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ABSTRACT

Humans show an innate ability to learn the regularities of the world through
interaction. By performing experiments in our environment, we are able to discern
the causal factors of variation and infer how they affect the dynamics of our world.
Analogously, here we attempt to equip reinforcement learning agents with the
ability to perform experiments that facilitate a categorization of the rolled-out
trajectories, and to subsequently infer the causal factors of the environment in a
hierarchical manner. We introduce a novel intrinsic reward, called causal curiosity,
and show that it allows our agents to learn optimal sequences of actions, and to
discover causal factors in the dynamics. The learned behavior allows the agent
to infer a binary quantized representation for the ground-truth causal factors in
every environment. Additionally, we find that these experimental behaviors are
semantically meaningful (e.g., to differentiate between heavy and light blocks,
our agents learn to lift them), and are learnt in a self-supervised manner with
approximately 2.5 times less data than conventional supervised planners. We show
that these behaviors can be re-purposed and fine-tuned (e.g., from lifting to pushing
or other downstream tasks). Finally, we show that the knowledge of causal factor
representations aids zero-shot learning for more complex tasks.

1 INTRODUCTION

Discovering causation in environments an agent might encounter remains an open and challenging
problem for causal reinforcement learning (Schölkopf (2015), Bengio et al. (2013), Schölkopf
(2019)). Most approaches take the form of BAMDPs (Bayes Adaptive Markov Decision Processes)
(Zintgraf et al. (2019)) or Hi-Param MDP (Hidden Parameter MDPs) (Doshi-Velez & Konidaris
(2016); Yao et al. (2018); Killian et al. (2017); Perez et al. (2020)) which condition the transition
p(st+1|st, at;H) and/or reward function R(rt+1|st, at, st+1;H) of each environment on hidden
parameters (also referred to as causal factors in some of the above studies). Let s ∈ S, a ∈ A,
r ∈ R, H ∈ H where S, A, R, and H are the set of states, actions, rewards and feasible hidden
parameters. In the physical world and in the case of mechanical systems, examples of the parameter
hj ∈ H include gravity, coefficients of friction, masses and sizes of objects. Typically, H is treated
as a latent variable for which an embedding is learned during training, using variational methods
(Kingma et al. (2014); Ilse et al. (2019)). Let s0:T be the entire state trajectory of length T . Similarly,
a0:T is the sequence of actions applied during that trajectory by the agent that results in s0:T . In
an environment parameterized by these causal factors, these latent variable approaches define a
probability distribution over the entire sequence of (rewards, states, actions) conditioned on a latent z
as p(r0:T , s0:T , a0:T−1; z) that factorizes as

T−1∏
i=1

p(rt+1|st, at, st+1, z)p(st+1|st, at, z)p(at|st, z) (1)

due to the Markov assumption. At test time, the agent infers the causal factor associated with its
environment by observing the trajectories produced by its initial actions that can be issued by any
policy such as model-based reinforcement learning.

In practice, however, discovering causal factors in a physical environment is prone to various
challenges that are caused by the disjointed nature of the influence of these factors on the produced
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trajectories. More specifically, at each time step, the transition function is affected by a subset of
global causal factors. This subset is implicitly defined on the basis of the current state and the action
taken. For example, if a body in an environment loses contact with the ground, the coefficient of
friction between the body and the ground no longer affects the outcome of any action that is taken.
Likewise, the outcome of an upward force applied by the agent to a body on the ground is unaffected
by the friction coefficient. We can therefore take advantage of this natural discontinuity to discern
causal factors.

Without knowledge of how independent causal mechanisms affect the outcome of a particular action
in a given state in an environment, it becomes impossible for the agent to conclude where the
variation it encountered came from. Unsurprisingly, Hi-Param and BAMDP approaches fail to learn
a disentangled embedding for the causal factors, making their behaviors uninterpretable (Perez et al.
(2020)). For example, if, in an environment, a body remains stationary under a particular force, the
Hi-Param or BAMDP agent may apply a higher force to achieve its goal of perhaps moving the body,
but will be unable to conclude whether the "un-movability" was caused by high friction or high mass
of the body. Additionally, these approaches require human-supervised reward engineering, making it
difficult to apply them outside of the simulated environments they are tested in.

Our goal is, instead of focusing on maximizing reward for some particular task, to allow agents
to discover causal processes through exploratory interaction. During training, our agents discover
self-supervised experimental behaviors which they apply to a set of training environments. These
behaviors allow them to learn about the various causal mechanisms that govern the transitions in
each environment. During inference in a novel environment, they perform these discovered behaviors
sequentially and use the outcome of each behavior to infer the embedding for a single causal factor
(Figure 1).

