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Abstract
Large language model (LLM)-based applica-001
tions have increasingly leveraged retrieval-002
augmented generation (RAG) techniques to003
provide reliable responses, particularly for004
queries demanding knowledge of private do-005
mains. Practical constraints, such as data006
sovereignty regulations, can hinder the central-007
ized aggregation of private knowledge. This008
can create challenges in situations where (1)009
a user comes with a question but has no idea010
which applications have the related knowledge011
to answer, or (2) the question requires cross-012
domain knowledge to answer.013

In this work, we abstract each RAG application014
with private knowledge as an RAG agent. We015
propose RIRS, an iterative routing framework016
with an efficient and accurate routing mecha-017
nism and an iterative refining-solving mecha-018
nism to orchestrate multiple RAG agents with019
private knowledge bases. The server routes020
queries to the most relevant agents by identi-021
fying the most related knowledge clusters by022
similarities in a vector space. For complicated023
questions, the server can iteratively aggregate024
responses to derive intermediate results and re-025
fine the question to bridge the gap toward a026
comprehensive answer. Extensive experiments027
demonstrate the effectiveness of RIRS, includ-028
ing how our routing algorithm precisely selects029
the agents and provides accurate responses to030
single-hop queries and how an iterative strat-031
egy achieves accurate, multi-step resolutions032
for complex queries.033

1 Introduction034

Large language models (LLMs) have revolu-035

tionized natural language processing (NLP) by036

demonstrating superior performance in question-037

answering (QA) tasks, often surpassing traditional038

systems in both accuracy and contextual under-039

standing. Based on LLMs, retrieval-augmented040

generation (RAG) is a technique to integrate exter-041

nal knowledge sources, extracting the most relevant042

information for any input query to enable LLMs 043

to answer questions beyond their training data and 044

reduce their hallucination (Wu et al., 2024; Asai 045

et al., 2023a; Lewis et al., 2020; Jiang et al., 2023; 046

Izacard and Grave, 2020; Mallen et al., 2022; Kasai 047

et al., 2024; Xiong et al., 2024). To further improve 048

retrieval and response quality, many RAG applica- 049

tions are built in the form of agents (referred to as 050

RAG agents in this paper) (Weng, 2023; Roucher, 051

2024; Joshi et al., 2024). However, because RAG 052

agents’ reliability is limited to the domain of their 053

knowledge sources, there are two major inconve- 054

niences when serving users. (1) The domain and 055

the boundary of the knowledge source are difficult 056

to clearly define and usually unknown to users, so 057

manual attempts with different agents may be re- 058

quired to obtain reliable answers. (2) Answering 059

some questions may require cross-domain knowl- 060

edge from different RAG agents. 061

One straightforward solution to overcome the 062

inconveniences is to build a unified, large-scale 063

knowledge repository by collecting all knowledge 064

from worldwide existing RAG agents, as illustrated 065

in Figure 1a. A unified RAG agent could be built 066

with the repository to handle queries spanning mul- 067

tiple domains by pooling all available information. 068

However, it is confronted with two critical limita- 069

tions. Firstly, the computational complexity and 070

scalability issues inherent in managing such a vast 071

and diverse knowledge base could undermine the 072

system’s overall performance and responsiveness 073

(Fan et al., 2024; Asai et al., 2023a). Secondly, it is 074

impractical or even infeasible to invade knowledge 075

sovereignty and construct a centralized knowledge 076

repository, especially when the knowledge is intel- 077

lectually protected or sensitive. For example, due 078

to privacy concerns, ophthalmology hospital data 079

derived from internal medical records is unavail- 080

able for merging. 081

An alternative is to deploy a distributed multi- 082

agent system, as illustrated in Figure 1b, which con- 083
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(a) Knowledge Base Collection from All Agents (b) Message Collection from All Agents (c) Message Collection from Selected Agents

Figure 1: Collaboration Strategies of Multi-agent System for QA.
sists of a central server and multiple RAG agents.084

The server forwards a user’s query to all available085

RAG agents and subsequently aggregates their re-086

sponses. In this framework, each agent retains its087

local, domain-specific knowledge base, ensuring088

that its knowledge sovereignty is well protected089

and that its data are not merged into a centralized090

repository. This approach eliminates the need for a091

massive, unified knowledge base. However, routing092

every query to all agents incurs redundant compu-093

tational overhead and cost, as not every agent is094

equipped to address every query. Consequently, it095

is worth considering building a distributed multi-096

agent system with a routing mechanism that selects097

the most appropriate agents in response to a query,098

as illustrated in Figure 1c.099

In this work, we propose RIRS, a framework100

with a Routing and Iterative Refining-Solving101

mechanism designed to effectively reconcile multi-102

ple RAG agents. For the routing mechanism, each103

agent partitions its local knowledge base into dis-104

joint clusters, and the central server collects these105

clustered knowledge representations. When a user106

query arrives, the server computes its similarity107

to the collected clusters and forwards the query108

only to those agents whose knowledge clusters are109

most relevant. This training-free mechanism does110

not require additional training and is inherently111

privacy-preserving, and raw knowledge remains112

confined within the individual agents. Moreover,113

our method employs an iterative refining-solving114

strategy to handle complex queries that involve115

multiple reasoning steps or span across different do-116

mains. Specifically, the server sequentially routes117

a query to the appropriate agents and, after each118

response, simplifies the query by removing the ad-119

dressed portion.120

Contributions. The major contributions of this121

work are listed as follows:122

• To the best of our knowledge, this is the first123

work that considers knowledge sovereignty issues124

under multi-agent, enabling efficient collaboration125

across various specialized agents without collecting126

unnecessary information.127

• We introduce RIRS, a training-free iterative rout- 128

ing framework that selects the most proper agents 129

and collaborates on complex user queries. 130

• Our experimental results demonstrate the effec- 131

tiveness of RIRS in handling various queries: The 132

routing mechanism enables precise agent selec- 133

tions, while the iterative refining-solving mecha- 134

nism achieves accurate, multi-step resolutions for 135

complex queries. 136

2 Related Works 137

Due to space limits, this section briefly discusses 138

the key differences and contributions compared to 139

the most related works. A detailed literature review 140

is provided in Appendix A. 141

Retrieval Augmented Generation (RAG). RAG 142

methods focus on integrating external knowledge 143

sources into LLMs to generate accurate and reliable 144

responses. RankRAG (Yu et al., 2024), for exam- 145

ple, ranks the knowledge pieces and generates a 146

response with genuinely important ones. To handle 147

a complex query that involves multiple knowledge 148

pieces, EfficientRAG (Zhuang et al., 2024) itera- 149

tively simplifies the query by removing the portion 150

with relevant knowledge until it is resolved. While 151

these methods primarily focus on single-agent re- 152

trieval frameworks, our work differentiates itself 153

by addressing the challenge of coordinating knowl- 154

edge retrieval across multiple agents, thereby en- 155

abling a more comprehensive handling of diverse 156

and cross-domain queries. 157

Routing Mechanism in Multi-agent Systems. 158

LLM-based multi-agent systems leverage the col- 159

lective intelligence and specialized capabilities of 160

multiple expert agents to collaboratively tackle 161

complex problems. In such systems, a robust rout- 162

ing mechanism is essential to direct each query 163

to the most appropriate agent based on its unique 164

expertise. Recent works include Chameleon (Lu 165

et al., 2024), which relies on detailed textual de- 166

scriptions of agent capabilities for routing deci- 167

sions; RouterDC (Chen et al., 2024a), employing a 168

lightweight model for dynamic query distribution 169

among a fixed agent pool. In contrast, our approach 170

accurately characterizes each agent’s knowledge 171
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capacity based on their own data, thereby eliminat-172

