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Abstract

We are currently in an era of fierce competition001
among various large language models (LLMs)002
continuously pushing the boundaries of bench-003
mark performance. However, genuinely assess-004
ing the capabilities of these LLMs has become005
a challenging and critical issue due to potential006
data contamination. In this paper, we propose a007
novel and valuable method, Clean-Eval, which008
mitigates the issue of data contamination and009
evaluates the LLMs more cleanly. Clean-Eval010
employs a neural-based model to paraphrase011
and back-translate the contaminated data into a012
candidate set, generating expressions with the013
same meaning but in different surface forms.014
A semantic detector is then used to filter those015
generated low-quality samples to narrow down016
this candidate set. Candidates with moderate017
BLEURT scores against the original samples018
are selected as the final evaluation set. Ac-019
cording to human assessment, this set is almost020
semantically equivalent to the original contam-021
ination set but expressed differently. We con-022
duct experiments on 20 existing benchmarks023
across diverse tasks, and results demonstrate024
that Clean-Eval substantially restores the ac-025
tual evaluation results on contaminated LLMs026
under both few-shot learning and fine-tuning027
scenarios. We will later be open-sourced as a028
website to fairly measure LLMs.029

1 Introduction030

In recent years, LLMs have made breakthroughs in031

handling complex and nuanced scenarios, achieved032

superior performance in some professional and aca-033

demic benchmarks, and attracted many resources034

from industry and academia (OpenAI, 2023; Tou-035

vron et al., 2023; Golchin and Surdeanu, 2023).036

This subsequently opens the arms race era of LLMs,037

and various LLMs are continuously launched, such038

as GPT-4 (OpenAI, 2023), LLama2 (Touvron et al.,039

2023) and other LLMs, which have refreshed vari-040

ous evaluation benchmarks continuously.041
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Figure 1: Data contamination happens when Benchmark
A is included in the pretraining data, leading to inflated
performance metrics like top leaderboard rankings. This
can cause a clean model to lag behind the contaminated
one. Our goal is to revise Benchmark A, preserving its
meaning but changing its surface forms. This aims to
re-evaluate the contaminated model, aiming to align its
performance closer to that of a clean model.

There is room for doubt regarding the poten- 042

tial overestimation of these benchmark measure- 043

ments. One reason is that LLMs are trained on 044

data extracted from websites and publicly accessi- 045

ble datasets (OpenAI, 2023; Touvron et al., 2023). 046

Therefore, ensuring no overlap between the pre- 047

training dataset and the evaluated benchmark be- 048

comes quite a challenge. This subsequently intro- 049

duces a significant concern: the risk of data con- 050

tamination. 051

Data contamination arises when a model’s pre- 052

training data integrates evaluated data, conse- 053

quently enhancing test performance (Magar and 054

Schwartz, 2022; Golchin and Surdeanu, 2023). 055

Currently, many models opt not to disclose their 056

training sets in technical reports, raising concerns 057

about the potential inclusion of benchmark datasets 058

within their training data. This presents an urgent 059

problem (Wei et al., 2023), as these contaminated 060

models claim highly evaluated results but often 061

lead to poor real-world experiences. We strongly 062

advocate for a cleaner evaluation of LLMs. Un- 063

veiling the genuine capabilities of LLMs could sig- 064
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Figure 2: An overview of our method. We first gather established benchmarks for LLM assessment and then
meticulously clean contamination in these benchmarks through LLM-powered paraphrase and multi-language
back-translation, employing a semantic detector to filter and select optimal results based on BLEURT scores.