The main challenge while learning a disentangled representation for the causal factors of the world is
that several causal factors may affect the outcome of behaviors in each environment. For example,
when pushing a body on the ground, the outcome, i.e., whether the body moves, or how far the body
is pushed, depends on several factors, e.g., mass, shape and size, frictional coefficients, etc. However,
if, instead of pushing on the ground, the agent executes a perfect grasp-and-lift behavior, only mass
will affect whether the body is lifted off the ground or not.

Thus, it is clear that not all experimental behaviors are created equal and that the outcomes of some
behaviors are caused by fewer causal factors than others. Our agents learn these behaviors without
supervision using causal curiosity, an intrinsic reward. The outcome of a single such experimental
behavior is then used to infer a binary quantized embedding describing the single isolated causal
factor. Even though causal factors of variation in a physical world are easily identifiable to humans, a
concrete definition is required to back up our proposed method. We conjecture that the causality of a
factor of variation depends on the available actions to the agent. If the set of actions that an agent can
take is very limited, there is no way for it to discern a diverse set of causal factors in the environment.
Definition 1 (Causal factors). Consider the POMDP (O, S , A, p, r) with observation space O, state
space S , action spaceA, the transition function p, and the reward function r. Let o0:T ∈ OT denotes
a trajectory of observations and T be the length of such trajectories. Let d(·, ·) : OT ×OT → R+ be
a distance function defined on the space of trajectories of length T . The set H = {h1, h2, . . . , hk} is
called a set of ε−causal factors if for every hj ∈ H , there exists a unique sequence of actions a0:T
that clusters the state trajectories into two sets S and S′ such that

min{d(o0:T , o′0:T ) : o0:T ∈ O, o′0:T ∈ O′} > ε (2)

and that hj is the cause of the trajectory of states obtained i.e.,

p(o0:T |do(hj = k), a0:T ) 6= p(o0:T |do(hj = k′), a0:T ) ∀k 6= k′ (3)

Intuitively, a factor of variation affecting a set of environments is called causal if there exists a
sequence of actions available to the agent where the resultant trajectories are clustered into two or
more sets (for simplicity here we assume binary clusters). This is analogous to the human ability to
conclude whether objects are heavy or light, big or small. For a gentle introduction to the intuition
about this definition, we refer the reader to Appendix D.

According to Def. 1, a causal factor is a parameter in the environment whose value, when intervened
on (i.e. varied) over a set of values, results in trajectories of states that are divisible into disjoint
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Figure 1: Overview of Inference. The exploration loop produces a series of K experiments allowing the agent
to infer the representations for K causal factors. After exploration, the agent utilizes the acquired knowledge for
downstream tasks.

clusters under a particular sequence of actions. These clusters represent the quantized values of the
causal factor. For example, mass, which is a causal factor of a body, under an action sequence of
a grasping and lifting motion, results in 2 clusters, liftable (low mass) and not liftable (high mass).
However, such an action sequence is not known in advance. Therefore, discovering a causal factor
in the environment boils down to finding a sequence of actions that makes the effect of that factor
prominent by producing clustered trajectories for different values of that environmental factor.

Using the above, we propose an intrinsic reward, which allows our agents to discover experimental
behaviors which are semantically meaningful and can be used to re-train for downstream tasks,
resulting in high sample efficiency. Our work, therefore, forms an important link between structured
representation learning and skill discovery, two largely disjoint fields in RL, which stand to benefit
from each other.

The contributions of the work are as follows:

• We equip agents with the ability to perform experiments and behave meaningfully in a set of
environments in an unsupervised manner. These behaviors can expose or obfuscate specific
independent causal mechanisms that occur in the world of the agent, allowing the agent to
learn about each in the absence of the others, an important human behavioral trait.

• We introduce an intrinsic reward, causal curiosity, which allows our agents to discover
these behaviors without human-engineered rewards. The outcomes of the experiments are
used to learn a disentangled quantized binary representation for the causal factors of the
environment, analogous to the human ability to conclude whether objects are light/heavy,
big/small etc.

• Through extensive experiments, we conclude that knowledge of the causal factors aids
sample efficiency in two ways - first, that the knowledge of the causal factors aids transfer
learning across multiple environments, and, second, that the experimental behaviors acquired
can be repurposed for downstream tasks.

2 METHOD

Consider a set of N environments E with e(i) ∈ E where e(i) denotes the ith environment.

