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Abstract
Large language models (LLMs) have been001
successfully adapted for interactive decision-002
making tasks like web navigation. While003
achieving decent performance, previous meth-004
ods implicitly assume a forward-only execution005
mode for the model, where they only provide006
oracle trajectories as in-context examples to007
guide the model on how to reason in the envi-008
ronment. Consequently, the model could not009
handle more challenging scenarios not covered010
in the in-context examples, e.g., mistakes, lead-011
ing to sub-optimal performance. To address012
this issue, we propose to model the interactive013
task as state space exploration, where the LLM014
agent transitions among a pre-defined set of015
states by performing actions to complete the016
task. This formulation enables flexible back-017
tracking, allowing the model to recover from018
errors easily. We evaluate our proposed LLM019
Agent with State-Space ExploRation (LASER)020
on the WebShop task. Experimental results021
show that LASER significantly outperforms022
previous methods and closes the gap with hu-023
man performance on the web navigation task.024

1 Introduction025

Large language models (LLMs) such as GPT-4026

(OpenAI, 2023) have achieved remarkable perfor-027

mance on a wide range of natural language under-028

standing (NLU) tasks (Brown et al., 2020; Ouyang029

et al., 2022; Wei et al., 2023). Recently, they030

have been adapted to interactive decision-making031

tasks such as virtual home navigation (Yang et al.,032

2023), text-based games (Lin et al., 2023) or web-033

navigation (Yao et al., 2023b; Zhou et al., 2023).034

Previous methods that utilize LLMs to solve inter-035

active tasks often implicitly assume a forward-only036

execution mode for the model, where they only037

provide a few oracle trajectories as in-context ex-038

amples to teach the model how to reason step-by-039

step (Yao et al., 2023b; Sridhar et al., 2023). In040

other words, the correct action is selected at ev-041

ery step in those oracle trajectories. This might042

Figure 1: LASER’s state transition diagram on the Web-
shop Task. Each solid circle represents a possible state,
and the arrows represent possible state transitions. This
formulation enables flexible backtracking and relieves
the limitation of forward-only examples, allowing the
model to better handle unfamiliar scenarios and recover
from errors.

lead to sub-optimal performance because when the 043

model makes an unexcepted mistake at test time, 044

it would not know how to recover from it. At the 045

same time, including many in-context examples to 046

cover all possible scenarios is costly or unrealis- 047

tic. Moreover, previous methods assume a global 048

action space where the model is free to take any 049

action at any step because they either define the 050

possible actions at the beginning of the prompt 051

or expect the LLM to figure out the possible ac- 052

tion from in-context examples automatically. This 053

might further increase the task’s difficulty, and the 054

LLM may perform invalid actions in certain cases. 055

To address the aforementioned issues, we pro- 056

pose to model the interactive tasks as state-space 057

exploration. We first define a set of high-level pos- 058

sible states the LLM agent might encounter during 059

the task execution. Then, we identify the possible 060

action space in each state and the resulting states 061

after performing each action. This formulation 062

effectively converts the LLM agent’s exploration 063

in the interactive task as state transitions, where 064

each action takes the agent from one state to an- 065

other. Naturally, this allows the agent to easily 066

recover from a wrong action: taking another ac- 067

tion that would send it back to the previous state. 068
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Moreover, our proposed formulation associates the069

