unit, i.e., j2 = −1.

A.2.1 AC OPTIMAL POWER FLOW

Model 1 states the nonlinear programming formulation of AC-OPF used in PGLearn.

Model 1 AC Optimal Power Flow (AC-OPF)

min
pg,qg,pf,qf,pt,qt,v,θ

∑
i∈N

∑
j∈Gi

cjp
g
j (7a)

s.t.
∑
j∈Gi

pg
j −

∑
j∈Li

pd
j − gs

iv
2
i =

∑
e∈Ei

pf
e +

∑
e∈ER

i

pt
e ∀i ∈ N (7b)

∑
j∈Gi

qg
j −

∑
j∈Li

qd
j + bs

iv
2
i =

∑
e∈Ei

qf
e +

∑
e∈ER

i

qt
e ∀i ∈ N (7c)

pf
e = gff

ev
2
i + gft

evivj cos(θi − θj) + bft
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7d)

qf
e = −bff

ev
2
i − bft

evivj cos(θi − θj) + gft
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7e)

pt
e = gtt

ev
2
j + gtf

evivj cos(θi − θj)− btf
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7f)

qt
e = −btt

ev
2
j − btf

evivj cos(θi − θj)− gtf
evivj sin(θi − θj) ∀e = (i, j) ∈ E (7g)

(pf
e)

2 + (qf
e)

2 ≤ Se
2 ∀e ∈ E (7h)

(pt
e)

2 + (qt
e)

2 ≤ Se
2 ∀e ∈ E (7i)

∆θe ≤ θi − θj ≤ ∆θe ∀e = (i, j) ∈ E (7j)
θref = 0 (7k)

pg
i
≤ pg

i ≤ pg
i ∀i ∈ G (7l)

qg
i
≤ qg

i ≤ qg
i ∀i ∈ G (7m)

vi ≤ vi ≤ vi ∀i ∈ N (7n)

−Se ≤ pf
e ≤ Se ∀e ∈ E (7o)

−Se ≤ qf
e ≤ Se ∀e ∈ E (7p)

−Se ≤ pt
e ≤ Se ∀e ∈ E (7q)

−Se ≤ qt
e ≤ Se ∀e ∈ E (7r)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The decision variables comprise active and reactive power dispatch pg and qg, active and reactive
power flows in the forward and reverse direction pf,qf,pt,qt, and voltage magnitude and angle v
and θ, respectively. The objective (7a) minimizes the production costs; PGLearn currently supports
linear objective functions. Constraints (7b) and (7c) encode the active and reactive power balance
physics constraints given by Kirchhoff’s current law. Constraints (7d)-(7g) express active and reac-
tive power flow following Ohm’s law. Constraints (7h)-(7i) and (7j) enforce the engineering limits of
the transmission lines, namely, their thermal capacity and maximum voltage angle difference. Con-
straint (7k) fixes the reference bus’ (slack bus) voltage angle to zero. Finally, constraints (7l) and
(7m) encode each generator’s minimum and maximum active and reactive power outputs, constraint
(7n) enforces the voltage magnitude bounds, and constraints (7o), (7p), (7q), (7r) enforce bounds on
the power flow variables.

PGLearn supports any nonlinear optimization solver supported by JuMP. The default configuration
solves AC-OPF instances using Ipopt (Biegler and Zavala, 2009) with the MA27 linear solver (Duff
and Reid, 1982) via LibHSL (Fowkes et al., 2024). Note that, unless a global optimization solver is
used, global optimality of AC-OPF solutions is not guaranteed. Nevertheless, previous experience
suggests that solutions obtained by Ipopt are typically close to optimal Gopinath et al. (2020).

A.2.2 SOC OPTIMAL POWER FLOW

PGLearn also implements the second-order cone relaxation of AC-OPF proposed by Jabr in (Jabr,
2006b; 2007), herein referred to as SOC-OPF. This convex relaxation can be solved in polynomial
time using, e.g., an interior-point algorithm, and is exact on radial networks Molzahn and Hiskens
(2019).