The letter H is overloaded. While H is a set of global causal factors (as defined in Def. 1) such that
hj ∈ H , each causal factor hj is itself a random variable which assumes a particular value for every
instantiation of an environment. Thus every environment e(i) is represented by a set of causal factors
{h(i)j ∀j}. For each environment e(i), (z(i)(0), z

(i)
(1)...z

(i)
(K−1)) represents the disentangled embedding

vector, such that z(i)(j) encodes h(i)j .
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Algorithm 1 Training Scheme

1: Initialize j = 0
2: Initialize training environment set Envs
3: for iteration m to M do . Experiment Planner Training Loop
4: Sample experimental behavior a0:T ∼ CEM(·)
5: for ith env in Envs do
6: Apply a0:T to env
7: Collect S(i) = O

(i)
0:T

8: Reset env
9: Calculate −L(S|M) given that M is bimodal clustering model . Calculate Curiosity

10: Update CEM(·) distribution with highest reward trajectories
11: Use learnt qM (z|S) for cluster assignment of each env in Envs i.e. z(i)j = qM (z|S(i))
12: Update j = j + 1

13: Repeat from step 2, first setting Envs = {e(i) : z(i)j−1 = 0} and then, setting

Envs = {e(i) : z(i)j−1 = 1}

2.1 TRAINING THE EXPERIMENT PLANNER

To learn about causal processes through interaction, the agent must produce a sequence of actions
a0:T−1 that we call experimental behavior, which, when applied to environment e(i) ∈ E , produces a
sequence of observations (state) s(i) = [o

(i)
0 , o

(i)
1 ..o

(i)
T ], which is then used to infer the value of the

embedding for a single causal factor z(i)(j).

We motivate this using model selection criterion. Normally in model selection applications, the
observations are fixed and the goal is to find a model M∗ that is closest to reality, as represented by:

M∗ = argmin
M

(L(M) + L(S|M)) (4)

where L(·) is the description length. However, here, the situation is reversed. A simple bi-modal
clustering model is fixed, motivated by Definition 1. Then, the agent is motivated to produce actions
that result in observations that are best explained by this model. These discovered action sequences
are the experimental behaviors we desire.

a∗0:T = argmin
a0:T

(L(M) + L(S|M)) (5)

where each observed trajectory S = S(a0:T ) is a function of the action sequence. As mentioned
earlier, the model is fixed in this formulation; hence, the first term L(M) is constant and not a
function of the actions. −L(S|M) that is fed back to the RL agent as a reward function to maximize.
We regard this reward function as causal curiosity.

Note that since each causal factor has its own independent causal mechanism that causes S, the
MDL of S will be higher if multiple causal factors cause S. On the contrary, if the agent produces
actions which result in an S that is easily explained by a low-capacity bi-modal model M , then it
will imply that S is caused by fewer causal factors. Consequently, the causal curiosity reward for
such an action sequence, −L(S|M), will be high. Therefore, causal curiosity favors experimental
behaviors that result in observations caused by few causal factors - thereby allowing us to use S to
infer a representation for a single causal factor. For details, please refer Appendix A.

2.2 CAUSAL INFERENCE MODULE

By maximizing the causal curiosity reward it is possible to achieve behaviors which result in
trajectories of states only caused by a single hidden parameter. However, we wish to use the outcome
of performing these experimental behaviors in each environment to infer a representation for the
causal factor isolated by the experiment in question.

We achieve this through cluster membership. After training the Model Predictive Control Planner
(Camacho & Alba (2013)), we sample from an action sequence a0:T and apply it to each of the
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training environments. The learnt clustering model M is then used to infer a representation for each
environment using the collected outcome S(i) obtained by applying a0:T to each environment.

z
(i)
j = qM (z|S(i)) (6)

This corresponds to Step 11 of Algorithm (1). The representation learnt is binary in nature corre-
sponding to the quantization of the continuous spectrum of values a causal factor takes in the training
set into high and low values. Note however that a binary quantized embedding is not a necessary part
of our method. A dense embedding may alternatively be learnt here similar to (Perez et al. (2020);
Zintgraf et al. (2019)) using approximate variational inference. However, performing interventions
on a dense embedding (Section 2.3) increases the computational complexity exponentially. Balancing
space and time complexity, we report results using the quantized binary form of Equation (6). We
discuss the implications of increasing the complexity of z(i)j in the discussion.

2.3 INTERVENTIONS ON BELIEFS

Having learnt about the effects of a single causal factor of the environment we wish to learn such
experimental behaviors for each of the remaining hidden parameters that may vary in an environment.
To achieve this, in an ideal setting, the agent would require access to the generative mechanism of the
environments it encounters. Ideally, it would hold the values of the causal factor already learnt about
constant i.e. do(hj = constant), and intervene over (vary the value of) another causal factor over a
set of values K i.e. do(hj = k) such that k ∈ K. For example, if a human scientist were to study the
effects of a causal factor, say mass of a body, she would hold the values of all causal factors constant,
(interact with cubes of the same size and external texture) and vary only mass to see how it affects the
outcome of specific behaviors she applies to each body.

However, in the real-world the agent does not have access to the generative mechanism of the
environments it encounters, but merely has the ability to act in them. Thus, it can intervene on the
representations of a causal factor of the environment i.e. do(zi = constant). For, example having
learnt about gravity, the agent picks all environments it believes have low gravity, and uses them to
learn about a separate causal factor say, friction.

This corresponds to Step 13 of Algorithm (1). Thus, to learn about the jth causal factor, we repeat
steps 3 onwards on each of the clusters obtained for the j − 1th.