ing the need for exhaustive textual descriptions and173

labor-intensive dataset labeling.174

3 Multi-agent Framework175

Preliminary: RAG Agent. An RAG agent is176

an advanced application that integrates retrieval177

mechanisms with LLMs to deliver accurate and178

contextually rich responses. Specifically, an RAG179

agent processes a question through three steps: (i)180

Knowledge Retrieval: It extracts relevant knowl-181

edge pieces using both sparse and dense retrievers182

from external sources (Robertson et al., 2004; Izac-183

ard et al., 2021; Xu et al., 2023); (ii) Reranking:184

It filters out unhelpful or misleading information,185

allowing the generation model to focus on the most186

pertinent content (Yu et al., 2024); (iii) Response187

Generation: It combines the question and the per-188

tinent external knowledge to produce an informed189

response with its backbone LLM.190

Motivations and Problem Statement. To pro-191

tect knowledge sovereignty and harness domain-192

specialized expertise, we propose a distributed193

multi-agent framework. In this framework, each194

RAG agent holds its own specialized knowledge195

base, while a central server coordinates query pro-196

cessing. Upon receiving an input query, the server197

routes it to all agents and aggregates their responses198

into a final answer, as described in Figure 1b. How-199

ever, this standard operating procedure for QA200

tasks faces two major challenges:201

• (i) Irrelevant Agent Involvement: When a query202

falls outside an agent’s domain expertise, its partic-203

ipation not only introduces unnecessary computa-204

tional and communication overhead but may also205

generate misleading information.206

• (ii) Incomplete Knowledge Fusion: A query that207

spans multiple domains requires seamless integra-208

tion of responses from various agents and likely209

from multiple reasoning steps. Without effective210

coordination, the final answer could be incomplete.211

These challenges highlight the need for an intelli-212

gent routing mechanism that strategically directs213

queries to the most relevant agents and aggregates214

their responses wisely by filtering out irrelevant215

knowledge. Such a mechanism is critical to reduc-216

ing redundant processing, enhancing scalability,217

ensuring accurate, holistic query resolution, and218

maintaining data privacy in a decentralized setting.219

4 RIRS220

To address the challenges, we propose an intelligent221

routing mechanism to deal with both single-hop222

and multi-hop questions. Section 4.1 outlines the 223

design of a query routing algorithm, where the 224

server routes a query to a subset of agents according 225

to their knowledge coverage represented in a vector 226

space. Section 4.2 extends our design to address 227

more challenging queries that require multi-round 228

or cross-agent knowledge. 229

4.1 Routing Algorithm 230

The primary objectives of our routing algorithm 231

are twofold: high quality of the final answer and 232

high efficiency in terms of both minimum addi- 233

tional latency of routing and minimum token con- 234

sumption. To accomplish these objectives, an ideal 235

server must possess three key abilities: (i) accu- 236

rately assessing each agent’s knowledge capabil- 237

ities, (ii) selecting a necessary and sufficient sub- 238

set of agents to reduce computational and commu- 239

nication costs, and (iii) verifying the validity of 240

each response, encompassing both the analysis and 241

the final answer. Notably, the second capability is 242

closely linked to the server’s understanding of the 243

knowledge boundaries inherent to each agent. 244

To satisfy the requirements, we design a routing 245

mechanism as shown in Figure 2, which consists 246

of two primary stages: (a) knowledge clustering 247

and (b) the query forwarding workflow. In the 248

knowledge clustering stage (Figure 2a), each agent 249

encodes its local knowledge (e.g., text chunks) into 250

vectors using an identical embedding model, then 251

partitions the knowledge into disjoint clusters and 252

generates a representation for each cluster with 253

the embeddings. The central server then collects 254

these clustered knowledge representations and uses 255

them to determine which agents are most relevant 256

to an incoming query. As shown in Figure 2b, the 257

server forwards the query to those agents whose 258

clusters exhibit the highest similarity to the query. 259

The selected RAG agents subsequently process the 260

query based on their own knowledge, and the server 261

aggregates and evaluates their responses. Finally, 262

the server synthesizes the final response to the user. 263

More details are as follows. 264

Knowledge Clustering. Suppose an RAG agent 265

contains m distinct knowledge pieces, represented 266

as e1, . . . , em in a vector space. To evaluate the 267

agent’s knowledgeability, we partition the knowl- 268

edge pieces into n disjoint clusters, c1, . . . , cn. The 269

goal is to ensure the nodes’ similarities within a 270

cluster are as large as possible, while the nodes 271

from different clusters should be less similar. To- 272

ward the goal, we formulate an objective function 273

to obtain the satisfied n clusters: 274
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Query

Who wrote the country 

song I Can Only Imagine?

Bart Millard 

wrote "I 

Can Only 

Imagine."

Embedding 

Model

Responder

Embedding 

Model

Agent 2

Agent 1

…
 

The provided knowledge mentions that "I 

Can Only Imagine is a song by Christian rock 

band MercyMe. Written and composed by 

lead singer Bart Millard, it … " Therefore, the 

song was written by Bart Millard. 

"I Can Only Imagine" is a film directed by the 

Erwin Brothers and written by Alex Cramer, 

Jon Erwin, and Brent McCorkle, based on 

the story behind the song of the same name. 

This implies the song is also written by the 

writers of the film, although the songwriter 

doesn’t mention in the given text. 

(a) Knowledge Clustering (b) Query Forwarding

Figure 2: Routing Mechanism
arg max

c1,...,cn⋃
i∈[n]{ci}

=
⋃

j∈[m]{ej}

min
ea,eb∈ck

k∈{1,...,n},
ea ̸=eb

sim(ea, eb) (1)275

Here, sim(ea, eb) denotes the cosine similarity be-276

tween two knowledge pieces ea and eb. By max-277

imizing the minimum similarity within a cluster,278

we ensure that knowledge pieces within the same279

cluster are as similar as possible, leading to more280

informative cluster representations.281

The RAG agent follows a four-step process to282

solve this clustering objective and report its knowl-283

edgeability to the server:284

• Step 1: Compute Embeddings. An RAG agent285

computes the embeddings for their own knowledge,286

which can be reused later in the knowledge retrieval287

of a dense method to an input query (Izacard and288

Grave, 2020).289

• Step 2: Knowledge Clustering. Using hierar-290

chical clustering, the agent partitions the m knowl-291

edge pieces into n disjoint clusters. The distance292

between any two knowledge pieces is measured by293

their embeddings’ cosine similarity.294

• Step 3: Calculate Cluster Representations. For295

each cluster, the agent calculates a centroid by av-296

eraging the embeddings of all knowledge pieces297

within that cluster. This centroid serves as a repre-298

sentative summary of the cluster.299

• Step 4: Push Representations to Server. The300

agent sends the centroids of all local clusters to301

the server, who utilizes this information to make302

routing decisions.303

Choice on the number of clusters. Since different304

RAG agents hold varying amounts of knowledge,305

the number of clusters n should not be constant306

across agents. Intuitively, agents with more knowl-307

edge pieces may have overlapping or redundant308

knowledge, while agents with fewer pieces might309

specialize in sparse, distinct knowledge domains.310

To account for this, we set n = ⌊
√
m⌋, aligning311

with the hypothesis that a larger number of knowl-312

edge pieces should correspond to more clusters313

while maintaining manageable granularity. In fact,314

the choice of n has proved its effectiveness in the 315

field of inverse file indexing in practice. 316

Discussion: Update of Agent Knowledge. Through- 317

out the paper, the proposed RIRS builds upon an 318

implicit assumption that each agent’s knowledge 319

does not update frequently. Nevertheless, agents 320

may revise or expand their knowledge bases after 321

the initial clustering, which in turn alters the cor- 322

responding cluster representations. To accommo- 323

date these continual edits, online methods (Cohen- 324

Addad et al., 2021; Monath et al., 2023) could be 325

the best solutions because they support the updat- 326

ing of each cluster and its representation on-the-fly. 327

Query Forwarding. Once the server has gath- 328

ered the knowledgeability of all RAG agents, it 329

must effectively coordinate the agents to handle 330

user queries. This involves selecting the most suit- 331

able agents based on the similarity between the 332

query and the centroids provided by each agent. 333

Let us define c̄
(i)
j as the j-th centroid of RAG 334

agent i, and define a function f(·) such that 335

f
(
c̄
(i)
j

)
= i. This function maps a centroid to the 336

corresponding agent. Suppose there are M RAG 337

agents in the multi-agent system. For each agent 338

i ∈ {1, . . . ,M}, there are ni centroids, denoted 339

by the set
{
c̄
(i)
j

}ni

j=1
. Let x be the embedding of 340

a query. The goal is to identify k clusters whose 341

centroids have the highest similarity scores with 342

the query embedding. This can be formulated as: 343

{c̄j}kj=1
△
= arg Topk

c̄∈
⋃

i∈[M ]

{
c̄
(i)
j

}ni

j=1

sim(x, c̄) (2) 344

The agents corresponding to the centroids in the set 345

{f(c̄j)}kj=1 are then invited to answer the query. 346

Therefore, we define a routing-then-answer func- 347

tion RTANS(QUERY), which the server calls to 348

proceed through the following steps to generate the 349

final response and ensure the response is accurate 350

and well-supported to the input query: 351

• Step 1: Agent Selection. The server selects the 352

most relevant agents based on the similarity be- 353

tween the query and the centroids, as described. 354
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• Step 2: Response Generation. The selected RAG355

agents generate responses that include a piece of356

supporting evidence and an answer.357

• Step 3: Evaluation of Responses. The server358

collects the responses and evaluates them based on359

the quality of the analysis provided. It categorizes360

the answers as "Addressed" or "Not Addressed."361

• Step 4: Final Answer Curation. The server362

utilizes the "Addressed" answers and finalizes the363

response to the user.364
4.2 Iterative Refining-solving365
A multi-hop question inherently requires multiple366

