
LLARVA: Vision-Action Instruction Tuning
Enhances Robot Learning

Dantong Niu∗ Yuvan Sharma∗ Giscard Biamby Jerome Quenum
Yutong Bai Baifeng Shi Trevor Darrell † Roei Herzig †

Berkeley AI Research, UC Berkeley
Project Webpage: https://llarva24.github.io/

Abstract:
In recent years, instruction-tuned Large Multimodal Models (LMMs) have been
successful at several tasks, including image captioning and visual question an-
swering; yet leveraging these models remains an open question for robotics. Prior
LMMs for robotics applications have been extensively trained on language and
action data, but their ability to generalize in different settings has often been less
than desired. To address this, we introduce LLARVA, a model trained with a novel
instruction tuning method that leverages structured prompts to unify a range of
robotic learning tasks, scenarios, and environments. Additionally, we show that
predicting intermediate 2-D representations, which we refer to as visual traces,
can help further align vision and action spaces for robot learning. We generate
8.5M image-visual trace pairs from the Open X-Embodiment dataset in order to
pre-train our model, and we evaluate on 18 different tasks in the RLBench sim-
ulator as well as a physical Franka Emika Panda 7-DoF robot. Our experiments
yield strong performance, demonstrating that LLARVA—using 2-D and language
representations—performs well compared to several contemporary baselines, and
can generalize across various robot environments and configurations.

Keywords: LMMs, Vision Action Instruction Tuning, Robot Learning

1 Introduction

Recently, instruction-tuned Large Multimodal Models (LMMs), such as InstructBLIP [1], Instruct-
GPT [2], LLaVA [3, 4], PALM [5] and others have demonstrated state-of-the-art performance on a
variety of vision-and-language tasks. However, existing LMMs for robotics [6, 7, 8, 9] do not always
demonstrate the same success and consistency across various embodied settings. This may result
from the unique challenges encountered in robotics, such as the variability of real-world environ-
ments, the differences between robots, and the need to control actions reliably. Since LMMs have
been proven to be successful in part due to multimodal instruction tuning, it is natural to leverage this
technique in a robotics setting as well. Here, we propose a vision-action instruction tuning method
that can bridge the gap between a language model’s fundamental pre-training objective—next-word
prediction—and the goal of enabling the model to handle various robotics settings.

In this work, we introduce our Large LAnguage model for Robotic Vision and Action (LLARVA), an
open-source instruction-tuned LMM for robotic applications that can generalize efficiently across
various environments and robotic configurations. Our key idea is the formulation of a novel instruc-
tion prompt that encapsulates robot type, task, scene configuration, and control regime in a natural
language prefix amenable to contemporary LMMs. We present an instruction tuning procedure
tailored to the robotic domain: when given an instruction that describes the robot model, control
mode, robot task, and proprioceptive information, the model needs to predict future actions given

*Equal contribution. †Equal advising.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://llarva24.github.io/

LLARVA

The 2-D visual trace:
The next action is: [1.2,-0.3…,-0.24]

You are a Google robot using end-effector control. The task is “put can aside”, and
the previous five (including current) steps are [[-0.1060, 0.1280, -0.0767,…]]. Can
you predict the 2D visual trace of the end effector and the action of the next 1 step?

UR5

EE Control

“Slide cloth”

Franka Panda

Joint Control

“Stack red cube”

Google Robot

EE Control

“Put can aside”

Visualization of
Visual TraceRobotic Action

Figure 1: Overview of LLARVA. We introduce a novel instruction tuning method that leverages
structured prompts to unify a range of robotic learning tasks, scenarios, and environments and 2-D
visual traces to further align vision and action spaces. The model works via a language instruction
that contains robot model, control mode, robot task, proprioceptive information, and
number of predicted steps, and outputs text with the next robot action(s) and the visual
trace for the remainder of the episode.

the natural language prompt. This architecture allows us to leverage structured language prompts as
a “lingua franca” for robotic perception and control (See Figure 1).

However, aligning the vision and action modalities to produce meaningful robotic outputs is still
not a trivial task. Though recent robotic models have used 3-D representations such as voxels and
point clouds to overcome this, these representations are difficult to incorporate into most existing
open-source LMMs because they typically accept a single image plus language as input. For these
reasons, we utilize 2-D images, which are easy to scale and integrate with existing LMMs.

We find that predicting an intermediate 2-D representation, which we refer to as visual traces, can
help align the vision and action spaces across different robot and task configurations. In particular,
we generate the 2-D visual trace (projection) of an end-effector and force the model to predict this
trace alongside the next robot action(s). This waypoint prediction helps align each robotic action
to the end-effector’s location, allowing the model to focus on fine-grained localization and resulting
in a more accurate prediction of robot actions. To achieve this, we construct instructions with such
visual traces using the Open X-Embodiment dataset (OXE) [10], carefully categorizing the action
space, the robot type, and the control type.

Through empirical study, we show that our vision-action instruction tuning approach using struc-
tured prompts leads to generalization across various robot environments and configurations. Addi-
tionally, we show that predicting visual traces can help further align vision and action spaces. We
evaluate LLARVA on 18 different tasks in RLBench’s simulated environment and on picking, stack-
ing, and destacking tasks with a real 7-DoF Franka Emika Panda robot. Finally, we evaluate our
model’s generalization across two robots in RLBench on four tasks. We show that LLARVA—using
2-D and language representations—performs well compared to several contemporary baselines.

2 Vision-Action Instruction Tuning

2.1 Preliminaries

LMMs are designed to handle multiple data modalities simultaneously, such as images and their
corresponding text descriptions. Each modality is encoded into a shared embedding space, which
is then utilized for reasoning by a language model f parameterized by θ. Specifically, an image is
encoded using a pre-trained visual encoder, denoted as v parameterized by ϕ. A corresponding text

2

description is tokenized and encoded using a fixed language encoder e parameterized by γ. Given
an input image o and a language task description l, the language model generates a text response R
as follows: R = fθ(vϕ(o), eγ(l)).

In this paper, we use an LMM within the context of robotic episodes, which are characterized by
temporal sequences of visual observations o1:N and proprioceptive states s1:N . Here, N denotes the
length of an episode. Notably, in the realm of LMMs for robotics applications, the output R typically
encompasses one or more predicted actions for an episode. Next, we describe our LLARVA model.

2.2 LLARVA Model

2-D Visual Traces. Visual traces play a key aspect in our vision-action instruction methodology.
The choice of 2-D traces is made to match the high availability of image-based large robotics datasets
such as OXE, but our method can also be implemented with 3-D data. To achieve alignment between
visual inputs and robotic actions, we predict visual traces as an auxiliary task, as we find that this
helps to gain better fine-grained localization, resulting in a more accurate prediction of robot actions.

We define 2-D Visual Traces as a sequence of coordinates (x, y) in a two-dimensional space, which
is aligned with the input image ot at time step t. These coordinates represent the trajectory of the
gripper (or end-effector, hand, etc.) throughout the episode. The visual trace at timestep t is:

Pt:N = {(xi, yi) | i = t, t+ 1, . . . , N} (1)

Here, (xi, yi) denotes the i−th coordinate in the entire visual trace for the episode, and N represents
the number of time steps in the episode. We note that language model decoders are crucial in
converting multimodal inputs into actionable outputs in robotics. By leveraging the shared vision-
action embedding space, our decoder produces responses that the robotic system can use.

Input. The input to our LLARVA architecture comprises two components. First, we have the visual
observation ot, an image capturing the state of the environment at timestep t. Second, we have the
language instruction input lt, which prompts the model to forecast a specified number of subsequent
steps, integrating embodied information such as the robot, control mode, and previous propriocep-
tive states as well as the task directives. Specifically, we formulate an instruction template featuring
the robot type R (e.g., Franka, UR5, xArm), control mode M (e.g., joint or end-effector control,
absolute or delta control), task instruction I (e.g., “open the drawer”), proprioceptive information S
(e.g., positions or velocities), and a query indicating the number of future actions to predict, denoted
as n. The complete instruction is formulated as follows:

lt = “You are a [R] robot using [M] control. The task is [I], and the previous [h] steps are [S].
Can you predict the trajectory of the end-effector and the action of the next [n] steps?”

