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Abstract

Microscopic interpretation of histopathology images underlies many important diagnostic
and treatment decisions. While advances in vision–language modeling raise new oppor-
tunities for analysis of such images, the gigapixel-scale size of whole slide images (WSIs)
introduces unique challenges. Additionally, pathology reports simultaneously highlight key
findings from small regions while also aggregating interpretation across multiple slides, of-
ten making it difficult to create robust image–text pairs. As such, pathology reports remain
a largely untapped source of supervision in computational pathology, with most efforts rely-
ing on region-of-interest annotations or self-supervision at the patch-level. In this work, we
develop a vision–language model based on the BLIP-2 framework using WSIs paired with
curated text from pathology reports. This enables applications utilizing a shared image–
text embedding space, such as text or image retrieval for finding cases of interest, as well as
integration of the WSI encoder with a frozen large language model (LLM) for WSI-based
generative text capabilities such as report generation or AI-in-the-loop interactions. We
utilize a de-identified dataset of over 350,000 WSIs and diagnostic text pairs, spanning a
wide range of diagnoses, procedure types, and tissue types. We present pathologist eval-
uation of text generation and text retrieval using WSI embeddings, as well as results for
WSI classification and workflow prioritization (slide-level triaging). Model-generated text
for WSIs was rated by pathologists as accurate, without clinically significant error or omis-
sion, for 78% of WSIs on average. This work demonstrates exciting potential capabilities
for language-aligned WSI embeddings.
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1 Introduction

Recent work in the field of digital histopathology has moved beyond task-specific image
classifiers, or even image-only foundation models, to advances using image–text data for
vision–language modeling (Huang et al., 2023; Ikezogwo et al., 2024; Lu et al., 2023a; Sun
et al., 2024b). The training data for such efforts have predominantly been based on small
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Figure 1: Model overview. PathAlign provides aligned WSI and text embeddings enabling
embedding-based cross-modal retrieval and WSI classification. The WSI-encoder is further aligned
with a frozen large language model (LLM), enabling applications such as text generation and visual
question answering. The model is trained largely following the BLIP-2 approach (see Section 3.4 for
details), making use of a frozen patch-level, histopathology-specialized embedding model (PathSSL)
and a frozen LLM.

patches or regions-of-interest (ROIs) extracted from within a Whole Slide Image (WSI),
paired with associated patch-level text descriptions. For example, the captions and fig-
ures for histopathology images in journal articles or educational resources. While such
sources can provide useful pairs for local histological features, many pathology tasks involve
slide-level or case-level interpretation. Additionally, curated WSI-level text descriptions
accurately paired with specific slides are less readily available than patch-level captions,
particularly at the scale necessary for machine learning based approaches. Even when
pathology reports are available, it can be challenging to identify the specific slides that are
associated with the reported findings. This is because reporting is typically done for the
entire case, but there may be many slides for each case, some of which contribute more
meaningfully to the diagnosis and reported findings than others. At least in part due to
this data-curation challenge, robust strategies to develop visual-language models for WSIs
in pathology have been limited to a small number of recent examples.

In this work, we develop PathAlign to further address some of the challenges of image–
text alignment for gigapixel WSIs. (see Figure 1). PathAlign learns vision–language
alignment using WSIs paired with the corresponding diagnostic text from pathology re-
ports. This approach enables capabilities that rely on image–text alignment at a slide-level,
bringing us closer to the possibility of applications such as automatic report generation and
case-level visual question answering for digital histopathology. We utilize embeddings from a
patch-level foundation model (Lai et al., 2023) as inputs to a BLIP-2 (Li et al., 2023) frame-
work and train two models: one variant trained only with the image–text contrastive loss
for efficient embedding-based retrieval, and a second variant using the standard two-stage
BLIP-2 training that further integrates a frozen LLM to enable WSI-level text generation
and basic visual question-answering capabilities. We present one of the first quantitative
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pathologist evaluations of WSI-level text generation and image-to-text retrieval. Addition-
ally, we evaluate model performance for WSI classification and present an example of slide
prioritization as one practical use case for LLM integration.

2 Related work

The emergence of large language models (LLMs) and large multimodal models (LMMs) has
created an entirely new field of multimodal and generative AI systems, with approaches
such as CLIP (Radford et al., 2021), BLIP-2 (Li et al., 2023), LLaVa (Liu et al., 2024),
CoCa (Yu et al., 2022; Zuo et al., 2023), and others. For pathology specifically, a number of
recent works describe promising results for vision–language models. These include utiliza-
tion of a variety of different data sources for image–text pairs, including social media posts
by experts (Tsuneki and Kanavati, 2022), YouTube video and caption curation (Ikezogwo
et al., 2024), pathology reports with patch extraction (Zhang et al., 2023a,b), and large-
scale curation of figure-caption pairs from medical literature and educational resources (Lu
et al., 2023a; Sun et al., 2024b; Gamper and Rajpoot, 2021; Sun et al., 2024a). Addi-
tionally, Sun et al. (2024a) recently evaluated many publicly available LMMs on a large,
patch-based visual question answering (VQA) dataset, which was itself generated and cu-
rated with the help of the GPT-4V LMM (Sun et al., 2024a). While many of these works
focus on patch-level modeling, initial strategies have also been described to represent WSIs,
including patch aggregation (Lu et al., 2023b; Song et al., 2024; Ciga et al., 2021), mul-
timodal pretraining (Jaume et al., 2024), hierarchical and self-supervised learning (Chen
et al., 2022; Hou et al., 2024), and WSI–language alignment (Xu et al., 2024; Shaikovski
et al., 2024). These contributions represent important milestones, and also highlight some
of the unique challenges for aligning large images and text information at the WSI-level.

3 Methods

3.1 Data

The primary data used for this work consists of a de-identified dataset (DS1) of 354,089
WSIs from a teaching hospital paired with diagnostic text from pathology reports. The
vast majority are hematoxylin and eosin (H&E) stained, with a smaller portion of immuno-
histochemical (IHC) stained slides. DS1 reflects a real-world distribution of case-types for
general pathology practice in the U.S. A summary of the most common tissue sample labels
is shown in Supplemental Table C.1. The study was reviewed by Advarra IRB (Columbia,
Maryland) and deemed exempt from from further review as all data is retrospective and
de-identified. In order to further enrich our data for cancer cases, we also included de-
identified data from The Cancer Genome Atlas (TCGA). We utilized the set of 12,268
diagnostic WSIs in TCGA across all 32 TCGA solid tumor study types (where each study
type approximately maps to a unique cancer type).

3.2 Curating image–text pairs

Pathology specimens are typically processed and accessioned by case, part, and block, with
findings reported per part (where part indicates distinct tissue specimens within a single
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Figure 2: WSI–text association types in real world data. We associate each WSI with
part-level text from the original report. Due to the part, block, slide hierarchy and variability in
accessioning, there are three high-level categories of association between slides and part-level text.
The probability that some of the information in the part-level text does not apply to a given slide
increases from category 1 to category 3.

case; see also Supplemental Figure B.1). This results in three high-level categories of
association between slides and part-level text (see Figure 2): (1) a single slide from a
single block; (2) multiple slides from a single block; (3) one or more slides per block across
multiple blocks. The probability that some of the information in the part-level text does
not actually apply to a given slide (because that particular slide is not representative of the
final diagnostic finding) increases from category 1 to category 3. This raises the challenge
of pairing any given slide with the portion of the pathology report that actually describes
the findings on that particular slide.

To at least partially address this challenge, we first pair each slide with its associated,
part-level text from the report using part indicators present in both the full text and the
WSI metadata. Next, we separate the DS1 dataset into a “clean” set of all category 1 along
with category 2 slides where these ambiguities are mitigated (calling this set DS1-Clean),
and a “noisy” set consisting of all categories (DS1-Noisy).

For TCGA, instead of parsing heterogeneous reports to map text to slides without part
indicators, we utilized structured case-level metadata available for TCGA (Liu et al., 2018)
to generate a basic description in the label : finding format, analogous to the typical
structure of part-level text in DS1.

