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Abstract

Hyperbolic neural networks have attracted increasing attention within the com-
munity in recent years, with various empirical studies on the subject standing
out. However, there is little theoretical research on this topic. In this work, we
use results from Avelin and Karlsson to ensure convergence of hyperbolic neural
networks defined in the Lorentz hyperboloid model. Also, we extend this result to
any Riemannian manifold.

1 Introduction

Hyperbolic neural networks (HNNs) represent an emerging field within machine learning and
artificial intelligence, characterized by their use of hyperbolic geometry to enhance the performance
and representation capabilities of neural networks ([10, 9, 15]). Despite their promising potential, the
domain is still in early stages, and several critical aspects require further exploration and improvement.

Theoretical foundations and practical applications of hyperbolic neural networks are not yet fully
understood. There is a need for more rigorous mathematical formulations and proofs to establish the
fundamental principles governing these networks ([4, 16, 14, 1])

Applying concepts from dynamical systems and ergodic theory to the convergence of neural networks
can lead to significant improvements. By treating neural networks as dynamical systems, we can
better understand the stability of their training processes. This approach helps identify stable solutions
and avoid unstable ones, resulting in more reliable convergence to optimal solutions. Ergodic theory,
which deals with the statistical behavior of systems over time, can improve our understanding of
convergence patterns ([2]).

Additionally, dynamical systems techniques can lead to new regularization methods that enhance
the generalization ability of neural networks ([8, 12]). By understanding parameter trajectories, we
can design regularization methods to prevent overfitting, ensuring the network generalizes better to
unseen data. Ergodic theory also helps mitigate chaotic behavior during training, leading to more
stable and predictable training dynamics.

Convergence of neural networks can be understood through the lens of optimization theory. Training
a neural network typically involves minimizing a loss function using gradient-based methods. Theo-
retical results shows that gradient descent methods converge to minimizers under certain conditions
([6, 3, 13]).

On the other hand, in [2] the authors proves several important results about convergence of neural
networks. First, the growth is realized at one fixed coordinate, avoiding spiralling in a cone and
showing that more complicated fluctuating behaviour is not possible.
Theorem 1.1 ([2]). Let X be the positive cone in RN and let Ti : X → X be a stationary sequence
of maps that is order preserving and subhomogeneous. Let xn = T1T2 . . . Tnx0, for a fixed x0 ∈ X .
Then

lim
n→∞

sup
i

|xn(i)|1/n = eλ,
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and there is a (random) coordinate 1 ≤ i0 ≤ d such that

lim
n→∞

|xn(i0)|1/n = eλ.

Here λ is the average logarithmic rate of contraction (or expansion) of distances in the space under
the transformations.

Another important result is that no matter where you start in your (Euclidean) space and despite any
randomness in your sequence of transformations, the result will lead you to a specific, predictable
outcome. The process "forgets" the starting point and converges to a consistent average behavior.
Theorem 1.2 ([2]). Let (X = RN , ∥·∥N ) be a normed vector space which has the above monotonicity
property and strictly convex unit ball. Consider a stationary sequence of layer maps Tn of the form
T (x) = WTσ(Wx+ b), ∥W∥N ≤ 1, b ∈ X , and σ is 1-Lipschitz when applied componentwise in
(X = RN , ∥ · ∥N ). Then as n → ∞ it holds that a.s. there exists a vector v such that

1

n
T1T2 . . . Tnx0 → v.

The vector v is a priori random but independent of the initial data x0. The norm of v is deterministic.

And finally, there’s a consistent, average rate at which these transformations stretch distances
between points. If this rate is positive, even tiny differences can grow exponentially large after
many transformations. This behavior is predictable and quantifiable, allowing us to understand and
anticipate how the system evolves over time.
Theorem 1.3 ([2]). Under certain assumptions there is a number λ so that

lim
n→∞

(
sup
x ̸=y

∥TnTn−1 . . . T1x− TnTn−1 . . . T1y∥
∥x− y∥

)1/n

= eλ, a.s.