nificantly propel the community of LLMs forward.065

The most effective resolution involves relabeling066

a new dataset when developing a new model to067

assess its capabilities. Unfortunately, this process068

demands considerable time and labor.069

This paper employs previously proposed bench-070

marks to create a new benchmark, and our method071

is called Clean-Eval, aiming to mitigate data con-072

tamination using LLMs and accurately assess the073

capabilities of LLMs. Leveraging the exceptional074

creative capabilities of these models, we perform075

diverse paraphrasing of contaminated data and076

back-translate it across multiple language direc-077

tions. This process results in a pool of calibrated078

datasets. We effectively filter out low-quality sam-079

ples by utilizing semantic detectors, and then se-080

lect the best items based on BLEURT scores de-081

rived from comparisons between the calibrated and082

contaminated data. Finally, We conducted experi-083

ments on 20 benchmarks across diverse tasks, and084

our analysis unveiled noticeable calibrated effects085

achieved through Clean-Eval. Our human evalua-086

tion reinforces the method’s potential to improve087

sentence structure, grammar, and linguistic diver-088

sity while maintaining core semantics. Acknowl-089

edging the challenge of detecting model contamina-090

tion within specific benchmarks, we propose a new091

evaluation approach for in-context learning and092

fine-tuning. Our experiments convincingly demon-093

strate that processing contaminated data through094

our method effectively restores the model’s genuine095

performance.096

2 Related Work097

2.1 Data Contamination098

Detecting data contamination is crucial in ensur-099

ing the integrity of model training and usage. Re-100

searchers and practitioners within the field have101

dedicated considerable effort to developing meth- 102

ods for identifying and mitigating instances where 103

test data unintentionally becomes part of a model’s 104

training dataset Brown et al. (2020); Touvron et al. 105

(2023) . 106

Model Trainers. Brown et al. (2020) conducted 107

experiments on data contamination, using an n- 108

gram overlap metric to evaluate duplication levels 109

between training and test sets. They subsequently 110

eliminated these duplications from the training 111

dataset. Similarly, Dodge et al. (2021) assessed 112

exact matches, accounting for capitalization and 113

punctuation normalization. This method scruti- 114

nized whether entire evaluation text inputs existed 115

within the training data. However, Touvron et al. 116

(2023) critiqued the precision of previous high- 117

order n-gram-based detection methods in determin- 118

ing contamination extent within a sample. Their 119

proposed approach involved token-level contami- 120

nation identification, allowing for slight variations 121

in overlap positions between evaluation samples 122

and training data. Wei et al. (2023) took a dis- 123

tinctive approach, comparing the language model 124

(LM) loss between the test splits of a dataset and a 125

mimic dataset generated by GPT-4 to correspond 126

to it. A smaller discrepancy value between these 127

sets indicated potential contamination within the 128

model. 129

Model Users. Carlini et al. (2023) construct a set 130

of prompts using the model’s training data. They 131

investigated by supplying prefixes of these prompts 132

to the trained model to assess the model’s capacity 133

to complete the remaining portion of the example 134

verbatim. Their study revealed that as the model’s 135

capacity, duplicated numbers, and context length 136

increased, the models would be more proficient in 137

memorizing data. Meanwhile, Golchin and Sur- 138
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Question: Which definition of evolution would 
have been most foreign to Charles Darwin during 
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traits over generations
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Question: if one electrical conductor contacts 
another electrical conductor then what will 
flow through both conductors?

A. plants
B. air
C. wind
D. zapping power
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randon selected 
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Demonstration

Question: Which definition of evolution would 
have been most foreign to Charles Darwin 
during his lifetime?

A. change in gene frequency in gene pools 
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D. populations becoming better adapted to 
their environments over the course of 
generations

Answer:  

Tested Sample test set instance

Clean Eval

Question: Which definition of evolution would have 
been most foreign to Charles Darwin during his 
lifetime?

A. change in gene frequency in gene pools 
B. descent with modification
C. the gradual change of a population's heritable 
traits over generations
D. populations becoming better adapted to their 
environments over the course of generations

Answer: A

 test set instanceDemonstration

Question: What was the evolutionary view Charles 
Darwin was least familiar with in his lifetime?

A. change in gene frequency in gene pools 
B. descent with modification
C. the gradual change of a population's heritable 
traits over generations
D. populations becoming better adapted to their 
environments over the course of generations

Answer:  

Tested Sample
calibrated test set 

instance

Figure 3: Evaluation setting of in-context learning. Each input comprises a demonstration and a tested sample. In
the contamination setting, the demonstration matches the tested sample. In contrast, in the absence of contamination,
the demonstration is drawn from a separate split of the dataset, maintaining distinction from the tested sample (e.g.,
sampled from the train split). In our Clean-Eval setup, the tested sample is a calibrated version of the demonstration,
specifically designed to mitigate the effects of contamination.