The SOC-OPF relaxation is obtained by introducing variables

wi = v2
i (8a)

wre
e = vivj cos(θi − θj) (8b)

wim
e = vivj sin(θi − θj) (8c)

together with the valid (non-convex) constraint

(wre
e)

2 + (wim
e)2 = wiwj , ∀e = (i, j) ∈ E . (9)

Then, constraints (7b), (7c), (7d), (7e), (7f), (7g), (7j), and (7n) are reformulated using these new
variables, and constraint (9) is convexified into the so-called Jabr inequality

(wre
e)

2 + (wim
e)2 ≤ wiwj , ∀e = (i, j) ∈ E . (10)

Finally, valid lower and upper bounds for wre,wim variables are derived from (7n), (7j) and (9),
using the same strategy as Coffrin et al. (2018). Model 2 states the resulting SOC-OPF formulation,
in conic form.

The implementation in PGLearn slighly differs from Coffrin et al. (2018) in the definition of
wre,wim variables. Namely, in Coffrin et al. (2018), wre,wim variables are defined per bus-pair,
defined as a pair of buses (i, j) linked by at least one branch e = (i, j) ∈ E . In contrast, PGLearn de-
fines wre,wim variables for each branch; the two formulations are equivalent unless parallel branches
are present. This design choice was motivated by the simplicity of the branch-level formulation and
the corresponding data formats, and was found to have a marginal impact on the quality of the
relaxation.

The dual SOC-OPF model is stated in Model 3. Dual variables λp, λq, λpf, λqf, λpt, λqt are associated
to equality constraints (11b), (11c), (11d), (11e), (11f), (11e), and are therefore unrestricted. Dual
conic variables νf, ν t and ω are associated to conic constraints (11h), (11i) and (11j), respectively.
Dual variables µθ and µ̄θ are associated to the lower and upper side of voltage angle difference
constraint (11k). Finally, dual variables µw, µ̄w, µpg, µ̄pg, µqg, µ̄qg, µpf, µ̄pf, µqf, µ̄qf, µpt, µ̄pt, µqt, µ̄qt,
µwr, µ̄wr, µwi, µ̄wi are associated to lower and upper bounds on variables w, pg,qg, pf,qf,pt,qt,
wre,wim, respectively.

Note that users need not interact with the dual SOC-OPF problem directly, as interior-point solvers
typically report both primal and dual information. The formulation in Model 3 is stated for complete-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model 2 SOC Optimal Power Flow (SOC-OPF)

min
pg,qg,pf,qf,pt,qt,w,wre,wim

∑
i∈N

∑
j∈Gi

cjp
g
j (11a)

s.t.
∑
j∈Gi

pg
j −

∑
j∈Li

pd
j − gs

iwi =
∑
e∈Ei

pf
e +

∑
e∈ER

i

pt
e ∀i ∈ N (11b)

∑
j∈Gi

qg
j −

∑
j∈Li

qd
j + bs

iwi =
∑
e∈Ei

qf
e +

∑
e∈ER

i

qt
e ∀i ∈ N (11c)

pf
e = gff

ewi + gft
ew

re
e + bft

ew
im
e ∀e = (i, j) ∈ E (11d)

qf
e = −bff

ewi − bft
ew

re
e + gft

ew
im
e ∀e = (i, j) ∈ E (11e)

pt
e = gtt

ewj + gtf
ew

re
e − btf

ew
im
e ∀e = (i, j) ∈ E (11f)

qt
e = −btt

ewj − btf
ew

re
e − gtf

ew
im
e ∀e = (i, j) ∈ E (11g)

(Se, p
f
e, q

f
e) ∈ Q3 ∀e ∈ E (11h)

(Se, p
t
e, q

t
e) ∈ Q3 ∀e ∈ E (11i)

(
wi√
2
,
wj√
2
, wre

e , w
im
e) ∈ Q4

r ∀e = (i, j) ∈ E (11j)

tan(∆θe)w
re
e ≤ wim

e ≤ tan(∆θe)w
re
e ∀e ∈ E (11k)

(vi)
2 ≤ wi ≤ (vi)

2 ∀i ∈ N (11l)

pg
i ≤ pg

i ≤ pg
i ∀i ∈ G (11m)

qg
i
≤ qg

i ≤ qg
i ∀i ∈ G (11n)

−Se ≤ pf
e ≤ Se ∀e ∈ E (11o)

−Se ≤ qf
e ≤ Se ∀e ∈ E (11p)

