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ABSTRACT

Hybrid tabular-textual question answering (QA) requires reasoning from hetero-
geneous information, and the types of reasoning are mainly divided into numeri-
cal reasoning and span extraction. The current numerical reasoning method uses
LSTM to autoregressively decode program sequences, and each decoding step
produces either an operator or an operand. However, the step-by-step decoding
suffers from exposure bias, and the accuracy of program generation drops sharply
with progressive decoding. In this paper, we propose a non-autoregressive pro-
gram generation framework, which facilitates program generation in parallel. Our
framework, which independently generates complete program tuples containing
both operators and operands, can significantly boost the speed of program genera-
tion while addressing the error accumulation issue. Our experiments on the Mul-
tiHiertt dataset shows that our model can bring about large improvements (+7.97
EM and +6.38 F1 points) over the strong baseline, establishing the new state-of-
the-art performance, while being much faster (∼21x) in program generation. The
performance drop of our method is also significantly smaller than the baseline
with increasing numbers of numerical reasoning steps.

1 INTRODUCTION

Most previous QA studies focus on homogeneous data, such as unstructured text (Hermann et al.,
2015; Chen et al., 2017; Yang et al., 2018; Li et al., 2020; Nie et al., 2020) or structured knowledge
bases (Yih et al., 2015; Weston et al., 2015; Talmor & Berant, 2018; Zhang et al., 2020b; Zhang
& Balog, 2020). In comparison, hybrid QA (Chen et al., 2020a;b; Zhu et al., 2021; Chen et al.,
2021) reasons from heterogeneous information (such as texts and tables) and is more challenging
as it sometimes requires numerical calculation to answer the question in addition to extracting in-
formation. The numerical inference procedure is usually implemented by a program generator that
generates the programming sequence and an interpreter to execute the program. Compared with
existing benchmarks (Chen et al., 2020b; Zhu et al., 2021; Katsis et al., 2021; Chen et al., 2021), the
MultiHiertt (Zhao et al., 2022) dataset is based on a wealth of financial reports, its questions may
involve multiple hierarchical tables and longer texts, and the reasoning process required to answer
the question is more complex.

MT2Net (Zhao et al., 2022) obtains the state-of-the-art performance on the MultiHiertt dataset. It
first converts data cells of tables into sentences with their row and column headers. As pre-trained
LMs cannot handle very long input sequences, MT2Net uses pre-trained LMs like BERT (Devlin
et al., 2019) to compare the question with each sentence to identify the existence of supporting facts.
Another classifier is employed to distinguish between questions that require numerical reasoning or
span extraction. For numerical reasoning, MT2Net uses RoBERTa (Liu et al., 2019) as the encoder
and an LSTM as the decoder to gradually generate the program, where each decoding step produces
either an operator or an operand. However, this step-by-step autoregressive decoding process suffers
from exposure bias. During training, the model uses gold references as decoding history, but the
decoding history might be wrong during inference, and wrong predictions in early steps may lead
to further errors in following steps. As a result of error accumulation, program generation accuracy
drops heavily with decoding.

1



Under review as a conference paper at ICLR 2023

Question: What‘s the total amount of the Financial standby letters of credit in the years where Benefit plans-3 is less than -6,250 (in million) ?
Answer: 325.2 add(31.8,65.3), add(#0,97.1), add(#1,131) 

( ... abbreviate... ) 
INCENTIVE PLANS Discretionary Annual Incentive Awards Citigroup 
grants immediate cash bonus payments and various forms of immediate 
and deferred awards as part of its discretionary annual incentive award 
program involving a large segment of Citigroup’s employees worldwide.
( ... abbreviate... )

( ... abbreviate... )
The maximum length of time over which forecasted cash flows 
are hedged is 10 years. The after-tax impact of cash flow 
hedges on AOCI is shown in Note?19 to the Consolidated 
Financial Statements. The following tables present information 
about Citi’s guarantees:

Maximum potential amount of future payments. ( ... abbreviate... )