deanu (2023) introduced an approach involving the139

development of guided instructions that include140

the initial segment of a data instance and its corre-141

sponding partition name. These guided instructions142

are subsequently utilized to induce the model to143

generate the second part of the data, based on a144

provided prompt. Rouge, BLEURT, and GPT4145

auto evaluation determine whether the model had146

data contamination. Furthermore, Li (2023) ana-147

lyzed six prominent multi-choice QA benchmarks,148

quantifying their overlap with the training dataset149

already known of Llama to detect potential data150

contamination.151

2.2 Existing Benchmark152

Many benchmarks have been proposed, including153

MMLU (Li et al., 2023a), CEVAL (Huang et al.,154

2023), etc., to measure the capability of LLMs155

comprehensively. However, labeling these bench-156

marks is time-consuming and laborious, and en-157

suring no overlap with the training set of LLM is158

often challenging. There is also work to reformu-159

late existing benchmarks to build new ones. Li et al.160

(2023b) propose ReForm-Eval to reformulate exist-161

ing benchmarks into unified large vision-language162

model compatible formats. 163

Nevertheless, based on our knowledge, there 164

is no proposed solution to the problem of data 165

contamination causing excessive model evaluation 166

performance. In this paper, we propose an effec- 167

tive method to mitigate this problem. Experiments 168

demonstrate that our methods work in evaluating 169

both closed and open LLMs. 170

3 Clean-Eval 171

The framework of our method is shown in Fig- 172

ure 2. Our methodology comprises three primary 173

stages. Initially, we concentrate on gathering es- 174

tablished benchmarks to assess LLMs. In the sub- 175

sequent phase, we meticulously cleaned contami- 176

nation in the collected benchmarks. This involves 177

paraphrasing samples using the creative capacities 178

of the LLMs and performing multi-language back- 179

translation on the contaminated data. In the final 180

phase, we use the semantic detector to filter the 181

outcomes of the contamination cleanup, eliminat- 182

ing subpar results and selecting the ultimate results 183

based on the BLEURT score. 184
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text-davinci-003 | In-context Learning | [Accuracy]

AG News QQP QNLI RTE MNLI WNLI SNLI IMDB PIQA

w/ Contamination 53.67 95.00 90.67 96.39 80.00 95.78 94.00 95.67 86.33
w/o Contamination 40.67 83.33 80.00 84.12 71.00 54.93 73.67 89.00 80.33
Clean-Eval 53.00 ↓ 79.00 ↓ 82.00 ↓ 76.90 ↓ 71.67↓ 71.83 ↓ 62.00 ↓ 85.33 ↓ 75.33 ↓

MultiArith MRPC GSM8K COPA CB BOOLQ SST2 MMLU CEVAL

w/ Contamination 65.00 93.67 64.33 92.00 98.21 87.33 90.67 73.67 66.33
w/o Contamination 35.00 68.33 12.33 90.00 82.14 81.33 80.00 59.00 41.00
Clean-Eval 60.00↓ 65.67↓ 50.67 ↓ 75.00↓ 91.07 ↓ 83.67 ↓ 78.00↓ 57.00 ↓ 38.33 ↓

Llama2 | Fine-Tuning | [Accuracy]

AG News QQP QNLI RTE MNLI WNLI SNLI IMDB PIQA

w/ Contamination 54.00 99.00 98.00 99.27 99.67 63.38 99.00 97.33 100.00
w/o Contamination 31.67 84.00 85.67 80.51 72.00 47.89 82.00 94.00 74.33
Clean-Eval 51.34 ↓ 81.00 ↓ 79.00 ↓ 67.87↓ 73.67 ↓ 60.56 ↓ 68.37 ↓ 95.33 ↓ 78.67↓

MultiArith MRPC GSM8K COPA CB BOOLQ SST2 MMLU CEVAL

w/ Contamination 36.11 96.33 50.67 100.00 85.71 99.33 99.99 82.67 87.33
w/o Contamination 16.11 79.33 7.00 89.00 58.93 73.33 94.67 37.33 30.00
Clean-Eval 22.78 ↓ 60.33 ↓ 26.33↓ 76.00 ↓ 71.43 ↓ 91.33↓ 90.67 ↓ 25.00 ↓ 85.00 ↓

Table 1: Natural language understanding tasks. The symbol ↓ indicates a decrease in performance compared to the
contamination setting. The optimal candidate is chosen according to the lowest BLEURT score.