To develop a versatile and adaptive framework capable of accommodating training for tasks with
varying time horizons, we add flexibility to the proprioceptive information input. Specifically, this
information is structured as S = st−h:t, representing a sequence of past joint and/or gripper states.
Here, h is the number of previous time steps the model is conditioned on, and is decided based on
the task. This approach ensures robustness and adaptability across a spectrum of task durations,
enabling effective training for both short-term and long-term objectives.

Architecture. Our objective is to develop a model capable of predicting robotic actions that exhibit
generalization across a diversity of robotic tasks, scenarios, and environments. The model archi-
tecture is illustrated in Figure 2. Our instruction-tuned model π is designed to leverage both the
current visual observation ot and the accompanying language instruction lt as input. Subsequently,
it predicts the action sequence for the next n steps At:t+n−1 and the future 2-D Visual Traces of the
end-effector Pt:N , spanning from the current step to the final step within the episode:

π(ot, lt) → At:t+n−1,Pt:N (2)

where lt is constructed as defined above.

3

Language Decoder

Visual
Encoder

Projection Layer

Auto-regressive Transformers

Language Input

Language
Encoder

“The 2-D Visual Trace: . The action: .”

Image Input Tunable weights
Frozen weights

Figure 2: Architecture of LLARVA.

In our proposed pipeline, the input im-
age undergoes processing by the frozen vi-
sion encoder vϕ(·), which extracts visual
features and projects into a latent space
via an MLP layer H. This aligns the vi-
sual features with the dimensionality of
the language tokens. Simultaneously, the
language input undergoes tokenization us-
ing a language encoder. The visual tokens
and word tokens are then concatenated and
fed into the auto-regressive transformers
of the LMM fθ, which are trained for next-
token prediction.

2.3 Training

While keeping the vision encoder and language encoder frozen, we use instruction tuning to train
the auto-regressive transformers using standard LoRA adapters [11] for both the pre-training and
fine-tuning stages. Each image ot for an episode is accompanied by a language instruction lt, and
the predictions consist of robotic actions At:t+n−1 and visual traces Pt:N . Next, given ot and lt,
we predict the next actions and 2-D visual trace. Specifically, for a response R, we compute the
probability of the target actions and target visual traces by the following equation:

p(At:t+n−1,Pt:N | ot, lt) =
|R|∏
i=1

pθ(xi | ot, lt) (3)

where θ represents the trainable parameters, xi is the current prediction token, and n ≤ N . To
calculate loss, we use the standard cross-entropy function with these probabilities. Next, we describe
our two-step training process, the large-scale pre-training and the fine-tuning for a downstream task.

Step 1: Vision-Action Instruction Pre-training. We begin with an LMM that has been pre-
trained on vision-language (VL) tasks. In order to generalize across robotic tasks, scenarios, and
environments, the model is pre-trained on our large-scale vision-action instruction dataset. Due
to the diversity of this dataset, our model is trained simultaneously for multiple configurations of
prompt variables such as robot type R, control mode M or task instruction I 1. Using language as
input allows us to bridge fundamental gaps between subsets brought by these different configura-
tions. This extensive and varied training process can establish a powerful LMM framework that can
be further fine-tuned and adapted to handle various robotic settings. We note that this pre-training
stage is different from standard LMM pre-training. As opposed to aligning the two modalities using
a projector in VL, here we align the two modalities for generalizing robotic configurations.

Step 2: Fine-tuning for Downstream Tasks. Unlike other fields, a robotic model must be fine-
tuned on a downstream task before it can be evaluated due to the practical considerations of real-
world physical properties. Therefore, we fine-tune the pre-trained model using a small dataset with a
fixed configuration for the factors defined in Section 2.2 (e.g., the instruction has the same robot type
R, control mode M, etc.). Having seen diverse data samples makes it easy for the model to adapt
to specific downstream settings resembling what it has already encountered in pre-training. Given
new tasks, environments, or robot types, LLARVA can be adapted by fine-tuning on some example
demonstrations. In addition, data from new modalities such as 3-D, depth or tactile information can
potentially be incorporated and utilized in the fine-tuning by modifying the instruction template.

When LLARVA is to be used for a new setup or environment, this fine-tuning must first be carried
out using example demonstrations.

1Details of the configuration for each subset are available in Section B of the Supplementary Material.

4

Method
Task

open
drawer

meat off
grill

turn
tap

put
money

push
buttons

sweep
dustpan

slide
block

close
jar

screw
bulb

place
wine

reach and
drag

stack
blocks

3-D methods
C2FARM-BC 20 20 68 12 72 0 16 24 8 18 24 0
PERACT 80 84 80 44 48 56 72 60 24 12 68 36

2-D methods
Image-BC (CNN) 4 0 8 4 0 0 4 0 8 4 0 0
Image-BC (ViT) 0 0 16 0 0 0 0 0 16 0 0 0
LLARVA 60 80 56 44 56 84 100 28 8 12 52 0

Table 1: Success rate (%) on RLBench Multi-Task setting. We fine-tuned (with visual trace
prediction) the pre-trained model on 12 tasks and evaluate with 25 episodes per task. Each evaluation
episode is scored either 0 for failure or 100 for success. We gray out methods with 3-D information.

2.4 Vision-Action Instruction Dataset

In order to pre-train LLARVA, we generate 8.5M image-visual trace pairs from the Open X-
Embodiment (OXE) dataset [10]. As shown in Figure 6 in Supplementary, our dataset consists
of images from a diverse collection of 37 OXE subsets with 13 different robots, including a wide
assortment of tasks, environments, cameras (and thus images), and end-effectors, among other fac-
tors. For each image in an episode, we calculate the 2-D visual trace of the end-effector Pt:N . For
this purpose, we use a bounding box detector [12] that is trained specifically on each of the different
end-effectors in OXE. The center points of bounding boxes are used for a simpler representation,
and the visual trace for step t is then the ordered list of all center points from image t to image N .
More details of the dataset are shown in Section B in Supplementary.

3 Experiments and Results

We evaluate LLARVA on 18 tasks in RLBench and compare to both existing 2-D and 3-D models.
In addition, we also test on a real 7-DoF Franka Emika Panda robot.

3.1 Implementation Details

LLARVA is implemented using PyTorch [13] with the official LLaVA 1.5 [4] implementation. The
base LMM uses a Llama 2 7B-parameter LLM, the default image projection layer, and the CLIP ViT-
L/14 vision encoder. We use 8 NVIDIA A6000 GPUs for training, and 1 A6000 GPU for evaluation.
Additional information, such as training and fine-tuning recipes, are in Supplementary Section C.

3.2 RLBench Evaluation

Experimental Setup. We evaluate using the same 18 RLBench tasks as in [7]. In the fine-tuning
stage, the front view is chosen as ot, conditioned on the previous 5 joint positions (i.e. h = 5).
LLARVA predicts the visual trace and the next action step (i.e. n = 1), which is an 8-dimensional
vector consisting of 7 joint velocities and a binary gripper state. For evaluation, we take 25 episodes
per task in the validation set and score each episode either 0 for failure or 100 for success. We use 5
seeds, which are averaged to get the final success rate.

Baselines. We compare LLARVA to several baselines using 2-D and 3-D information. Image-
BC (CNN) and Image-BC (ViT) [14] are 2-D language-conditioned models that use CNN and ViT
vision encoders, respectively, reported in PerAct [7]. The PerAct [7] model uses voxels as 3-D input
to calculate actions, as does C2FARM-BC [15]. In contrast to the 3-D line of work, our input uses
only one camera view without any 3-D information.

Results. We show results for 12 of the tasks in Table 1; additional long-horizon task results (such
as those with multiple steps or subtasks) are presented in appendix A. Our model completely out-

5

Obs

Pred

Pred 2-D Visual Trace Ground Truth

Obs

Pred

light yellow bulb sweep to short dustpan close teal jar grill chicken off put money on top shelf slide block to green stack cyan blocks push maroon then green button

destackdestack destack bin pick move chip to counter pick orange pick can push orange to drawer

Figure 3: We visualize the ground truth (yellow line), and predicted 2-D visual trace (green dash
line) after downstream tasks fine-tuning. Our predicted 2-D visual trace gives reasonable route
planning to achieve the goal, even sometimes diverges from the ground truth.