Moreover, in case λ > 0 there exists a point x ∈ Ω and a sequence zi = (xi, yi) ∈ {(x, y) : x, y ∈
Ω, x ̸= y} such that zi → (x, x) and for any ϵ > 0 there is a number p so that for n > p

∥Tn . . . T1xi − Tn . . . T1yi∥
∥xi − yi∥

≥ e(λ−ϵ)n,

for all sufficiently large i.

The main contributions of this work are:

1. Using Theorem 1.2, we prove convergence of Neural Networks defined in a Riemannian
manifolds under certain conditions (Theorem 3.2). This result suggests that under the given
conditions, the system stabilizes in a well-defined manner, providing predictability and
stability in applications such as iterative algorithms and deep learning models on manifolds.

2. We found specific parameters of the initial data that allows convergence of the HNN defined
in the Lorentz hyperboloid model (Theorem 3.1).

3. We found convergence in reverse dynamics of layers maps, specifically in compact metric
spaces (Theorem 3.4).

2 Preliminaries

Riemannian geometry basics (see [7] ). A d-dimensional differentiable manifold M is a topologi-
cal space that is locally parameterized by open sets of Rd, such that every change of parametrization
is a differentiable map. It is possible to define infinitesimal directions at each point p ∈ M , forming
the tangent space TpM of M at p. If a differentiable manifold M has an inner product gp(·, ·) defined
on each tangent space TpM ≃ Rd (called a Riemannian metric), it is called a Riemannian manifold
and it is denoted by (M, g). By integrating the gγ(t)-norm of the tangent vectors along a curve γ(t),
we can define the Riemannian length of a curve and the minimum length required to connect two
points gives a Riemannian distance on X . A geodesic is a curve on a Riemannian manifold that
locally minimizes the length between its endpoints.
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We need to relate the manifold M with its tangent space TpM for some p ∈ M . This can be done
using the so called exponential map. It is well known that for every v ∈ TpM (with sufficiently small
norm) there is a unique geodesic γv : (−2, 2) → M such that γv(0) = p and γ′

v(0) = v. Then, the
exponential map at p ∈ M is defined for v ∈ TpM by expp(v) := γv(1). Here γ′ is the derivative of
γ.

Proposition 2.1. Given p ∈ M , there is ε > 0 such that expp : Bε(0) ⊂ TpM → M is a
diffeomorphism onto an open set of M . Here Bε(0) is the ball of radius ε centered at 0.

Hyperbolic spaces (see Figure 1). In contrast to Euclidean geometry, hyperbolic geometry pos-
sesses unique geometric properties. A comprehensive understanding of this geometry requires
familiarity with the hyperbolic parallel postulate and the concept of curvature. Furthermore, it is
imperative to comprehend the representation and visualization of hyperbolic space using models such
as the Lorentz hyperboloid model (see Figure 2).

κ = 0 κ > 0 κ < 0

Figure 1: Surfaces with different curvatures κ. Examples of plane geometry, spherical geometry and
hyperbolic geometry respectively from left to right.

Hyperboloid Model The hyperboloid model is a classical representation of hyperbolic geometry, a
non-Euclidean geometry characterized by a constant negative curvature. This model is named for its
use of a hyperboloid surface to describe the geometry’s structure (see Figure 2). It offers an intuitive
and algebraically convenient way to understand and work with hyperbolic spaces.

We consider the set Ln :=
{
x ∈ Rn+1 : −x2

0 +
∑n

i=1 x
2
i = −1, x0 > 0

}
and we fix its origin y = (1, 0, . . . , 0) ∈ Ln. We identify the tangent space of Ln at y with Rn by
setting TyLn = {v ∈ Rn+1 : v0 = 0}.

L2

TyL2 ≃ R2

Figure 2: The tangent space TyL2.

In this setting the exponential map expy : TyLn → Ln is invertible and its inverse is denoted by
logy : Ln → TyLn. For v ∈ TyLn and x ∈ Ln, these maps satisfy

expy(v) = cosh(∥v∥)y + sinh(∥v∥) v

∥v∥
, logy(x) = d(x, y)

x+ g(x, y)y

∥x+ g(x, y)y∥
,

where d(x, y) = arccosh(x0y0 −
∑n

i=1 xiyi) and g(x, y) = −x0y0 +
∑n

i=1 xiyi (for more details
see [5]).
Definition 2.2. A subset X ⊂ Ln is called a cone if it is the image of a cone in TyLn under the
exponential map.