3.1 Back-translation185

Back-translation (BT) involves retranslating con-186

tent from the target language into its source lan-187

guage using literal terms (Sennrich et al., 2016). In188

this process, slight differences can be introduced,189

such as replacing synonyms. Therefore, we trans-190

late the raw data into various language orientations191

and then revert to the original language to compose192

our candidate set of contamination cleanup data. In193

this process, we aim to achieve a distinct expres-194

sion from the original sample while preserving the195

semantics.196

3.2 Paraphrase197

LLMs have showcased significant potential across198

diverse professional domains, particularly in cre-199

ative writing (Touvron et al., 2023). Harnessing200

their creative prowess, we utilize LLMs to gener-201

ate multiple paraphrases of raw data, purposefully202

introducing variations. Specifically, we leverage203

the text-davinci-003 version of GPT-3 to generate204

these paraphrases. For instance, a typical prompt in205

our approach was: Please paraphrase this sentence206

in three different ways.207

3.3 Filter 208

However, these candidate sets might need to be 209

further examined to ensure their quality. As shown 210

in Figure 2c, we use a semantic detector to judge 211

whether the content in the candidate set is semanti- 212

cally similar to the original content to narrow the 213

set of candidate sets further and select the candi- 214

date according to the BLEURT score as the final 215

result.1 In Appendix B.3, the BLEURT scores of 216

each instance on various benchmarks are presented, 217

with scores typically ranging from 0.4 to 0.9. Our 218

analysis indicates that the lowest BLEURT score 219

serves as an effective indicator for restoring the 220

true capabilities of LLMs. 221

With these essential steps, we have achieved 222

greater efficiency in harnessing existing datasets, 223

mitigated data contamination concerns, and fur- 224

nished high-calibrated new data suitable for evalu- 225

ating model performance. 226

4 Evaluation Setting 227

Nearly all LLMs operate with proprietary training 228

datasets, making it challenging to ascertain whether 229

1This detector is optional. Removing the detector saves
computational and token costs, but can potentially degrade the
quality of the selected candidates.
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CNN/Daily-Mail BBC-XSUM

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

w/ Contamination 23.38 9.45 21.69 33.64 18.56 29.2
w/o Contamination 21.18 7.18 19.57 22.97 7.78 19.08
Clean-Eval 23.14 ↓ 9.35 ↓ 21.41 ↓ 33.09↓ 17.92↓ 28.90 ↓

Table 2: ICL experiments and metrics in Rouge. ↓ is compared to the contamination dataset. The optimal candidate
is chosen according to the lowest BLEURT score.

w/ Contamination

Fine-tuning

w/o Contamination

Clean Eval

Evaluation

Figure 4: Evaluation setting of fine-tuning. We fine-
tuned two models using datasets labeled red and green.
When evaluated on the red dataset, these two models are
categorized as contaminated and uncontaminated. Test-
ing a model’s performance on the red dataset processed
by Clean-Eval is attributed to the Clean-Eval setting.