Method 2-D Visual Trace
Task

pick stack destack one button two buttons three buttons
RPT [16] - 87.50 31.25 93.75 - - -
Octo [8] - 56.25 12.5 37.5 53.75 8.75 0
LLARVA 81.25 50.00 87.50 96.25 68.75 32.5
LLARVA 93.75 56.25 100 97.5 83.75 58.75

Table 2: Success rate (%) of LLARVA on a real robot. We compare LLARVA with RPT and Octo
by taking each pre-trained model and fine-tuning them on the same set of demonstrations. LLARVA
outperforms the others on all the tasks.

performs other 2-D based methods: we achieve an average success rate of 43.3%, while Image-BC
(CNN) and Image-BC (ViT) both achieve 1.3%. In addition, LLARVA competes with and even
beats 3-D based methods, like C2FARM-BC, which averages 22.7%, and PerAct, which achieves
55.3%. We note that 2-D methods here also include those that use multiple input images from dif-
ferent camera views, while LLARVA uses only one camera view and displays stronger performance.
Moreover, we observe that despite some cases of occlusion that arise from using just one camera
view, LLARVA can still succeed in such situations, showing the adaptability of our model.

3.3 Real Robot Evaluation

Experimental Setup. Following the setting in [16], we use a 7-DoF Franka Emika Panda robot with
the default 1-DoF parallel jaw gripper. The input image ot comes from the right side RGB camera.
We evaluate LLARVA on three pick tasks: “pick cube”, “destack cube”, and “stack cubes”, and
another task “push buttons”. During fine-tuning, we use the same number of episodes (1920) as [16]
for pick tasks. The “push buttons” task is a more complicated real world task than the pick tasks as
it requires the model to push up to three buttons from four color variations (red, blue, green, yellow)
in a specified sequence. The setup is shown in Figure 4 in Supplementary. In our experiment, we use
our pre-trained weights on OXE to fine-tune the model with a total of 450 episodes (150 episodes
each for the one, two, and three button tasks).

During training, we condition on joint positions of the previous 16 steps, and predict 7-dimensional
delta joint positions and 1-dimensional gripper status for the following 16 steps. To calculate the
final success rate, we evaluate LLARVA over 16 episodes and take the average across 5 runs.

6

Instruction
Pre-

Training

2-D
Visual
Trace

Task
reach and

drag
place
wine

meat off
grill

slide
block

40 8 36 48
48 12 40 76
44 4 56 80
52 12 80 100

Robot

Task

sweep

dustpan

put

money

push

buttons

meat off

grill

Franka 84 44 56 80

Sawyer 80 48 48 72

Table 3: Left: The effect of the instruction pre-training and 2-D visual trace. We ablate the in-
struction pre-training (step 1 in Section 2.3) and the visual traces for four random tasks in RLBench.
Right: Evaluation across different robots. We show the success rate (%) of four randomly chosen
tasks in RLBench. Using the same training recipes, we fine-tune our pre-trained model with visual
trace but different robots. For evaluation, we take 25 episodes per task, and each of them is scored
as 0 for failure or 100 for success.

Baselines. We compare LLARVA with RPT [16] and Octo [8], both of which claim the benefit
that pre-training brings to the downstream tasks. RPT uses a BERT-like [17] formulation and must
additionally pre-train on in-domain data, while Octo is pre-trained on the mixed dataset OXE and
maps the various configurations to the same action space. In contrast, LLARVA is pre-trained in a
more diverse manner, without imposing a single action space, via a unified language template.

Results. We show the results in Table 2. LLARVA achieves the highest success rate across all pick
tasks. Additionally, compared to RPT, LLARVA only needs one unified pre-trained model that is
first instruction-tuned on our dataset and then fine-tuned on each downstream task. In contrast, RPT
needs to be separately pre-trained on each individual task before being adapted to them, which brings
additional time and computation cost. In addition, Octo has difficulties adapting to a downstream
task using a different control mode as the model has only seen end-effector control in the pre-training
stage. LLARVA shows better quality both in terms of efficiency for adapting to downstream tasks
and compatibility/generalization with different control modes.

Robot Planning with 2-D Visual Traces. To align the vision and action spaces, we predict the end-
effector’s visual traces, which forces the model to develop a more comprehensive understanding.
In Figure 3, we show through visual traces that our model can plan alternative yet correct paths. For
example, in the top left image, the gripper takes a different path (go left) than the ground truth (go
right), yet it still succeeds in destacking the cube. Figure 3 also shows qualitatively that the visual
trace can help with long-horizon tasks by acting as a memory buffer that compensates for the limited
number of previous robotic states the model can handle. For instance, in the bottom right image in
Figure 3, the task is “push maroon button, then push green button.” It can be seen that the visual
trace helps the model reach the “green button” after finishing the first subtask.

3.4 Ablations

The Effect of Instruction Pre-training. We ablate the instruction pre-training in Section 2.3 to
evaluate its effect. As shown in Table 3, our model can achieve an average improvement of 17.5%
across the four tasks regardless of visual traces. We believe this improvement is due to our diverse,
large-scale pre-training, which leverages language instructions to create a strong robotics LMM
backbone that can successfully adapt to downstream robotic settings.

The Effect of 2-D Visual Traces. To test the importance of visual traces, we fine-tuned the model
with and without the visual trace prediction task. Table 3 shows that the traces provide a 15%
average improvement across the four tasks. Complete visual trace ablation results with additional
analysis can be found in Table 5 and appendix A.1. In particular, an improvement can be seen in
tasks with frequent occlusion of objects such as “meat off grill” and “slide block.” We note that
using both pre-training and 2-D visual traces can help the model complete the task even when the
target object is not visible. The “put money on top shelf” example in Figure 3 demonstrates this: the
shelf is not visible, and the gripper becomes occluded once it moves behind the counter. While the

7

results show that visual traces increase performance across all tasks tested, we find that the greatest
benefit of visual traces occurs in “meat off grill” and “slide block”, both tasks with distractor objects.

Cross-Robot Generalization. To evaluate LLARVA’s generalization across different robots, we
randomly selected four tasks in RLBench, and finetuned and evaluated on Sawyer instead of Franka
Emika Panda. As shown in Table 3, LLARVA achieves similar results across both robots, which
further proves the generalization brought by our large-scale vision-action instruction pre-training.

4 Related Work

Instruction Tuning. LLMs [18, 19, 20] are typically pre-trained on a large corpus of text with an
unsupervised training objective of next-word prediction. Instruction tuning (IT) helps to bridge the
gap between the language model’s fundamental pre-training objective of next-word prediction and
the user’s goal of having the model perform specific tasks using input-output pairs whose inputs
include text phrased as instructions. Flamingo [19], GPT-4 [21], and BLIP [22, 23] were pioneering
early LMMs, and LLAVA [24] prompted GPT-4 with image-caption pairs to generate multimodal
instruction tuning data. Many recent VL models [1, 25, 26, 27, 28, 29] have followed this approach,
as IT has been shown to improve generalization in zero-shot and few-shot tasks [2, 30, 31]. Unlike
these works, here we construct instructions from a custom template that we fill in with relevant
information about the robotic episode.

Language-conditioned Robot Agents. Recent language-conditioned models for robotics have tried
different approaches, such as generative video pre-training (GR-1 [32]), tokenized voxels for incor-
porating 3-D information (PerAct [7]), co-training on internet-scale VL data (RT-2 [9]), and large-
scale diverse pre-training with a transformer architecture (Octo [8]). However, each approach has
distinct drawbacks that we attempt to address in our model. For instance, GR-1 requires archi-
tectural changes to account for different action spaces when fine-tuning, while LLARVA is more
flexible and does not need such changes. Moreover, PerAct relies on 3-D information unavailable
on a large scale across environments, which is why we chose to use 2-D images when implementing
our model. RT-2 uses co-training on a separate web-based dataset, while we more efficiently use
instruction-tuning on a smaller, diverse vision-action instruction dataset to create a strong backbone.
Lastly, Octo uses a specialized head to predict actions, while the language head in our model is
trained to predict both robotic actions and visual traces in “natural” language.