reasoning steps, with each step drawing on distinct367

pieces of supporting knowledge (Welbl et al., 2018).368

In our setting, such queries are especially challeng-369

ing because the required information can be dis-370

tributed among different agents. The single-step371

routing process, which relies solely on an initial372

similarity match to select agents, may be inade-373

quate for handling multi-hop questions because374

it cannot effectively identify or integrate the se-375

quential pieces of evidence required for a complete376

answer. Thus, a more robust solution is needed to377

address complex and often cross-domain queries.378

Iterative Routing. Previous works (Zhuang379

et al., 2024; Yang et al., 2024b; Press et al., 2022;380

Jiang et al., 2023) introduce a simple yet effective381

solution to handle a multi-hop question by repeat-382

edly generating new queries based on the extracted383

knowledge. Inspired by that, we propose an itera-384

tive routing process to manage multi-hop questions.385

In detail, we repeat the following two steps until a386

terminate signal terminate is raised or the itera-387

tion reaches a given limit. Appendix B provides a388

more detailed explanation of the design principle.389

Step 1: Invoking RtAns(Query). The RtAns func-390

tion, defined in Section 4.1, is initially designed391

for single-hop questions. For complex queries,392

we modify its output into a dictionary containing393

three response types: "fully addressed," "partially394

addressed," and "not addressed." A "partially ad-395

dressed" response indicates that while some aspects396

of the question have been answered, a final, com-397

plete answer has not yet been reached.398

Step 2: Answer Generation or Problem Refine-399

ment. Based on the output from RtAns(Query), we400

handle the response in one of three ways:401

• Fully Addressed: If one or more responses are402

marked as "fully addressed," the system immedi-403

ately compiles these responses to generate a fi-404

nal, comprehensive answer to the user’s query and405

raises terminate afterwards. In this scenario, all406

necessary information and supporting evidence are 407

available, so no further refinement is required, en- 408

suring efficient processing and prompt delivery of 409

the final answer. 410

• Partially Addressed: If no responses are fully 411

addressed but some are marked as "partially ad- 412

dressed," the system evaluates whether the current 413

information is sufficient to resolve the query. If so, 414

the server will raise terminate and compile for a 415

final answer. Otherwise, the server simplifies the 416

question as a new query and repeats these two steps 417

with the new query. 418

• Not Addressed: If all responses are marked as 419

"not addressed," the query is flagged as unanswer- 420

able, and the server raises terminate . The sys- 421

tem then informs the user and, if applicable, pro- 422

vides any partial insights that might be derived 423

from the existing responses. 424
Advantages. This proposed method appears to 425

have twofold advantages from the perspective of ef- 426

ficiency and adaptiveness. For multi-hop questions 427

that require sequential reasoning, our approach dy- 428

namically refines the query based on the acquired 429

knowledge from agents. Compared to those ques- 430

tion decomposition methods (Zhou et al., 2022; 431

Verma et al., 2024; Chan et al., 2024), the proposed 432

RIRS reduces unnecessary query rounds and al- 433

lows an agent to address multiple reasoning steps 434

within its expertise. For those questions requir- 435

ing parallel reasoning, particularly across diverse 436

domains, the server enables multiple specialized 437

agents to work concurrently, each leveraging its 438

smaller, more efficient knowledge base, which sig- 439

nificantly accelerates the overall inference process. 440

5 Experiments 441
5.1 Experimental Setup 442
Due to space limits, this subsection provides a brief 443

overview of the experimental setup to interpret the 444

quantitative results presented in the main body. Full 445

details are provided in Appendix C. 446

Datasets. Our experiments cover both single-hop 447

and multi-hop open-ended QA tasks within a uni- 448

fied evaluation framework. We employ the Nat- 449

ural Questions (NQ) dataset (Kwiatkowski et al., 450

2019) for single-hop QA to emphasize the effec- 451

tiveness of the routing mechanism. For evaluat- 452

ing the performance on answering complex ques- 453

tions, we assess performance on four multi-hop 454

QA benchmarks: HotpotQA (Yang et al., 2018), 455

2WikiMultiQA (Ho et al., 2020), MusiQue (Trivedi 456

et al., 2022b), and Multi-Hop RAG (MHR) Bench- 457

mark (Tang and Yang, 2024). Except for MHR, all 458
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# Sel.
Clusters

Avg Sel. Agents
(Eff. Rate)

Agent-Level
Ans. Rate

Avg Viewed Doc.
(Eff. Rate)

Doc.-Level
Ans. Rate

LLaMA-3.1-8B Qwen-Plus
LM Acc. LM Acc.

1 1.0 (52.69%) 52.69% 3.32 (21.43%) 50.58% 43.53% 60.91% 59.90% 77.72%
5 3.32 (37.47%) 76.47% 10.12 (11.61%) 73.01% 50.98% 63.96% 62.05% 80.05%
10 5.28 (26.76%) 84.52% 16.95 (7.07%) 80.12% 50.18% 64.74% 62.90% 81.05%

Table 1: Performance under different number of selected clusters on the Natural Questions task

questions in these datasets are answerable using459

knowledge from Wikipedia.460

Models. Our experimental setup employs a suite461

of models to support both retrieval and generation462

tasks. Specifically, we use text-embedding-v2463

(Zhang et al., 2024) as our embedding model to464

generate dense representations for effective text465

retrieval. The agents are powered by two large466

language models, i.e., llama-3.1-8b-instruct467

(Touvron et al., 2023a,b; Dubey et al., 2024) and468

qwen-plus-2024-12-20 (Yang et al., 2024a).469

Baselines. Throughout the experiments, we com-470

pare the proposed RIRS with several baseline meth-471

ods. RankRAG and EfficientRAG represent ap-472

proaches in single-RAG-agent systems, where all473

knowledge is centralized within a single agent. In474

contrast, Chameleon and RouterDC operate in a475

multi-RAG-agent system and serve as alternative476

routing strategies. Specifically, Chameleon main-477

tains a description of each agent and prompts an478

LLM to identify the most relevant agents for a479

given input query. RouterDC, on the other hand,480

associates each agent with a list of answerable481

questions and selects candidate agents by retriev-482

ing those whose past questions are most similar483

to the current query. Moreover, GoldRouter as-484

sumes prior knowledge of the optimal agent(s) for485

each query, thereby eliminating routing uncertainty486

and serving as an upper bound in the multi-agent487

scenario. Further details on these baselines are488

provided in Appendix C.4.489

Multi-RAG-Agent Systems. Throughout the ex-490

periments, we construct two multi-RAG-agent sys-491

tems tailored to different datasets. (i) WikiAgents492

for Wikipedia-related QA assigns each agent a493

specialized domain of knowledge and includes494

a knowledgeable agent in case that none of the495

RAG agents can answer an input query. (ii)496

NewsAgents for the MHR dataset includes two vari-497

ants: NewsAgent-Source and NewsAgent-Domain,498

which partition the same knowledge base based on499

news sources and news topics, respectively. De-500

tailed configurations of both systems are provided501

in Appendix C.3.502

Evaluation Metrics. Our experiments measure503

the effectiveness of the proposed RIRS by compar-504

ing the baselines for the following metrics:505

LLaMA-3.1-8B Qwen-Plus
Evaluator Correctness 45.60% 79.09%
Fully Correct 16.48% 54.03%
All Addressed Correct 16.85% 59.98%

Table 2: Response Evaluator Performance
• Lexical Match (LM): This metric measures the 506

percentage of questions where the groundtruth an- 507

swer appears within the generated response. Since 508

the LLM-generated answers may be longer than the 509

groundtruth, we focus on whether the groundtruth 510

is included in the predicted answer rather than re- 511

quiring an exact match. 512

• GPT Evaluation (Acc.): We adopt gpt-4o-2024- 513

08-06 (Achiam et al., 2023) to evaluate the correct- 514

ness of the generated responses by comparing the 515

generated responses against designated groundtruth 516

answers. This metric captures cases where the gen- 517

erated response conveys the same meaning as the 518

groundtruth, even if the wording is different. 519

• Time: We compute the wall-clock time from the 520

question that appears to be a valid response. It is 521

noted that the time may not be accurately measured 522

because of the existence of network or threading 523

congestion, especially if an API call is required. 524

5.2 Ablation Studies 525
Choice of TopK. Table 1 indicate that increasing 526

the number of selected clusters improves both the 527

agent-level and document-level answerable rates, 528

which in turn boosts overall performance. Besides, 529

the reason why test accuracy is greater than the 530

answerable rate is attributed to the LLM’s ability 531

in question answering. When the agents are con- 532

sidered unable to answer the question, a CoT agent 533

is invoked to give a response upon its own ability. 534

Moreover, the phenomenon that document-level 535

answerable rates are always lower than agent-level 536

answerable rates reflects that an agent may not al- 537

ways correctly retrieve the most relevant documents 538

from its local knowledge base. 539

Evaluation Capacities of Different Models. In 540

this experiment, we first collect the original ques- 541

tions, the responses from the selected agents, and 542

the evaluator’s judgments. We then have GPT-4o 543

annotate the correctness of the selected agents’ re- 544

sponses. As the proposed method does not take 545

an extra step to fine-tune the LLMs for evaluation, 546

the experiment demonstrates LLMs’ capability to 547

follow instructions and evaluate the correctness 548
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Methods Models
Natural Questions HotpotQA 2WikiMultiHopQA MuSiQue

LM Acc. Time LM F1 Acc. Rounds Time LM F1 Acc. Rounds Time LM F1 Acc. Rounds Time
Without RAG

CoT
Qwen-Plus 52.99 74.55 2.94 39.68 43.82 54.58 1.00 3.06 42.38 44.89 37.31 1.00 3.25 16.76 20.66 33.86 1.00 3.32
LLaMA-3.1-8B 44.41 58.60 1.64 30.96 36.02 44.23 1.00 3.07 31.40 34.46 25.99 1.00 1.55 13.30 17.76 21.86 1.00 2.90

Single-RAG-Agent System

RankRAG
Qwen-Plus 62.73 82.61 14.33 51.49 55.78 73.63 1.00 10.82 51.91 54.06 60.10 1.00 11.39 21.37 25.08 40.73 1.00 12.04
LLaMA-3.1-8B 56.48 70.10 7.42 38.17 42.56 53.21 1.00 5.23 32.49 34.84 36.69 1.00 5.85 15.37 19.41 27.63 1.00 6.33