action space with each individual state, which re-070

duces the task’s difficulty and allows the agent to071

always select the valid action at any step. We study072

our proposed method on the challenging Webshop073

(Yao et al., 2023a) task and build an LLM agent for074

web navigation. We show that our proposed setup075

enables the LLM agent to navigate effectively in076

an interactive environment to complete complex077

user instructions without using in-context exam-078

ples. Overall, our proposed LASER significantly079

outperforms all previous baselines and closes the080

gap with human performance.081

2 Methods082

This section formally defines our notation for the083

interactive task and then describes the proposed084

LLM agent.085

2.1 Problem Formulation086

Given a web environment E and a user instruction087

I, the agent is instantiated in the environment and088

provided with an initial observation O0. The agent089

is expected to perform a series of actions {a0, a1,090

...an} to complete the user instruction, where each091

ai produces a new observation Oi when executed092

in the environment. S denotes the stopping state093

where the agent produces an output and stops explo-094

ration after reaching it. Finally, the agent’s output095

is compared with the target to compute the metrics.096

2.2 LLM Agent097

As previously discussed, we would like the agent098

to be able to handle any novel situations or mis-099

takes that might occur during execution without100

exhaustively describing them via a large number101

of in-context examples. Thus, we propose to equip102

LLM agents with the state-tracking capability. A di-103

agram of the state transitions of our agent is shown104

in Figure 1. We start by defining a set of possi-105

ble high-level states the agent might encounter in106

the environment (§2.3). The LLM agent takes the107

user input as the overall goal and is initialized in108

the starting state. At every step, the agent receives109

state-specific system instruction, current observa-110

tion, a set of permissible actions in the current111

states, and the history of past thoughts and actions112

as inputs. Then, it selects one of the actions as out-113

put, which either transitions the agent to a different114

state or remains in the same state (§2.4). The agent115

repeats the process until the stopping state or the116

maximum step is reached. 117

Notice that with our formulation, we can pro- 118

vide detailed instructions to inform the agent of 119

the possible situations in every state and how to 120

handle them. For example, as shown in Figure 1, 121

at the results state, the current results may or may 122

not be good enough, and we instruct the agent to 123

either select an item, go to the next page, or go 124

back to search depending on its judgment. Hence, 125

these instructions can be very informative to guide 126

the agent while being much more efficient than in- 127

context examples. Next, we describe in detail how 128

we design the state and action spaces. 129

2.3 State Description 130

In previous literature, the term state is often used 131

to represent the current environment the agent is 132

in. In our work, we use the term state on a more 133

generic level, and we consider an agent to be in 134

two different states only if the structure of the rep- 135

resentation of the current environment is different. 136

In other words, if the agent receives two observa- 137

tions that share the same layout structure but with 138

different details, we consider the agent to be in the 139

same state. This allows us to define only a hand- 140

ful of states to support an agent’s exploration in a 141

complex environment fully. 142

After manually categorizing all possible states 143

in the interactive task, for each state, we write a 144

generic instruction that describes the state in detail. 145

Specifically, we provide a sample layout of the ob- 146

servation the agent would receive in that state and 147

replace all specifications in the layout with place- 148

holders. We also provide a high-level goal and 149

detailed instructions to act in that state. The sam- 150

ple layout combined with state-specific instructions 151

allows us to inform the agent of possible observa- 152

tions it might receive and how to act accordingly. 153

Therefore we no longer need to provide in-context 154

examples to guide the agent. For the WebShop task, 155

we define a total of four states, and the full prompts 156

for search, results, and item states can be found in 157

Table 3, Table 4 and Table 5 in the appendix. 158

2.4 Action Space 159

Previous methods often implicitly assume a global 160

action space for the model, i.e. the model is free 161

to take any action without further constraints. Al- 162

though the LLM is able to figure out valid actions 163

to take most of the time, it might still attempt to 164

take invalid actions in certain cases. Thus after 165

defining all possible states for the task, we further 166
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Success Rate Reward

ASH (Sridhar et al., 2023)† 30.2 56.7
ReAct (Yao et al., 2023b)†* 40.0 66.6
ReAct (ours rerun) 34.0 59.7
WebGUM (Furuta et al., 2023) 45.0 67.5
LASER - backup 48.4 71.2
LASER 50.0 75.6
Human† 59.6 82.1

Table 1: Results on WebShop Task. † Results taken from
previous papers. *They used a simplified setting where
the number of items shown on each page is limited to 3.

identify the action space for each state to rule out167

such possibilities. Specifically, we define a set of168

permissible actions that the agent can choose from169

for each state, which ensures that the agent always170

performs valid actions. The state-action mapping171

for our agent is shown in Table 7 in the appendix.172

In practice, permissible actions can also be deter-173

mined heuristically, e.g., identifying all clickable174

buttons on a webpage.175

Inspired by the success of the reason-then-act176

method (Yao et al., 2023b), we also ask the agent177

to produce a thought at every step and then select178

an action based on its thought. The agent keeps179

repeating the thought-and-action process until it180

reaches the stopping state or the maximum step is181

reached. We also define a memory buffer to store182

the intermediate results (the items examined but183

considered non-matching) during the exploration.184

This is similar to human behavior in that people185

typically find a few backup options before finding186

the desired item. When the agent is forced to stop187

after the maximum number of steps, it selects one188

of the intermediate results as the final output, and189

we call this the backup strategy.190

3 Experiments191

We conduct our experiments on the WebShop task192

(Yao et al., 2023a). We used 500 test set instruc-193

tions for evaluation and adopted reward and success194

rate as metrics following previous works (Yao et al.,195

2023a). We used GPT-4-0613 to power LASER196

and its function-calling ability to implement ac-197

tion selection step. More detailed experimental198

setup is discussed in Appendix B. We compare199

against the following baselines: ReAct (Yao et al.,200

2023b) is a prompting method designed for inter-201

active decision-making tasks. At every step, the202

LLM agent receives an observation and can either203

produce a thought or an action. The agent accu-204

Success Rate Reward

LASER 52.0 77.6
LASER + One-shot 50.0 74.9
LASER - function call 50.0 76.2
LASER (text-davinci-003) 38.5 70.2