For additional details on creating image–text pairs, see Section A.1 in the Appendix.

3.3 Data splits

For DS1, slides from DS1-Clean were randomly split by case into train, validation, and
test sets (90/5/5 split). All slides from cases not included in the validation and test splits
of DS1-Clean were combined with remaining category 2 and category 3 WSIs to form
DS1-Noisy, a larger dataset used for training only (N = 344, 532 WSIs).

For TCGA, diagnostic H&E slides across all TCGA study types (N = 12, 268) were
split into train, validation and test sets on a per-study basis by tissue source site (TSS) to
enable better evaluation of generalization across tissue and image processing variability from
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Table 1: Data overview by case, part, and slide. Splits were performed at the case-level.
DS1-Noisy does not have a validation or test split and the training split of DS1-Clean is a subset
of DS1-Noisy. TCGA includes only the diagnostic category slides from TCGA. Because DS1-
Clean has only one WSI per part-level text, the number of slides is equal to the number of parts,
but there still may be more than one part per case.

Name Description Split # Cases #Parts #Slides

DS1-Clean
Image–text pairs with only one
WSI per part-level diagnostic text.

train

validation

test

49,382

2,785

2,840

82,764

4,678

4,879

82,764

4,678

4,879

DS1-Noisy
All WSIs with part-level note, in-
cluding instances of multiple WSIs
for the same part-level note.

train

validation

test

72,219

–

–

122,181

–

–

344,532

–

–

TCGA
All FFPE images in TCGA, with
synthesized text based on TCGA
study type and metadata.

train

validation

test

4,717

2,172

2,429

N/A

6,323

2,681

3,264

different sites. TSSs were assigned with a target split-ratio of 2:1:1 across train, validation
and test splits within each TCGA study, though the final ratios varied due to site-size
variability (see Table 1 and Supplemental Table C.11 for details).

3.4 Modeling

Patch sampling We represent each WSI by a set of up to 10,240 tissue-containing patches
of size 224 × 224 at 10X magnification (≈1 micron-per-pixel), which covers all patches for
97.8% percent of DS1 WSIs, and 91.4% of TCGA WSIs (see supplemental Figure B.3, with
additional details in Section A.2.)

Patch encoder We pretrained a pathology-specific patch-level encoder via self-supervised
learning using the train split of DS1, following the approach described by Lai et al. (2023)
using Masked Siamese Networks (Assran et al., 2022) as the SSL method along with the
RandStainNA color augmentation method (Shen et al., 2022). This patch encoder uses a
ViT-S architecture (Dosovitskiy et al., 2020; Steiner et al., 2021) and maps 224× 224 pixel
patches into embeddings of size 384.

WSI encoder Our WSI-encoder is comprised of the image transformer submodule of the
Q-Former in the BLIP-2 framework (Li et al., 2023). The input to the WSI-encoder is
the sequence of up to 10,240 patch-embeddings from the patch-encoder, with non-learnable
sine and cosine position encodings for the patch coordinates incorporated for both x and
y axes (Vaswani et al., 2017). The learned query vectors in the Q-Former are used to
cross-attend to the input WSI data.

Image–text alignment PathAlign is based on the BLIP-2 (Li et al., 2023) vision–
language model architecture and training approach (see Figure 1). In the first stage, the
WSI and text encoders are trained to align their representations, using learned query vectors
to cross-attend to the WSI data. For input to the WSI encoder, WSIs are represented via se-
quences of patch-level embeddings produced from a patch-level SSL-trained histopathology
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Figure 3: Pathologist evaluation of image-to-text retrievals and generated text. (a) For
embedding-based retrievals, top-K accuracy is shown, using a rating of 4 or 5 to indicate accurate
text without clinically significant errors or omissions. Original refers to pathologist evaluation of
the original diagnostic text. (b) Per WSI comparison of ratings for the generated text and the
original diagnostic text. Ratings for which both AI and original text received a score of 3 or lower
are excluded in this plot: 21 ratings excluded in total (9%) with 3 from normal (4% of normal), 11
from mild (11% of mild), and 7 from significant (13% of significant). The score-based definitions
of these categories are provided in Supplemental Table C.9. The mild category includes a range of
findings such as inflammation, benign conditions, and adenomas. The significant category includes
carcinoma, dysplasia, and findings with direct implications for clinical management.

foundation model along with their positional coordinates. For the second stage, we discard
the text encoder from stage 1, and graft the pretrained WSI-encoder to a frozen generative
LLM via a linear layer with further fine tuning for text generation. We train one stage 1
model with the image–text contrastive loss only, referring to this variant as PathAlign-
R (for retrieval, based on use of this model for cross-modal retrieval tasks). The second
variant is trained using the standard two-stage BLIP-2 training procedure along with LLM
integration for text generation. We refer to this variant as PathAlign-G (for generation),
and use a frozen PaLM-2 S (Anil et al., 2023) model as the LLM. Additional details are
provided in Section A.3 including hyper-parameter settings in Supplemental Table C.3.

3.5 Evaluation

Text retrieval and generation Two U.S.-board certified pathologists evaluated texts
for top-K image-to-text retrieval (PathAlign-R) and text generation (PathAlign-G). Au-
tomatic evaluation was also performed (primarily for model development) using a similarity
score threshold for embeddings from a text-similarity model to determine accurate retrievals
(see Section A.5). Text examples were rated on a five-point scale based on concurrent review
of the corresponding WSI (scoring instruction details in Supplemental Table C.8). Retrieval
was performed using cosine-similarity between image and text embeddings using the corpus
of unique texts in the test set (N = 3, 176 unique diagnostic texts). Additional details

6



PathAlign: A vision–language model for WSIs in histopathology

Table 2: Examples of retrieved and generated text for input WSIs. These qualitative
examples illustrate the style for evaluated text-image pairs and highlight the model’s ability to
retrieve and generate accurate text, sometimes even preferred to the original diagnostic text.

Example 1 Example 2 Example 3

WSI thumbnail

Enlarged view

Original text

duodenum, biopsy : un-
remarkable intestinal mu-
cosa.

cervix : biopsy: - low grade
squamous intraepithelial le-
sion (cin 1, mild dysplasia).

skin, biopsy : intradermal
nevus.

Top retrieved text

duodenum, third part,
biopsy : small bowel
mucosa with no pathologic
diagnosis.

cervix : biopsy: - high grade
squamous intraepithelial le-
sion (cin-2; hsil).

skin, punch biopsy : intra-
dermal nevus.

Generated text

duodenum, biopsy : duo-
denal mucosa with no
significant pathologic
changes.

cervix, biopsy : low grade
squamous intraepithelial le-
sion (cin 1).

skin, punch biopsy : com-
pound nevus.

Pathologist review Agree with all Favor HSIL (high grade) Favor compound nevus

including information about the retrieval task setup and the 120 test set WSIs sampled for
pathologist evaluation are provided in Section A.4.

WSI classification We evaluated PathAlign-R on four WSI classification tasks: (1)
NSCLC subtyping: non-small cell lung cancer subtyping using LUAD and LUSC in TCGA;
(2) RCC subtyping: renal cell carcinoma subtyping using KIRC, KIRP and KICH in TCGA;
(3) BRCA subtyping: breast cancer subtyping of ductal versus lobular carcinoma us-
ing BRCA and subtype metadata in TCGA; (4) Procedure type: biopsy vs. resection
classification using a subset of DS1. To perform classification, WSI embeddings are com-
pared to text embeddings for the classes of interest, using a curated set of texts per class.
Texts used for each class are provided in Supplemental Table C.7. See Section A.4.3 for
additional WSI classification details. Confidence-intervals were computed via bootstrapped
resampling with replacement over 1000 replicates.