Möbius operations In order to state the results in Ln, we need to be able to add elements and
multiply them by a scalar. We do this by using the usual addition and multiplication by scalar in Rn,
together with the exponential and logarithm maps.
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Definition 2.3. For a, b, x ∈ Ln and α ∈ R, we define the Möbius addition ⊕ and scalar multiplica-
tion ⊗ by a⊕ b = expy(logy a+ logy b) and α⊗ x = expy(α logy(x)).

This definition can be extended to a Riemannian manifold.

Hyperbolic Neural Networks Hyperbolic neural networks extend the framework of Euclidean
neural networks by utilizing the properties of hyperbolic geometry, which differs significantly from
the flat Euclidean space typically employed in conventional neural networks. Hyperbolic spaces
are particularly adept at representing hierarchical and tree-like structures, making them especially
suitable for data with inherent hierarchical relationships, such as syntactic trees in natural language
or social networks.

Formally we have the following definitions.

Definition 2.4. We define a Deep Neural Network as

f(x) = f1 ◦ f2 ◦ · · · ◦ fk(x)
fi(x) = σi(Wix+ bi), 1 ≤ i ≤ k.

where Wi ∈ Rn×n, bi ∈ Rn and σ is the activation function.

In order to define a neural network on the hyperboloid model, a good idea is to "transfer" a neural
network defined on Rn to Ln using the exponential map and its inverse.

Definition 2.5. Given a function T : Rn → Rn, we define the Möbius version of T by

T⊗ : Ln → Ln

x 7→ expy(T (logy(x))).

Note: On the other hand, any map f : Ln → Ln has its "Euclidean version" by applying the reverse
process. That is, the map f̃(v) = logy(f(expy(v))) is such that (f̃)⊗ = f .

Definition 2.6. We define a Hyperbolic Neural Network as

f(x) = f1 ◦ f2 ◦ · · · ◦ fk(x)
fi(x) = σ⊗

i (W
⊗
i x⊕ bi), 1 ≤ i ≤ k.

where Wi ∈ Rn×n, bi ∈ Ln and σ is the activation function. Recall that we are always identifying
TyLn ≃ Rn.

Remark 2.7. Both deep neural networks and hyperbolic neural networks can be defined between
spaces of different dimensions, that is, the matrices Wi do not need to be square matrices and we
then should use the corresponding exponential and logarithm of the "correct dimension". However, in
our work we will restrict to networks between spaces of the same dimension n.

Ergodic theorems and cocycles Let (M,B, µ, T ) be an ergodic dynamical system, that is,
T : M → M is a measurable transformation, µ(T−1A) = µ(A) and all T -invariant sets have
measure either 0 or 1. A subadditive cocycle over T is a measurable function ϕ : M × N0 → R
satisfying

ϕ(ω, n+m) ≤ ϕ(ω, n) + ϕ(Tnω,m) for all ω ∈ M and n,m > 0.

For convenience set ϕ(ω, 0) ≡ 0. For a subadditive cocycle coming from a sequence of maps
(e.g.Furstenberg-Kesten theorem), it is more convenient to write the subadditive cocycle property as
a(1, n+m) ≤ a(1, n) + a(n,m) (see [2] for more details).

Denote by SC(X) the set of all non-expansive maps on the metric space X . Consider a map
φ : M → SC(X). The so called ergodic cocycle u(ω, n) = φ(ω)φ(Tω) · · ·φ(Tn−1ω) is called
integrable if

∫
M

d(φ(ω)x, x)dµ(ω) < ∞.

This condition does not depend on the point x due to the maps φ(ω) being non-expansive.

These ergodic cocycles when used with sequences of layer maps will be called stationary sequences.
For more details see [11] and [2].
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Sub-homogeneous functions Sub-homogeneous functions play a crucial role in understanding the
behavior and stability of dynamical systems.
Definition 2.8. Define a partial order in Ln as follows. For x, x′ ∈ Ln,

x ≤ x′ ⇐⇒ logy(x) ≤ logy(x
′),

where the order in the right hand side is the partial order in TyLn ∼= Rn.