Envs = {e(i) : z(i)j−1 = k}, k ∈ {0, 1} (7)

This process continues in the form of a tree (Figure 4), where for each cluster of environments, a new
experiment learns to split the cluster into 2 sub-clusters depending on the value of another hidden
parameter. At level n, the agent produces 2n experiments and inference models, having already
intervened on the binary quantized representations of n causal factors.

3 RELATED WORK

Doshi-Velez & Konidaris (2016) define a class Markov Decision Processes where transition probabil-
ities p(st+1|st, at; θ) depend on a hidden parameter θ, whose value is not observed, but its effects
are felt. Killian et al. (2017) and Yao et al. (2018) utilize these Hidden Parameter MDPs (Markov
Decision Processes) to enable efficient policy transfer, assuming that transition probabilities across
states are a function of hidden parameters. Perez et al. (2020) relax this assumption, allowing both
transition probabilities and reward functions to be functions of hidden parameters. Zintgraf et al.
(2019) approach the problem from a Bayes-optimal policy standpoint, defining transition probabilities
and reward functions to be dependent on a hidden parameter characteristic of the MDP in considera-
tion. We utilize this setup to define causal factors.
Substantial attempts have been made at unsupervised disentanglement, most notably, the β-VAE
Higgins et al. Burgess et al. (2018), where a combination of factored priors and the information
bottleneck force disentangled representations. Kim & Mnih (2018) enforce explicit factorization of
the prior without compromising on the mutual information between the data and latent variables, a
shortcoming of the β-VAE. Chen et al. (2018) factor the KL divergence into a more explicit form,
highlighting an improved objective function and a classifier-agnostic disentanglement metric. Lo-
catello et al. (2018) show theoretically that unsupervised disentanglement (in the absence of inductive
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biases) is impossible and highly unstable, susceptible to random seed values. They follow this up
with Locatello et al. (2020) where they show, both theoretically and experimentally, that pair-wise
images provide sufficient inductive bias to disentangle causal factors of variation. However, these
works have been applied to supervised learning problems whereas we attempt to disentangle the
effects of hidden variables in dynamical environments, a relatively untouched question.
Curiosity for robotics is not a new area of research. Schmidhuber (2006), Ngo et al. (2012), Pathak
et al. (2017) describe curiosity as the motivation behind the behavior of an agent in an environment
for which the outcome is unpredictable, i.e., an intrinsic reward that motivates the agent to explore the
unseen portions of the state space (and subsequent transitions). While causal curiosity is an intrinsic
reward, it differs from these traditional definitions of curiosity in that it motivates the agent to produce
structure in the outcome of its behavior.

4 EXPERIMENTS

Our work has 2 main thrusts - the discovered experimental behaviors and the representations ob-
tained from the outcome of the behaviors in environments. The experimental behaviors are tied to
contributions 1 and 2 in the Introduction. The causal factors allow us to achieve contribution 3 in
the Introduction. We visualize these learnt behaviors and verify that they are indeed semantically
meaningful and interpretable. We quantify the utility of the learned behaviors by using the behaviors
as pre-training for a downstream task. In our experimental setup, we verify that these behaviors are
indeed invariant to all other causal factors except one.
We visualize the representations obtained using these behaviors and verify that they are indeed the
binary quantized representations for each of the ground truth causal factors that we manipulated in
our experiments. Finally, we verify that the knowledge of the representation does indeed aid transfer
learning and zero-shot generalizability in downstream tasks.
Causal World We use the Causal World Simulation (Ahmed et al. (Under submission 2020)) based
on the Pybullet Physics engine to test our approach. The simulator consists of a 3-fingered robot,
with 3 joints on each finger. We constrain each environment to consist of a single object that the
agent can interact with. The causal factors that we manipulate for each of the objects are size, shape
and mass of the blocks. The simulator allows us to capture and track the positions and velocities of
each of the movable objects in an environment. While, for most experiments, the 3D position and
3D pose of the blocks is used as the state at each time step, we perform ablation studies where less
information is provided to the agent.

4.1 VISUALIZING DISCOVERED BEHAVIORS

We would like to analyze whether the discovered experimental behaviors are human interpretable,
i.e., are the experimental behaviors discovered in each of the setups semantically meaningful? We
find that our agents learn to perform several useful behaviors without any supervision. For instance,
to differentiate between objects with varying mass, we find that they acquire a perfect grasp-and-lift
behavior with an upward force. In other random seed experiments, the agents learn to lift the blocks by
using the wall of the environment for support. To differentiate between cubes and spheres, the agent
discovers a pushing behavior which gently rolls the spheres along a horizontal direction. Qualitatively,
we find that these behaviors are stable and predictable. See videos of discovered behaviors here
(website under construction).