4 Results

Image-to-text retrieval Pathologist evaluation of image-to-text retrieval is summarized
in Figure 3a. Top-1 and top-3 retrieval accuracy were 73.5% and 91.3%, respectively (based
on a rating score of 4 or 5 to define accurate text). The original diagnostic text was scored
as 4 or 5 for 86.5% of ratings. Plots for the individual raters are provided in Supplemen-
tal Figure B.4a. Sub-analysis by “common” and “less common” specimen-type categories
did not suggest bias towards retrieval of common cases (Supplemental Figure B.7). While
automatic evaluation of image-to-text retrieval (as well as text-to-image and image-to-image
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Table 3: WSI classification. Classification results for NSCLC, RCC, and BRCA subtyping
(TCGA), and procedure type (DS1). See Table C.7 for text-prompts corresponding to each class.
95% confidence-intervals were computed via bootstrapped resampling with replacement over 1000
replicates.

Task AUC Balanced accuracy

NSCLC Subtyping 0.945 [0.921− 0.965] 0.875 [0.838− 0.909]

RCC Subtyping 0.971 [0.954− 0.985] 0.889 [0.832− 0.941]

BRCA Subtyping 0.879 [0.823− 0.926] 0.775 [0.706− 0.836]

Procedure Classification 0.987 [0.976− 0.996] 0.942 [0.912− 0.978]

retrieval) was also performed, this was primarily used for hyper-parameter tuning; details
and test set results are in Section A.5 and Supplemental Table C.4.

Image-based text generation Evaluation of generated text is summarized in Figure 3b
and Figure B.6, with examples in Table 2. For images where either original text or AI
generated text was rated 4 or above, the AI generated text was determined to be equivalent
or better than the original text in 75% of ratings. For all WSIs (N = 115 images), generated
text was rated to be 4 or 5 (i.e. mostly or highly accurate) for 78% of ratings. See Figure 3b
and Figure B.6 for complete results, including subanalysis by finding type of normal, mild,
or significant (as based on the original diagnostic text). Data for the individual raters as
well as the inter-rater confusion matrix for scoring of original diagnostic texts are provided
in Supplemental Figure B.4b and Supplemental Figure B.5, respectively.

WSI classification Results for LUAD, RCC, BRCA, and procedure type classification
are summarized in Table 3. Texts for each class are provided in Supplemental Table C.7.

Exploring additional vision–language applications To highlight one potential ap-
plication utilizing LLM integration, we demonstrate a case prioritization example. We ran-
domly select 200 colon biopsies representing a theoretical case load and use PathAlign-G
to return the set, sorted by likely “severity” of the findings. The results and prompt are
summarized in Supplemental Table C.10. While not perfect, all carcinoma cases are ap-
propriately in the top category, most tubular adenomas and other findings in the second
category, and most hyperplastic polyps along with benign biopsies in the lowest risk cat-
egory, thus highlighting the promising potential to organize or group cases with flexible
natural language queries.

5 Conclusion

This work demonstrates the novel development of multimodal pathology models using WSIs
paired with curated portions of original diagnostic reports along with a pre-trained patch
encoder and a LLM. These initial results highlight the potential for WSI-text alignment in
a manner that can incorporate the reasoning capabilities of large multimodal models. We
provide additional discussion in Section A.6 in the Appendix.
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Appendix A. Supplemental methods

A.1 Creating image–text pairs

As is typical for pathology reports, each case in DS1 has an associated diagnostic text,
corresponding to the final diagnosis (i.e. “bottom line” text) from the pathology report
(see Supplemental Figure B.2). These diagnostic texts are structured into part-level text
sections. Because each case may have several different parts, we parse these to the part-level
via regular expressions. For each part-level text section, there is a label (description of tissue
site or surgical procedure) and a finding (description of diagnostic findings). Because the
label text is typically based on the specimen processing and preparation, it often includes
information such as anatomic location and laterality that may not be inferable from the
WSI alone. Occasionally the findings section also includes this type of information. As such,
we further apply a set of regular expressions to remove information from both the labels
and findings that cannot reliably be determined from the WSI. Additionally, as diagnostic
reporting in pathology often exhibits a common style across pathologists, many free text
descriptions for different slides will be the same when the findings are essentially the same.

Within the framework of the three categories established for part-to-slide mappings, it
is also possible that the pathologist reviewed more slides than those that were archived and
subsequently digitized, so even category 1 has some possibility of the text not corresponding
specifically to the image. While we believe this possibility to be a rare occurrence in DS1,
complete accessioning metadata from each case was not available, so formal quantification
of “missing slides” could not be performed.

For TCGA, although pathology reports are available (as PDFs), they are submitted
from a variety of source sites with significant variability in structure and detail. Ad-
ditionally, they do not specify which portion of the report corresponds to the available
images. Instead of parsing these heterogeneous reports, we utilized structured case-level
metadata available for TCGA (Liu et al., 2018) to generate a basic description in the
label : finding format, analogous to the typical structure of part-level text in DS1.
Specifically, we used the tissue type, histological type, and histologic grade (when avail-
able) to generate captions such as bladder, resection : histological type:
invasive urothelial carcinoma; tumor grade: high grade. We associate
each slide with a caption generated from the metadata in this way. For TCGA, the possibil-
ity that a given slide in isolation is not representative of this metadata is at least partially
mitigated because typically only one or two diagnostic slides per case were submitted and
these slides were selected to be representative of the case-level diagnosis and to have sub-
stantial tumor content.

A.2 Patch sampling

Tissue masks were generated via a sequence of image processing operations. These consist
of transforming RGB images to HSV-space, performing morphological operations to group
together connected regions, thresholding on pixel intensity, and post-processing with an
erosion operation to remove remaining noise. Using these tissue masks, we identify all
tissue containing patches of size 224 × 224 pixels, with a stride of 192 pixels (32 pixels of
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overlap). We use at most 10,240 patches per WSI (sampling without replacement when the
total number of tissue-patches exceeds this count).

A.3 Modeling: image–text alignment

To avoid false negatives from similar diagnostic findings within training batches in the
image–text contrastive (ITC) loss and image–text matching (ITM) loss, we mask out nega-
tive pairs, (imagei, textj), i 6= j, with high text similarity between texti and textj using text
embeddings from the Universal Sentence Encoder model (Cer et al., 2018). We threshold
on a cosine similarity of 0.985, which typically requires very high similarity with only slight
differences in syntax or word choice (see Supplemental Table C.2 for examples). To further
reduce the impact of false-negatives, we did not use hard-negative mining for the ITM loss.

For PathAlign-R, we chose not to use ITM reranking during retrieval for practical
considerations, with efficiency in terms of potential model-serving and typical client-end
API use in mind. When using the cosine similarity between contrastive embeddings for
ranking, we found that training with the ITC loss alone and using a single learnable query
in the Q-Former worked better for retrieval. For text generation (PathAlign-G), we found
that the standard BLIP-2 approach of training a stage 1 model including all losses worked
best, along with 32 learnable query vectors. Hyper-parameter settings are provided in
Supplemental Table C.3. All model selection choices were made using the validation set.

A.4 Evaluation details

A.4.1 Pathologist evaluation

A subset of 120 test set WSIs from the DS1 test set was selected for evaluation by pathol-
ogists. For subset selection the test set was first divided into two categories: (1) the most
common specimen types (colon, rectum, cervix, and skin biopsies) and (2) other speci-
men types. Then, 60 images from each of these two categories were sampled. For each
WSI, pathologists were presented with the image in a web-based digital pathology viewer
along with five retrieved diagnostic texts (from PathAlign-R), a generated text (from
PathAlign-G), and the original diagnostic text. Texts were provided in random order and
pathologists were blinded to the source of each (i.e. retrieved, generated, original) to avoid
any bias in interpretation. At evaluation, 5 images were dropped due to pathologist review
indicating poor image quality (N = 1) or need for immunohistochemistry (IHC) (N = 4)
for confident interpretation.

A.4.2 Evaluating image-to-text retrieval

For image-to-text retrieval, PathAlign-R takes a WSI and corpus of texts as input, and
scores the texts according to embedding similarity with that of the input image. The text
corpus is comprised of all unique diagnostic texts from WSI-text pairs in the DS1 test
set (N = 3, 176 unique diagnostic texts). Similarity scoring was performed using cosine-
similarity between embeddings for the input WSI and the diagnostic text. For measuring
top-K retrieval accuracy, we consider a retrieved text as being accurate if it received a
rating of at least 4 (i.e. mostly accurate without clinically significant error or omission).
To address the fact that retrieval results could be influenced by the frequency of similar
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cases in the corpus, we limited retrieval to unique diagnostic texts (i.e. duplicates removed
before retrieval), and we also performed sub-analysis on the “common” and “less common”
specimen types as defined in prior sections.