EfficientRAG3 Qwen-Plus 62.73 82.61 14.33 57.41 63.01 76.55 1.52 22.69 70.41 72.77 75.85 1.81 25.71 26.62 31.41 46.42 1.88 24.28
LLaMA-3.1-8B 56.48 70.10 7.42 47.38 52.96 61.17 2.48 14.67 48.45 52.04 51.13 2.33 14.69 21.38 26.22 29.13 2.47 17.13

Multi-RAG-Agent System

GoldRouter1 Qwen-Plus 63.41 83.02 12.97 58.17 63.99 81.01 1.22 22.85 70.11 72.37 76.33 1.36 30.93 29.01 33.75 47.55 1.51 29.87
LLaMA-3.1-8B 55.13 69.70 6.29 50.60 56.26 64.94 1.55 17.07 49.73 52.99 52.07 1.58 20.57 23.27 28.18 31.46 1.86 21.68
Qwen-Plus 55.48 73.92 24.90 52.12 57.55 73.19 1.43 39.05 56.68 59.18 60.12 1.70 37.53 24.21 28.88 39.87 1.77 48.46

Chameleon
LLaMA-3.1-8B 49.68 62.73 15.27 41.08 46.59 50.20 1.85 24.77 40.52 43.49 40.27 1.84 26.71 15.69 20.11 23.74 2.08 32.81
Qwen-Plus 53.93 71.09 24.91 51.34 56.84 67.24 1.46 44.12 50.97 53.88 52.12 1.67 45.61 23.38 27.69 37.43 1.71 52.98

RouterDC
LLaMA-3.1-8B 47.26 60.43 13.11 38.31 43.11 47.74 1.78 23.63 34.48 37.35 30.59 1.67 26.58 15.08 19.11 21.58 1.98 29.66
Qwen-Plus 62.05 80.05 23.30 54.01 59.62 75.63 1.44 34.71 61.14 63.71 65.78 1.73 39.76 23.81 28.63 41.24 1.67 43.98
LLaMA-3.1-8B 50.98 63.96 10.51 47.57 52.56 58.69 2.04 19.93 45.65 49.10 45.65 2.02 22.26 20.16 24.22 25.82 2.48 25.14RIRS
Mixed2 55.98 73.32 20.98 51.68 56.65 69.33 1.83 41.04 59.48 61.94 62.06 1.85 39.37 24.50 28.57 39.75 2.08 47.51

1 The inference is completely based on the selected agents.
2 The RAG agents use LLaMA-3.1-8B, while other modules in the server use Qwen-Plus.
3 Under the Natural Questions dataset, which fixes to a single routing step, EfficientRAG is equivalent to RankRAG.

Table 3: Performance comparison of different methods under various datasets and the knowledge of WikiAgents.
The best results under Qwen-Plus and LLaMA-3.1-8B are Bold and underline out, respectively, among the methods
to multiple RAG agents (i.e., Chameleon, RouterDC, and RIRS), which are highlighted in the grey background.
of generated responses based on natural language549

understanding. As shown in Table 2, Qwen-Plus550

significantly outperforms LLaMA-3.1-8B in zero-551

shot response evaluation, meaning that Qwen-Plus552

is more likely to avoid error propagation and iden-553

tify useful information. The importance of the554

response evaluator will be discussed in Section 5.3.555

5.3 Analysis with Wikipedia-related QA556

Table 3 presents the performance of our pro-557

posed RIRS alongside various baselines on four558

Wikipedia-related QA tasks using the knowledge559

from the WikiAgents. In this section, we highlight560

key comparisons and insights based on the acquired561

experimental results.562

Comparison with the scenario of Single RAG563

agent. A single-RAG-agent system consolidates564

all knowledge into a unified repository, allowing565

RAG methods such as RankRAG and EfficientRAG566

to retrieve from a comprehensive document set for567

each query. In expectation, RankRAG is better568

suited for single-hop QA tasks, while EfficientRAG569

excels at generating accurate responses for multi-570

hop queries. As shown in Table 3, EfficientRAG571

consistently outperforms RIRS, since single-RAG-572

agent systems are immune to the routing errors573

inherent in multi-RAG-agent systems. However,574

when routing errors are eliminated in a multi-RAG-575

agent system, as with GoldRouter, performance576

consistently surpasses that of RankRAG and Effi-577

cientRAG. This improvement stems from the parti-578

tioning of knowledge into domain-specific agents,579

which reduces the retrieval of irrelevant or distract-580

ing content and allows each agent to focus on a581

smaller, more relevant subset of documents.582

Comparison with GoldRouter. As an error-free583

routing mechanism, GoldRouter serves as the up-584

per bound in a multi-agent system, achieving the585

highest scores in LM, F1, and Accuracy, as well 586

as the lowest values in rounds and response time. 587

In contrast, all other methods (Chameleon, Rou- 588

terDC, and RIRS) experience varying degrees of 589

performance degradation. i.e., more query rounds 590

but with lower accuracy. The degradation is owed 591

to routing errors, highlighting the importance of 592

designing an effective routing mechanism and un- 593

derscoring the inherent challenge of dynamically 594

estimating each agent’s expertise on-the-fly. 595

Comparison within multi-agent routing meth- 596

ods. From Table 3, the accuracy ranking among 597

the three routing methods consistently follows: 598

RIRS > Chameleon > RouterDC, under the same 599

dataset and backbone LLM. The dominance of the 600

proposed RIRS would be more obvious for com- 601

plex questions and when using a weaker LLM 602

(e.g., LLaMA-3.1-8B), with up to 8% and 15% 603

higher accuracy than Chameleon and RouterDC, 604

respectively. These results underscore the relia- 605

bility of RIRS in identifying agents’ knowledge 606

boundaries. Specifically, RIRS constructs rich clus- 607

ter representations to model each agent’s knowl- 608

edge capacity, enabling more accurate routing. In 609

contrast, RouterDC relies on a fixed set of histor- 610

ically answerable questions, which fails to fully 611

capture an agent’s expertise, and Chameleon de- 612

pends on static textual descriptions that are often 613

insufficient, leading to misrouting. Although RIRS 614

incurs slightly more query rounds than the first 615

runner-up Chameleon, it spends less time because 616

it avoids additional LLM calls for agent selection. 617

Comparison with various LLMs. In the pro- 618

posed RIRS, we observe that more powerful 619

LLMs, such as Qwen-Plus, significantly outper- 620

form smaller models like LLaMA-3.1-8B. Fur- 621

thermore, adopting a mixed-model setting, where 622
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Methods Models
NewsAgent-Source NewsAgent-Domain

Acc. Hall.1 Rounds Acc. Hall.1 Rounds
Single-RAG-Agent System 2

RankRAG
Qwen-Plus 78.52 3.37 1.0 - - -
LLaMA-3.1-8B 65.77 8.71 1.0 - - -

EfficientRAG
Qwen-Plus 81.80 1.19 1.57 - - -
LLaMA-3.1-8B 66.80 6.05 1.32 - - -

Multi-RAG-Agent System

GoldRouter
Qwen-Plus 89.32 - 1.06 90.31 - 1.12
LLaMA-3.1-8B 79.53 - 1.08 80.16 - 1.18

RIRS
Qwen-Plus 84.75 0.93 1.65 88.78 1.07 1.66
LLaMA-3.1-8B 71.91 4.91 1.37 75.12 4.73 1.39

1 Hall. means a hallucination rate, indicating the proportion of null queries incorrectly
judged as answerable among all queries classified as answerable.

2 Both NewsAgent-Source and NewsAgent-Domain share the same knowledge reposi-
tory for the single RAG agent, thus producing identical results. We therefore report
these single-agent outcomes under NewsAgent-Source only, leaving the corresponding
entries for NewsAgent-Domain blank to avoid duplication.

Table 4: Performance comparison of different methods
using NewsAgent-Source and NewsAgent-Domain.
the server employs Qwen-Plus while agents run623

lightweight models, substantially enhances perfor-624

mance compared to using LLaMA models alone.625

With the results from Table 2, this improvement626

highlights the critical role of the response evaluator:627

a stronger evaluator can more accurately assess in-628

termediate responses, thereby reducing error prop-629

agation. These findings underscore the practical630

advantages of RIRS, enabling efficient and privacy-631

preserving deployment. Specifically, lightweight632

models can be deployed locally on agents to main-633

tain efficiency and knowledge sovereignty, while a634

centralized, more capable model handles complex635

reasoning tasks on the server without requiring sen-636

sitive data to be shared.637

5.4 Analysis for Multi-hop RAG638

In this section, we analyze the performance of639

our proposed method, RIRS, on the MHR bench-640

mark under two NewsAgents settings: NewsAgent-641

Source (with 49 agents) and NewsAgent-Domain642

(with six agents). As shown in Table 4 and Figure 3,643

we focus on two key perspectives: (i) comparing644

RIRS with single RAG agents, and (ii) discussing645

the effect of varying the number of RAG agents.646

Comparison with Single RAG Agent. In the647

single-agent scenario, all knowledge is consoli-648

dated into a single agent (e.g., RankRAG and Ef-649

ficientRAG). While this setup can sometimes sim-650

plify retrieval by reviewing a comprehensive doc-651

ument pool, it also risks introducing irrelevant or652

distracting information. By contrast, RIRS parti-653

tions knowledge across multiple specialized agents654

and iteratively refines query routing, thereby re-655

ducing the likelihood of retrieving spurious con-656

tent. As Table 4 indicates, RIRS achieves not only657

higher accuracy but also a notably lower halluci-658

nation rate compared to the single-agent methods.659

In particular, when dealing with multi-hop queries,660

the domain-specific knowledge bases (or source-661

specific segments) mitigate confusion and enhance662

(a) Qwen-Plus (b) LLaMA-3.1-8B
Figure 3: Performance Comparison of Different Models
for MHR Benchmarks under Different Query Types.
the reliability of retrieved evidence, helping RIRS 663

avoid erroneous or fabricated answers. 664
Discussion of Different Numbers of RAG Agents. 665