Definition 2.9. Let X ⊂ Ln be a cone. A map f : X → X is called sub-homogeneous if for every
x ∈ X and λ ∈ (0, 1) we have f(λ⊗ x) ≤ λ⊗ f(x), whenever the order is possible.
Proposition 2.10. Let f : TyLn → TyLn be subhomogeneous. That is, for every v ∈ TyLn and
λ ∈ (0, 1) we have f(λv) ≤ λf(v) whenever the order is possible. Then, the induced map on the
hyperboloid f⊗ : Ln → Ln is also subhomogeneous.

Proof. Is direct from the definition of subhomogeneity and f⊗.

3 Main results

Our results usually apply for general sequence of maps fm : Ln → Ln satisfying the corresponding
assumptions of each theorem, in particular they apply for hyperbolic neural networks from Definition
2.6, as these will come from deep neural networks on the tangent space Rn. This results are relevant
because they broaden the scope of the results presented in [2], demonstrating that the behaviors of
convergence, and exponential growth rates are pervasive across various mathematical structures and
types of transformations.

The following theorem is a weighted version of Theorem 1.1 in the hyperboloid model, where we
obtain a similar convergence of the coordinates.
Theorem 3.1. Let Y = expy(X), where X is the positive cone in Rn. Let fi : Y → Y be a sequence
of order preserving and subhomogeneous maps such that Tm := logy ◦fm ◦ expy is a stationary
sequence of maps in X . Let zm = f1f2 · · · fm(z0) for a fixed z0 ∈ Y . Then, we have

lim
m→∞

sup
1≤i≤n

(√
2 arccosh(zm(0))√

∥zm∥2 − 1
zm(i)

)1/m

= eλ.

Proof. Fix z0 ∈ Y . We have that Tm : X → X is a stationary sequence by assumption. It follows
directly from Definitions 2.8 and 2.9 that this sequence is also order preserving and subhomogeneous.
Thus, we can apply Theorem 1.1 using the point x0 := logy(z0) ∈ X . Observe that

zm = f1f2 · · · fm(z0) = expy(T1T2 · · ·Tm(x0)) = expy(xm),

where we use the notation of Theorem 1.1. Using the specific expression we have for the exponential
map, we obtain

zm = (zm(0), . . . , zm(n))) = cosh∥xm∥y + sinh∥xm∥
∥xm∥

xm

=

(
cosh∥xm∥, sinh ∥xm∥

∥xm∥
xm(1), . . . ,

sinh ∥xm∥
∥xm∥

xm(n)

)
.

For 1 ≤ i ≤ n we have xm(i) = ∥xm∥
sinh ∥xm∥zm(i). Observe that ∥xm∥ = arccosh(zm(0)) and

∥zm∥2 = cosh2∥xm∥+ sinh2∥xm∥ = 1 + 2 sinh2∥xm∥. The result follows as

xm(i) =

√
2 arccosh(zm(0))√

∥zm∥2 − 1
zm(i).

The following theorem extends neural network layer dynamics to Riemannian manifolds, showing
that iterated transformations in the tangent space, via the exponential map, converge to a stable point.
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Theorem 3.2. Let (M, g) be a Riemannian manifold. Fix y ∈ M and r > 0 such that φ :=
expy : Br(0) ⊂ TyM → V := expy(Br(0)) is a diffeomorphism (up to reducing r we can assume
that φ extends continuously to the closure of the ball of radius r centered at 0, Br(0)). Consider a
sequence fn : V → V consisting of maps of the form

f(x) = φ(W⊤σ(Wφ−1(x) + b)),

where ∥W∥ ≤ 1, σ is 1-Lipschitz componentwise and b ∈ TyM satisfy fn(V ) ⊂ V , and such that
f̃n(v) = W⊤

n σ(Wnv+ bn)) is a stationary sequence of layer maps in Rn. Then, as m → ∞, almost
surely there exist z ∈ V such that

1

m
⊗ f1f2 · · · fm(z0) → z.

The point z ∈ V is independent of the initial data z0 ∈ V .