A.4.3 WSI classification

To perform classification, PathAlign-R is given a WSI and a class is assigned based on
similarity of the image embeddings to the text embeddings for classes of interest, using a
curated set of texts per class. This can be thought of as a highly constrained version of
image-to-text retrieval, except that instead of scoring the similarity between the model’s
WSI embedding and embeddings for the corpus of texts, the scoring is done using the
average similarity between the WSI embeddings and the set of texts associated with each
class. This approach is often referred to as zero-shot classification in the literature, but
since the concepts in these tasks are contained in the training data, we refer to this simply
as WSI classification here.

For the three subtyping tasks, texts for each class were curated to represent common
diagnostic texts for WSIs of each subtype in the training set (identified via regular expression
matching). For the procedure classification task, the biopsy class is represented by just the
single word biopsy, while the resection class is represented by resection as well as a
variety of tissue specific resection types (e.g. lobectomy, mastectomy, nephrectomy,
etc; see Supplemental Table C.7). WSIs for the procedure classification task were selected
by randomly sampling 250 WSIs with a diagnostic text containing the word biopsy and
selecting all WSIs containing any of the resection texts (N = 63) from the DS1 test set. We
evaluate classification performance with both macro-averaged AUC (using average similarity
directly) as well as balanced accuracy (taking the max similarity score across classes).
Confidence-intervals were computed via bootstrapped resampling with replacement over
1000 replicates.

A.5 Automatic evaluation

During model development, we used automatic evaluations for cross-modal retrieval and
diagnostic text generation to guide hyper-parameter selection and modeling choices. The
methods we used are described below and test set results for the final models are reported
below.

Cross-modal retrieval We performed cross-modal retrieval analysis for image–text pairs
at the WSI-level, a task with implications for finding and curating cases of interest across
educational, research, and clinical workflows.

In the image-to-text retrieval setting, the model is given a WSI and tasked with scoring a
corpus of diagnostic texts according to how relevant they are for the given WSI. In our case,
the text corpus consists of all unique diagnostic texts from WSI-text pairs in the validation
dataset. The scoring is done using cosine-similarity between the model’s embedding for the
input WSI and the model’s embeddings for all diagnostic texts in the corpus. Because there
may be many texts that accurately match the image, a key challenge in evaluating this type
of retrieval is determining the full set of diagnostic texts in the corpus that match with the
input WSI, which is required for standard retrieval metrics such as MAP, NDCG and top-K
accuracy.
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Since our datasets consist of (WSI, diagnostic text) pairs, we have one known ground-
truth diagnostic text match. However, there are potentially many other texts in the cor-
pus that describe the same diagnostic finding in different ways. To estimate the set of
matching diagnostic texts we compute the cosine similarity between embeddings from the
ground-truth text and all other texts in the corpus using the Universal Sentence Encoder
model (Cer et al., 2018). Any text with a cosine similarity score above a threshold of 0.985
was considered a match. This threshold was manually tuned to be as low as possible without
including false positive matches (on the validation set). However, due to this high similar-
ity threshold and failures in the Universal Sentence Encoder to map syntactically different
yet diagnostically equivalent texts to similar embeddings, not all true-positive matches are
included (see examples in Table C.6). This is a limitation of this automated, yet, large-scale
retrieval analysis, addressed through evaluations performed by a human expert reviewing
both images and text.

In the text-to-image retrieval setting, the model is given a diagnostic text and tasked
with scoring a corpus of WSIs according to how relevant they are to the diagnostic text.
The retrieval analysis was performed analogously to the image-to-text setting, with the set
of matching WSIs estimated using similarity between the input diagnostic text and the
diagnostic texts associated with each WSI in the corpus of WSIs. Results are summarized
in Table C.4.

Image-to-image retrieval We also evaluated image-to-image retrieval, i.e. the prob-
lem of finding images with similar associated diagnostic text. This was done analogously
to cross-modal retrieval except that the input image is excluded from the set of matching
images and input images that do not have any matching images (i.e. there are no other
images in the image corpus the where similarity between associated texts is above the re-
quired threshold) were excluded from analysis. For automatic evaluation of image-to-image
retrieval, the similarity score between the original texts for the input and the retrieved
images were calculated, again using a threshold of 0.985 for defining accurate retrieval.
Results are summarized in Table C.6, where they are presented in comparison to perfor-
mance using the averaged patch-level embeddings from the domain-specific patch encoder
(PathSSL) that we used to embed patches for our model. Text generation Text generation
was evaluated automatically by computing ROUGE-L (Lin, 2004) and METEOR (Baner-
jee and Lavie, 2005) scores between original and generated diagnostic text. Results are
summarized in Table C.5.

A.6 Discussion

Many important applications in histopathology involve interpretation of WSIs. Leveraging
advances in efficient vision–language pretraining (Li et al., 2023) and self-supervised patch-
level encoders (Lai et al., 2023), we develop a pathology report aligned WSI-encoder using
a real-world dataset of over 350,000 gigapixel WSIs with diagnostic text from associated
pathology reports. We evaluate this model for classification, cross-modal retrieval, and
generation of text describing pathologic findings.

Our work complements recent efforts on language aligned WSI-encoders such as PathM3
(Zhou et al., 2024), PRISM (Shaikovski et al., 2024) and GigaPath (Xu et al., 2024). Com-
pared to prior work, we explore an alternative method for efficient image–text alignment

16



PathAlign: A vision–language model for WSIs in histopathology

with WSIs based on the BLIP-2 approach. This enables us to align our WSI-encoder with
a pre-trained LLM (PaLM-2 S) for generating text from WSIs. While evaluation of the
other recent models has been limited to classification tasks,automated scoring, and quali-
tative review of text generation, we report the first quantitative pathologist evaluation of
cross-modal retrieval and text generation.

The text generation evaluations provide several interesting insights. On one hand, they
reflect the impressive capability of the domain-specific WSI-encoder to align with a pre-
trained LLM even when images are gigapixel-sized. The generated texts are generally quite
accurate at reflecting important information about the WSI, often showcasing important
slide-level capabilities by providing information that requires aggregating information and
context from multiple patches. Examples of this include the type of procedure or biopsy,
and perhaps more impressively, the concept of low grade versus high grade cervical dyspla-
sia, which is defined in part by the extent of the epithelial thickness that is affected, and
thus likely requires contextual information within the slide (example in Table 2).

On the other hand, there are clearly still some shortcomings in the details provided by
the generated text, such as specific grades for prostate and breast cancer. We also observe
some confabulations, particularly in the specimen type when specimen information cannot
be readily inferred from the image (e.g. neck contents, lymph node). This is likely
due, in part, to imperfect removal of this type of specimen information when we processed
part labels, but also reflects the inherent importance of context when reviewing slides and
writing reports. While prompting the model with the specimen information along with the
image is one strategy that might reflect real world availability of the part label during slide
review, we did not find this to significantly improve text generation in our study. Efforts
to more effectively clean training data and to more thoroughly evaluate confabulations and
optimize prompting strategies using available metadata are opportunities for future work.

While PathAlign-R performs well on the cancer subtyping tasks (see Table 3), direct
comparison to other image–text pathology models (e.g. CONCH (Lu et al., 2023a), Giga-
Path (Xu et al., 2024)) cannot be made directly due to different image splits, as well as our
inclusion of TCGA data in training (albeit from different TSS than those used for testing).