Trajectory Prediction using Object Representations. Trajectory modeling has been a funda-
mental aspect of many machine vision applications. Many previous works have investigated the
use of object representations for trajectory modeling, ranging from classical image understanding
tasks [33, 34, 35] to an object-centric approach for video understanding [36, 37, 38, 39, 40] with
object tracking and interactions to even scene graphs [41, 42, 43, 44]. More recently, there has been
an increased interest in trajectory modeling effectiveness for vision and language, such as the refer-
ring expression localization task [45, 46, 47] and semantic segmentation using text prompts [48, 49].
In particular, the localized narrative dataset [50] enabled a new task that aims to align a long and
detailed image caption to a human trajectory. Our work takes a different approach as we use LMMs
to exploit the concept of a 2-D visual trace for implicit end-effector object representation.

5 Conclusion

Our proposed model, LLARVA, represents a significant advancement in the application of
instruction-tuned LMMs for robotics. By leveraging structured prompts to unify a range of robotic
configurations and introducing the concept of visual traces, we have demonstrated a generalization
method that better aligns vision and action modalities. Our extensive training on 8.5M image-visual
trace pairs derived from the Open X-Embodiment dataset and evaluation in both simulated and real-
world settings highlight the model’s superior performance and generalization capabilities compared
to existing approaches. This work marks a meaningful step forward in the integration of LMMs with
robotics, promising enhanced adaptability and efficiency in various robotic applications.

8

Acknowledgments

We would like to thank Max Fu for his assistance with data collection, Ritwik Gupta for his compute
support, as well as Xiaolong Wang and Ilija Radosavovic for their helpful feedback and discussions.
We also thank Nicole Walters for creating our lovely logo.

References
[1] W. Dai, J. Li, D. Li, A. M. H. Tiong, J. Zhao, W. Wang, B. Li, P. Fung, and S. Hoi. Instructblip:

Towards general-purpose vision-language models with instruction tuning, 2023.

[2] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730–27744, 2022.

[3] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. In NeurIPS, 2023.

[4] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning, 2023.

[5] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao,
P. Barnes, Y. Tay, N. M. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. C. Hutchinson, R. Pope,
J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat,
S. Dev, H. Michalewski, X. Garcı́a, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito,
D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick,
A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Dı́az, O. Firat, M. Catasta, J. Wei, K. S. Meier-Hellstern,
D. Eck, J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways. J.
Mach. Learn. Res., 24:240:1–240:113, 2022. URL https://api.semanticscholar.org/

CorpusID:247951931.

[6] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tomp-
son, Q. H. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine,
V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. R. Florence.
Palm-e: An embodied multimodal language model. In International Conference on Machine
Learning, 2023. URL https://api.semanticscholar.org/CorpusID:257364842.

[7] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

[8] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024.

[9] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, K. Choromanski, T. Ding, D. Driess, K. A.
Dubey, C. Finn, P. R. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,
A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. C. Julian, D. Kalashnikov, Y. Kuang,
I. Leal, S. Levine, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Reymann, M. S. Ryoo,
G. Salazar, P. R. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut, H. Tran, V. Vanhoucke,
Q. H. Vuong, A. Wahid, S. Welker, P. Wohlhart, T. Xiao, T. Yu, and B. Zitkovich. Rt-2: Vision-
language-action models transfer web knowledge to robotic control. ArXiv, abs/2307.15818,
2023. URL https://api.semanticscholar.org/CorpusID:260293142.

[10] O. X.-E. Collaboration, A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar, A. Lee,
A. Pooley, A. Gupta, A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Herzog, A. Irpan,
A. Khazatsky, A. Rai, A. Gupta, A. Wang, A. Kolobov, A. Singh, A. Garg, A. Kembhavi,
A. Xie, A. Brohan, A. Raffin, A. Sharma, A. Yavary, A. Jain, A. Balakrishna, A. Wahid,
B. Burgess-Limerick, B. Kim, B. Schölkopf, B. Wulfe, B. Ichter, C. Lu, C. Xu, C. Le, C. Finn,

9

https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:257364842
https://api.semanticscholar.org/CorpusID:260293142

C. Wang, C. Xu, C. Chi, C. Huang, C. Chan, C. Agia, C. Pan, C. Fu, C. Devin, D. Xu, D. Mor-
ton, D. Driess, D. Chen, D. Pathak, D. Shah, D. Büchler, D. Jayaraman, D. Kalashnikov,
D. Sadigh, E. Johns, E. Foster, F. Liu, F. Ceola, F. Xia, F. Zhao, F. V. Frujeri, F. Stulp, G. Zhou,
G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi, G. Berseth, G. Kahn, G. Wang,
H. Su, H.-S. Fang, H. Shi, H. Bao, H. B. Amor, H. I. Christensen, H. Furuta, H. Walke, H. Fang,
H. Ha, I. Mordatch, I. Radosavovic, I. Leal, J. Liang, J. Abou-Chakra, J. Kim, J. Drake, J. Pe-
ters, J. Schneider, J. Hsu, J. Bohg, J. Bingham, J. Wu, J. Gao, J. Hu, J. Wu, J. Wu, J. Sun,
J. Luo, J. Gu, J. Tan, J. Oh, J. Wu, J. Lu, J. Yang, J. Malik, J. Silvério, J. Hejna, J. Booher,
J. Tompson, J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao, K. Pertsch, K. Hausman,
K. Go, K. Gopalakrishnan, K. Goldberg, K. Byrne, K. Oslund, K. Kawaharazuka, K. Black,
K. Lin, K. Zhang, K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Srinivasan, K. Fang, K. P.
Singh, K.-H. Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. J. Fan,
L. Ott, L. Lee, L. Weihs, M. Chen, M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. G.
Castro, M. Spero, M. Du, M. Ahn, M. C. Yip, M. Zhang, M. Ding, M. Heo, M. K. Srirama,
M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen, N. Heess, N. J. Joshi, N. Suenderhauf, N. Liu,
N. D. Palo, N. M. M. Shafiullah, O. Mees, O. Kroemer, O. Bastani, P. R. Sanketi, P. T. Miller,
P. Yin, P. Wohlhart, P. Xu, P. D. Fagan, P. Mitrano, P. Sermanet, P. Abbeel, P. Sundaresan,
Q. Chen, Q. Vuong, R. Rafailov, R. Tian, R. Doshi, R. Mart’in-Mart’in, R. Baijal, R. Scalise,
R. Hendrix, R. Lin, R. Qian, R. Zhang, R. Mendonca, R. Shah, R. Hoque, R. Julian, S. Busta-
mante, S. Kirmani, S. Levine, S. Lin, S. Moore, S. Bahl, S. Dass, S. Sonawani, S. Song, S. Xu,
S. Haldar, S. Karamcheti, S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian,
S. Ramamoorthy, S. Dasari, S. Belkhale, S. Park, S. Nair, S. Mirchandani, T. Osa, T. Gupta,
T. Harada, T. Matsushima, T. Xiao, T. Kollar, T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Arm-
strong, T. Darrell, T. Chung, V. Jain, V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard, X. Chen,
X. Chen, X. Wang, X. Zhu, X. Geng, X. Liu, X. Liangwei, X. Li, Y. Pang, Y. Lu, Y. J. Ma,
Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu, Y. Wu, Y. Xu, Y. Wang, Y. Bisk, Y. Cho, Y. Lee, Y. Cui,
Y. Cao, Y.-H. Wu, Y. Tang, Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li, Y. Iwasawa, Y. Matsuo,
Z. Ma, Z. Xu, Z. J. Cui, Z. Zhang, Z. Fu, and Z. Lin. Open X-Embodiment: Robotic learning
datasets and RT-X models. https://arxiv.org/abs/2310.08864, 2023.

[11] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

[12] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[14] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learn-
ing, pages 991–1002. PMLR, 2022.

[15] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning
for visual robotic manipulation via discretisation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13739–13748, 2022.