Concurrent with the objective they are trained on, we find that the acquired behaviors impose
structure on the outcome when applied to each of the training environments. The outcome of each
experimental behavior on the set of training environments results in dividing it into 2 subsets. These
subsets correspond to the binary quantized values of a single factor, e.g., large or small, while being
invariant to the values of other causal factors of the environments. We also perform ablation studies
where instead of providing the full state vector, we provide only one coordinate (e.g., only x, y
or z coordinate of the block). We find that causal curiosity results in behaviors that differentiate
the environments based on outcomes along the direction provided. For example, when only the x
coordinate was provided, the agent learned to evaluate mass by applying a pushing behavior along
the x direction. Similarly, a lifting behavior was obtained when only the z coordinate was supplied to
the curiosity module (Figure 2).
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Figure 2: Examples of discovered behaviors. The agent discovers experimental behaviors that allow it to
characterize each environmental object in a binary manner, e.g., heavy/light, big small, rollable/not rollable, etc.
These behaviors are acquired without any external supervision by maximizing the causal curiosity reward. A, B,
C correspond to self-discovered toss, lift-and-spin and roll behaviors respectively. D shows an ablation study,
where the agent is only provided the z coordinate of the block in every environment. Each line corresponds to
one environment and the z coordinate of the block is plotted with time when the discovered behavior is applied.
It learns a lifting behavior, where cluster 1 represents the heavy blocks (z coordinate does not change much) and
cluster 2 represents the light blocks (z increases as block is lifted and then falls when dropped and subsequently
increases again when it bounces).

4.2 UTILITY OF LEARNED BEHAVIORS FOR DOWNSTREAM TASKS

While the behaviors acquired are semantically meaningful, we would like to quantify their utility as
pre-training for downstream tasks. We analyze the performance on Lifting where the agent must
grasp and lift a block to a predetermined height and Travel, where the agent must impart a velocity
to the block along a predetermined direction. We re-train the learnt planner using an external reward
for these tasks (Curious). We implement a baseline vanilla Cross Entropy Method optimized Model
Predictive Control Planner (De Boer et al. (2005)) trained using the identical reward function and
compare the rewards per trajectory during training. We also run a baseline (Additive reward) which
explores whether the agent recieves both the causal curiosity reward and the external reward. We find
high zero-shot generalizability and quicker convergence as compared to the vanilla CEM planner
(Figure ??). We find that maximizing the curiosity reward in addition to simultaneously maximizing
external rewards results in suboptimal performance due to our formulation of the curiosity reward. To
maximize curiosity, the agent must discover behaviors that divide environments into 2 clusters. Thus
in the context of the experimental setups, this corresponds to acquiring a lifting/pushing behavior that
allows the agent to lift/impart horizontal velocity to blocks in half of the environments, while not being
able to do so in the remaining environments. However, the explicit external reward incentivizes the
agent to lift/impart horizontal velocity blocks in all environments. Thus these competing objectives
result in sub-par performance.

4.3 VISUALIZATION OF HIERARCHICAL BINARY LATENT SPACE

Our agents discover a disentangled latent space such that they are able to isolate the sources of
causation of the variability they encounters in their environments. For every environment, they learn
a disentangled embedding vector which describes each of the causal factors.

To show this, we use 3 separate experimental setups - Mass, SizeMass and ShapeSizeMass
where each of the causal factors are allowed to vary over a range of discrete values. During Mass,
the agent is allowed access to 5 environments with objects having the same shape (cuboids) and size
but differing only in mass. During SizeMass, the agent has access to 30 environments with cuboids
having sizes and masses ranging over 6 and 5 values respectively. Finally, during ShapeSizeMass,
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Figure 3: Utility of discovered behaviors. We find that the behaviors discovered by the agents while optimizing
causal curiosity show high zero-shot generalizability and converge to the same performance as conventional
planners for downstream tasks. We also analyze the worst case performance and find that the pre-training ensures
better performance than random initialization. The table compares the time-steps of training required on an
average to acquire a skill with the time steps required to learn a similar behavior using external reward. We find
that the unsupervised experimental behaviors are approximately 2.5 times more sample efficient. We also find
that maxizing both curiosity and external reward in our experimental setups results in sub-optimal results.

Figure 4: Discovered hierarchical latent space. The agent learns experiments that differentiate the full set
of blocks in ShapeSizeMass into hierarchical binary clusters. At each level, the environments are divided
into 2 clusters on the basis of the value of a single causal factor. We also show the principal components of
the trajectories in the top left. For brevity, the full of extent of the tree is not depicted here. For each level of
hierarchy k, there are 2k number of clusters.

the agent has access to 60 environments with objects having shapes, sizes and masses ranging over 2,
6, 5, and values respectively.

During training, the agent discovers a hierarchical binary latent space (Figure 4), where each level
of hierarchy corresponds to a single causal factor. The binary values at each level of hierarchy
correspond to the high/low values of the causal factor in question. To our knowledge, we obtain
the first interpretable latent space describing the various causal processes in the environment of an
agent. This implies that it learns to quantify each physical attribute of the blocks it encounters in a
completely unsupervised manner.