From Table 4 and Figure 3, we observe that increas- 666

ing the number of agents provides finer-grained 667

knowledge coverage and typically requires fewer 668

query rounds. In contrast, using fewer agents in- 669

creases routing complexity but can yield higher 670

accuracy. Compared to the upper-bound method 671

(GoldRouter), performance degradation is more 672

obvious in NewsAgent-Source than in NewsAgent- 673

Domain. This discrepancy can be attributed to 674

suboptimal agent formation in NewsAgent-Source: 675

knowledge is partitioned by news source, result- 676

ing in each agent covering a diverse mix of top- 677

ics. The unstructured topic coverage limits the 678

system’s ability to route queries to proper agents 679

effectively. Moreover, the number of agents in 680

NewsAgent-Source is considerably more than in 681

the domain-based configuration, thereby increasing 682

routing uncertainty and deteriorating performance. 683

A closer comparison between the single-RAG- 684

agent system and NewsAgent-Domain reveals the 685

existence of an optimal number of agents for a 686

given knowledge base. Using too few agents can 687

lead to overly broad domain coverage, which rein- 688

troduces the challenge of retrieving irrelevant infor- 689

mation. In contrast, the domain-based configura- 690

tion results in more efficient and accurate resolution 691

of complex, multi-hop questions. 692

6 Conclusion 693

This work introduces a novel iterative routing 694

framework RIRS that coordinates multiple RAG 695

agents in response to a query while preserving their 696

knowledge sovereignty. Specifically, this frame- 697

work consists of two mechanisms: the routing 698

mechanism directs a user query to the most ap- 699

propriate agents, and the iterative refining-solving 700

mechanism enhances the system’s ability to tackle 701

complex, multi-hop queries by progressively syn- 702

thesizing intermediate responses into a comprehen- 703

sive final answer. Extensive experiments demon- 704

strate the superiority of RIRS over the existing 705

multi-agent routing approaches, illustrating its esti- 706

mation ability in an agent’s knowledge boundary. 707
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Limitations708

Despite the encouraging results, RIRS has a few709

limitations that suggest directions for future work.710

First, the proposed RIRS adopts a hierarchical clus-711

tering algorithm for knowledge clustering, which712

may not scale well when a single agent is loaded713

with an excessively large knowledge base. A scal-714

able alternative could involve dividing the knowl-715

edge base into manageable subsets, each handled716

by a separate RAG agent. Second, RIRS is cur-717

rently limited to text-only corpora and does not718

yet support multimodal inputs, such as images or719

audio. Extending the framework to support larger-720

scale knowledge bases and multimodal data would721

further broaden its applicability.722
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A Related Works 1097

Retrieval Augmented Generation (RAG). RAG 1098

has gained substantial interest in academic re- 1099

search as a robust framework that integrates exter- 1100

nal knowledge sources into large language models 1101

to enhance the quality and reliability of generated 1102

responses (Lewis et al., 2020; Jiang et al., 2023; 1103

Chen et al., 2017; Guu et al., 2020; Karpukhin 1104

et al., 2020; Izacard and Grave, 2020; Borgeaud 1105

et al., 2022; Yu, 2022; Shi et al., 2023; Yan et al., 1106

2024; Asai et al., 2023b; Li et al., 2023b; Press 1107

et al., 2022; Chan et al., 2024; Su et al., 2024; 1108

Trivedi et al., 2022a; Ma et al., 2023; Shao et al., 1109

2023). Notable recent contributions in this domain 1110

include RankRAG (Yu et al., 2024), which reranks 1111

the selected knowledge pieces and generates a re- 1112

sponse with genuinely important ones; Efficien- 1113

tRAG (Zhuang et al., 2024), an approach that it- 1114

eratively generates new queries by sorting out the 1115

portion addressed by retrieved knowledge until a 1116

multi-hop question can be well-addressed; Plan- 1117

RAG (Verma et al., 2024), which decomposes com- 1118

plex queries into interrelated atomic sub-queries by 1119

formulating a reasoning plan as a directed acyclic 1120

graph (DAG). While these methods primarily fo- 1121

cus on single-agent retrieval frameworks, our work 1122

differentiates itself by addressing the challenge of 1123

coordinating knowledge retrieval across multiple 1124

agents, thereby enabling a more comprehensive 1125

handling of diverse and cross-domain queries. 1126

Routing Mechanism in Multi-agent System. 1127

LLM-based multi-agent systems leverage the col- 1128

lective intelligence and specialized capabilities of 1129

multiple expert agents to collaboratively tackle 1130

complex problems, a research direction that has 1131

garnered significant interests (Hong et al., 2023; Li 1132
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et al., 2023a; Wu et al., 2023; Chen et al., 2023a,b;1133