−Se ≤ pt
e ≤ Se ∀e ∈ E (11q)

−Se ≤ qt
e ≤ Se ∀e ∈ E (11r)

wre
e ≤ wre

e ≤ wre
e ∀e ∈ E (11s)

wim
e ≤ wim

e ≤ wim
e ∀e ∈ E (11t)

ness and to support research on predicting dual solutions. PGLearn supports the use of any JuMP-
supported conic solver. By default, PGLearn solves SOC-OPF instances using Clarabel (Goulart
and Chen, 2024).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

U
nderreview

as
a

conference
paperatIC

L
R

2026

Model 3 Dual of SOC-OPF

max
λ,µ,ν,ω

∑
i∈N

λp
i

∑
j∈Li

(
pd
j

)
+ λq

i

∑
j∈Li

(
qd
j

)
+

∑
j∈Gi

(
pg
j
µpg
j
+ pg

j µ̄
pg
j + qg

j
µqg
j
+ qg

j µ̄
qg
j

)
+ v2

iµ
w
i
+ v2

i µ̄
w
i


+

∑
e∈E

(
−s̄e

(
µpf
e
− µ̄pf

e + µqf
e
− µ̄qf

e + µpt
e
− µ̄pt

e + µqt
e
− µ̄qt

e + νsf
e + νst

e

)
+wre

eµ
wr
e
+wre

e µ̄
wr
e +wim

e µwi
e
+wim

e µ̄wi
e

)
(12a)

s.t. λp
i + µpg

g
+ µ̄pg

g = cg ∀i ∈ N ,∀g ∈ Gi (12b)

λq
i + µqg

g
+ µ̄qg

g = 0 ∀i ∈ N ,∀g ∈ Gi (12c)

− λp
i − λpf

e + νpf
e + µpf

e
+ µ̄pf

e = 0 ∀e = (i, j) ∈ E (12d)

− λq
i − λqf

e + νqf
e + µqf

e
+ µ̄qf

e = 0 ∀e = (i, j) ∈ E (12e)

− λp
j − λpt

e + νpt
e + µpt

e
+ µ̄pt

e = 0 ∀e = (i, j) ∈ E (12f)

− λq
j − λqt

e + νqt
e + µqt

e
+ µ̄qt

e = 0 ∀e = (i, j) ∈ E (12g)

− gsi λ
p
i + bsiλ

q
i +

∑
e∈E+

i

(
gff
eλ

pf
e − bff

eλ
qf
e +

ωf
e√
2

)
+

∑
e∈E−

i

(
gtt
eλ

pt
e − btt

eλ
qt
e +

ωt
e√
2

)
+ µw

i
+ µ̄w

i = 0 ∀i ∈ N (12h)

gft
eλ

pf
e + gtf

eλ
pt
e − bft

eλ
qf
e − btf

eλ
qt
e − tan(∆θe)µ

θ

e
+ tan(∆θe)µ̄

θ
e + ωre

e + µwr
e
+ µ̄wr

e = 0 ∀e ∈ E (12i)

bft
eλ

pf
e − btf

eλ
pt
e + gft

eλ
qf
e − gtf

eλ
qt
e + µθ

e
− µ̄θ

e + ωim
e + µwi

e
+ µ̄wi

e = 0 ∀e ∈ E (12j)

νf
e = (νsf

e , ν
pf
e , ν

qf
e) ∈ Q3, ν t

e = (νst
e , ν

pt
e , ν

qt
e) ∈ Q3 ∀e ∈ E (12k)

ωe =
(
ωf
e, ω

t
e, ω

re
e , ω

im
e

)
∈ Q4

r ∀e ∈ E (12l)

µpg, µqg, µw, µθ, µpf, µqf, µpt, µqt ≥ 0 (12m)

µ̄pg, µ̄qg, µ̄w, µ̄θ, µ̄pf, µ̄qf, µ̄pt, µ̄qt ≤ 0 (12n)

18

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

Under review as a conference paper at ICLR 2026

A.2.3 DC OPTIMAL POWER FLOW

The DC-OPF is a popular linear approximation of AC-OPF, which underlies most electricity mar-
kets. The DC approximation is motivated by several assumptions, whose validity mainly holds for
transmission systems. Namely, the DC approximation assumes that all voltage magnitudes are fixed
to one per-unit, voltage angles are assumed to be small (i.e. sin(θ) ≈ θ), and that reactive power and
power losses can be neglected. The reader is referred to Molzahn and Hiskens (2019) for additional
background on the DC approximation.