4.4 KNOWLEDGE OF CAUSAL FACTORS AIDS TRANSFER

Next, we test whether knowledge of the causal factors does indeed aid transfer and zero-shot general-
izability. To this end, we supply the representations obtained by the agent during the experimental
behavior phase as input to a policy network in addition to the state of the simulator, and train it for a
place-and-orient downstream task (Figure 1). We define 2 experimental setups - TransferMass
and TransferSizeMass. In Mass, the agent is given access to 10 environments, with 10 varying
values of mass. In TransferSizeMass, the agent is allowed access to 10 environments, with 2
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and 5 values of size and mass respectively. In both setups, the agent learns about the varying causal
mechanisms by optimizing causal curiosity. Subsequently, using the causal representation along with
the state for each environment, it is trained to maximize external reward. For details of the setup,
please see Appendix B.

After training, the agents are exposed to a set of unseen test environments, where we analyze their
zero-shot generalizability. These test environments consist of unseen masses and sizes and their
unseen combinations. This corresponds to "Strong Generalization" as defined by Perez et al. (2020).
We report results averaged over 10 random seeds.

For each setup, we train a PPO-optimized Actor-Critic Policy (referred to as Causally-curious agent)
with access to the causal representations and a 56 dimensional state vector from the environment
i.e., at ∼ π(·|st, z0:K) (thus, a total of 57 dimensional input for TransferMass, and a 58
dimensional for TransferSizeMass). Similar to Perez et al. (2020), we implement 2 baselines -
the Generalist and the Specialist. The Specialist consists of an agent with identical architecture as
Causally-curious agent, but without access to causal representations (i.e., receives a 56 dimensional
state vector). It is initialized randomly and is trained only on the test environments, serving as a
benchmark for complexity of the test tasks. It performs poorly, indicating that the test tasks are
complex. The architecture of the Generalist is identical to the Specialist. Like the Specialist,
the Generalist also does not have access to the causal representations, but is trained on the same
set of training environments that the Causally-curious agent is trained on. The poor performance
of the generalist indicates that the tasks distribution of training and test tasks differs significantly
and that memorization of behaviors does not yield good transfer. We find that causally-curious
agents significantly outperform the both baselines indicating that indeed, knowledge of the causal
representation does aid zero-shot generalizability.

Figure 5: Knowledge of causal factors aids transfer. We find that knowledge of the causal representation
allows agents to generalize to unseen environments with high zero-shot performance. The table depicts the
extra timesteps required by the Generalist in each experimental setup to match the zero-shot performance of
causally-curious agent. We find that as the number of varying causal factors increase, the difference in zero-shot
performance of the Causally-curious agent and the Generalist increases, showing that the CC agents are indeed
robust to multiple varying causal factors.

5 CONCLUSION

We introduce causal curiosity, an intrinsic reward that allows agents to discover binary quantized
representations for the causal factors that affect environments an RL agent may encounter. We show
that optimizing causal curiosity rewards results in the agent performing self-supervised experiments.
We find that these experiments happen to be semantically meaningful and can be used as pre-training
for downstream tasks. While our work learns binary quantized causal representations, a dense
encoding may improve the amount of encoded information about the causal mechanisms of the
environments. We leave this to future work.
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A IMPLEMENTATION DETAILS FOR EXPERIMENT DISCOVERY

A.1 PLANNER

The Experiment Planner consisted of a uniform distribution planner for a horizon of 6 control signals.
The planner was trained using the Cross Entropy Method Model Predictive Control (Camacho &
Alba (2013); De Boer et al. (2005)) on the true environment. We sampled 40 plans per iteration from
the distribution initialized to uniform U(controlLow, controlHigh). Each of the sampled plans are
applied to each of the training environments and the top 10% of the plans are used to update the
distribution.

Figure 6: Overview of training. The experiment planner generates a trajectory of actions which is applied
to each of the environments with varying causal factors namely mass, shape and size of blocks. For each
environment, an observation trajectory or state S(i) ∈ S is obtained. A simple model with fixed low expressive
power is used to approximate the generative model for S. The "information overflow" L(S|M) is returned as
negative reward forcing S to be caused by few causal factors.

A.2 TRAINING ENVIRONMENTS

The training environments vary in each experiment. In Section 4.3, we utilize 3 setups, Mass,
SizeMass and ShapeSizeMass. For Mass, we allow the agent to access 5 environments with
masses varying from 0.1 kg to 0.5 kg. In SizeMass, the agent has access to 30 environments
with masses varying uniformly from 0.1 to 0.5 kg and sizes from 0.05 to 0.1 meters. Finally, in
ShapeSizeMass, the agent has access to 60 environments, with masses varying uniformly from 0.1
to 0.5 kg, sizes from 0.05 to 0.1 meters and shapes either being cubes or spheres. During experiment
discovery, in each environment, the agent has access to the position of the block in the environment
along with its quaternion orientation.