[16] I. Radosavovic, B. Shi, L. Fu, K. Goldberg, T. Darrell, and J. Malik. Robot learning with
sensorimotor pre-training. In Conference on Robot Learning, pages 683–693. PMLR, 2023.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[18] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,

10

https://arxiv.org/abs/2310.08864
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.

neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[19] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch,
K. Millican, M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Saman-
gooei, M. Monteiro, J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh, S. Sharifzadeh,
M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman, and K. Simonyan. Flamingo: a vi-
sual language model for few-shot learning. ArXiv, abs/2204.14198, 2022. URL https:

//api.semanticscholar.org/CorpusID:248476411.

[20] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama:
Open and efficient foundation language models. ArXiv, abs/2302.13971, 2023. URL https:

//api.semanticscholar.org/CorpusID:257219404.

[21] OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.

semanticscholar.org/CorpusID:257532815.

[22] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. arXiv preprint arXiv:2201.12086, 2022.

[23] J. Li, D. Li, S. Savarese, and S. Hoi. BLIP-2: bootstrapping language-image pre-training with
frozen image encoders and large language models. In ICML, 2023.

[24] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances in neural information
processing systems, 36, 2024.

[25] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023.

[26] H. Zhang, X. Li, and L. Bing. Video-llama: An instruction-tuned audio-visual language model
for video understanding. arXiv preprint arXiv:2306.02858, 2023. URL https://arxiv.

org/abs/2306.02858.

[27] Q. Ye, H. Xu, J. Ye, M. Yan, A. Hu, H. Liu, Q. Qian, J. Zhang, F. Huang, and J. Zhou.
mplug-owl2: Revolutionizing multi-modal large language model with modality collaboration.
ArXiv, abs/2311.04257, 2023. URL https://api.semanticscholar.org/CorpusID:

265050943.

[28] P. Zhang, X. Wang, Y. Cao, C. Xu, L. Ouyang, Z. Zhao, S. Ding, S. Zhang, H. Duan,
H. Yan, X. Zhang, W. Li, J. Li, K. Chen, C. He, X. Zhang, Y. Qiao, D. Lin, and J. Wang.
Internlm-xcomposer: A vision-language large model for advanced text-image comprehension
and composition. ArXiv, abs/2309.15112, 2023. URL https://api.semanticscholar.

org/CorpusID:262824937.

[29] B. Li, Y. Zhang, L. Chen, J. Wang, F. Pu, J. Yang, C. Li, and Z. Liu. Mimic-it: Multi-modal
in-context instruction tuning. arXiv preprint arXiv:2306.05425, 2023.

[30] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani,
S. Brahma, et al. Scaling instruction-finetuned language models. Journal of Machine Learning
Research, 25(70):1–53, 2024.

[31] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le.
Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652, 2021.

11

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:248476411
https://api.semanticscholar.org/CorpusID:248476411
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://arxiv.org/abs/2306.02858
https://arxiv.org/abs/2306.02858
https://api.semanticscholar.org/CorpusID:265050943
https://api.semanticscholar.org/CorpusID:265050943
https://api.semanticscholar.org/CorpusID:262824937
https://api.semanticscholar.org/CorpusID:262824937

[32] H. Wu, Y. Jing, C. Cheang, G. Chen, J. Xu, X. Li, M. Liu, H. Li, and T. Kong. Unleash-
ing large-scale video generative pre-training for visual robot manipulation. arXiv preprint
arXiv:2312.13139, 2023.

[33] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/

14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

[34] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 2980–2988, 2017.

[35] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[36] R. Herzig, E. Ben-Avraham, K. Mangalam, A. Bar, G. Chechik, A. Rohrbach, T. Darrell, and
A. Globerson. Object-region video transformers. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[37] E. B. Avraham, R. Herzig, K. Mangalam, A. Bar, A. Rohrbach, L. Karlinsky, T. Darrell, and
A. Globerson. Bringing image scene structure to video via frame-clip consistency of object
tokens. In Thirty-Sixth Conference on Neural Information Processing Systems, 2022.

[38] X. Wang and A. Gupta. Videos as space-time region graphs. In ECCV, 2018.

[39] F. Baradel, N. Neverova, C. Wolf, J. Mille, and G. Mori. Object level visual reasoning in
videos. In ECCV, pages 105–121, 2018.

[40] D. Shan, J. Geng, M. Shu, and D. Fouhey. Understanding human hands in contact at internet
scale. In CVPR, 2020.

[41] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei. Image
retrieval using scene graphs. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3668–3678, 2015.

[42] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene Graph Generation by Iterative Message
Passing. In CVPR, pages 3097–3106, 2017.

[43] R. Herzig, A. Bar, H. Xu, G. Chechik, T. Darrell, and A. Globerson. Learning canonical
representations for scene graph to image generation. In European Conference on Computer
Vision, 2020.

[44] A. Bar, R. Herzig, X. Wang, A. Rohrbach, G. Chechik, T. Darrell, and A. Globerson. Compo-
sitional video synthesis with action graphs. In ICML, 2021.

[45] A. Kamath, M. Singh, Y. LeCun, I. Misra, G. Synnaeve, and N. Carion. Mdetr - mod-
ulated detection for end-to-end multi-modal understanding. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 1760–1770, 2021. URL https://api.

semanticscholar.org/CorpusID:233393962.

[46] J. Mao, J. Huang, A. Toshev, O. Camburu, A. L. Yuille, and K. Murphy. Generation and
comprehension of unambiguous object descriptions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 11–20, 2016.

[47] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg. Modeling context in referring ex-
pressions. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 69–85. Springer, 2016.

12

https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://api.semanticscholar.org/CorpusID:233393962
https://api.semanticscholar.org/CorpusID:233393962

[48] X. Lai, Z. Tian, Y. Chen, Y. Li, Y. Yuan, S. Liu, and J. Jia. Lisa: Reasoning seg-
mentation via large language model. ArXiv, abs/2308.00692, 2023. URL https://api.

semanticscholar.org/CorpusID:260351258.

[49] T.-H. Wu, G. Biamby, D. Chan, L. Dunlap, R. Gupta, X. Wang, J. E. Gonzalez, and T. Darrell.
See say and segment: Teaching lmms to overcome false premises. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 13459–
13469, June 2024.

[50] J. Pont-Tuset, J. R. R. Uijlings, S. Changpinyo, R. Soricut, and V. Ferrari. Connecting vision
and language with localized narratives. In European Conference on Computer Vision, 2019.
URL https://api.semanticscholar.org/CorpusID:208857532.

[51] H. Liu, W. Yan, M. Zaharia, and P. Abbeel. World model on million-length video and language
with blockwise ringattention. arXiv preprint arXiv:2402.08268, 2024.

[52] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

13

https://api.semanticscholar.org/CorpusID:260351258
https://api.semanticscholar.org/CorpusID:260351258
https://api.semanticscholar.org/CorpusID:208857532

Supplementary Material for LLARVA

Here, we provide additional information about our experiments, our model’s emergent properties,
our constructed dataset, and implementation details. Specifically, Section A provides additional ex-
periment results, Section B provides details about our constructed vision-action instruction dataset,
and Section C provides additional implementation details.

A Additional Experiment Results

A.1 Additional Experiments

Method
Task

open
drawer

meat off
grill

turn
tap

put
money

push
buttons

sweep
dustpan

slide
block

close
jar

screw
bulb

3-D methods
C2FARM-BC 20 20 68 12 72 0 16 24 8
PERACT 80 84 80 44 48 56 72 60 24

2-D methods
Image-BC (CNN) 4 0 8 4 0 0 4 0 8
Image-BC (ViT) 0 0 16 0 0 0 0 0 16
LLARVA 60 80 56 44 56 84 100 28 8

Method
Task

place
wine

reach and
drag

stack
blocks

put in
drawer

sort
shape

insert
peg

stack
cups

put in
cupboard

place
cups

3-D methods
C2FARM-BC 8 24 0 4 8 4 0 0 0
PERACT 12 68 36 68 20 0 0 16 0

2-D methods
Image-BC (CNN) 0 0 0 8 0 0 0 0 0
Image-BC (ViT) 0 0 0 0 0 0 0 0 0
LLARVA 12 52 0 0 0 0 0 0 0

Table 4: Success rate (%) on RLBench Multi-Task setting. We fine-tuned (with visual trace
prediction) the pre-trained model on 18 tasks and evaluate with 25 episodes per task. Each evaluation
episode is scored either 0 for failure or 100 for success. We gray out methods with 3-D information.