Proof. Let U := Br(0), and consider the sequence Tn : U → U defined by Tn(v) := f̃n(v). This
sequence is stationary and satisfies the hypotheses of Theorem 1.2 (we use the Euclidean norm in
TyM ≃ Rn). Fix an initial data z0 ∈ V , which gives us an initial data x0 := φ−1(z0) ∈ U . By
Theorem 1.2, as m → ∞ almost surely there is x ∈ U such that

1

m
T1 · · ·Tm(x0) → x.

Since
1

m
⊗ f1 · · · fm(z0) = φ

(
1

m
φ−1(f1 · · · fm(z0))

)
= φ

(
1

m
T1 · · ·Tm(x0)

)
,

we obtain the desired limit with z := φ(x) as φ is continuous.

This result demonstrate a strong convergence property for a specific type of functions defined on
a Riemannian manifold. Despite the complexity and nonlinearity of the maps fn, the sequence of
compositions of these maps, when averaged properly, converges almost surely to a single point.

The following result is an immediate application of Theorem 3.2 to the hyperboloid model. Recall
that in this situation the map φ := expy is invertible on the whole tangent space at the origin TyLn.

Corollary 3.3. Let fm : Ln → Ln be a sequence of maps of the form fm(x) = T⊗
m(x), where

Tm : Rn → Rn defined by Tm(v) = W⊤σ(Wv + b), is a stationary sequence of layer maps,
∥W∥ ≤ 1, b ∈ Rn and σ is 1−Lipschitz componentwise. Then, as m → ∞, almost surely there exist
z ∈ Ln such that

1

m
⊗ f1f2 . . . fm(z0) → z.

The point z ∈ Ln is independent of the initial data z0 ∈ Ln.

It is easy to see that Corollary 3.3 applies to any isometric hyperbolic manifold (e.g. Poincaré ball
model).

We now extend the example of the reverse order in [2] to a compact metric space setting.

Theorem 3.4. Let (Ω, d0) be a compact metric space and consider a stationary sequence of homeo-
morphisms Tm : Ω → Ω. Then, almost surely there is a number λ such that

lim
m→∞

(
sup
x̸=y

d0(TmTm−1 · · ·T1x, TmTm−1 · · ·T1y)

d0(x, y)

)1/m

= eλ.

Proof. See Appendix A.
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4 Conclusions and future work

In this work we extend some convergence results of neural networks from the Euclidean setting
to Riemannian manifolds, focusing on the hyperbolic model. By leveraging the exponential map,
it follows that under certain conditions, deep neural networks defined on these manifolds exhibit
convergence to a stable point.

This work successfully proves the convergence of hyperbolic neural networks under specific condi-
tions using results from Avelin and Karlsson. The convergence is guaranteed for networks defined in
the Lorentz hyperboloid model, which is significant for ensuring stability and predictability in these
networks.

By applying concepts from dynamical systems and ergodic theory, the study enhances the understand-
ing of the training stability and convergence patterns of HNNs. This approach helps in identifying
stable solutions and avoiding unstable ones, leading to more reliable outcomes. Also this work
suggests that understanding parameter trajectories can lead to new regularization methods, which can
prevent overfitting and improve the generalization abilities of neural networks.

For future work, empirical validation of the theorems is necessary to confirm their practical applica-
bility and effectiveness in real-world scenarios. Also, by using the exponential map and its inverse
(when defined), it would be interesting to study neural networks in specific manifolds, e.g. the sphere,
the torus, etc.
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A Proof of Theorem 3.4

Proof. We follow the line of arguments in [2]. Let X be the space of metrics on Ω that are bi-Lipschitz
equivalent to d0. Define the following Thompson metric for d1, d2 ∈ X:

D(d1, d2) = log

(
max

{
sup
x ̸=y

d1(x, y)

d2(x, y)
, sup
x ̸=y

d2(x, y)

d1(x, y)

})
.

Let F : X → Z := L∞(Ω× Ω) ∩ C(Ω× Ω \ {x = y}) be the map defined by

F(d)(x, y) = log
d(x, y)

d0(x, y)
,

and set Y = F(X). Observe that ∥F(d1) − F(d2)∥Z = supx̸=y

∣∣∣ log d1(x, y)

d2(x, y)

∣∣∣ = D(d1, d2), so

F is an isometry between X and Y (here ∥·∥Z is the L∞ norm on the space Z of bounded and
continuous functions on Ω× Ω \ {x = y}).