Table 2: Ablation Results on the WebShop Task. We
evaluated on 200 instead of 500 episodes due to a limited
computing budget.

mulates all of the past observations, thoughts, and 205

actions in its prompt, using a full trajectory of ex- 206

ploration as an in-context example. The original 207

ReAct uses PaLM (Chowdhery et al., 2022) as its 208

LLM backbone. To make a fair comparison, we 209

also rerun the ReAct method with GPT-4-0613. 210

ASH (Sridhar et al., 2023) builds on top of React 211

and adds a summarization step that condenses the 212

agent observation and acts based on the condensed 213

information. WebGUM (Furuta et al., 2023) is a su- 214

pervised method that finetunes FlanT5-XL model 215

(Chung et al., 2022) on 1K human demonstrations 216

provided by the WebShop task. 217

4 Results 218

The overall results of our experiments are shown 219

in Table 1. Our early experiments showed that the 220

ReAct agent often produces invalid actions. For 221

example, when it selects an item that doesn’t match 222

the instruction, it tries to go to the next page be- 223

fore backing to the results page. Also, the ReAct 224

agent often got stuck in a certain action and failed 225

to produce output. For example, the agent keeps 226

going to the next page until the maximum step is 227

reached. We added detailed instructions as the sys- 228

tem prompt to try to address the issue. Despite our 229

best efforts, the agent still makes invalid actions in 230

some cases and achieves worse results than the orig- 231

inal paper. On the other hand, LASER outperforms 232

baselines by large margins on both metrics, show- 233

ing the effectiveness of our approach. We further 234

removed the backup strategy of LASER (the agent 235

would receive a 0 score when the maximum bud- 236

get runs out) to make a more fair comparison with 237

ReAct. We see that our method still outperforms 238

baselines by very large margins. 239

4.1 Analysis 240

We first conduct ablation studies to understand the 241

important design decisions of our agent. 242

Zero-shot vs Few-shot We used state-specific in- 243
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Figure 2: Left: LASER’s performance for test set
episodes of different lengths. Right: The distribution
of the number of steps LASER takes to complete 500
test-set instructions.