The total number of causal causal factors of each environment are rather large in number due to the
fact that the simulator is a complex realistic physics engine. Examples of the causal factors in the
environment include gravity, friction coefficients between all on interacting surfaces, shapes, sizes
and masses of blocks, control signal frequencies of the environment. However, we only vary 1 during
Mass, 2 during SizeMass and 3 during ShapeSizeMass.

A.3 CURIOSITY REWARD CALCULATION

We predetermine the minimum description length of the clustering model L(M) by assuming that
the observations O0:T , obtained by applying experimental behavior a0:T are produced by a bi-modal
generator distribution, where each mode corresponds to either a low or high (quantized) value of a
causal factor. This also ensures that L(M) is as small as possible. The planner, eq. (5) solves the
following optimization problem:

argmax
a0:T∈AT

[min{d(o0:T , o′0:T ) : o0:T ∈ O, o′0:T ∈ O′}− max{d(o0:T , o′′0:T ) : o′′0:T , o0:T ∈ O}−

max{d(o′0:T , o′′′0:T ) : o′0:T , o′′′0:T ∈ O′}]
(8)

the distance function d(·, ·) in the space of trajectories is set to be Soft Dynamic Time Warping
(Cuturi & Blondel (2017)). The trajectory length T is 6 control steps long. The objective is a modified
version of the Silhouette Score (Rousseeuw (1987)).
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Intuitively, Objective (8) expresses the ability of a low complexity model, assumed to be bi-modal,
to encode the state S = o0:T . If multiple causal factors control S, then the Minimum Description
Length of L(S) will be high. Subsequently, since M is a simple model, the deviation of S from M
will be high i.e. L(S|M) will be high resulting in a low value of the optimization objective. O and
O′ correspond to clusters of outcomes which quantize the values of a causal factor isolated by a0:T .
o0:T , o

′′
0:T ∈ S correspond to trajectories of states i.e. observations obtained by applying a0:T to

environments with say, low values of a causal factor while o′0:T , o
′′′
0:T ∈ O′ correspond to trajectories

of observations i.e. state obtained by applying a0:T to environments with say, high values of the same
causal factor. Objective (8) attempts to ensure that these clusters are far apart from each other and are
tight i.e. a simple model M encodes S well.

We further motivate how this formulation allows disentanglement of causal factors. A central
assumption is that causal factors are independent, by definition, i.e. Independent Mechanisms
Assumption Peters et al. (2017). Consider the outcome S obtained by applying an action sequence
a0:T to a set of environments. If the action sequence a0:T results in multiple causal factors affecting
the outcome S, the Kolmogorov complexity of S will be high. The reason for this is that each causal
factor has its own independent causal mechanism (Peters et al. (2017); Parascandolo et al. (2018))
that affects S. Thus, given this independence, the information in S will be a sum of the information
“injected” into it from the multiple causes. Conversely, if the outcome S obtained by applying an
action sequence a0:T has a lower Kolmogorov Complexity, then S is caused by fewer causal factors.
Causal Curiosity attempts to reduce this complexity of S, by assuming a simple generative model M
is sufficient to encode S. Thus for experimental behaviors which allow several causes to affect S, the
“overflow” of S from M will be high and subsequently the causal curiosity reward will be low. Thus,
post-optimization of the objective, we arrive at an action sequence that allows for disentanglement of
the causal factors.

B IMPLEMENTATION DETAILS FOR TRANSFER

In Section 4.4, we show the utility of learning causal representations in 2 separate experimental
setups. During TransferMass, the agent has access to 10 environments during training, with
masses ranging from 0.1 to 0.5 kg. At test time, the agent is required to perform the place-and-orient
task masses 2 masses - 0.7 kg and 0.75 kg. During TransferSizeMass, the agent has access to
10 environments during training, with sizes from either 0.01 or 0.05 m and masses ranging from 0.1
to 0.5 kg. At test time the agent is asked to perform the task on 2 environments with masses 0.7 kg
and 0.75 kg with sizes = 0.05 m.

We find that testing with large and light blocks increase the chances of accidental goal completions.
Thus, during test-time, we use environments with high masses for out-of-distribution testing. The
causal representation is concatenated to the state of the environment as a contextual input and supplied
to a PPO-Optimized Actor-Critic Policy. The policy network consists of 2 hidden layers with 256
and 128 units respectively. The experiments are parallelized on 10 CPUs and implemented using
stable baselines (Hill et al. (2018)).

The agent receives a dense reward at each time step during the maximizing external reward phase
(Figure 1), the negative of the distance of the block from the goal position scaled by factor of 1000.
The control signal was repeated 10 times to the actuators of the motors on each finger.