Model 4 states the DC-OPF formulation used in PGLearn. Constraint (13b) enforces nodal power
balance through Kirchhoff’s current law. Constraint (13c) expresses active power flows on each
branch according to Ohm’s law, and constraint (13d) restricts the voltage angle difference between
each branch’s endpoints. Constraint (13e) fixes the reference bus’ voltage angle to zero. Finally,
constraints (13f) and (13g) enforce lower and upper limits on active power generation and active
power flows.

Model 4 DC Optimal Power Flow (DC-OPF)

min
pg,pf,θ

∑
i∈N

∑
j∈Gi

cjp
g
j (13a)

s.t.
∑
j∈Gi

pg
j −

∑
e∈Ei

pf
e +

∑
e∈ER

i

pf
e =

∑
j∈Li

pd
j + gs

i ∀i ∈ N (13b)

−be(θi − θj)− pf
e = 0 ∀e = (i, j) ∈ E (13c)

∆θe ≤ θi − θj ≤ ∆θe ∀e = (i, j) ∈ E (13d)
θref = 0 (13e)

pg
i ≤ pg

i ≤ pg
i ∀i ∈ G (13f)

−Se ≤ pf
e ≤ Se ∀e ∈ E (13g)

The dual DC-OPF problem is stated in Model 5. Dual variables λp and λpf are associated to equality
constraints (13b) and (13c), respectively. Dual variables µθ, µ̄θ are associated to lower and upper
sides of the voltage angle difference constraint (13d). Finally, dual variables µpg, µ̄pg, µpf, µ̄pf are
associated to lower and upper bounds on variables pg and pf.

Model 5 Dual of DC-OPF

max
λ,µ

∑
i∈N

λp
i(g

s
i +

∑
j∈Li

pd
j) +

∑
i∈N

∑
j∈Gi

(
pg
j
µpg
j
+ pg

j µ̄
pg
j

)
+

∑
e∈E

(
∆θeµ

θ

e
+∆θeµ̄

θ
e − s̄eµ

pf
e
+ s̄eµ̄

pf
e

)
(14a)

s.t. λp
i + µpg

g
+ µ̄pg

g = cg ∀i ∈ N ,∀g ∈ Gi (14b)

− λp
i + λp

j − λpf
e + µpf

e
+ µ̄pf

e = 0 ∀e = (i, j) ∈ E (14c)∑
e∈E+

i

(
µθ

e
− beλ

pf
e

)
+

∑
e∈E−

i

(
µ̄θ
e + beλ

pf
e

)
= 0 ∀i ∈ N (14d)

µθ, µpg, µpf ≥ 0 (14e)

µ̄θ, µ̄pg, µ̄pf ≤ 0 (14f)

PGLearn supports any linear programming solver supported by JuMP. By default, PGLearn solves
DC-OPF instances using HiGHS (Huangfu and Hall, 2018).

19

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Under review as a conference paper at ICLR 2026

B DATASET FORMAT

This section contains tables describing the format for the case file, the input data files, and the meta-
data, primal solution, and dual solution files for each of the formulations. Besides the JSON case
file, all data is stored in the HDF5 format (The HDF Group, 2024). Each dataset within PGLearn is
structured following the diagram below, where <case> refers to the snapshot name, <split> is
“train”, “test”, or “infeasible”, and <formulation> is “ACOPF”, “DCOPF”, or “SOCOPF”:

<case>
| - case.json
| - <split>
| | - input.h5
| | - <formulation>
| | | - primal.h5
| | | - dual.h5
| | | - meta.h5

The main data in the input.h5 files are stored under the data key, with metadata (seed numbers
and the configuration file used to generate the dataset) stored under the meta key. The structure of
the input data tables is given in Table 2. The structure of the metadata for each formulation (stored
in the meta.h5 files), is described in Table 3. The reference case data stored in case.json is
described in Table 7.