structions only to guide our agent’s exploration244

in the environment, whereas previous works often245

adopt in-context examples. To investigate if the246

agent can further benefit from in-context examples,247

we experimented with a one-shot setting: for every248

prompt in LASER, we added one example input-249

output pair between our system instructions and250

current inputs, and the rest of the agent remains the251

same. Due to the limited computing budget, we252

only ran our ablation studies on 200 episodes. The253

results are shown in Table 2. We see that adding254

an in-context example actually leads to worse per-255

formance. Since LASER already performs valid256

actions 100% time, we hypothesize that the agent257

understands the task well without in-context exam-258

ples and the added example is actually distracting259

the agent in some cases.260

Effect of function-calling LASER takes advantage261

of the function-calling functionality that is enabled262

only for GPT models after June 13th. Thus, we263

are interested to see the effect of replacing this264

design with regular text generation. To do so, in-265

stead of passing the permissible actions as a list266

of functions, we convert each action as a Python267

dictionary describing its purpose and arguments268

and then append them to the prompt. We then ask269

the LLM to generate output in JSON format to270

represent the action it selects with appropriate ar-271

guments. The results are shown in Table 2. Again,272

the agent without function calling performs slightly273

worse on these 200 episodes. It shows that the func-274

tion calling functionality can be leveraged to boost275

performance when building interactive agents, sug-276

gesting a direction for building future LLMs.277

Performance vs trajectory length Here, we are278

interested in seeing the length of LASER’s trajec-279

tories and their effect on the overall performance.280

We plot the distribution of trajectory length in Fig- 281

ure 2 and the agent’s performance for each length 282

group. We notice that most of the time, the agent 283

only took three state transitions to reach the finish 284

state, which is search-select-buy. From the left fig- 285

ure, the agent’s performance generally decreases 286

as the trajectory gets longer. However, the drop is 287

less significant compared to the observation made 288

for ReAct and ASH agent (Sridhar et al., 2023), 289

which further shows the effectiveness of our agent. 290

Finally, for the length 15 group, for which the agent 291

is forced to stop and select from the browsing his- 292

tory, the performance is much lower than other 293

groups. While not surprising, it has a non-zero suc- 294

cess rate, showing that there are cases where the 295

agent found a matching item but failed to recognize 296

it as the target in the first pass. 297

Generalization to different LLMs We leverage 298

the most powerful LLM to date to build LASER, 299

and we are interested to see if it can transfer well 300

to another LLM. We adopted the text-davinci-003 301

model to see our agent’s performance with a less 302

powerful non-chat model. Since this model does 303

not support function-calling, we adopted the ap- 304

proach described earlier to prompt the model to 305

generate JSON output to represent actions. The 306

results are shown in Table 2. Although switching 307

to text-davinci-003 leads to a large drop in perfor- 308

mance, our model still achieves better results than 309

the baselines. It shows that our proposed agent 310

can be easily adapted to other LLMs with differ- 311

ent capabilities. With more powerful models in 312

the future, our agent could potentially surpass hu- 313

man performance on this task. We also conducted 314

case studies to inspect the failure modes of LASER 315

and additional results are in Figure C. We discuss 316

related works in Appendix A. 317

5 Conclusions 318

In this work, we proposed an LLM agent, LASER, 319

that models interactive web navigation tasks as 320

state-space exploration. Our formulation allows 321

the agent to handle novel situations, easily back- 322

track from mistakes, and always perform valid ac- 323

tions. Guided solely by the state-specific instruc- 324

tions without any in-context examples, LASER 325

outperforms all previous baselines on the WebShop 326

task by large margins. Furthermore, our analysis 327

shows that LASER is also more robust to longer 328

trajectories and generalizes well to other LLMs. 329
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Limitations330

In this work, we have only conducted experiments331

on the Webshop task. Despite its challenging na-332

ture, the websites hosted in this task are still sim-333

plified. For future work, it would be interesting334

to apply our LASER to more challenging bench-335

marks (Zhou et al., 2023) and real-world shopping336

websites 1 to test its ability. Also, it would be in-337

teresting to equip LASER with more tools such as338

a knowledge retriever (Ma et al., 2023) or a calcu-339

lator (Gao et al., 2022), so that it can handle more340

complex instructions.341

Our LASER requires manual annotation of pos-342

sible states in the environment and their corre-343

sponding descriptions. Because of this, our method344

might only be suitable for building agents for spe-345

cific domains (rather than open-world web agents),346

where only a handful of states are required, e.g. e-347

commerce or travel booking. For future directions,348

we envision a hierarchical multi-agent system, in349

which each specific domain is governed by an agent350

like LASER, and a general open-world agent just351

collaborates with other domain agents to complete352

various user instructions.353

Regarding potential risks of our work, we think354

extra caution and testing are required before de-355

ploying LASER to real-world scenarios. Since we356

only conduct experiments in a simulated environ-357

ment, we allow the agent to take any action permit-358

ted in the environment. However, certain actions359

may have hard-to-recover consequences in the real360

world. For example, clicking the buy button in a361

real shopping site. As LASER’s success rate is still362

far from being perfect, it might require addtional363

human verification before proceeding with actions364

that have high-stakes.365
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A Related Works508