Texts and Tables

In millions of dollars

Debt 
valuation 

adjustment 
(DVA)(1)

Cash flow 
hedges-2

Benefit 
plans-3 …

… … … … …
Balance at December 31, 2015 - $-617 $-5,116 …

Change, net of taxes -337 57 -48 …
Balance at December 31, 2016 -352 -560 -5164 …

Change, net of taxes -569 -138 -1019 …
Balance at December 31, 2017 $-921 $-698 $-6,183 …

Change, net of taxes 1113 -30 -74 …
Balance at December 31, 2018 192 -728 -6257 …

... … … … …

Maximum potential amount of future payments
In billions of dollars at 
December 31, 2018, 
except carrying value 

in millions

Expire 
within1 

year

Expire 
after1 year

Total 
amountout
standing

Carrying 
value(in 

millions of 
dollars)

Financial standby 
letters of credit $31.80 $65.30 $97.10 $131 

Performance 
guarantees 7.7 4.2 11.9 29

Derivative instruments 
considered to be 

guarantees
23.5 87.4 110.9 567

Question and Answer

Figure 1: An example of the MultiHiertt dataset. In the numerical reasoning question, the system
needs to locate which year has less than -6,250 (in million) Benefit plans-3 from the first table,
and then select the relevant numbers from the second hierarchical table as operands to calculate the
answer with addition as the operator. Better viewed in color, the supporting facts are in blue boxes.

To address the exposure bias issue with the autoregressive program generation, and to accelerate the
reasoning benefiting from better parallelization with independent decoding, in this paper, we propose
a Non-Autoregressive Program Generation model (NAPG). Following the design of MT2Net, we
also first use the fact retrieval module to obtain the most relevant supporting facts, and then send
them to the span extraction module and the numerical reasoning module according to the type of the
question. But for numerical reasoning, we first use RoBERTa as an encoder to extract all operands
for the program sequence, and soft-mask the encoding representation according to the prediction
probability that the token is an operand. Next, we generate the full reasoning program in parallel
with a number of generators and the soft-masked representation. Each generator independently
generates a complete program tuple including both the operator and its operands at the fixed position.
A length predictor is introduced to predict the length of the program. As the program generators do
not leverage the prediction of the other generators, the program generations of different steps are
independent. This can prevent the generation from the exposure bias problem and greatly improve
the generation speed due to parallelization.

Our main contributions are as follows:

• We propose a non-autoregressive program generation model (NAPG), which can generate
the full reasoning programs in parallel. Compared to the previous autoregressive gener-
ator, our method does not suffer from the exposure bias issue and is much faster due to
parallelization.

• In our experiments on the MultiHiertt dataset, the NAPG model can bring about huge
improvements (+7.97 EM and +6.38 F1 points) over the state-of-the-art MT2Net model
while being ∼21 times as fast in program generation. Our further analysis shows that, the
performance loss of NAPG is also significantly smaller than our baseline with increasing
numbers of numerical reasoning steps.

2 PRELIMINARIES

Task Description Question answering over hybrid tabular textual data requires reasoning from
heterogeneous information, involving numerical reasoning or span extraction. As shown in Figure 1,
given the question Q, the system is to find its answer from tables T and texts E. For some cases, the
model only needs to extract an answer span A from the input. While for many other cases involving
numerical reasoning, the model has to generate a program sequence G = {g0, g1, ..., gn}, where gi
stands for the token of the program, which is either extracted from the input, or selected from pre-
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RoBERTa

Input embeddings

… is 31.8 …

add( ) …
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Step memory embeddings

)65.331.8add( )97.1#0add(

Update memoryOutput Space

… ……

LSTM decoder

Figure 2: Autoregressive Program Generation for Numerical Reasoning.

defined special tokens, including operators and special operands, and the probability of an answer
A is calculated by summing over the probabilities of all programs Gi that compute A:

P (A|T,E,Q) =
∑
i

P (Gi|T,E,Q) (1)

Fact Retrieving MT2Net converts data cells of tables into sentences with their row and column
headers. As the input text in a document of the MultiHiertt dataset may exceed 3,000 tokens and due
to the input length limitation of PLMs, MT2Net first concatenates the question with each sentence as
input to train a BERT-based binary-classifier (bi-classifier) for supporting fact classification. Next,
it takes the top n sentences based on the supporting fact classification prediction as the input for
the next stage. Another classifier is used to determine whether the next stage is span extraction or
numerical reasoning.