While our training datasets are comparable in size to prior work on WSI-level image–text
alignment (Xu et al., 2024; Shaikovski et al., 2024), they are relatively small compared to
datasets that have been used for image–text alignment from natural images (> 400M). In
initial experiments, we observed that training on the full set of training data (DS1-Noisy)
provided significantly better performance than training on only the cleaner, but smaller train
split of DS1-Clean, further supporting the potential for data scaling. Because pathology
reports are in principle available for all WSIs that have gone through clinical workflows, we
hope to see future work build on our approach with larger-scale datasets of WSIs paired
with pathology reports.

A.6.1 Limitations

This work has several limitations. A primary challenge in aligning pathology WSIs with
diagnostic text is the many-to-one nature of slides to the associated portion of the diagnostic
report. In this work, we curated our dataset in a manner that minimized this issue for the
validation and test splits, but this also resulted in a relative enrichment in these splits for
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the types of cases that typically only have one slide per submitted pathology part, such as
colon, skin, and cervical biopsies along with other small specimens. Additionally, there are
at least some instances for which there are “missing” slides, such that the single slide used
for inference may not contain all the information represented in the paired text. Curation
of datasets to include only the representative slides for the reported findings and modeling
at the level of multiple slides remain as opportunities to further address this issue.

The use of TCGA, while useful for enriching DS1 with cancer cases and providing
increased training diversity, also introduces specific limitations. For example, we used
available structured metadata to generate “synthetic” diagnostic captions for these images.
While an effort was made to diversify the language used for describing any given entity,
these captions still do not necessarily represent the reporting style for these types of cancer
cases in real clinical reports. For example, an actual diagnostic report for a cancer resection
might describe many aspects of the tumor grading, staging, and subtyping in a manner that
is more extensive than the available structured metadata from TCGA.

Due to lack of available out-of-distribution datasets for this study, image-to-text retrieval
and text generation tasks were only evaluated on in-distribution data for DS1. Experiments
to evaluate generalization of this model to diverse data sources are warranted. Analysis on
additional tasks such as text-to-image retrieval could also be performed and existing eval-
uations could be improved by increasing the evaluation set size, including greater diversity
of cases and findings, and including a larger number of raters.

A.6.2 Future work

Future work could explore additional vision–language modeling strategies coupled with
different LLMs and further instruction tuning. While we benefited from the lower com-
putational costs by using relatively fewer number of query vectors, direct patch-to-patch
interaction across the WSI is potentially not fully captured in the cross-attention mecha-
nism and might be improved further, such as through efficient self-attention. Modeling at
the level of multiple slides across entire parts or cases, higher magnifications, or a pyramid
of multiple magnifications could also further enable useful applications.
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Appendix B. Supplementary figures

…
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Figure B.1: Overview of pathology case accessioning. Pathology specimens are typically
processed and accessioned by case, part, block, and slide. A single case may have several different
parts and a single part may have several different blocks, with each block sectioned (i.e. cut) to
provide one or more slides for histopathology review.

TERMINAL ILEUM (BIOPSY)

BENIGN TERMINAL ILEAL MUCOSA.

DISTAL SIGMOID COLON (BIOPSY)

-MILD CHRONIC COLITIS.
-NO ACTIVE COMPONENT IDENTIFIED.
-NO DYSPLASIA PRESENT.

RECTUM, 10 CM (BIOPSY)

-MILD CHRONIC COLITIS.
-NO ACTIVE COMPONENT IDENTIFIED.
-NO DYSPLASIA PRESENT.

Figure B.2: Example part-level diagnostic text from DS1. An example of final diagnosis
text from a pathology report for a colorectal biopsy case, with reports split by part. Information
that may not be determined from the images (e.g. sample location, tumor size) is removed on a best
effort basis via regular expressions, with example removals indicated by strikethrough text in this
figure.
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(a) DS1. (b) TCGA.

Figure B.3: Histograms for number of patches sampled per WSI. Up to 10,240 tissue-
containing patches were sampled per WSI (without replacement), which covers all tissue-containing
patches for (a) 97.8% of DS1 WSIs, and (b) 91.4% of TCGA WSIs across all splits.

Top-1 Top-3 Top-5 Original
0

20

40

60

80

100

P(
ra

tin
g 

 4
) (

%
)

89.57 99.13 99.13 93.9157.39 83.48 86.09 79.13

Pathologist 1 Pathologist 2

(a)

0.00 0.25 0.50 0.75 1.00
Proportion of ratings

Significant (N = 26)

Mild (N = 50)

Normal (N = 36)

All (N = 112)

Fin
di

ng
s

Pathologist 1

0.00 0.25 0.50 0.75 1.00
Proportion of ratings

Significant (N = 21)

Mild (N = 43)

Normal (N = 33)

All (N = 97)

Pathologist 2

AI preferred, original missed clinically significant findings
Both ok, AI preferred
Both ok, similar

Both ok, original report preferred
Original report preferred, AI missed clinically significant findings

(b)

Figure B.4: Pathologist evaluation by individual rater. Results for (a) retrieval and (b)
generated text are shown for each rater, corresponding to Figure 3a and Figure 3b of the main text,
respectively. The general trends for each rater are similar with respect to the original diagnostic
text, suggesting the inter-rater variability is at least partially explained by “calibration differences”
in regards to interpretation of the scoring system.
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Figure B.5: Inter-rater comparison for scoring of original diagnostic text A confusion
matrix for pathologist scoring of the original diagnostic text to offer some additional perspective on
inter-rater agreement and scoring calibration.
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Figure B.6: Complete scoring results by category for generated text and original diag-
nostic text. For images across each finding category, the portion of ratings corresponding to each
possible score is plotted for the generated text and original text, respectively. The sum of ratings 4
and 5 gives the portion of ratings indicating mostly or highly accurate text.
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Figure B.7: Retrieval performance for common and less common specimen types. To at
least partially address the potential for retrieval results to be influenced by the frequency of similar
cases in the corpus, we also performed subanalysis by the “common” and “less common” specimen
categories (as defined in Section A.4.1). Plotted data represents the portion of WSIs for which at
least one of the top-K retrieved texts was scored as 4 or 5 upon pathologist review, averaged across
two pathologists. Counts for number of ratings corresponding to each category are provided. Error
bars are 95% confidence intervals via bootstrapping over WSIs.
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Appendix C. Supplementary tables

Table C.1: Top part label frequencies in DS1. Top 25 most common part labels and their
frequency in DS1 (from N = 122, 181 total diagnostic texts).

Part Label Percentage Part Label Percentage

colon, biopsy 6.19 endocervical curettings 0.94

skin, shave biopsy 5.49 cervix, leep 0.91

skin, excisional biopsy 4.17 breast, mastectomy 0.83

cervix, biopsy 3.72 prostate, prostatectomy 0.83

lymph node, excision 2.43 breast, lumpectomy 0.83

skin, punch biopsy 2.3 duodenum, biopsy 0.78

cervix 2.2 placenta 0.74

cervical biopsy 1.77 appendix, appendectomy 0.57

rectum, biopsy 1.48 endometrial biopsy 0.56

skin, biopsy 1.41 gallbladder, cholecystectomy 0.56

colon, polypectomy 1.12 endocervical curettage 0.53

esophagus, biopsy 1.06 prostate, biopsy 0.51

stomach, biopsy 0.98
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Table C.2: Qualitative examples of the automated text similarity score. Similarity scores
as computed by embeddings from the Universal Sentence Encoder, for a set of selected examples
with scores above and below our conservative threshold of 0.985. Scores for which the threshold
correctly identifies equivalent or different pairs, respectively, are color coded with green for correct
and red for incorrect.

Threshold Text i Text j Scoreij

< 0.985

soft tissue, supraclavicular re-
gion, biopsy : classical hodgkin
lymphoma.

cervix : biopsy: high grade squa-
mous intraepithelial lesion (cin-
ii).

0.619

colon, cecum, polypectomy :
fragments of tubulovillous ade-
noma.

colon, polypectomy : tubular
adenoma.

0.681

cervical polyp biopsy : low-grade
squamous intraepithelial lesion
(cin i).

cervix, biopsy : benign squa-
mous mucosa, no transformation
zone identified.

0.771

skin, excisional biopsy : neurofi-
broma.

skin, excisional biopsy : der-
matofibroma.