the data being tested is free from contamination.230

To address this issue, we introduce an experimental231

framework for simulating data contamination.232

4.1 In-context Learning233

In-context learning (ICL) involves presenting a task234

demonstration to the model as a part of a natural235

language prompt. According to Brown et al. (2020),236

LLMs are classified as few-shot learners. Due to re-237

stricted access to the GPT-3 model and its variabil-238

ity, we execute ICL on these models to assess the239

efficacy of Clean-Eval. Within the ICL scenario,240

we propose and compare three evaluation settings:241

contamination, without contamination, and clean242

evaluation for any given benchmark.243

Each input comprises a demonstration and a244

tested sample, with different evaluation settings245

contingent upon their constitution. The demon-246

stration matching the tested sample, as depicted247

on the left side of Figure 3, constitutes the con-248

tamination setting. When the demonstration and249

tested sample originate from different dataset splits250

(center of Figure 3), it is categorized as the with-251

out contamination setting. In contrast, when the252

tested sample is the demonstration processed by253

Clean-Eval (right side of Figure 3), it represents 254

the Clean-Eval setting. 255

4.2 Fine-tuning 256

Fine-tuning entails further optimization adjust- 257

ments for a specific task or dataset using a pre- 258

trained LLM. Illustrated in Figure 4, we fine-tune 259

two models using distinct splits of a dataset. 260

Each instance within a benchmark is formatted 261

as an instruction for fine-tuning the model. When 262

the evaluation data mirrors the fine-tuned data, it’s 263

categorized as the contamination setting. If the 264

evaluation and fine-tuned data originate from differ- 265

ent splits of the same dataset, it falls under the with- 266

out contamination setting. Lastly, when the eval- 267

uation data is fine-tuned data processed by Clean- 268

Eval, it represents our Clean-Eval setting. 269

5 Experiments 270

5.1 Datasets 271

We have meticulously curated 20 datasets, span- 272

ning a wide array of tasks. These tasks encompass 273

text implication, problem pair matching, natural 274

language reasoning, semantic similarity, sentiment 275

analysis, common sense reasoning, text classifica- 276

tion, mathematical reasoning, examinations, and 277

even some natural language generation tasks. This 278

classification provides valuable insights into the 279

performance of various task types concerning data 280

contamination. Below is the comprehensive list of 281

datasets we have utilized: 282

• Nature Language Inference. GLUE dataset 283

(Wang et al., 2019b) that includes QNLI, 284

MNLI, SNLI, WNLI, RTE, QQP, MRPC, 285

SST2; IMDB (Maas et al., 2011); BOOLQ 286

(Clark et al., 2019); Super-GLUE dataset 287

(Wang et al., 2019a) that includes COPA, CB; 288

Ag News (Zhang et al., 2015). 289

• Nature Language Generation. 290

CNN_Dailymail (See et al., 2017), 291
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Data Method Rouge-1 Rouge-2 Rouge-L BLEURT Equivalence

QNLI
Back-translation 54.08 29.80 50.47 63.44 100.00

Paraphrase 48.50 26.02 43.28 63.19 100.00
Clean-Eval 46.85 22.90 42.53 60.21 100.00

SST2
Back-translation 52.35 32.05 51.01 59.94 100.00

Paraphrase 30.39 9.98 27.77 42.96 100.00
Clean-Eval 26.66 7.55 23.64 40.90 100.00

MMLU
Back-translation 52.85 30.15 48.68 57.91 100.00

Paraphrase 45.71 23.10 40.79 55.46 100.00
Clean-Eval 42.42 19.70 38.32 51.99 100.00

Table 3: The difference between the sample processed with different methods and the original sample. We choose
the lowest BLEURT score as our optimal candidate. As all generated samples undergo semantic detection, their
semantic equivalence consistently reaches 100%.

BBC_XSUM (Narayan et al., 2018).292

• Arithmetic Reasoning. GSM8K (Cobbe293

et al., 2021), MultiArith294

• Examination. MMLU (Hendrycks et al.,295

2021), CEVAL (Huang et al., 2023).296

5.2 Metrics297

ROUGE & BLEURT. To measure the degree298

of overlap between a generated instance and a ref-299

erence, we utilize both ROUGE (Lin, 2004) and300

BLEURT scores (Sellam et al., 2020). ROUGE301

evaluates lexical similarity, focusing on shared302

words and phrases, while BLEURT assesses the303

semantic relevance and fluency of the generated304

sequence concerning the reference instance.305

Equivalence. We employed the text-davinci-003306

model (Brown et al., 2020) to assess equivalence307

before and after the processing of contaminated308

data by Clean-Eval. Details of the prompt designs309

can be found in Appendix B.1.310

5.3 Contamination Cleanup.311

Models. We employ the text-davinci-003 model312

(Brown et al., 2020) for paraphrasing, back-313

translation, and semantic detection purposes. Addi-314

tionally, we utilize the BLEURT-20 model (Sellam315

et al., 2020) to compute BLEURT scores and then316

select the optimal candidate.317

Process. Given the diversity in format and con-318

tent across datasets, our processing criteria vary319

accordingly. Resource constraints prevent compre-320

hensive processing of every dataset aspect within321

our method, Clean-eval. For instance, while we322

thoroughly handle all contents in datasets like323

SNLI paired datasets, our focus narrows to ques- 324

tions alone in question-options-answer or question- 325

answer datasets. Additionally, our analysis is lim- 326

ited to the initial three sentences or less in dealing 327

with lengthy text. Furthermore, all generated sam- 328

ples undergo semantic detection. If they fail this 329

detection, the original sample is output. 330

Results. The results are shown in Table 3. Fol- 331

lowing our Clean-Eval method, the surface form 332

of the newly generated sample notably differs from 333

the original sample, particularly in terms of n-gram 334

variations. However, the presence of the seman- 335

tic detector ensures the quality and fidelity of the 336

generated results, assuring their reliability despite 337

these surface-level alterations. 338

5.4 In-context Learning 339

Model. We use the text-davinci-003 model 340

(Brown et al., 2020) to conduct ICL experiments. 341

Implementation Details. Each tested use case 342

is provided with task-specific instructions. For in- 343

stance, one instance attributed to CNN/Dailymail 344

would receive a prompt such as “The task is to 345

summarize this article:”. Detailed designs for all 346

prompts are in Appendix B.2. 347

Results and Analysis The results displayed in 348

Table 1 and Table 2 consistently showcase supe- 349

rior performance across all tasks in the presence 350

of data contamination, surpassing both the no- 351

contamination and Clean-Eval settings. This em- 352

phasizes a distinct performance advantage influ- 353

enced by data contamination. Notably, the model 354

demonstrates robust generalization across simpler 355

tasks like RTE, IMDB, and QQP, evident from its 356

strong performance even in the absence of con- 357
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tamination. However, when contamination occurs358