Table 2: Input Data Format

Key Shape Meaning

pd (N , |L|) pd – Active power demand
qd (N , |L|) qd – Reactive power demand

branch status (N , |E|) 0 if branch is disabled, 1 otherwise
gen status (N , |G|) 0 if generator is disabled, 1 otherwise

Table 3: Metadata Format

Key Size Meaning
formulation (N , 1) Formulation name

termination status (N , 1) MOI.TerminationStatusCode
primal status (N , 1) MOI.ResultStatusCode for primal solution
dual status (N , 1) MOI.ResultStatusCode for dual solution
solve time (N , 1) Time spent in solver
build time (N , 1) Time spent building JuMP model

extract time (N , 1) Time spent extracting solution
primal objective value (N , 1) Primal objective value
dual objective value (N , 1) Dual objective value

seed (N , 1) MersenneTwister seed

20

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

Under review as a conference paper at ICLR 2026

Table 4: AC-OPF Data Format

Primal Key Size Variable

pg (N , |G|) pg

qg (N , |G|) qg

vm (N , |N |) v
va (N , |N |) θ
pf (N , |E|) pf

qf (N , |E|) qf

pt (N , |E|) pt

qt (N , |E|) qt

Dual Key Size Constraint

slack bus (N , 1) (7k)
kcl p (N , |N |) (7b)
kcl q (N , |N |) (7c)
ohm pf (N , |E|) (7d)
ohm qf (N , |E|) (7e)
ohm pt (N , |E|) (7f)
ohm qt (N , |E|) (7g)
sm fr (N , |E|) (7h)
sm to (N , |E|) (7i)

va diff (N , |E|) (7j)
pg lb / pg ub (N , |G|) (7l)
qg lb / qg ub (N , |G|) (7m)
vm lb / vm ub (N , |N |) (7n)
pf lb / pf ub (N , |E|) (7o)
qf lb / qf ub (N , |E|) (7p)
pt lb / pt ub (N , |E|) (7q)
qt lb / qt ub (N , |E|) (7r)

Table 5: SOC-OPF Data Format

Primal Key Size Variable

pg (N , |G|) pg

qg (N , |G|) qg

w (N , |N |) w
wr (N , |E|) wre

wi (N , |E|) wim

pf (N , |E|) pf

pt (N , |E|) pt

qf (N , |E|) qf

qt (N , |E|) qt

Dual Key Size Constraint

kcl p (N , |N |) (11b)
kcl q (N , |N |) (11c)
ohm pf (N , |E|) (11d)
ohm qf (N , |E|) (11e)
ohm pt (N , |E|) (11f)
ohm qt (N , |E|) (11g)
sm fr (N , |E|, 3) (11h)
sm to (N , |E|, 3) (11i)
jabr (N , |E|, 4) (11j)

va diff lb / va diff ub (N , |E|) (11k)
w lb / w ub (N , |N |) (11l)

wr lb / wr ub (N , |E|) (11s)
wi lb / wi ub (N , |E|) (11t)
pg lb / pg ub (N , |G|) (11m)
qg lb / qg ub (N , |G|) (11n)
pf lb / pf ub (N , |E|) (11o)
qf lb / qf ub (N , |E|) (11p)
pt lb / pt ub (N , |E|) (11q)
qt lb / qt ub (N , |E|) (11r)

Table 6: DC-OPF Data Format

Primal Key Size Variable

pg (N , |G|) pg

va (N , |N |) θ
pf (N , |E|) pf

Dual Key Size Constraint

slack bus (N , 1) (13e)
kcl (N , |N |) (13b)
ohm (N , |E|) (13c)

va diff (N , |E|) (13d)
pg lb / pg ub (N , |G|) (13f)
pf lb / pf ub (N , |E|) (13g)

21

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

Under review as a conference paper at ICLR 2026

Table 7: Case JSON Format

Key Size Description

case – Snapshot name
N 1 Number of buses (|N |)
E 1 Number of edges (|E|)
L 1 Number of loads (|L|)
G 1 Number of generators (|G|)

ref bus 1 Index of reference/slack bus (1-based)
base mva 1 Base MVA to convert from per-unit
vnom |N | Nominal voltage
pd |L| Reference active power load (pd)
qd |L| Reference reactive power load (qd)
A (|E|, |N |) Branch incidence matrix in COO format
Ag (|N |, |G|) Generator incidence matrix in COO format