Now given a non-expansive map U : X → X , it induces a non-expansive map Ũ : Y → Y given by
Ũ(F(d)) := F ◦ U(d). Indeed, observe that

∥Ũ(F(d))− Ũ(F(d′))∥Z = ∥F(U(d))−F(U(d′))∥Z = D(U(d), U(d′)) ≤ D(d, d′).

Consider as usual a stationary sequence of maps Tn, which induce non-expansive maps in the space
(X,D) by T ∗d(x, y) := d(Tx, Ty). Set fn := F((Tn · · ·T1)

∗d0). We claim that a(1, n) = ∥fn∥Z
is a subadditive cocycle. Indeed, since the Tn’s are homeomorphisms, we have

a(1, n+m) = ∥fn+m∥Z = sup
x̸=y

∣∣∣ log d0(Tn+m · · ·T1x, Tn+m · · ·T1y)

d0(x, y)

∣∣∣
= sup

x̸=y

∣∣∣ log d0(Tn+m · · ·T1x, Tn+m · · ·T1y)

d0(Tm · · ·T1x, Tm · · ·T1y)
· d0(Tm · · ·T1x, Tm · · ·T1y)

d0(x, y)

∣∣∣
≤ sup

x′ ̸=y′

∣∣∣ log d0(Tn+m · · ·Tm+1x
′, Tn+m · · ·Tm+1y

′)

d0(x′, y′)

∣∣∣+ sup
x ̸=y

∣∣∣ log d0(Tm · · ·T1x, Tm · · ·T1y)

d0(x, y)

∣∣∣
= a(m,n) + a(1,m).

By the subadditive ergodic theorem, there is λ such that

λ = lim
m→∞

1

m
∥fn∥Z = lim

m→∞

1

m
sup
x ̸=y

∣∣∣ log d0(TmTm−1 · · ·T1x, TmTm−1 · · · y)
d0(x, y)

∣∣∣,
giving the desired result.
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B Useful results

For the sake of completion, we show that expy and logy are inverses of each other.

Proposition B.1. For every x ∈ Ln, we have expy(logy(x)) = x.

Proof. Observe that ∥logy(x)∥ = d(y, x) and recall that y = (1, 0, . . . , 0). Since sinh(t) =√
cosh2(t)− 1, we obtain

expy(logy(x)) = cosh(∥logy(x)∥)y + sinh(∥logy(x)∥)
logy(x)

∥logy(x)∥

= cosh(arccosh(x0))y + sinh(arccosh(x0))
d(y, x)

d(y, x)

x+ g(y, x)y

∥x+ g(y, x)y∥

= x0y +
√
x2
0 − 1

(0, x1, x2, . . . , xn)√∑n
i=1 x

2
i

= (x0, 0, . . . , 0) + (0, x1, . . . , xn)

= x.

Proposition B.2. For every v ∈ TyLn, we have logy(expy(v)) = v.

Proof. We can identify TyLn = {v ∈ Rn+1 : v0 = 0}. By definition, we have

logy(expy(v)) = d(y, expy(v))
expy(v) + g(y, expy(v))y

∥expy(v) + g(y, expy(v))y∥
.

Since

expy(v) = cosh(∥v∥)y + sinh(∥v∥) v

∥v∥

= (cosh∥v∥, 0, . . . , 0) + sinh∥v∥
∥v∥

(0, v1, v2, . . . , vn)

=

(
cosh∥v∥, sinh∥v∥

∥v∥
v1, . . . ,

sinh∥v∥
∥v∥

vn

)
,

we have

expy(v)+g(y, expy(v))y =

(
0,

sinh∥v∥
∥v∥

v1, . . . ,
sinh∥v∥
∥v∥

vn

)
=

sinh∥v∥
∥v∥

(0, v1, . . . vn) =
sinh∥v∥
∥v∥

v.

On the other hand, we have

d(y, expy(v)) = arccosh(cosh∥v∥) = ∥v∥.

Putting everything together, we obtain

logy(expy(v)) = ∥v∥ ·

sinh∥v∥
∥v∥

v∥∥∥∥ sinh∥v∥∥v∥
v

∥∥∥∥ = v.
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