in these tasks, the model sustains a near-optimal359

performance level.360

The Clean-Eval setting is reliable, revealing the361

model’s genuine capability. Many datasets exhibit362

performance levels close to those without contam-363

ination. Yet, a performance gap between the no-364

contamination and Clean-Eval settings still exists,365

especially in more intricate tasks involving math-366

ematical reasoning, such as GSM8K and Multi-367

Arith. The model’s reduced performance in the368

no-contamination setting might stem from a lack369

of chain of thought, leading to performance degra-370

dation. Moreover, as depicted in Table 2, our ap-371

proach effectively mitigates data contamination,372

even when limiting processing to the first three sen-373

tences or fewer in an article. All results indicate374

that employing our Clean-Eval method results in a375

gradual performance decline, aligning more closely376

with the no-contamination setting.377

5.5 Fine-tuning378

Model. For fine-tuning, we employ the LLama2-379

7b-chat model (Touvron et al., 2023).380

Implementation Details As model parameters381

grow in size, achieving full fine-tuning becomes382

increasingly challenging. In such scenarios, we383

resort to LoRA for fine-tuning (Hu et al., 2021).384

Additional experiment settings are detailed in Ap-385

pendix A. Our process commences by transforming386

original data into instructional data, followed by387

single-instruction fine-tuning. Considering the ex-388

tensive array of datasets, conducting exhaustive389

fine-tuning for each model to attain optimal perfor-390

mance would be impractical and time-consuming.391

Thus, we fine-tune the model for approximately 40392

epochs before assessing its performance.393

Results and Analysis When the model under-394

goes fine-tuning and subsequent performance test-395

ing using the same dataset, it achieves notably396

higher accuracy, even reaching 100% on specific397

datasets. However, this performance dips when398

evaluated on a different dataset split. A significant399

performance gap exists between the uncontami-400

nated and contaminated dataset settings, particu-401

larly in challenging tasks like MultiArith, GSM8k,402

MMLU, and CEVAL. Notably, when tested under a403

Clean-Eval setting, the model’s performance aligns404

closely with that of the uncontaminated data.405

6 Analysis 406

6.1 Ablation Study 407

In Table 3, we conducted an ablation study com- 408

paring three methods, including back-translation, 409

paraphrase, and Clean-Eval. Back-translation con- 410

sistently yields higher Rouge and BLEURT scores 411

than other methods across three datasets. This sug- 412

gests that back-translation is effective in maintain- 413

ing lexical and sentence structure from the original 414

text. Paraphrase introduces variations in content 415

expression, showcasing the ability to offer alterna- 416

tive ways of expressing the same semantic content. 417

Clean-Eval, which combines paraphrase and back- 418

translation, emerges as a comprehensive approach. 419

It maintains semantic equivalence, as indicated by 420

the Equivalence score, and enhances the diversity 421

of content expression. 422

6.1.1 BLEURT Score 423

In this part, we explored whether the selection 424

based on the BLEURT score impacts the model 425

performance. 426

Score QNLI SST2 MMLU

BT
lowest 7.33 6.00 14.67
median -5.99 6.00 3.33
highest -10.67 6.00 4.01

Para
lowest -8.67 6.00 8.01
median 4.01 4.66 5.33
highest 0.01 6.00 8.67

Table 4: In ICL experiments, we assess the performance
gap using various BLEURT scores. This gap represents
the difference in performance between the model tested
in the Clean-Eval setting versus the no-contamination
setting and the model tested in the contamination setting
versus the Clean-Eval setting. A higher value signifies
that Clean-Eval approaches performance levels akin to
those in the no-contamination setting.