Interactive decision-making tasks such as web nav-509

igation have become popular recently (Liu et al.,510

2018; Yao et al., 2023a; Deng et al., 2023; Zhou511

et al., 2023), while some efforts have tried to solve512

these tasks by finetuning pretrained language mod-513

els on a large corpus of demonstration data (Gur514

et al., 2022; Furuta et al., 2023), other attempted to515

build agents to navigate web environments solely516

relying on prompting LLMs (Yang et al., 2023).517

Among the LLM-based approaches, ReAct (Yao518

et al., 2023b) and InnerMonologue (Huang et al.,519

2022) equip the LLM with a thought process before520

producing actions. ASH (Sridhar et al., 2023) and521

WebAgent (Gur et al., 2023) focus on decomposing522

complex decision-making steps into a set of sim-523

pler steps, e.g. first summarizing the task-relevant524

content and then act upon it. Most similar to our525

work, Synapse (Zheng et al., 2023) also proposed to526

use state-conditional prompts to guide the LLM’s527

action. However, their focus is on decomposing the528

few-shot examples into atomic parts whereas our529

agent uses state-specific instructions alone without530

in-context examples to complete tasks.531

Another line of work focuses on the planning532

stage of LLM agents. Kim et al. (2023) proposed533

an agent RCI that generates a plan before acting,534

and then refines its action when encountering errors.535

Adaplanner (Sun et al., 2023) further enhanced the536

planning approach by adaptively updating the plan537

during the agent’s execution. Reflexion (Shinn538

et al., 2023) agent refines its plan and actions by539

taking environmental feedback through a trial-and-540

error fashion. These approaches are orthogonal to541

our work and can be potentially combined with our542

agent to enhance its performance.543

B Experimental Details544

The WebShop provides a simulated environment545

for online shopping, containing 1,181,436 items546

collected from Amazon shopping sites. Addition-547

ally, the task provides human-annotated instruc-548

tions for purchasing certain items and their corre-549

sponding target items. We followed previous works550

and used the 500 test set instructions to evaluate551

our LASER and evaluate with rewards and success552

rate, where the agent is considered successful if the553

purchased item perfectly matches the target item,554

otherwise, if the purchased item partially matches555

the target item, the agent receives a partial reward556

(scale between 0-100).557

Figure 3: An example of the Item good enough error
cases, the item selected by the agent is shown and the
user instruction is on the top. The reward the agent
receives is 0.666.

Figure 4: An example of the Missing details error cases,
the item selected by the agent is shown and the user
instruction is on the top. The reward the agent receives
is 0.8.

For our method, we used the GPT-4-0613 to 558

power our LASER. We used the function-calling 559

functionality to implement the action selection step. 560

In particular, we write a short description for each 561

action and then pass them as a list to the function- 562

call argument of the LLM to let the model select 563

from. We allow our agent to make 15 state transi- 564

tions in maximum. In practice, if the agent has not 565

reached the finish state after 13 state transitions, we 566

force it to select from the history to ensure it does 567

not exceed the budget. 568

C Case Studies 569

We manually annotated 30 error cases from the 570

Dev set to understand the failure cases of LASER. 571

We broadly categorize the errors into three cate- 572

gories: Item good enough: the item selected by the 573

agent meets the user instruction from the authors’ 574

perspective but did not receive a full score. We 575

7



found that 9 out of 30 cases fall into this category,576

and an example is shown in Figure 3. The item577

found by the agent is indeed a green table lamp for578

the living room with a price within the budget, but579

it is considered incorrect. Retrieval failure: none580

of the items returned by the search engine meets581

the user requirement, despite that the agent used582

a suitable query for retrieval. We found 12 out of583

30 cases fall into this category. We hypothesize584

that a more effective retriever or search engine can585

probably address these issues. Missing details: The586

item selected by the agent indeed does not match587

the user’s instruction on certain details. We found588

that 9 out of 30 cases fall into this category, and589

an example is shown in Figure 4. In this example,590

although the color and size of the selected women’s591

shoes both matched the user instructions, these are592

not high-heel shoes. This indicates that LASER593

can make mistakes when encountering items with594

many matching details, and it would be interesting595

to see if a self-feedback/verification module can596

address this issue (Madaan et al., 2023).597

D Prompts used in our experiments598

E Licenses599

The Webshop task and ReAct method are both re-600

leased under MIT License. They are both released601

for research purposes, and our experiments are con-602

sistent with their intended usage.603
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You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current web navigation session, in the following format:

Current Observation:
WebShop
Instruction:
{the user instruction}
[button] Search [button_] (generate a search query based on the user instruction and select this button to
find relevant items)

Every button in the observation represents a possible action you can take. Based on the current
observation, your task is to generate a rationale about the next action you should take. Note that if an
history of past rationales and actions is provided, you should also consider the history when generating
the rationale.

Table 3: The system instruction we used for the search state.