Complete Simulation Results on RLBench. Following [7, 15], we evaluate LLARVA on 18 tasks
in RLBench, with the comprehensive results presented in Table 4. LLARVA demonstrates signifi-
cant improvements over 2-D methods and shows comparable performance to 3-D methods in most
tasks. However, for “long horizon” tasks, which are more complex and involve multiple sub-steps
or extended durations, LLARVA exhibits similar limitations to other methods. Specifically, for the
“place cups” task, where success is defined by placing a specified number of cups on a rack, our
experiments reveal that the model often successfully places the first cup but then becomes confused
and wanders randomly. As discussed in the main paper, while the introduction of 2-D visual traces
provides the model with a rudimentary sense of memory (as seen in the “push buttons” case), the
length of this memory remains limited along the temporal axis. This issue can be partially addressed
by incorporating additional information from previous steps; however, it will place greater demands
on the maximum context length that vision-language models (VLMs) can handle. Fortunately, sev-
eral recent works, such as [51], have demonstrated promising solutions and performance for VLMs
with long context length.

Real Tasks: Push Buttons. We evaluate LLARVA on “push buttons”, a more complicated real
world task than the pick and place tasks involving cubes. This task requires the model to push up
to three buttons from four color variations (red, blue, green, yellow) in a specified sequence. The
setup is shown in Figure 4. The variation in the number, order and color of buttons makes the task

14

as well as the required motion of the end-effector more complicated. In our experiment, we use our
pre-trained weights on OXE to fine-tune the model with a total of 450 episodes (150 episodes each
for the one, two, and three button tasks). In our evaluation, we have three tasks: push one button
given a specific color, push two buttons given specific colors and order, and push three buttons given
specific colors and order. Results are presented in Table 2.

Figure 4: LLARVA completing the task ”push red button, then blue button, then green button” on
the Franka 7 DoF setup. The predicted 2-D visual trace is also visualized, with purple representing
the current timestep and yellow representing the predicted end of episode.

Visual Trace Ablations for 12 RLBench Tasks. For a more comprehensive ablation study on the
2-D visual traces, we extended our ablation study described in Section 3.4 to 12 tasks. We present
these results in Table 5. Overall, we find an average improvement of 13.7% with the visual traces,
which further demonstrates their utility. We further note the improvement in tasks with distractor
objects/variations such as meat off grill, open drawer, and slide block, and long horizon tasks such
as push buttons.

2-D Visual Traces
open

drawer
meat off

grill
turn
tap

put
money

push
buttons

sweep
dustpan

slide
block

close
jar

screw
bulb

place
wine

reach and
drag

stack
blocks

36 80 72 56 52 24 44 0 24 4 24 0
60 100 84 80 56 28 52 8 44 12 56 0

Table 5: Results for the visual trace ablation study across 12 tasks in the RLBench setting.

Vision and Language Modality Ablations. We performed an ablation study on the vision and
language modalities to test the importance of each. For the vision-only ablation study, when fine-
tuning, we remove the language instruction mentioned in the main paper and only feed in the visual
input (images) to the model; the ground truth output stays unchanged. We evaluated on the simulated
12 RLBench tasks, and this model has a 0% success rate. The main reasons for this are: (1) the model
does not receive any language instruction, and therefore cannot determine what task to perform, and
(2) the model is no longer guided by the proprioceptive information acquired during the previous
steps. We also evaluated the model on the real Franka Panda 7 DoF setup for the three tasks, and it
performed poorly in this case as well. Results are presented in Table 6. It can be seen that tasks that
have several variations (such as several cubes) are very hard to complete.

For the language-only ablation study, we do not input any images to the model; we only feed the
language instructions. This model again has a 0% success rate across both RLBench and real tasks.

15

We note that this result is expected since the model is unable to see the environment, and therefore
it can never know where exactly the robot is with respect to the target objects.

Model pick stack destack

LLARVA (language-only) 0 0 0
LLARVA (vision-only) 5 0 3.75
LLARVA (vision & language) 93.75 56.25 100

Table 6: Results on vision and language ablation studies conducted on our real world Franka setup.

Additional Explorations for Behavior-specific Tasks. In order to provide a more comprehensive
evaluation of LLARVA, we explored additional tasks in RLBench with specific behavior patterns.
The results for 5 additional tasks are presented in Table 7, using the same fine-tuning and evaluation
settings as in the main paper. These 5 tasks are categorized into two types: “Bending Tasks” and
“Placement Tasks”. In “Bending Tasks,” the robot arm is required to grab the target object and
move it down to a certain height. LLARVA demonstrates excellent performance on these tasks.
In “Placement Tasks,” the robot arm must grab the target object and move it to a pre-specified
area. LLARVA performs well overall, except in cases requiring delicate operations during either
the “grab” or “place” stages. For example, in the “put knife” task, most failures occur because the
gripper misses the thin and delicate handle of the knife. Conversely, in the “put umbrella” task, most
failures occur during the “place” stage, as the umbrella stand has a very small hole requiring precise
positioning of the gripper during insertion. These issues are primarily due to the lack of detailed
information from the visual observation, given that LLARVA uses only a single view image with a
128x128 resolution. Our future work will try to enable our VLM to process multiple view images
or to adapt it with a more informative vision encoder that can better capture task-related features.

2-D visual Trace
Bending Task Placement Task

toilet seat
down

close
laptop lid

put
knife

put
umbrella

move
hanger

88 56 36 0 88
96 68 40 4 88

Table 7: Evaluation results on more tasks in RLBench. We explore additional tasks in RLBench,
which can be further categorized into “Bending Task” (i.e. the robot arm is supposed to grab the
target object then bend and move the target down) and “Placement Task” (i.e. the robot arm is
supposed to grab the target object, hold and move it to a specified area).

A.2 Emergent Properties

Multiple Attempts after Failure. The top row of Figure 5 shows an example of the model failing
to pick up an object, and then retrying as soon as the end-effector comes back into view without the
object in its grasp. Specifically, the third image represents the moment where the end-effector be-
comes visible again, and LLARVA then attempts to complete the task again. This behavior emerges
from the fact that the instruction prompt fed into LLARVA at this moment is similar to the prompt at
the start of the first attempt, with the main difference being the previous actions/positions included
in the prompt. We highlight this as an interesting emergent property since the training data does not
include any examples with such behavior.

Handling Obstructed Views. In both pre-training and fine-tuning stages of LLARVA, we use only
a single camera view to provide visual inputs. Using only 2-D inputs creates a challenge since
robotics tasks require very accurate action predictions in three dimensions.

The model should be able to see the exact location of the target and also have a sense of depth,
which other works typically achieve by using either multiple camera views or 3-D representations.

16

Figure 5: Emergent Properties. Top: The task in this episode is “take the steak off the grill”.
As we see in the third image, LLARVA fails to pick up the steak in the first attempt. However, it
tries again and succeeds the second time, showing capability of attempting a task multiple times.
Bottom: The single view which is used as the model input shows the top and back of a safe. The
task is for the robot to move the money stack from the top of the safe to one of the shelves inside the
safe. LLARVA can still move the money to the correct shelf in the safe despite the camera view not
showing the shelves.

We note that our model uses a single camera view due to input limitations of current open-source
LMMs. These limitations can certainly be overcome and are left for future work.

Using a single camera view presents further challenges when objects in the scene occlude each
other. However, we find that LLARVA can often complete tasks even in these occluded situations.
For example, as shown in the second row of Figure 5, the task is “put the money away in the safe
on the top shelf”. The camera view only shows the top and back side of the safe, which is enough
information to pick up the money from the top of the safe. However, the top shelf of the safe is not
visible, and LLARVA can still predict the correct actions to place the stack of money there. This
example shows LLARVA can, in some cases, work despite visual obstructions, which we believe
is in part attributable to the introduction of the visual traces. We hypothesize that understanding
and predicting the visual trace provides the model with information about a successful end-effector
trajectory in the presence of such occlusions.