bus arcs fr |N | Indices of branches leaving each bus (Ei)
bus arcs to |N | Indices of branches entering each bus (ERi)
bus gens |N | Indices of generators at each bus (Gi)
bus loads |N | Indices of loads at each bus (Li)

gs |N | Nodal shunt conductance (gs)
bs |N | Nodal shunt susceptance (bs)

vmin |N | Voltage magnitude lower bound (v)
vmax |N | Voltage magnitude upper bound (v)
dvamin |E| Minimum voltage angle difference (∆θ)
dvamax |E| Maximum voltage angle difference (∆θ)
smax |E| Branch thermal limit (S)
pgmin |G| Minimum active power generation (pg)
pgmax |G| Maximum active power generation (pg)
qgmin |G| Minimum reactive power generation (qg)
qgmax |G| Maximum reactive power generation (qg)
c1 |G| Linear cost coefficient

gen bus |G| Bus index of each generator (1-based)
load bus |L| Bus index of each load (1-based)
bus fr |E| From bus index for each branch (i) (1-based)
bus to |E| To bus index for each branch (j) (1-based)

g |E| Branch conductance
b |E| Branch susceptance

gff |E| From-side branch conductance (gff)
gft |E| From-to branch conductance (gft)
gtf |E| To-from branch conductance (gtf)
gtt |E| To-side branch conductance (gtt)
bff |E| From-side branch susceptance (bff)
bft |E| From-to branch susceptance (bft)
btf |E| To-from branch susceptance (btf)
btt |E| To-side branch susceptance (btt)

22

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Under review as a conference paper at ICLR 2026

C DATA LOADING TUTORIAL

PGLearn is compatible with the datasets Python library enabling powerful features such
as streaming and compatibility with many major ML frameworks. For example, to use the
1354 pegase dataset, one can run the following code:

from datasets import load_dataset

ds = load_dataset(
"PGLearn/PGLearn-Medium-1354_pegase",
split="test", # train or test
streaming=True, # optional; download samples on-demand
columns=[# optional; only download some columns

"input/pd", "ACOPF/primal/pg",
]

)

sample = next(iter(ds))
print(len(sample["input/pd"])) # 673
print(len(sample["ACOPF/primal/pg"])) # 260

example torch usage with torch.utils.data.DataLoader
import torch
dl = torch.utils.data.DataLoader(

ds.with_format("torch"),
batch_size=8

)
batch = next(iter(dl))
print(batch["ACOPF/primal/pg"].shape) # torch.Size([8, 260])

The HDF5 files can also be downloaded directly from the script revision:

from huggingface_hub import snapshot_download

download the compressed HDF5 files
snapshot_download(

"PGLearn/PGLearn-Small-14_ieee",
local_dir="./data",
repo_type="dataset", revision="script",
optional; filter what files to download
allow_patterns=[

"*/DCOPF/*", "*input*"
],
ignore_patterns=[

"*dual.h5.gz", "infeasible/*"
],

)

optional; pre-decompress all files using gzip
from pathlib import Path
import gzip, shutil
for src in Path("./data").rglob("*.h5.gz"):

dest = src.with_suffix("")
with gzip.open(src, "rb") as fsrc, open(dest, "wb") as fdest:

shutil.copyfileobj(fsrc, fdest)
src.unlink() # optional; delete the compressed files

read using h5py
import h5py
h5py.File("./data/train/DCOPF/primal.h5")['pg'].shape # (756205, 5)

23

	Introduction
	Motivation: Data Scarsity in ML for OPF Research
	Related Work
	Contributions and Outline

	OPF Formulations in PGLearn
	OPF Formulations
	Dual OPF Formulations and Solutions

	The PGLearn Collection of Datasets for Learning OPF
	Open-Source Implementations
	PGLearn.jl: OPF Data Generation
	ML4OPF: Model Training, Evaluation and Benchmarking

	Benchmarking Machine Learning Models for OPF
	Accuracy metrics
	Computational performance metrics

	Limitations
	Data Limitations
	Future Collections

	Conclusion
	Formulations
	Background Material
	Nonlinear optimization
	Conic optimization

	OPF formulations
	AC Optimal Power Flow
	SOC Optimal Power Flow
	DC Optimal Power Flow

	Dataset Format
	Data Loading Tutorial