Zhao et al., 2023; Guo et al., 2024; Chen et al.,1134

2024b). In such systems, a robust routing mecha-1135

nism is essential to direct each query to the most1136

appropriate agent based on its unique expertise1137

(Shnitzer et al., 2023; Lu et al., 2023; Zhao et al.,1138

2024; Srivatsa et al., 2024; Li et al., 2024; Lu et al.,1139

2024; Chen et al., 2024a; Addison et al., 2024; Ye1140

et al., 2025).1141

Recent works in this area include Chameleon1142

(Lu et al., 2024), which requires a comprehensive1143

textual description of each agent’s capabilities such1144

that a well-trained LLM can select the most appro-1145

priate agents to address an input query; RouterDC1146

(Chen et al., 2024a), which trains a lightweight1147

model to dynamically route queries to the most suit-1148

able agent within a predefined set; and C-FedRAG1149

(Addison et al., 2024), which forwards queries to1150

randomly selected agents to retrieve relevant doc-1151

uments such that a central entity can collect these1152

documents to generate a final answer.1153

In contrast, our approach accurately character-1154

izes each agent’s knowledge capacity based on1155

their own data, thereby eliminating the need for1156

exhaustive textual descriptions and labor-intensive1157

dataset labeling. Moreover, our effective rout-1158

ing mechanism ensures that queries are directed1159

only to agents capable of providing comprehen-1160

sive answers, with each agent summarizing its re-1161

sponse based solely on local knowledge, thereby1162

preserving data privacy and protecting knowledge1163

sovereignty.1164

B Key Modules on the Server1165

The proposed RIRS is comprised of two key com-1166

ponents: multiple RAG-based agents, each special-1167

ized in a domain of expertise, and a central server1168

that coordinates their collaborative efforts. The1169

server serves as the nexus of our framework by or-1170

chestrating the interaction between agents through1171

a series of specialized roles designed to ensure that1172

user queries are addressed with both logical rigor1173

and relevant supporting evidence. Below, we detail1174

the primary agents managed by the server and their1175

corresponding responsibilities.1176

B.1 Response Evaluator1177

The Response Evaluator is the first checkpoint1178

in the server’s processing pipeline. Given that1179

the server itself lacks domain-specific background1180

knowledge, the evaluator assesses agent responses1181

using a common-sense, logic-based approach. Its1182

primary tasks are:1183

• Logical Assessment: Evaluating whether the 1184

provided response is coherent and free from logi- 1185

cal fallacies. 1186

• Evidence Verification: Confirming that neces- 1187

sary citations and supporting evidence are in- 1188

cluded in the response. 1189

• Response Classification: Determining if the re- 1190

sponse is "addressed" or "not addressed." A re- 1191

sponse is marked "not addressed" if it fails to 1192

provide sufficient evidence, contains logical defi- 1193

ciencies, or is entirely irrelevant to the user query. 1194

• Granular Evaluation for Multi-hop Questions: 1195

For multistep queries, even a response classi- 1196

fied as "addressed" is further divided into "fully 1197

addressed" or "partially addressed." When a re- 1198

sponse is rated as "partially addressed," the unad- 1199

dressed part is expected to be answered by other 1200

agents and/or in the further reasoning steps. 1201

This preliminary evaluation ensures that only log- 1202

ically sound and evidence-backed responses are 1203

propagated in the subsequent stages. 1204

B.2 Response Summarizer 1205

Following the evaluation stage, the Response Sum- 1206

marizer plays a crucial role in consolidating agent 1207

responses. Depending on the evaluator’s results, 1208

two variants of the summarizer are deployed: 1209

• Fully Addressed Summarizer: This variant con- 1210

solidates one or more responses that have been 1211

deemed to fully address the query. It integrates 1212

the responses into a comprehensive answer which 1213

is then forwarded directly to the user. 1214

• Partially Addressed Summarizer: When none 1215

of the responses can fully address the query, the 1216

partially addressed summarizer steps in to com- 1217

pile a more complete solution based on the avail- 1218

able partial responses. Once consolidated, it re- 1219

evaluates the answer. If the unified response is 1220

deemed fully addressed, it is returned to the user; 1221

otherwise, further action is initiated. 1222

Notably, although the partially addressed sum- 1223

marizer can directly consolidate the information 1224

from all responses, the overall performance of re- 1225

sponse summarizing benefits from the initial fil- 1226

tering conducted by the Response Evaluator and 1227

fine-granularity of the standard collaboration flow. 1228

B.3 Question Simplifier 1229

When the query remains insufficiently addressed, 1230

as rated by the partially addressed summarizer, the 1231

Question Simplifier intervenes to decompose the 1232

problem into more manageable sub-questions. This 1233

13



agent performs the following tasks:1234

• Identification of Addressed Components: It1235

examines the existing responses to isolate the1236

aspects of the query that have already been effec-1237

tively addressed.1238

• Generation of a New Question: By removing1239

the resolved parts, the simplifier formulates a1240

new query targeting the unresolved components.1241

• On-the-Fly Decomposition: This dynamic sim-1242

plification enables the server to continue resolv-1243

ing the query in an iterative, step-by-step manner1244

without the need for prior, rigid question plan-1245

ning.1246

This adaptive approach leverages already acquired1247

knowledge, ensuring that subsequent agent interac-1248

tions are focused on the remaining aspects of the1249

problem, thereby reducing the need for redundant1250

multistep reasoning in later stages.1251

B.4 Discussion: Unhandleable Queries1252

In some instances, the server may fail to obtain1253

any reliable ("addressed") responses. This scenario1254

may arise due to several factors:1255

• Query Outside the System’s Domain: The user1256

may pose a question that falls outside the scope1257

of all RAG-based agents’ expertise. For instance,1258

in a medical suggestion QA system, a travel rec-1259

ommendation query would not align with the1260

agents’ specialized knowledge, resulting in no1261

suitable answer.1262

• Ambiguous or Incomplete Queries: A query1263

that is vague, under-specified, or contains numer-1264

ous typographical errors can hinder the server’s1265

ability to correctly map the question to the ap-1266

propriate agents. For example, in a medical con-1267

text, ambiguous terminology or poorly structured1268

queries may impede the identification of a clear1269

problem statement, leading to an inability to re-1270

trieve a fully addressed response.1271

• Rapidly Evolving Information Domains: In ar-1272

eas where information is rapidly changing, some1273

RAG-based agents may not have the most cur-1274

rent data or guidelines. This lag can result in1275

responses that are either outdated or insufficient,1276

prompting the system to classify the query as1277

out-of-scope.1278

In such cases, the system will inform the user that1279

the question cannot be answered based on the cur-1280

rent scope of the available agents. However, if1281

the server integrates a knowledgeable agent with1282

broader capabilities, this agent may be employed1283

to attempt an answer. For multi-hop questions, the1284

knowledgeable agent is provided with a simplified 1285

version of the query, since evidence suggests that 1286

large language models perform better when fewer 1287

reasoning steps are required (Zhuang et al., 2024). 1288

C Implementations and Baselines 1289

C.1 Implementation Details 1290

Our implementation builds upon the open-source 1291

AgentScope project (Gao et al., 2024), and each 1292

agent’s knowledge base is processed by LLa- 1293

MAIndex (Liu, 2022) and stored in ElasticSearch. 1294

We leverage ElasticSearch’s Mixed Retrieval for 1295

knowledge retrieval, where each agent extracts 20 1296

chunks and selects the best five for answer gen- 1297

eration. Without special annotations, five agents 1298

are chosen per query round. The entire system is 1299

deployed within a pseudo-distributed environment 1300

that utilizes multi-threading to enhance scalability 1301

and efficiency. As for models, we call Qwen-Plus 1302

(Yang et al., 2024a; Bai et al., 2023) via API and 1303

deploy the LLaMA-3.1-8B model locally using 1304

the vLLM service (Kwon et al., 2023) with four 1305

Nvidia A100 GPUs. Our code and the setup of 1306

multi-agent systems (including the corpus) will be 1307

released upon acceptance. 1308

C.2 Datasets 1309

As each of the Wikipedia-related datasets (i.e., NQ, 1310

HotpotQA, 2WikiMultiQA, and MusiQue) consists 1311

of thousands of questions, we sample a subset of 1312

questions from each dataset to speed up our eval- 1313

uation progress, while ensuring at most 3% error 1314

within a 95% confidence interval. 1315

C.3 Multi-Agent Settings 1316

Chameleon, RouterDC, and RIRS are in a multi- 1317

agent setting. To simulate the practical knowledge 1318

domain segmentation, we construct two groups of 1319

RAG agents for different datasets: 1320

• WikiAgents for NQ, HotpotQA, 2WikiMQA 1321

and MusiQue: WikiAgents group is built upon 1322

a corpus of over 121K Wikipedia pages, dumped 1323

as of November 1, 2023, and made publicly avail- 1324

able via the HuggingFace dataset. The system 1325

comprises exactly 64 RAG agents. This specific 1326

number is derived from the inherent limitation of 1327

the ORES legacy service, which can only classify 1328

a Wikipedia page into 64 predefined categories 1329

(Johnson et al., 2021). Consequently, each RAG 1330

agent is designated to handle one of these 64 1331

categories, ensuring that the categorization of 1332

pages is consistent and aligned with the prede- 1333

fined taxonomy established by the ORES service. 1334
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However, these agents cannot cover all required1335

documents, and once the question cannot be an-1336

swered, a knowledgeable agent will be called to1337

answer the question because the existing LLMs1338

have been pretrained with the Wikipedia corpus.1339

• NewsAgents for MHR: NewsAgents group is1340

constructed on a corpus of 609 news articles from1341

49 distinct news media and spanning six domains1342

(Tang and Yang, 2024). To analyze the effects1343

of source and domain characteristics, we further1344

split NewsAgent into two variants: NewsAgent-1345

Source and NewsAgent-Domain, corresponding1346

to partitions based on news media and domain1347

categories, respectively. Each agent uses LLa-1348

MAIndex to split news articles into 256-token1349

chunks, with 20 overlapping tokens between con-1350

secutive chunks.1351

C.4 Baselines1352

In order to comprehensively evaluate our proposed1353

system, we have reproduced several baselines in-1354

spired by existing works. These baselines are im-1355

plemented manually to fit within our experimental1356

framework. Notably, our study focuses on an off-1357

the-shelf scenario, which does not fine-tune or train1358

any models and instead leverages the capabilities1359

of existing LLMs to achieve desired effects. To-1360

ward the goal, the implementation details of the1361

baselines are given as follows:1362

Single-agent Scenarios. In the single-agent sce-1363

nario, the knowledge contained within all RAG-1364

based agents is merged into a single agent. This is1365

a unified setup for conventional RAG-based meth-1366

ods. In this setting, baseline methods can review1367

all documents and retrieve the most relevant ones1368

within the system. Although the single-agent setup1369

does not fully align with the scenario we aim to ex-1370

amine, we include it to demonstrate the challenges1371

associated with managing a large knowledge base,1372

i.e., longer retrieval times and potential distractions1373

from plausible yet irrelevant information. Ideally,1374

if the retrieved knowledge were perfectly clean, the1375

single-agent setup could serve as an upper bound1376

of the multi-agent setup in terms of accuracy when1377

comparing the generated results against the ground1378

truth.1379

• RankRAG: This method retrieves some docu-1380

ments from the knowledge base using both dense1381

and sparse retrievers. Next, a pretrained model is1382

introduced to evaluate the helpfulness of each re-1383

trieved document and select the most appropriate1384

document(s) to answer the given query. Based on1385

the retrieved document(s), the LLM is asked to 1386

generate a response. If the provided document(s) 1387

are irrelevant to the question, the LLM is sup- 1388

posed to generate the answer on its own ability. 1389

Therefore, this method maintains a single query 1390

round for all types of questions. This baseline 1391

method covers a number of the existing works 1392

(Yu et al., 2024; Glass et al., 2022; Song et al., 1393

2024; Ram et al., 2023; Ma et al., 2023; Nogueira 1394

et al., 2020), which focuses on using reranking 1395

to enhance LLM content generation, while they 1396

use different ways to train the ranking model. 1397

• EfficientRAG: This approach iteratively simpli- 1398

fies the query by retrieving query-related docu- 1399

ments from the knowledge base until it can be 1400

fully addressed. The simplification process de- 1401

pends entirely on the LLM’s ability to remove 1402

portions of the query that have already been re- 1403

solved. In cases where the remaining question 1404

cannot be further simplified or adequately an- 1405

swered using the provided context, a knowledge- 1406

able agent is used to generate the final answer. 1407

This baseline follows the EfficientRAG frame- 1408

work (Zhuang et al., 2024), which generates train- 1409

ing data from an LLM to train a compact model 1410

for question simplification, and is further inspired 1411

by related works such as Self-ASK (Press et al., 1412

2022), SelfRAG (Asai et al., 2023b), and IM- 1413

RAG (Yang et al., 2024b). This approach has 1414

proven effective for multi-hop questions due to 1415

its adoption of multiple reasoning steps to con- 1416

verge on a final answer. 1417

Multi-agent Scenarios. In this scenario, we im- 1418

plement two routing strategies for comparison with 1419

our proposed routing mechanism, RIRS, while 1420

keeping the other server modules unchanged and 1421

still employing iterative routing. These two meth- 1422

ods are derived from settings that involve multiple 1423

LLMs and use a router to identify the best LLM 1424

for handling a given task. Inspired by these ap- 1425

proaches, we extend their ideas to our scenario to 1426

construct an effective routing mechanism. In our 1427

experiments, these two routing strategy are used 1428

to handle Wikipedia-related QA tasks, i.e., Natu- 1429

ral Questions, HotpotQA, 2WikiMultiHopQA, and 1430

MuSiQue. 1431

• Chameleon: This method (Lu et al., 2024) lever- 1432

ages a collection of tools, including LLMs and 1433

off-the-shelf vision models, to accomplish com- 1434

plex reasoning tasks step by step, selecting the 1435

best tool for each step. The router, which is 1436

based on a well-trained LLM, decomposes a com- 1437
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(a) MuSiQue (b) 2WikiMultiHopQA (c) HotpotQA
Figure 4: Data distribution v.s. Minimum required agents under different datasets