A.3 Efficiency Analysis

Step Vis. Trace Norm.Single Prompt Time Norm.No.of Prompts/Episodes Norm.Total Inference Time Succ. Rate

4 0.16 4 0.64 87.5
0.50 4 2.01 97.5

8 0.29 3 0.86 85
0.63 3 1.89 90

12 0.53 2 1.06 82.5
0.83 2 1.67 92.5

16 0.63 1 0.63 81.25
1 1 1 93.75

Table 8: Efficiency analysis results for LLARVA with varying number of predicted steps. (*Norm.
denotes Normalized, No. denotes the number of.)

In order to explore the inference efficiency with respect to the number of predicted steps, we conduct
experiments on our real Franka setup with the pick cube task. The results are shown in Table 8. We
vary the number of predicted steps with n = 4, 8, 12, 16, training both with/without visual traces
for each value. We then find the total inference time for each case as the product of the time for

17

a single prompt and the number of prompts needed per episode. We normalize all three values
(total inference time, inference time for single prompt, and number of prompts) relative to the n=16
case, which is what we used in the main paper. It can be seen that the two factors of single prompt
inference time and number of prompts needed should be balanced appropriately. For instance, the
n = 4 visual traces model has the highest accuracy, but it takes double the time that the n=16 visual
traces model does due to higher frequency of prompting. Thus, we conclude that the n=16 steps
model is both reasonably efficient and accurate.

B Additional Dataset details

Here, we provide more information about our constructed dataset.

utaustin_mutex
0.9%
stanford_mask_vit_converte
0.7%
stanford_hydra_dataset_con
0.8%
furniture_bench_dataset_co
9.2%
toto
0.8%
robo_net
5.8%

language_table
10.4%

bridge
2.3%

berkeley_rpt_converted_exte
18.0%

kuka
12.3%

austin_sailor_dataset_conve
0.8%

fractal20220817_data
8.9%

maniskill_dataset_converted
10.7%

cmu_play_fusion
0.6%

bc_z
14.1%

Figure 6: Data distributions. We do vision-action instruction pre-training for LLARVA on a dataset
built upon Open X-Embodiment [10], including 8.5M image-2-D visual trace pairs.

Data Distribution. As mentioned in the paper, we construct the vision-action tuning dataset from
a subset of Open X-Embodiment (OXE) [10]. We excluded OXE subsets with poor image quality,
smaller image resolution, ambiguous action spaces, or those with widely different robot morpholo-
gies, such as Autonomous Mobile Robots (AMRs, which involve locomotion), resulting in 8.5M
image-text pairs, whose distribution is shown in Figure 6 and Table 9. Overall, we ensured that the
resulting dataset contains subsets of [10] that use end-effector control and joint control, in addition
to including both absolute and delta control modes.

The Generation of 2-D Visual Traces. The 2-D visual traces can be seen as a trace of the end-
effector location in the image plane across time. To generate these traces, we trained an object
detector to locate the end-effector from input 2-D images. A bounding box detector was used as
opposed to a single point detector because there exist very stable implementations of such models
with pre-trained weights publicly available. Specifically, we use the Detectron2 [12] implementation
of Faster R-CNN [52] to obtain bounding boxes enclosing the end-effector, and then use the center
point of the bounding boxes as the end-effector keypoint. For training, we first loaded the ResNet-
101 weights pre-trained on ImageNet. We then randomly collected 200 images from each OXE
subset, split the collected 6400 images into a training and validation set with a ratio of 9:1, and
trained the detector for 40 epochs using a batch size of 16 and learning rate of 2−3. Some examples
of the resulting detector training set are shown in Figure 7, where the 2-D visual traces are shown
in yellow. Note that the traces are a sequence of 2-D coordinates, and Figure 7 is a visualization of

18

OXE Subset Number of Image + 2-D visual trace pairs
kuka 1044466

austin sailor dataset converted externally to rlds 70758

fractal20220817 data 753647

maniskill dataset converted externally to rlds 909568

cmu play fusion 47115

bc z 1198963

berkeley rpt converted externally to rlds new 1533451

bridge 195745

language table 885876

stanford kuka multimodal dataset converted externally to rlds 30128

robo net 496454

toto 65527

furniture bench dataset converted externally to rlds 786692

stanford hydra dataset converted externally to rlds 72160

ucsd pick and place dataset converted externally to rlds 13545

kaist nonprehensile converted externally to rlds 6512

stanford mask vit converted externally to rlds 57012

utokyo pr2 opening fridge converted externally to rlds 2276

berkeley fanuc manipulation 11854

utaustin mutex 72461

taco play 47780

berkeley autolab ur5 19621

austin sirius dataset converted externally to rlds 56101

columbia cairlab pusht real 5486

stanford robocook converted externally to rlds 22894

roboturk 37120

berkeley cable routing 7797

nyu franka play dataset converted externally to rlds 9118

jaco play 15515

viola 15146

tokyo u lsmo converted externally to rlds 2398

austin buds dataset converted externally to rlds 6771

dlr sara pour converted externally to rlds 2695

utokyo xarm pick and place converted externally to rlds 1381

utokyo pr2 tabletop manipulation converted externally to rlds 6545

dlr edan shared control converted externally to rlds 746

dlr sara grid clamp converted externally to rlds 1543

Table 9: The vision-action instruction tuning dataset.

19

Control ModeRobotVisual ObservationsSubset

End effector controlFrankafractal20220817
_data

Joint controlFranka
berkeley_rpt_co
nverted_external
ly_to_rlds

End effector controlFrankatoto

End effector controlUR5berkeley_autola
b_ur5

2D Visual Trace

Figure 7: A few samples from our constructed vision-action tuning dataset. We visualize some
samples of the instruction tuning dataset used in the pre-training stage of LLARVA, with the corre-
sponding robot type and control mode.

these sequences. During training the sequences are predicted in language token space and compared
to ground truth.

We further note that the end-effector detector is fairly robust as it has been trained on images that
cover a wide range of lighting conditions, cameras, and environments. In addition, it can easily be
fine-tuned with a very small number of sample images (200) for a new setup, making this approach
adaptable.

Metric AP AP50 AR10

Value 75.2 96.3 87.2

Table 10: Evaluation results for the end-effector detector.

C Additional Implementation Details

C.1 RLBench Experiments

LLARVA is evaluated on 18 tasks from RLBench. All RLBench tasks include two or more vari-
ations of a language instruction describing the goal. For example, there might be three variations
of the instruction for the same task: “open the top drawer”, “grip the top handle and pull the top
drawer open” and “slide the top drawer open”. For simplicity, we use the first instruction variant
for training. Below, we describe the RLBench tasks we use for simulator evaluation, along with
any modifications we made to the tasks. The intention behind the modifications is to increase the
variations of the tasks, such as adding distractor objects with different colors. This exercises the
model’s language grounding abilities. All tasks are unmodified unless otherwise noted.

Training Setup. We start with a LLARVA model that has undergone vision-action instruction pre-
training on OXE as described in Section 2.3, and perform step 2 (Section 2.3) instruction fine-tuning
for four epochs on task-specific downstream data (e.g., picking, stacking, destacking) using eight
A6000 GPUs. Step 2 instruction tuning is done using 800 demonstrations for each RLBench task.
The domain gap between step 1 and step 2 is large as we change from almost entirely real data to
simulation while at the same time changing robots and tasks. We note that while other works train
on a smaller amount of data, they use roughly the same order of magnitude of data as LLARVA, and
exploit the power of 3-D representations. For example, PerAct [7] uses 100 examples per task but
exploits voxel-based 3-D representations, which are rare and difficult to obtain. Our approach has

20

the advantage of being able to leverage 2-D representations, which may require additional data but
with roughly the same order of magnitude as methods that utilize 3-D.

Open Drawer. The task is to open one of three drawers. The success metric is a full extension of
the prismatic joint of the target drawer.

Meat off Grill. The task is to take either a piece of chicken or steak off the grill and put it on the
side. The success metric is the placement of the specified meat on the side, away from the grill.

Turn Tap. The task is to turn either the left or right handle of the tap. Left and right are defined
according to the orientation of the faucet. The success metric is the joint of the specified handle
being at least 90◦ away from the starting position.