Span Extraction MT2Net uses the T5-base model (Raffel et al., 2020) for span extraction ques-
tions, where the model takes the concatenation of the question and the sentences containing support-
ing facts as input, and generates the answer sequence.

Autoregressive Numerical Reasoning Answering the question may require multi-step reasoning,
MT2Net first uses RoBERTa as an encoder to obtain the context-aware representations of the ques-
tion and the sentences containing supporting facts, and concatenates them with the embeddings of
pre-defined special tokens. Next, it uses an LSTM decoder to generate the program sequence for the
deduction of the answer. Each decoding step makes predictions over the concatenated matrix and
selects either an operator or an operand, as shown in Figure 2. Since programs are generated autore-
gressively, their generation suffers from exposure bias: during training, it takes the gold references
for step-by-step decoding (“teacher forcing”), but during inference, the predictions of previous steps
are used and may mislead the generation of following steps. This leads to error accumulation, and
the performance of the MT2Net drops rapidly in practice as the number of inference steps increases.

3 OUR APPROACH

We present the non-autoregressive program generation model that independently generates the full
program sequence to address the exposure bias issue of the step-by-step program generation model
and to speed up the generation by supporting better parallelization. The NAPG model framework
is shown in Figure 3. It first uses a bi-classifier to retrieve the most relevant facts, and uses another
bi-classifier to identify the question type like MT2Net. For span extraction questions, NAPG uses
the same T5-base model to generate the answer given the concatenation of the question and the
sentences containing supporting facts. But for numerical reasoning, we design a non-autoregressive
approach to program generation, which is quite different from the autoregressive LSTM decoder
used by MT2Net.

3.1 NON-AUTOREGRESSIVE PROGRAM GENERATION

Our non-autoregressive program generation is implemented by a length predictor to predict the num-
ber of numerical reasoning steps, a soft-masking operand extractor to identify all operands in the
program sequence, and a set of modules for the program generation of all steps, where each rea-
soning step includes a soft-masking operand generator to select the operands for the operator, an
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Maximum potential amount of future payments. 
( ... abbreviate... )

( ... abbreviate... )
The following tables present information about Citi’s guarantees:

( ... abbreviate... )
The following tables present information about Citi’s guarantees:
( ... abbreviate... )
Table 3 shows Financial standby letters of credit of Maximum potential 
amount of future payments Expire within1 year is $31.8 .

Table 3 shows Financial standby letters of credit of Maximum potential 
amount of future payments Carrying value(in millions of dollars) is $131. 
( ... abbreviate... )
Maximum potential amount of future payments. 
( ... abbreviate... )

Question:
What‘s the total amount of 
the Financial standby letters 
of credit in the years where 
Benefit plans-3 is less than 
-6,250 (in million) ?

Fact Retrieval Module

Concat

Context:

Retrieved top-n Facts Type Prediction

T5-base

CLS Question ContextSEP

Answer

RoBERTa

CLS Special 
Tokens SEP Question SEP Tables SEP Texts SEP

Soft-Masking Operand Extractor

Soft-mask

CLS Special 
Tokens SEP Question SEP Tables SEP Texts SEP

mean

CLS

CLS

Soft-maskCLS

add3 0 31.8 65.3

…

…

Add(31.8,65.3), add(#0,97.1), add(#1,131) 