(a) Qwen-Plus (b) LLaMA-3.1-8B (c) Mixed
Figure 5: Evaluation for Wikipedia-related QA (2WikiMQA, HotpotQA, and MuSiQue)

plex task into multiple steps and identifies the1438

most suitable tool for each. In our adaptation,1439

each WikiAgent is dedicated to a specific topic1440

from Wikipedia. By providing the router with a1441

description of each agent’s specialized topic, it1442

can select up to five agents whose expertise best1443

aligns with the given query.1444

• RouterDC: This method (Chen et al., 2024a) uti-1445

lizes several LLMs by training a representation1446

vector for each model based on a collection of1447

questions and the optimal candidate from a pool1448

of models. During inference, the router deter-1449

mines the best agents by computing the similar-1450

ity between the query embedding and the stored1451

representation vectors.1452

Inspired by this approach, we calculate the sim-1453

ilarity between the query embedding and the1454

representation vectors of our RAG-based agents.1455

However, obtaining these vectors typically re-1456

quires additional training, which is not compat-1457

ible with our training-free setting. Instead, we1458

leverage insights from recent works (Lampinen1459

et al., 2022; Mishra et al., 2021) and cache 1001460

historical questions for each agent to represent1461

their knowledge capacity. For a new question,1462

the router computes the average similarity be-1463

tween the query and the cached questions for1464

each agent, then selects the five agents with the1465

highest similarity scores to generate an answer.1466

D More Experimental Results for1467

Multi-hop Wikipedia-related QA1468

Number of Required Agents. Figure 4 illus-1469

trates the distribution of questions by the mini-1470

mum number of required agents across three multi- 1471

hop QA datasets: MuSiQue, 2WikiMultiHopQA, 1472

and HotpotQA. Although all three datasets consist 1473

of multi-hop questions, the necessary knowledge 1474

pieces may sometimes reside within a single agent. 1475

In MuSiQue and 2WikiMultiHopQA, most ques- 1476

tions can be answered using two RAG agents, and 1477

all questions require no more than four agents. For 1478

HotpotQA, all questions can be answered with just 1479

two agents. It is important to note that the number 1480

of required agents does not directly correspond to 1481

the number of query rounds. Multiple agents can 1482

be invoked simultaneously within a single round, 1483

and conversely, a single agent may be queried mul- 1484

tiple times to perform complex reasoning before 1485

reaching the final answer. 1486

Query Rounds and Accuracy. Figure 5 presents 1487

the proportion of questions that can be answered 1488

within different numbers of query rounds, along 1489

with the corresponding answer correctness. Across 1490

all LLMs, most questions are resolved within the 1491

first two query rounds. Specifically, stronger mod- 1492

els (e.g., Qwen-Plus) can answer more questions 1493

compared to weaker ones (e.g., LLaMA-3.1-8B) 1494

within fewer query rounds. Interestingly, the fig- 1495

ure also shows that increasing the number of query 1496

rounds does not necessarily lead to improved an- 1497

swer accuracy. In fact, unless a question inherently 1498

requires multi-step reasoning, additional query 1499

rounds may result in even poorer performance. 1500

Case Study. Figures 12 and 13 illustrate how the 1501

proposed RIRS answers a single-hop question and 1502

a multi-hop question, respectively. 1503

16



E Prompts 1504

System Prompts for Chain-of-Thought (CoT) Agent
You’re a knowledgeable assistant. You are provided with a question, and you should answer the question in the following two
steps. FIRST, you should utilize your knowledge and analyze the question step by step. SECOND, you should finalize an
answer based on your analysis with no more than 30 words.

Your output should be in the json format:
```json

{
"analysis": "<a paragraph with no more than six sentences>",
"answer": "<a response within 30 words>"

}

```

Figure 6: Prompt Templates for the CoT Agents.

System Prompts of Wikipedia Agents for A Single Question
You are provided with one question and a collection of knowledge. Based on the given knowledge, you should try to analyze
and tackle the question as thoroughly as possible, even if you cannot fully answer the question. Unless the given context is
unrelated to the question, you must directly quote the evidence (i.e., sentences) without being altered to support your analysis,
enclosing it in double asterisks (**). You should not state any arguments that are not explicitly mentioned or implied from
the pieces of evidence or without quoting them. The analysis should be in one paragraph with no more than ten sentences.
Moreover, the analysis should start with "I" and not mention that the analysis is generated based on the given knowledge,
documents, or information.

Your output should be in the json format:
```json

{
"analysis": "<one paragraph of up to ten sentences, directly quoting supporting evidence from

the provided knowledge>"
}

```

Figure 7: Prompt Templates for the Wikipedia Agents.
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System Prompts of News Agents for A Single Question
You are given one question and a collection of news articles. Each article contains content along with its source information,
including the title, news source, author, and published time. Your task is to analyze and address the question as thoroughly
as possible based on the provided news articles, even if you cannot fully answer the question. Unless the given context
is unrelated to the question, you must directly quote the evidence (i.e., sentences) without being altered to support your
analysis. You should enclose quoted evidence (sentences) in double asterisks (**), followed by the source in brackets,
including the title, news source, author, and published time, separated by semicolons (;). You should not state any arguments
that are not explicitly mentioned or implied from the pieces of evidence or without quoting them. Your analysis to
each question should be concise, limited to one paragraph per question, with no more than ten sentences. The analy-
sis must begin with "I" and should not mention that the analysis is based on provided news articles, knowledge, or information.

Your output should be in the json format:
```json

{
"analysis": "<one paragraph of up to ten sentences, directly quoting supporting evidence from

the provided knowledge>"
}

```

Figure 8: Prompt Templates for the News Agents.

System Prompts of Evaluator for "Fully/Partially/Not Addressed" for A Question and A Response
You are provided with a question and a response. Your task is to evaluate the response according to the following steps:
1. Assess the response against three criteria:
- Relevance: Does the response help answer the question, even if the response does not fully resolve it?
- Evidence-Based Support: Are statements supported by explicitly mentioned evidence enclosed in double asterisks (**)?
- Logical Coherence: Is it well-structured, logically reasoned, and free from logical fallacies or contradictions?
2. Assign one of the following ratings:
- Fully addressed: The response meets all criteria and completely answer the question.
- Partially addressed: The response meets all criteria but not fully resolve the question.
- Not addressed: The response fails to meet one or more of the criteria.

Your output should be in the json format:
```json

{
"evaluation": {

"relevance": <a sentence within 30 words>,
"evidence_support": <a sentence within 30 words>,
"logical_coherence": <a sentence within 30 words>

},
"rating": <"Fully addressed" or "Partially addressed" or "Not addressed">

}

```

Figure 9: Prompt Templates for the evaluator.
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System Prompts of Summarizing Fully-addressed Responses
You are given a question, and one or more responses that fully resolve the question. Your task is to produce a final answer by
following these steps:
1. Analysis: Incorporate all relevant information from the given responses, quoting any supporting evidence word-for-word
in double asterisks (**).
2. Answer: Provide a concise conclusion in no more than 30 words that summarizes the analysis.

Your output should be in the json format:
```json

{
"analysis": "<a paragraph that directly quotes relevant evidence in **double asterisks**>",
"answer": "<a concise final answer within 30 words>"

}

```

System Prompts of Summarizing Partially-addressed Responses
You are given a question and several partially addressed responses. Your task is to combine these responses to create a
comprehensive solution, then evaluate its completeness. Follow these steps:
1. Solution Synthesis:
- Incorporate all relevant information from the provided responses to form a solution that addresses the question as thoroughly
as possible.
- Directly quote supporting evidence (word-for-word) using double asterisks (**).
2. Evaluation and Justification:
- Determine whether this combined solution fully addresses the question.
- Provide a clear explanation of why it does or does not fully address the question.
3. Answerability Determination:
- Based on your evaluation, decide if the solution makes the question answerable.
- Respond with either "yes" (if the solution fully addresses the question) or "no" (if it does not).
- Most importantly, if the solution explicitly states that the question cannot be fully addressed or identifies missing aspects or
necessary additional information, you must answer "no".
4. Final Answer:
- If the solution is deemed answerable ("yes"), provide a concise conclusion in no more than 30 words that summarizes the
solution.
- If the solution is not answerable ("no"), return "None" as the final answer.