Put Money. The task is to pick up the stack of money and place it on the specified shelf of a safe.
The safe has three shelves: top, middle, and bottom. The success metric is the placement of the
stack of money on the specified shelf in the safe.

Push Buttons. The task is to push the colored buttons in the specified sequence. There are always
three buttons present in the scene, whose colors are sampled from 20 options, and the number of
buttons to press is between one and three. The success metric is all specified buttons being pressed
in the right order.

Sweep Dustpan. The task is to sweep the dirt particles into the specified dustpan. There are two
dustpans, one short and one tall, and both are always present in the scene. The success metric is
all five dirt particles being inside the specified dustpan. We modified this task by adding a variation
with a different-sized dustpan.

Slide Block. In this task there is a block and four colored squares in the scene (green, blue, pink,
and yellow). The task is to slide the block onto either the green or pink squares. The success metric
used is some part of the block being on the specified target square. The original task only had one
target square, and we modified it by adding three additional colored squares — one target and two
distractors.

Close Jar. The task is to screw in the lid on the jar with the specified color. There are always two
colored jars in the scene, one target jar and one distractor jar. The success metric used is the lid
being on top of the specified jar and the robot gripper not grasping any object. We modified this task
so that the target jar color is drawn from a list of two possible colors (blue or teal). The color for the
distractor jar was still chosen out of 20 options.

Screw Bulb. There are two bulb holders of different colors, and the task is to pick up a light bulb
from the stand specified by color and screw it into the bulb stand. The color of the target holder is
sampled from two colors, while the color of the distractor holder is sampled from the original 20
color options. The success metric used is the bulb from the specified holder being inside the bulb
stand. We modified this task to use two colors for the target holder (yellow and purple) rather than
20 as in the original task specification.

Place Wine. The task is to pick up the wine bottle and place it at the specified location in a wooden
rack. The rack has three locations: left, middle, and right. The success metric is the placement of
the bottle on the specified location in the rack.

Reach and Drag. The environment has a cube, a stick, and four possible colored target squares.
The task is to pick up the stick and use it to drag the cube to the target square of a specified color.
The other three squares are considered distractors. The success metric used is some part of the block
being inside the target’s area. We modified this task to sample the target color from a list of three
colors (maroon, magenta, teal). The colors for distractor squares are still sampled from 20 options.

Stack Blocks . The scene starts with 8 blocks and a green platform. Four of the blocks are of a target
color, and the other four have a distractor color. The task is to stack N blocks of the target color on
the green platform. The success metric is N blocks being inside the area of the green platform.

21

Put Item in Drawer. There is a block kept on top of a chest of closed drawers. The task is to
place the block into the specified drawer among three possible options: top, middle, or bottom. The
success metric is the placement of the block inside the specified drawer.

Sort Shape. The scene has four distractor shapes and one correct shape. The task is to pick up the
shape specified in the language instruction and place it in the correct hole in the sorter. The success
metric is the correct shape being inside the corresponding hole.

Insert Onto Square Peg. The scene has a platform with three differently colored pegs, and one
square shaped object with a hole in the middle. The three colors are sampled from 20 color instances.
The task is to pick up the square and put it on the peg specified in the language instruction, with the
success metric being the placement of the square fully on the peg.

Stack Cups. The scene has three cups with colors sampled from 20 options. The task is to stack all
cups inside the cup specified in the language instruction. The success metric for this task is all other
cups being inside the specified cup.

Put Groceries in Cupboard. The scene always has nine grocery items and one cupboard. The task
is to place the item specified in the language instruction inside the cupboard. The success metric
used is the placement of the item inside the cupboard.

Place Cups. The scene always has one cup holder with three spokes and three cups with handles.
The task is to place N of the cups on the cup holder (N ∈ {1, 2, 3}). The success metric used is the
alignment of each cup’s handle with a spoke on the cup task.

Toilet Seat Down. The scene consists of a toilet which initially has its seat up. The task is to put the
toilet seat down. The success metric used is the joint of the toilet seat being at an angle consistent
with the seat being fully down.

Close Laptop Lid. The scene consists of a laptop which initially has its lid open. The task is to
close the laptop. The success metric used is the joint of the laptop lid being at an angle such that the
screen is fully down.

Put Knife on Chopping Board. The scene consists of a knife inside a knife holder, and a chopping
board. The task is to pick up the knife from the holder, and place it on the chopping board. The
success metric used is the knife being on the surface of the chopping board, and the robot gripper
not grasping anything.

Put Umbrella in Umbrella Stand. The scene consists of an umbrella and an umbrella holder. The
task is to pick up the umbrella and put it into the stand. The success metric used is the umbrella
being inside the stand, and the robot gripper not grasping anything.

Move Hanger. The scene consists of a clothes hanger and two racks. The task is to move the hanger
from its current rack to the other rack. The success metric used is the hanger being placed on the
other rack.

C.2 Real Robots Experiments

Hardware Setup. We use a Franka Emika Panda robot with a Franka gripper for real robot data
collection and evaluations. A Logitech BRIO 4K camera positioned to the right of the Franka robot
provides single-view RGB (without depth data) vision input to our model, as shown in Figure 8.
Camera autofocus is disabled, and the data is captured at 640x480 resolution. The model inference
is done on a 48GB NVIDIA A6000.

Data Collection. We use the data collection code and process from https://github.com/Max-
Fu/franka-scripted to collect data for picking, stacking, and destacking tasks. The script generates
data for an arbitrary number of episodes. For each episode, the process generates x-y positions on
the table plane using a uniform random distribution for each axis. The script directs the robot to
place the cube at each location and then collects the camera and joint information as the robot is

22

Figure 8: The real robot setup with Franka Emika Panda used for evaluating LLARVA.

directed to pick, stack, or destack the cubes. Vision is not used during this process as the cube
locations are all generated and therefore known.

Training and Execution. For the Franka Emika Panda robot experiments, we start with our
LLARVA model that has undergone vision-action instruction pre-training on OXE as described
in Section 2.3, and perform step 2 (Section 2.3) instruction fine-tuning for four epochs on 1920
episodes of task-specific downstream data (e.g., picking, stacking, destacking) using 8 A100 GPUs.
This is similar to other baselines, such as RPT [16], that uses an equal amount of in-domain episodes
(1920) for pre-training, with an additional 120-240 episodes used for fine-tuning depending on the
task. Additionally, [16] uses three camera views for each episode, while LLARVA uses only one.
Nevertheless, it can be observed that LLARVA demonstrates superior performance on all three tasks
tested despite using comparable or even fewer episodes. Finally, each real robot evaluation consists
of 16 repeated pick, stack, or destack operations at a random x-y location on the table plane for each
repetition. We report the success rate of the 16 operations.

D Discussion, Limitations and Future Work

While LLARVA offers substantial benefits for enhancing robot learning across various environ-
ments, it is important to recognize certain limitations that accompany our approach. First, even
though LLARVA already shows generalization capabilities using our instruction language format,
we think future instructions should include 3-D information about the real world. Secondly, it is
necessary for LMMs to be able to process multiple views leveraging depth or voxels, which may re-
quire the use of interleaved tokens as is done in a few existing LMMs. We therefore believe that the
next robotic LMMs should utilize this technology, and we leave this for future work. This presents
a great opportunity for future work on next-generation instruction-tuned LMMs for robotics.

E Licenses and Privacy

The license, PII, and consent details of each dataset are in the respective papers. In addition, we
wish to emphasize that the datasets we use do not contain any harmful or offensive content, as many
other papers in the field also use them. Thus, we do not anticipate a specific negative impact, but, as
with any machine learning method, we recommend exercising caution.

23

	Introduction
	Vision-Action Instruction Tuning
	Preliminaries
	LLARVA Model
	Training
	Vision-Action Instruction Dataset

	Experiments and Results
	Implementation Details
	RLBench Evaluation
	Real Robot Evaluation
	Ablations

	Related Work
	Conclusion
	Additional Experiment Results
	Additional Experiments
	Emergent Properties
	Efficiency Analysis

	Additional Dataset details
	Additional Implementation Details
	RLBench Experiments
	Real Robots Experiments

	Discussion, Limitations and Future Work
	Licenses and Privacy