0.953

colon, biopsy : hyperplastic
polyp.

colon, biopsy : adenomatous
polyp.

0.957

cervix, biopsy : high-grade squa-
mous intraepithelial lesion.

cervix, biopsy : low-grade squa-
mous intraepithelial lesion.

0.970

uterine cervix, biopsy : benign
cervical tissue, no dysplasia iden-
tified.

cervix : biopsy: benign cervical
tissue, no dysplasia identified.

0.978

> 0.985

skin, excisional biopsy : epider-
mal inclusion cyst, excised.

skin, excisional biopsy : epider-
mal inclusion cyst.

0.990

skin, shave biopsy : ulcerated
sclerosing basal cell carcinoma;
extends to the base of the biopsy.

skin, shave biopsy : basal cell
carcinoma, extends to the base
of the biopsy.

0.989

cervix, biopsy : low grade squa-
mous intraepithelial lesion (cin-
i).

cervix : biopsy: low grade squa-
mous intraepithelial lesion.

0.989

colon, biopsy : chronic active col-
itis, no dysplasia identified.

colon, biopsy : chronic active col-
itis, mild. -no dysplasia identi-
fied.

0.987

appendix, appendectomy : acute
suppurative appendicitis.

vermiform appendix, appendec-
tomy : acute suppurative appen-
dicitis.

0.987

colon polyp, biopsy : adenoma-
tous polyp.

colon, polyp, excisional biopsy :
adenomatous polyp.

0.987

terminal ileum, biopsy : small
bowel mucosa with no pathologic
diagnosis.

ileum, terminal, biopsy : small
bowel mucosa with no pathologic
diagnosis.

0.986

24



PathAlign: A vision–language model for WSIs in histopathology

Table C.3: Model hyper-parameters. Hyper-parameter tuning and checkpoint selection for our
retrieval and classification model (PathAlign-R) were done using automatic evaluation of retrieval
tasks (average of top-1 retrieval accuracy, NDCG, and average precision) on the validation set. For
PathAlign-G, we used ROUGE-L recall and similarity scores from the Universal Sentence Encoder
model, along with visual inspection of captioning quality, to guide hyper-parameter tuning and
checkpoint selection.

Shared: Stage 1

Initialization Random

ITC/ITM false-negative masking Yes

Q-Former query dimension 192

Q-Former intermediate dimension 3072

ITC projection layer dimension 128

Learning rate scheduler Linear warmup + cosine decay

Learning rate 1e− 4

Weight decay 0.05

AdamW β1, β2 0.9, 0.998

Linear-warmup steps 2000

Maximum training steps (w/ early stopping) 100000

Batch-size 1024

Learnable constrastive temperature Yes

PathAlign-R: Stage 1

Learnable queries 1

ITC, ITM, ITG loss coefficients 1.0, 0.0, 0.0

Initial contrastive temperature 0.01

PathAlign-G: Stage 1

Number of learnable query vectors 32

ITC, ITM, ITG loss-coefficients 1.0, 0.5, 1.0

ITM false-negative masking Yes

Learning rate 1e-4

Initial contrastive temperature 0.07

PathAlign-G: Stage 2

Optimizer Adafactor with Adam

Learning rate 5e− 5

Adam β1, β2 0.9, 0.999

Warmup steps 1000

Weight decay 1e− 10

Maximum training steps (w/ early stopping) 200000

Batch size 64

Gradient-clipping norm 10.0

LLM PaLM-2 S

Decoding greedy
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Table C.4: Test set cross-modal retrieval results for PathAlign-R using automatic eval-
uation. In all cases, the text associated with the input or retrieved images was used to determine
match, with a text similarity score threshold of 0.985 using the Universal Sentence Encoder model.
While these metrics were primarily used for model development, with pathologist evaluation pro-
viding a more interpretable analysis (see Figure 3a), but with test set automatic evaluation results
here for reference. The relatively low number of unique TCGA texts is due to the nature of synthe-
sizing TCGA text from metadata as descried in the Methods. For examples of similarity score pairs,
see Table C.2. MAP: Mean Average Precision; NDCG: Normalized Discounted Cumulative Gain.

Dataset Query Corpus MAP NDCG Top-1 Top-5 Top-10

DS1
Text Image (N = 4, 876) 0.22 0.43 0.16 0.41 0.57

Image Text (N = 3, 177) 0.21 0.37 0.10 0.33 0.48

TCGA
Text Image (N = 3, 264) 0.49 0.76 0.58 0.87 0.9

Image Text (N = 161) 0.50 0.62 0.34 0.73 0.84

Table C.5: Automatic evaluation results for generated text. Values reported are the com-
puted metrics as indicated for generated text compared to original diagnostic text over all test set
images. Since diagnostic texts for TCGA were synthesized from metadata across splits, we do not
evaluate text generation for TCGA.

Dataset ROUGE-L (F-Measure) METEOR

DS1 (N = 4, 876) 0.579 0.612

Table C.6: Automatic evaluation for image-to-image retrieval. Test set retrieval metrics
for image-to-image retrieval using the contrastive WSI-embedding from PathAlign-R. Embedding-
based retrieval using averaged patch-embeddings from PathSSL is also provided for comparison.

Dataset Model MAP NDCG Top-1 Top-5 Top-10

DS1 (N = 4, 876)
PathSSL 0.23 0.47 0.29 0.48 0.57

PathAlign-R 0.26 0.50 0.27 0.52 0.63

DS1 (N = 3, 264)
PathSSL 0.29 0.67 0.62 0.83 0.88

PathAlign-R 0.40 0.72 0.60 0.84 0.89
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Table C.7: Text inputs used for embedding-based image-classification. The set of texts
associated with each class consists of all combinations between task-specific prefixes and class-specific
suffixes. The label in the Class column is being predicted for each task, and an ensemble of TASK
PREFIX : CLASS SUFFIX is used to represent each class for the embedding-based classification.

Task Task prefix Class Class prefix

NSCLC
Sub-
typing
(TCGA)

lung, lobe, lobectomy

lung, lobe, wedge resection

lung, lobe, mass excision

lung, lobe, resection

lung, resection

LUAD

adenocarcinoma

lung adenocarcinoma

lung adenocarcinoma mixed subtype

LUSC
squamous cell carcinoma

lung squamous cell carcinoma

RCC
Sub-
yping
(TCGA)

kidney, nephrectomy

kidney, resection

KICH

chromophobe renal cell carcinoma

renal cell carcinoma, chromophobe type

renal cell carcinoma of the chromophobe type

KIRC

kidney clear cell renal cell carcinoma

kidney clear cell renal carcinoma

kidney renal clear cell carcinoma

renal cell carcinoma, clear cell type

renal cell carcinoma, clear cell type (conventional)

KIRP

kidney papillary renal cell carcinoma

kidney renal papillary cell carcinoma

papillary renal cell carcinoma

papillary renal cell carcinoma (chromophil)

renal cell carcinoma, papillary type

renal cell carcinoma of the papillary type

BRCA
Sub-
yping
(TCGA)

breast, lumpectomy

breast, mastectomy

breast, excision

breast, resection

IDC

infiltrating ductal carcinoma

invasive ductal carcinoma

breast invasive ductal carcinoma

invasive ductal carcinoma of the breast

invasive carcinoma of the breast, ductal pattern

ILC

infiltrating lobular carcinoma

invasive lobular carcinoma

breast invasive lobular carcinoma

invasive lobular carcinoma of the breast

invasive carcinoma of the breast, lobular pattern

Procedure
type
(DS1)

N/A

Biopsy biopsy

Resection

resection wedge resection

lobectomy pneumonectomy

gastrectomy nephrectomy

colectomy splenectomy

pancreatectomy cholecystectomy

appendectomy thyroidectomy

oophorectomy salpingectomy

salpingo-oophorectomy hysterectomy

prostatectomy mastectomy

lumpectomy hepatectomy

esophagectomy cervicectomy

orchiectomy
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Table C.8: Pathologist rating rubric. Pathologist raters reviewed the top 5 retrieved texts,
the generated text, and the original diagnostic text. Based on review of the associated WSI, texts
were scored on a scale of 1 to 5, with an option to indicate issues with quality or the need for more
information. The set of texts per WSI were presented in random order and the raters were blinded
to whether texts were retrieved, generated, or original.