Results. Table 4 illustrates that paraphrasing ex- 427

hibits variability across three datasets. However, 428

back-translation demonstrates the potential to bring 429

the performance of the model closer to that of the 430

no-contamination setting when choosing the low- 431

est BLEURT score. Hence, to restore the large 432

model’s capabilities, selecting the best candidate 433

based on the lowest BLEURT score might be a 434

viable strategy. 435
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6.1.2 Combination sequence436

We conducted a comparison to evaluate the perfor-437

mance impact of the sequence of paraphrasing and438

back-translation.439

Order QNLI SST2 MMLU

Para + BT 10.67 6.00 14.67
BT + Para 10.67 6.00 12.67

Table 5: Performance gap with different combination
orders of paraphrase and back-translation.

Results. From Table 5, we can see that while440

QNLI and SST2 tasks are less sensitive to method441

order, the MMLU task shows slight differences.442

Therefore, we can tailor the order based on task443

requirements and we choose to first paraphrase and444

then back-translation in Clean-Eval.445

6.1.3 Equivalence Detector446

Continuous use of back translation would end up447

with a string that differs markedly from that which448

you started (Way, 2013). A combination of para-449

phrase and back-translation might also cause this450

problem.451

Method QNLI SST2 MMLU

BT 74.17 86.33 73.33
Para 91.67 82.67 73.33
Clean-Eval 72.17 ↓ 56.34↓ 60.34↓

Table 6: Model performance on the calibrated dataset
without equivalence detector.

Results. As we can see from Table 6, across all452

three datasets, the paraphrasing method demon-453

strates relatively high performance, especially in454

QNLI and SST2. In the absence of a semantic de-455

tector, results generated through Clean-Eval exhibit456

a general decline in performance. This suggests457

the possibility of introducing semantic errors or458

inaccuracies during the generation process and the459

importance of semantic detectors.460

6.2 Human Evaluation461

We performed human evaluations of the generated462

output to assess potential changes after our method463

Clean-Eval.464

Results. Human evaluation results on the SST2465

dataset indicate that 97% of instances maintain se-466

mantic equivalence with the original ones. This467

suggests the model largely preserves the intended 468

meaning of the questions, showcasing the effec- 469

tiveness of the generated output in retaining input 470

semantics. 471

7 Case Study 472

this flick is about as cool and 

crowd-pleasing as a documentary can get . Original

No documentary beats this one in terms of 

being cool and delighting the audience.

There is no documentary movie that can 

match this one in terms of coolness and 

enthusiasm from the audience.
Back-translation

Paraphrase

 

 

 

Figure 5: A case study from SST2 dataset.

In this case, the paraphrased sentence success- 473

fully conveys the essence of the original while 474

introducing some variation. The transformation 475

maintains a positive sentiment, emphasizing the 476

documentary’s coolness and appeal to the audi- 477

ence. Back-translation aims to ensure that the para- 478

phrased sentence retains its intended meaning. The 479

back-translated sentence aligns well with the para- 480

phrased version. The key elements, such as the 481

documentary’s uniqueness, coolness, and audience 482

appeal, are preserved. The combined approach 483

of paraphrasing and back-translation proves effec- 484

tive in enhancing the original sentence. The para- 485

phrased version introduces a nuanced expression, 486

and the subsequent back-translation successfully 487

captures the intended meaning. The final output 488

maintains a positive tone and successfully commu- 489

nicates the documentary’s appeal. 490

8 Conclusion 491

Data contamination is an urgent problem for the 492

development of LLMs society. Downloading and 493

trying contaminated models can be a waste of time 494

for both researchers and developers. To save their 495

time, this paper intends to mitigate the issue of data 496

contamination in LLMs through the introduction 497

of the Clean-Eval method. This approach lever- 498

ages existing datasets to create a new evaluation 499

dataset, effectively mitigating the impact of con- 500

tamination. Experimental results demonstrate the 501

method’s success in accurately assessing model 502

capabilities and restoring real performance. Clean- 503

Eval holds promise in enhancing transparency and 504

reliability in the evaluation of LLMs. 505
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Limitations506

Datasets. This paper focuses on two mainstream507

models. In the absence of knowledge regarding508

their training data, our selected benchmark, mim-509

icking the no-contamination setting, likely overlaps510

with their existing training data. Consequently, per-511

formance testing on these benchmarks could yield512

inflated performance metrics. Moreover, due to513

resource constraints, we sampled approximately514

300 instances for each benchmark. However, de-515

spite this limited number, randomness in sampling516

aims to ensure these instances represent the entire517

dataset.518

Fine-tuning. Given the extensive collection of519

benchmarks, conducting exhaustive fine-tuning to520

maximize model performance becomes impractical.521

Instead, we fine-tune the model using a consistent522

experimental setup for approximately 40 epochs.523

Our goal is to illustrate that models affected by524

contamination exhibit higher performance. Fur-525

thermore, evaluating benchmarks processed by our526

method Clean-Eval aims to mitigate this perfor-527

mance inflation and restore the true capabilities of528

the LLMs.529

Ethic Statement530

This paper will not pose any ethical problems. The531

datasets used in this paper have already been used532

in previous articles.533
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A Experiment Settings 685