Your output should be in the json format:
```json

{
"solution": "<a paragraph that integrates responses with direct quotes in **double asterisks

**>",
"evaluation and justification": "<a paragraph explaining whether and why the solution fully

addresses the question>",
"answerable": <"yes" or "no">,
"answer": "<a final answer within 30 words if ’answerable’ is ’yes’, or ’None’ if ’answerable’

is ’no’>"
}

```

Figure 10: Prompt Templates for the Summarizer.
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System Prompts of Question Simplifier
You are given a question and a piece of knowledge that partially addresses the question. Your task is to simplify or refactor
the original question so that answering the simplified question will yield the same final answer as answering the original one.
Follow the steps below:
1. Map Known Information:
- Identify Answered Parts: Examine the original question and determine which parts have been explicitly answered by the
provided solution. Extract the relevant words or phrases from the question.
- Map to Solution: For each identified part, find the corresponding words or phrases in the provided solution and include
supporting evidence by directly quoting the exact sentences, enclosed in double asterisks.
- Note: If the provided knowledge does not address any aspect of the original question (i.e., you cannot identify the answered
parts from the question), return "None" for the mapping.
2. Identify Unresolved Aspects:
- Determine Gaps: Identify the parts of the question that remain unanswered or unclear after considering the provided
solution.
- List Unresolved Points: Clearly list these unresolved aspects. They must be retained in the simplified question to ensure that
no essential detail is lost.
3. Generate a Simplified/Refactored Question:
- Remove Redundancies: Remove from the original question any words or phrases that have been fully addressed by the
solution (as determined in Step 1).
- Incorporate Mapped Knowledge: Replace the removed parts with their corresponding mapped words or phrases from the
solution, ensuring to preserve the supporting evidence.
- Retain Unresolved Aspects: Ensure that any unresolved aspects identified in Step 2 are still present in the final simplified
question.
- Ensure Consistency: The new question must be clear, concise, and structured so that answering it will yield the same final
answer as if the original question were fully addressed.
- Note: If the mapping is "None" (as indicated in Step 1), keep the simplified/refactored question identical to the original
question.

Your output should be in the json format:
```json

{
"question_knowledge_mapping": <a list of tuples in the format (words from given question,

words from provided knowledge, supporting evidence) or "None">,
"unresolved_aspects": <a list of aspects that remain unanswered>,
"new_question": <the simplified/refactored question; remove all "words from given question"

found in the mapping and include the corresponding "words from provided knowledge" to
replace them, ensuring all unresolved aspects are retained. If mapping is "None", use the
original question>

}

```

Figure 11: System Prompt for Question Simplifier.
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User Input
who is darrell brother in the walking dead

Expected Answer
Merle Dixon

Assistant: Culture.Media.Media*
I learned that there is no direct mention of a character named ’darrell brother’ in the provided context related to ’The Walking
Dead’. The content does not provide any information about characters from this series. Therefore, I cannot answer who
darrell’s brother is based on the given information.

Assistant: Culture.Literature
I learned that **Daryl Dixon is a fictional character from AMC’s horror drama series The Walking Dead, and the protagonist
of its last three seasons.** It also mentions that **the character was introduced in the first season as a southerner, expert
tracker, living in the shadow of his older brother, Merle.** From another source, it states that **Merle Dixon is a fictional
character from the horror drama television series The Walking Dead, which aired on AMC in the United States. He was
created by series developer Frank Darabont and was portrayed by Michael Rooker.** These sentences explicitly indicate that
Merle is Daryl’s older brother in The Walking Dead.

Server: Evaluation

{
"response_1": {

"relevance": "Misinterprets the question by focusing on a character named ’darrell brother
’, which does not exist.",

"evidence_support": "No relevant evidence provided regarding Darrell or his brother.",
"logical_coherence": "The response is logically coherent but irrelevant to the asked

question.",
"rating": "Not addressed"

},
"response_2": {

"relevance": "Identifies Merle as Daryl’s older brother, accurately addressing the query.",
"evidence_support": "Supports claims with multiple pieces of evidence from the series.",
"logical_coherence": "Well-structured with logical flow and no contradictions.",
"rating": "Fully addressed"

}
}

Server: FullySummarizer

{
"analysis": "The responses collectively indicate that **Merle Dixon is Daryl Dixon’s older

brother** in The Walking Dead. They provide consistent information from multiple sources
confirming Merle as the elder sibling, portrayed by Michael Rooker, and known for his
volatile character.",

"answer": "In The Walking Dead, Daryl’s older brother is Merle Dixon, a volatile character
portrayed by Michael Rooker."

}

Response
In The Walking Dead, Daryl’s older brother is Merle Dixon, a volatile character portrayed by Michael Rooker.

Figure 12: A example of single-hop QA task
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User Input
Where was the director of film Rough Going born?

Expected Answer
New Hyde Park, New York

Assistant: Culture.Media.Films
I found that **Rough Going is a 1925 American silent Western film directed by Wally Van**. However, the provided
information does not specify where the director, Wally Van, was born.

Assistant: Culture.Media.Media*
I learned that **Richard Rush (April 15, 1929 – April 8, 2021) was an American film director, scriptwriter, and producer.**
This indicates that Richard Rush, the director of Rough Going, was born in the United States. However, the specific place of
his birth is not mentioned in the provided context.

Server: Evaluation

{
’response_1’: {

’relevance’: ’Identifies the director of Rough Going but does not provide his place of
birth.’,

’evidence_support’: ’Provides relevant information about the film and its director, Wally
Van, with evidence.’,

’logical_coherence’: ’The response is logically structured and coherent, though it
acknowledges incomplete information.’,

’rating’: ’Partially addressed’
},
’response_2’: {

’relevance’: ’Incorrectly identifies Richard Rush as the director of Rough Going, making it
irrelevant to the question asked.’,

’evidence_support’: "Offers evidence about Richard Rush’s lifespan and profession, but this
does not relate to the query.",

’logical_coherence’: ’Logically coherent for statements about Richard Rush, but fails to
address the actual question.’,

’rating’: ’Not addressed’
}

}

Server: PartiallySummarizer

{
’solution’: ’The film **Rough Going is a 1925 American silent Western film directed by Wally

Van**. However, the provided information does not specify where the director, Wally Van,
was born. This indicates a gap in the available data regarding the birthplace of Wally Van
.’,

’evaluation and justification’: ’The solution identifies the director of the film Rough Going
as Wally Van but acknowledges that there is no information provided about his place of
birth. Since the question specifically asks for the birthplace of the director and this
detail is missing, the solution does not fully address the question.’,

’answerable’: ’no’,
’answer’: ’None’

}
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Server: QuestionSimplifier

{
’question_knowledge_mapping’: [

[’the director of film Rough Going’, ’Wally Van’, ’**Rough Going is a 1925 American silent
Western film directed by Wally Van**.’]

],
’unresolved_aspects’: [’The birthplace of Wally Van’],
’new_question’: "Where was Wally Van born?"

}

Assistant: Culture.Biography.Biography*
I learned that **Van was born Charles Wallace Van Nostrand on September 27, 1880, in New Hyde Park, New York.** This
explicitly answers the question about where Wally Van was born, which is New Hyde Park, New York.

Assistant: Culture.Linguistics
I found that **Wally Williams (water polo) (1921–2009), New Zealand water polo player** is listed, indicating a Wally
Williams who was born in 1921 and was from New Zealand. However, there is no specific mention of where exactly he was
born within New Zealand.

Server: Evaluation

{
’response_1’: {

’relevance’: "Directly answers the question by specifying Wally Van’s birthplace as New
Hyde Park, New York.",

’evidence_support’: ’Provides explicit evidence enclosed in double asterisks about Wally
Van’s birth details.’,

’logical_coherence’: ’The response is logically coherent and clearly structured without
contradictions.’,

’rating’: ’Fully addressed’
},
’response_2’: {

’relevance’: ’Partially relevant as it discusses a person named Wally but not the specific
Wally Van in question.’,

’evidence_support’: ’Provides evidence about Wally Williams but does not link this
information to Wally Van.’,

’logical_coherence’: "Coherent statement but fails to address the specific query about
Wally Van’s birthplace.",

’rating’: ’Not addressed’
}

}

Server: FullySummarizer

{
’analysis’: "The response provides explicit information about Wally Van’s birthplace: **Van

was born Charles Wallace Van Nostrand on September 27, 1880, in New Hyde Park, New York
.**",

’answer’: ’Wally Van was born in New Hyde Park, New York.’
}

Response
Wally Van was born in New Hyde Park, New York.

Figure 13: A example of a multihop QA task using the proposed RIRS

23


	Introduction
	Related Works
	Multi-agent Framework
	RIRS
	Routing Algorithm
	Iterative Refining-solving

	Experiments
	Experimental Setup
	Ablation Studies
	Analysis with Wikipedia-related QA
	Analysis for Multi-hop RAG

	Conclusion
	Related Works
	Key Modules on the Server
	Response Evaluator
	Response Summarizer
	Question Simplifier
	Discussion: Unhandleable Queries

	Implementations and Baselines
	Implementation Details
	Datasets
	Multi-Agent Settings
	Baselines

	More Experimental Results for Multi-hop Wikipedia-related QA
	Prompts