Rating Description and instructions

1

Completely inaccurate
– May describe something that can occur in the specimen/tissue
type pictured, but fundamentally incorrect, or may be the wrong
tissue type or concept altogether.

2

Partially accurate (i.e. related but wrong)
– The text might describe an entity that is related to the image,
and occurring in that specimen type, but the image is definitively
a different diagnostic entity.
– May accurately describe something that is seen on the image,
but additional, essential info is missing or incorrect.

3

Mostly accurate with clinically significant error/omission
– The text is a good match/description for the image, but some-
thing minor is incorrect or missing that may have clinical or di-
agnostic implications.

4

Mostly accurate without clinically significant er-
ror/omission
– The text is a very good match/description for the image, but
there may be a minor, clinically insignificant aspect that is in-
correct or missing. For example, the diagnosis is accurate and
acceptable, but doesn’t capture all of the details.

5

Highly accurate
– The text is a great description of the image, with no obvious
information missing or incorrect.
– Note that even a very short summary or a description of “no
pathologic findings” can still belong in this rating.

Cannot Interpret

Please provide a very brief comment regarding the issue and/or
what additional info you would need.
If you can interpret the image to some extent, but need IHC or
other studies to be more confident, please still provide a score
based on your best interpretation of the available image and pro-
vide details in the comments.
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Table C.9: Categories for evaluation of generated text. As used in Figure 3b.

.

Category Generated text rating Original text rating

AI preferred ≥4 ≤3

Both ok, AI preferred 5 4

Both ok, same rating
4 4

5 5

Both ok, original preferred 4 5

Original preferred ≤3 ≥4

Both with errors or omissions ≤3 ≤3
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Table C.10: Slide prioritization. A set of colon biopsies was randomly sampled (N = 200),
roughly representing a theoretical case load. We then prompted the LLM to generate a prioritization
score for each image, which in turn is used to sort the images. The sorted results for all 200
biopsies are shown (note that original diagnostic text was not used for prompting, it is only
provided here for reference). WSIs with identical diagnostic texts are grouped with counts for that
text in the count column. While not perfect, this sorted list highlights the potential for flexible,
user-prompted case prioritization. The LLM is prompted with each image, the generated text,
and the following prompt: Question: On a scale of 1 to 3, where 1 is benign
or low-risk, 2 are pre-cancerous polyps and adenomas, 3 is cancerous or
highly suspicious for cancer, can you rate the pathological findings for
this image? Answer:

Original findings AI prioritization Count

tubular adenoma with high grade dysplasia and focal intramucosal carci-
noma.

3 1

invasive moderately differentiated adenocarcinoma of the colon. 3 1

invasive poorly differentiated colonic adenocarcinoma. 3 1

fragment of ulcer debris. - no colonic mucosa identified. 3 1

adenomatous polyp. 2 26

tubular adenoma. 2 5

multiple fragments of flat and polypoid colonic mucosa with adenomatous
epithelium, consistent with multiple colonic adenomas.

2 1

adenomatous polyp with focal high grade dysplasia and trauma related
changes.

2 1

mild active colitis, no evidence of chronicity. 2 1

adenomatous polyps. 2 1

essentially unremarkable colonic mucosa. 2 1

tubular adenoma. - negative for high grade dysplasia or carcinoma. 2 1

tubular adenoma fully excised in the sections examined. 2 1

chronic colitis with moderate to severe activity. no dysplasia identified. 2 1

adenomatous polyp, low grade. 2 1

adenomatous polyp (tubular adenoma). electrocautery margin appears un-
involved.

2 1

fragments of adenomatous polyp. 2 1

active chronic colitis with crypt abscess. 2 1

colonic mucosa with no pathologic diagnosis. 1 16

colonic mucosa with no significant pathologic abnormality. 1 14

hyperplastic polyp. 1 12

unremarkable colonic mucosa. 1 8

essentially unremarkable colonic mucosa. 1 7

benign colonic mucosa with no significant pathologic abnormality. 1 6

colonic mucosa with no significant pathologic changes. 1 5

tubular adenoma. 1 5

colonic mucosa with no diagnostic alteration. 1 4

chronic active colitis. 1 4

colonic mucosa with no pathologic diagnosis; negative for dysplasia. 1 4

colonic mucosa with no significant microscopic abnormality. 1 3

polypoid fragment of benign colonic mucosa. 1 2
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no significant abnormalities. 1 2

benign colonic mucosa with no diagnostic abnormality. 1 2

benign colonic mucosa with no diagnostic alteration. no dysplasia identified. 1 2

colonic mucosa overlying lymphoid aggregates otherwise no significant mi-
croscopic abnormality.

1 2

fragments of benign colonic mucosa. 1 2

unremarakble colonic mucosa. 1 2

colonic mucosa with no diagnostic alteration; negative for dysplasia. 1 2

active colitis with non-necrotic granulomas and features of remote and per-
sistent injury.

1 2

chronic inactive colitis. 1 2

sessile serrated polyp. 1 2

tubular adenomas (2). - negative for high grade dysplasia or carcinoma. 1 1

tubular adenoma with surface cautery artifact. 1 1

diminutive adenomatous polyp. 1 1

focal active colitis. 1 1

chronic inactive colitis. - no dysplasia or granulomas identified. 1 1

benign colonic mucosa with no significant microscopic abnormality. 1 1

colonic quiescent colitis with hyperplastic change; negative for dysplasia. 1 1

polypoid fragments of benign colonic mucosa. 1 1

benign colonic mucosa with rare clusters of neutrophils in the lamina pro-
pria. - no chronic architectural changes, granulomas or dysplasia identified.

1 1

unremarkable colonic mucosa with increased eosinophils; likely due to med-
ication.

1 1

tubular adenoma. - negative for high grade dysplasia or carcinoma. 1 1

no diagnostic alteration. 1

quiescent colitis with focal hyperplasia. no dysplasia identified. 1 1

colonic mucosa and fibroadipose submucosa with no pathologic diagnosis. 1 1

features consistent with submucosal lipoma. 1 1

tubular adenoma. - no high grade dysplasia or carinoma identified. 1 1

consistent with hyperplastic polyps (2). 1 1

benign colonic mucosa with no significant pathology. 1 1

benign colonic mucosa with no pathologic diagnosis. 1 1

colonic mucosa with mild crypt architectural distortion; no dysplasia iden-
tified.

1 1

inactive chronic crypt destructive colitis without granulomas; no dysplasia
identified.

1 1

hyperplastic polyps (2). fragments of unremarkable colonic mucosa (3). 1 1

benign colonic mucosa with hyperplastic change. 1 1

benign polypoid fragment of colonic mucosa with no microscopic abnormal-
ity.

1 1

adenomatoid polyp. 1 1

colonic mucosa with no pathologic changes. 1 1

tubular adenoma(s). 1 1

colonic mucosa with glandular architectural changes consistent with chronic
inactive colitis. - negative for dysplasia.

1 1

hyperplastic polyp. colonic mucosa with lymphoid aggregate formation. 1 1

fragments of unremarkable colonic mucosa. 1 1
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benign colonic mucosa with focal hyperplastic changes. 1 1

tubular adenoma. - benign colonic mucosa. 1 1

colonic mucosa with benign lymphoid aggregates and no pathologic diagno-
sis.

1 1

benign colonic mucosa with prominent lymphoid aggregate. 1 1

fragments of colonic mucosa with hyperplastic change. 1 1

polypoid fragment of colonic mucosa with lamina propria edema, fibrosis
and mild chronic inflammation.

1 1

portions of colonic mucosa with no significant microscopic abnormalities. 1 1

focal acute inflammation. 1 1

colonic mucosa with mild architectural disorder. - negative for dysplasia. 1 1

fragments of colonic mucosa with no significant pathologic changes. 1 1

portions of colonic mucosa with pigmented macrophages in the lamina pro-
pria.