We conducted fine-tuning of the Llama2-7b-chat 686

version on 2 RTX4090 GPUs, each with 24GB 687

of memory. The model was fine-tuned accord- 688

ing to specific instructions, utilizing the following 689

prompt: 690

[INST] <<SYS>>\n" 691

"You are a helpful, respectful, and honest 692

assistant." 693

"<</SYS>>\n\n{0} [/INST]\n{1}</s>"] 694

To optimize memory usage and enable deploy- 695

ment on smaller devices, we loaded our Llama2- 696

7b-chat model in 4-bit precision, effectively reduc- 697

ing memory consumption. Employing a bfloat16 698

compute data type alongside nested quantization 699

further contributed to memory efficiency. Addition- 700

ally, we leveraged LoRA with a 16-dimensional 701

updated matrix and scaling set at 64. A batch size 702

of 16 was chosen for shorter instructions, while 703

longer instructions used a batch size of 4. The ini- 704

tial learning rate was set to 2e-4, coupled with the 705

paged_adamw_8bit optimizer for training. 706

B Prompt Design 707

B.1 Method prompt 708

Our paraphrasing, back-translation, and equiva- 709

lence detector prompts are shown in Table 7. 710

B.2 Instruction for Each Dataset 711

Our prompts for each benchmark are shown in Ta- 712

ble 8. 713
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Method Prompt Design

Paraphrase Please paraphrase the following sentence without changing the mean-
ing in 3 ways, and then return as a list.

Back-translation Please translate the following sentence into [language] without
changing the meaning.

Equivalence Detector Please determine whether the following sentences are equivalent.

Table 7: Prompt designs of each method.

Dataset Prompt Design

RTE The task is to determine whether a pair of sentences are entailed by
each other. Just return entailment or not_entailment.

QQP, MRPC The task is to determine whether a pair of questions are semantically
equivalent. Just return equivalent or not_equivalent.

QNLI The task is to determine whether the context sentence contains the
answer to the question. Just return entailment or not_entailment.

MNLI, CB The task is to predict whether the premise entails the hypothesis,
contradicts the hypothesis, or neither. Just return entailment, contra-
diction, or neutral.

WNLI The task is to predict if the sentence with the pronoun substi-
tuted is entailed by the original sentence. Just return entailment
or not_entailment.

SNLI The task is to determine whether a pair of sentences are entailed,
contradicted, or neutral to each other. Just return entailment, contra-
diction, or neutral.

IMDB The task is to determine whether the sentiment of the text is positive
or negative. Just return positive or negative.

PIQA The task is to select the best solution to the question. Just return the
solution1 or solution2.

COPA Given a premise, choose one of the following two choices that express
the sample["question"] relationship. Just return choice1 or choice2.

BOOLQ The task is to answer true or false given the question. Just return true
or false.

SST2 The task is to determine whether the sentiment of the sentence is
positive or negative. Just return positive or negative.

AG News The task is to classify the article into sports, world, business, or
sci/tech. Just return sports, world, business, or sci/tech.

GSM8K, MultiArith The task is to answer a given mathematical question. Just directly
return the final number answer.

MMLU, CEVAL Please select the best answer from the options according to the ques-
tion. Just return one answer with A, B, C, or D.

CNN_Dailymail,
BBC_XSUM

Please summarize this article.

Table 8: Prompt designs of each benchmark.
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B.3 BLEURT Score714

Figure 6 illustrates the BLEURT score of each in-715

stance from selected benchmarks compared to the716

original instance.717
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(a) AgNews. (b) BOOLQ. (c) CB.

(d) COPA. (e) IMDB. (f) MNLI.

(g) MRPC. (h) PIQA. (i) QNLI.

(j) QQP. (k) PIQA. (l) QNLI.

Figure 6: The BLEURT score of each instance from selected benchmarks compared to the original instance. The
graph featuring the red line represents a paired dataset, depicting one instance on either side of this demarcation
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