C IMPLEMENTATION DETAILS FOR SECTION 4.2

In section 4.2, we study how the acquired experimental behaviors obtained through Causal Curiosity
can be used as pre-training for a variety of downstream tasks. The Vanilla CEM depicts the cost of
training an experiment planner from scratch to maximize an external dense reward where the agent
minimizes the distance between the position of a block in an environment from the goal in the Lifting
setup and imparts a velocity to the block along a particular direction in the Travel setup.

R(a0:T ) = −
∑
t

dist(goalt − blockt) (9)

The second baseline (Additive Reward) studies the setup when the agent receives both the curiosity
signal and the external reward and attempts to maximize both. The agent receives access all the
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training environments with varying causal factors and must simultaneously maximize both curiosity
and the task reward. The equation below shows the reward maximized for the Lifting task.

R(a0:T ) =
∑
envs

T∑
t

−dist(goalt − blockt) +

[min{d(o0:T , o′0:T ) : o0:T ∈ O, o′0:T ∈ O′}− max{d(o0:T , o′′0:T ) : o′′0:T , o0:T ∈ O}−
max{d(o′0:T , o′′′0:T ) : o′0:T , o′′′0:T ∈ O′}]

(10)

The curious agent first acquired the experimental behavior by interacting with multiple environments
with varying causal factors. The lifting skill was obtained during Mass, when the agent attempted to
differentiate between multiple blocks of varying mass. The curious agent trained for 600,000 time
steps on the curiosity reward. The acquired behavior was then applied to the downstream lifting
task and fine tuned to external rewards. The Vanilla CEM baseline had an identical structure to
that of the Curious agent, and received only external reward as in Equation (9). The additive agent
simultaneously optimized both external reward and the curiosity reward as in Equation (10).

D INTUITION FOR DEFINITION OF CAUSAL FACTORS

We begin with a simple example of a person walking on earth. This person experiences various
physical processes while interacting in her world, for example gravity, friction, wind etc. These
physical processes affect the outcome of interactions of the person with her environment. For example,
while jumping on earth, the human experiences gravity which affects the outcome of her jump, the
fact that she falls back to the ground. Additionally, these physical processes (or causal mechanisms)
are parameterized by causal factors, for example, acceleration constant due to gravity g = 9.8m/s2

on earth, or coefficients of friction between her feet and the ground which assume particular numerical
values.

These causal factors may vary across multiple environments. For example, the person may walk
on sand or on ice, surfaces with varying frictional values. Thus the outcome of running on such
surfaces will vary, running on sand will require significant effort, while running on ice may result in
the person slipping. Thus the coefficient of friction between the person’s feet and the surface she
walks on affects the outcome of a particular behavior in said environment. In our definition, hj are
causal factors such friction with some particular coefficient of friction, or gravity with acceleration
constant g or other. H is the global set containing all such causal factors.

Now we ask the question (which we subsequently answer), given multiple environments, how would
a human characterize each of them depending on the value of a causal factor? Through experimental
behaviors. The human in the above example would attempt to run in each of the environments
she encountered, be it on sand, on ice, in mud etc. If she slipped in an environment, she would
characterize it as slippery. If she didn’t, she would characterize it as non-slippery. We attempt to equip
our agent with similar logic. The “sequence of actions” (a0:T ) described in our paper corresponds to
the human running. The state S(i) in the environment e(i) consisting of the sequence of observations
(o0:T ) corresponds to the outcome of running. S might belong to either of the clusters of outcomes S
or S′ corresponding to slipping or not slipping.

E SCALABILITY LIMITATION

We utilize the extremely popular One-Factor-at-a-time (OFAT) general paradigm of scientific in-
vestigation, as an inspiration for our method. In the case of many hundreds of causal factors, the
complexity of this method will scale exponentially. However, we believe that this would indeed be the
case given a human experimenter attempting to discover the causation in any system she is studying.
Learning about causation is a computationally expensive affair. We point the reader towards a wealth
of material on the design of scientific experiments and more specifically the lack of scalability of
OFAT (Fisher (1936); Hicks (1964); Czitrom (1999)). Nevertheless, OFAT remains the de facto
standard for scientific investigation.

14



Under review as a conference paper at ICLR 2021

Algorithm 2 Inference Loop

1: Input: Unseen Test Environment env, trained Planner and Causal Inference Module
2: Initialize causalRep = [ ]
3: Initialize training environment set Envs
4: for k in range(K) do
5: Reset env
6: Sample experimental behavior a0:T ∼ CEM(·| causalRep)
7: Apply a0:T to env . Exploration Phase
8: Collect S = o0:T
9: Use learnt qM (z|S) for cluster assignment i.e. zk = qM (z|s, causalRep)

10: Append zk to causalRep . Causal Inference Module
11: Learn a policy conditioned on causal factors at ∼ π(·|ot, z0:K) to maximize external reward.
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