1 1

benign colonic mucosa with no pathologic abnormality. 1 1

unremarkable colonic/rectal mucosa. 1 1
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Table C.11: Overview of TCGA with cases split by tissue source site (TSS) to create
held out TSS in validation and test splits. Within each study, TSS codes were sorted by
number of cases from each site (noting that codes for the same TSS are not the same codes across
studies). Entire TSSs were assigned to the train split until the train split contained at most 55% of
cases. The remaining TSSs were then assigned to validation and test splits in an alternating fashion.

Study Split TSS code #Cases #Slides

ACC

train OR 1 82 201

validation PA, P6 4 2

test PK, OU 6 24

BLCA

train XF, ZF, DK, FD, BT 206 188

validation FJ, SY, E5, 5N, K4, 2F, LT, GU, BL, H4, E7,
CU, LC, R3, UY

98 117

test G2, S5, YF, 4Z, CF, YC, HQ, FT, PQ, GV, GD,
KQ, C4, MV, GC

108 153

BRCA

train A2, E2, AR, A8, D8, BH 574 605

validation PE, XX, AQ, HN, UU, MS, PL, A1, EW, GM,
5T, GI, AN, W8, AC, OK, B6

250 238

test OL, 4H, LL, LQ, WT, S3, 3C, UL, Z7, V7, JL,
E9, C8, A7, LD, 5L, AO

273 284

CESC

train VS, EK, C5 146 116

validation LP, R2, RA, XS, 4J, BI, HM, EX, PN, ZX, IR,
2W, DR, DS, WL, JX, ZJ, HG, GH

77 74

test FU, DG, Q1, UC, MU, MY, EA, MA, JW 84 89

CHOL

train W5 21 18

validation ZU, 3X, 4G, ZD 12 9

test YR, ZH, W6, WD 12 12

COAD

train AA, A6 225 781

validation AU, QG, RU, SS, QL, DM, AY, D5, 4T, F4, WS,
3L, AD

107 266

test CK, CM, AM, 4N, G4, CA, AZ, 5M, NH, T9 125 363

DLBC

train FF, FA 12 16

validation RQ, G8 6 6

test GS, VB, FM, GR 7 10

ESCA

train LN, L5 86 59

validation V5, M9, ZR, R6, XP, IC, L7, Q9, X8, RE, VR,
KH

49 38

test JY, S8, IG, 2H, Z6 50 50

GBM

train 06, 12, 02 307 564

validation 15, 4W, 87, 26, 76, 28, 41, 19 133 100

test 14, 32, 81, 27, 16, RR, OX, 74, 08 155 197

HNSC

train CQ, CV, CN 249 234

validation RS, 4P, BB, IQ, C9, DQ, P3, UF, MZ, HL, H7,
KU

100 97

test T3, HD, D6, T2, BA, MT, QK, TN, CX, WA, UP,
F7

125 141

1. One predominant TSS for this study and split.
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KICH

train KL, UW 49 37

validation KN, NP 26 26

test KO, KM 38 23

KIRC

train BP, B0 249 251

validation A3, T7, DV, B2, MW, 6D, GK, G6, 3Z, EU, CW,
MM, B8

141 127

test AS, AK, CZ, CJ, B4 147 147

KIRP

train A4, 5P, B9, UZ, SX, BQ, 2Z 152 150

validation F9, HE, IZ, B1, UN, P4, IA, WN, DW, AT, O9,
PJ, 4A

65 61

test AL, Y8, MH, Q2, V9, G7, EV, GL, 2K, B3, DZ,
KV, J7

73 87

LGG

train HT, S9, FG, DU 279 487

validation HW, FN, KT, WY, E1, WH, VM, IK, TM, QH,
VW

107 147

test CS, DH, F6, DB, VV, P5, RY, TQ, EZ, R8, W9 129 177

LIHC

train G3, DD 184 187

validation O8, BC, RG, YA, NI, RC, 5R, K7, ED, WJ, T1,
3K, 4R, XR, 2V, PD, BW, WX, MR, QA, ZS, ES,
EP

90 88

test ZP, 5C, KR, LG, 2Y, UB, HP, FV, WQ, CC, BD,
GJ, MI

103 97

LUAD

train 05, 50, 44, 78, 86, 55 273 248

validation 75, 91, 99, 64, MN, 4B, 95, 97, S2, L9, 67, 35, 71 115 100

test 80, 53, MP, 93, O1, 73, 69, 49, NJ, L4, 83, 62, J2,
38

134 183

LUSC

train 60, 22, 66, 85, 63, 56, 77 260 260

validation 39, XC, 6A, O2, 68, 52, MF, 98, 34, 70, 90, 18,
51, 58

117 97

test 46, LA, 33, 43, L3, 37, NC, NK, 79, J1, 96, 21,
94, 92

127 156

MESO

train TS, 3H, MQ, LK 44 46

validation NQ, SC, UT, ZN 20 26

test YS, 3U, SH, XT, UD 23 23

OV

train 13, 61, 24 274 2

validation 42, 57, 25, VG, 10, 36, 20, 23, 5X, 3P 152 100

test OY, 30, 09, WR, 29, 59, 31, 04 161 4

PAAD

train IB, 2J, HZ 86 88

validation YH, M8, XN, 3A, H6, US, YB, H8, L1, RL, XD,
LB, HV, YY

49 69

test FB, 3E, RB, FZ, 2L, OE, PZ, S4, Z5, F2, Q3 50 48

PCPG

train QR, WB 82 83

validation SQ, RM, P7, RX, SP, XG, P8, W2, S7, PR 48 61

test QT, TT, RW, SA, SR, RT 49 51
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PRAD

train HC, KK, EJ, G9 251 217

validation X4, YJ, VP, TK, SU, VN, Y6, 2A, V1, M7, HI,
FC, XA, ZG

115 100

test H9, J9, WW, J4, CH, TP, 4L, XJ, QU, XQ, YL,
XK, MG, KC

134 126

READ

train AG 80 72

validation DY, G5, DT, F5, BM, AF, CL 42 42

test EF, EI, CI, AH, DC 45 40

SARC

train 3B, DX 137 360

validation HB, SG, RN, KF, UE, Z4, IE, QQ, KD, PT, IW,
X2, X9, WK, VT, SI

59 117

test K1, LI, PC, QC, MO, N1, X6, WP, 3R, FX, HS,
IS, IF, MB, JV, MJ

64 118

SKCM

train EB, EE 136 136

validation FR, W3, QB, BF, IH, HR, WE, YD, RP, LH, D9,
3N, FS, D3, GF, YG, Z2

82 87

test ER, FW, XV, GN, DA 82 83

STAD

train BR, VQ 205 180

validation MX, ZQ, HF, ZA, RD, SW, EQ, HJ, CD, IP, R5,
KB, CG

117 91

test F1, D7, B7, HU, FP, IN, 3M 121 122

TGCT

train 2G 64 113

validation 2X, SB, XY, SO, 4K, VF, YU, X3, W4 34 52

test S6, SN, XE, ZM, WZ 36 38

THCA

train EL, EM, DJ 254 260

validation E8, DO, IM, 4C, KS, L6, BJ, DE, FK 117 123

test FE, E3, CE, MK, FY, J8, H2, GE, QD, ET 136 136

THYM

train X7, ZB, XU 66 65

validation 4V, 3Q, ZC, 3S, 3G, 5V, ZT, 3T 27 30

test XM, XH, 5G, ZL, 5U, 4X, 5K, YT 31 85

UCEC

train A5, D1, AX, AP, B5 294 290

validation KP, FI, AW, KJ, PG, 2E, EY, BS, DI, SJ, JU,
EC, 5B

113 152

test QS, EO, H5, QF, 5S, 4E, BK, K6, SL, BG, DF,
AJ, E6

141 147

UCS

train N5, N8, NA 22 50

validation NG, N9, QN, NF 13 31

test N6, QM, N7, ND 15 50

UVM

train V4 33 33

validation V3, WC 16 16

test RZ, YZ, VD 31 23
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