You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current web navigation session, in the following format:

Current Observation:
Instruction:
{the user instruction}
[button] Back to Search [button_] (select this button to go back to the search page)
Page current page number (Total results: total number of results)
[button] Next > [button_] (select this button to go to the next page of results)
[button] {item_id 1} [button_] (select this button to view item 1’s details)
{name of item 1}
{price of item 1}
[button] {item_id 2} [button_] (select this button to view item 2’s details)
{name of item 2}
{price of item 2}
[button] {item_id 3} [button_] (select this button to view item 3’s details)
{name of item 3}
{price of item 3}
{More items...}

At this stage, you want to select an item that might match the user instruction. Note that even if an item
has non-matching details with the user instruction, it might offer different customization options to
allow you to match. E.g. an item may have color x in its name, but you can customize it to color y later,
the customization options are shown after you select the item. Thus if an item name seems relevant or
partially matches the instruction, you should select that item to check its details. If an item has been
selected before (the button has been clicked), you should not select the same item again. In other words,
do not select an item with [clicked button] item_id [clicked button_]. Prepare your response in the
following format:
Rationale: the user wanted {keywords of the target item}, and we have found {matching keywords of
item x}, thus item {item_id x} seems to be a match.

Table 4: The system instruction we used for the result state.
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You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current web navigation session, in the following format:

Current Observation:
Instruction:
{the user instruction}
[button] Back to Search [button_] (select this button to go back to the search page)
[button] < Prev [button_] (select this button to go back to the previous page of results)
{Customization type1}:
[button] option1 [button_]
[button] option2 [button_]
{Customization type2}:
[button] option1 [button_]
[button] option2 [button_]
{more customization options... (if any)}
{Item name and details}
[button] Description [button_] (select this button to view the full description of the item)
[button] Features [button_] (select this button to view the full features of the item)
[button] Reviews [button_] (select this button to view the full reviews of the item)
[button] Buy Now [button_] (select this button to buy the item)

description: (if this is shown, the description button should not be selected again)
{full description of the item (if any) or "None"}

features: (if this is shown, the features button should not be selected again)
{full features of the item (if any) or "None"}

reviews: (if this is shown, the reviews button should not be selected again)
{full reviews of the item (if any) or "None"}

Target item details (what the user is looking for):
keywords: {keywords of the target item}
max_price: {the price of the item should not exceed this}

At this stage, you want to verify if the item matches the user instruction. You should consider the
available customization options when deciding whether an item matches the user instruction. If an item
can be customized to match the user instruction, or if the customization options cover the user
specification, it is also a good match. If the item does not match the user instruction and it does not
provide enough customization options, you can go to previous page to view other items. You can also
check the item’s description, features and reviews to view more details (Note that description, features
and reviews could be "None", do not check them again if they are already given). Prepare your
response in the following format:
Rationale: the user wanted {keywords of the target item}, and they required the following customization
options: {cutomization of the target item}, the item is keywords of the item in the current observation,
and it has the following customization options: {options available for the current item}, which {cover}/
{not cover the user requirement}, thus we should {buy the item}/{check more details}/{go to previous
page to view other items}

Table 5: The system instruction we used for the item state.
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You are an intelligent shopping assistant that can help users find the right item. You are given an
observation of the current environment and a rationale for the next action to be taken,
in the following format:

Current Observation:
The observation layout from search or result or item state, as shown from Table 3, Table 4 and Table 5

Next action rationale: {the rationale for the next action}

Your task is to perform one of the function calls based on the rationale.

Table 6: The system instruction we used for generating action from thought.

State Available Actions
Search {"name": "Search", "description": "Use this function to search for the target item in the

inventory based on keywords"}
Result {"name": "select_item", "description": "Use this function to select one of the items from

the search results and check its details"}
{"name": "Next", "description": "Use this function to go to the next page of search results
to view more items, if none of the items on the current page match the user instruction."}
{"name": "Back_to_Search", "description": "Use this function to go back to the initial
search page. You should use this function only if you have browsed multiple pages of
items and checked multiple items’ details in the history, and none of the items
match the user instruction."}

Item {"name": "Description", "description": "Use this function to check the description of the
item, if you are unsure if the item perfectly matches the user instruction"}
{"name": "Features", "description": "Use this function to check the features of the item,
if you are unsure if the item perfectly matches the user instruction"}
{"name": "Reviews", "description": "Use this function to check the reviews of the item,
if you are unsure if the item perfectly matches the user instruction"}
{"name": "Buy_Now", "description": "Use this function to buy the current item, if the
current item perfectly matches the user instruction."}
{"name": "Prev", "description": "Use this fucntion to go back to the results page, if the
current item does not match the user instruction "}

Table 7: The action space of our agent in each state. Each action is implemented as a function call following the
guidelines from OpenAI 2, additional parameters used in the function call are omitted here for brevity.
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