325.2

N

Y

Numerical Reasoning Span Extraction

Fact Retrieving

…

Length 
Predictor

Operator 
Generator

Order
Predictor

Operand
Generator

add 0 131

Operator 
Generator

Order
Predictor

Operand
Generator

…

𝑋𝑋

ℎ𝑜𝑜

ℎ𝑠𝑠

ℎ𝑖𝑖𝑒𝑒

Maximum potential amount of future payments
In billions of dollars at 
December 31, 2018, 

except carrying value in 
millions

Expire 
within1 

year

Expire 
after1 year

Total 
amountout
standing

Carrying 
value(in 

millions of 
dollars)

Financial standby 
letters of credit $31.80 $65.30 $97.10 $131 

Performance 
guarantees 7.7 4.2 11.9 29

Is numerical 
reasoning?

mean

Figure 3: The NAPG Model.

operator generator to predict the operator, and an order predictor to decide the order of the operands.
As the program tuples (each containing one operator and its two operands and the order of the two
operands) of different programming steps are likely to be different, we use the same architectures
but independent modules for different steps.

Length Predictor Numerical reasoning requires a variable number of inference steps, so we em-
ploy a multi-class classifier as the length predictor to predict the number of reasoning steps, where
each reasoning step contains a complete program tuple (including the operator and its operands).
The classifier is an FFN layer with the RoBERTa representation of the [CLS] token without soft
masking as input.

plength = softmax (FFN ([CLS])) (2)

Soft-Masking Operand Extractor Extracting correct operands is crucial for the inference of the
correct answer. We empirically find that extracting operands of the full program sequence benefits
the performance, and employ a soft-masking operand extractor layer before extracting operands for
each reasoning step.

Since operations such as averaging and numerical order conversion may occur during reasoning,
we add constants within 10 and common order values into special tokens following MT2Net, and
concatenate special tokens with the question and the sentences containing supporting facts as input to
the RoBERTa encoder. We train an FFN to identify all operands of the expected reasoning program
in the input.

pt = softmax (FFN (ho)) (3)
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where FFN is a 2-layer feed-forward network with GELU (Hendrycks & Gimpel, 2016) as the
activation function. ho is the RoBERTa representation. pt represents the probability that the token
is an operand.

Then we soft mask (Zhang et al., 2020a) the RoBERTa representation with pt.

hs = ho ∗ pt + vm ∗ (1− pt) (4)

where hs is the soft-masked representation, vm stands for the mask embedding, and “*” indicates
the element-wise multiplication.

A large pt would make the soft masking result close to the original embedding, while a small pt
would turn the result close to the masking vector. The soft-masking mechanism can thus represent
the operands with a higher priority. Compared to using the classification results for hard masking,
soft masking is differentiable and can be trained in an end-to-end manner while alleviating the error
propagation issue. We use a zero vector with all dimensions set to 0 as the mask embedding, as we
empirically find out that this works better than the other options (including the embedding of the
special [MASK] token) for this task.

Soft-Masking Operand Generator We also utilize the soft masking mechanism to extract the
two operands of the specific reasoning step from the input. Compared to the soft-masking operand
extractor that identifies all operands of the input, the soft-masking operand generator only finds the
operands of the program step by selecting only two tokens with the highest prediction probabilities
from either the numbers in the retrieved sentences or the set of pre-specified tokens representing the
computation results of preceding program steps or pre-defined numbers.

pe = softmax (FFN (hs)) (5)

he = hs ∗ pe + vm ∗ (1− pe) (6)

where hs and he are the soft-masked representation from the operand extractor and the soft masking
result respectively. pe represents the probability that the token is the operand of the step.

Note that the soft-masking mechanism in the operand extractor highlights all operands in the sen-
tences, while the soft-masking mechanism in the operand generator only highlights the operands
of the single reasoning step, which helps the following operator generation and order prediction
procedures of that step rely more on the two operands.

Operator Generator We define six operators following MT2Net: Addition, Subtraction, Mul-
tiplication, Division, Exp, Greater. We average the soft-masked representations produced by the
operand generator of the reasoning step and the embedding of the [CLS] token as input, and use a
multi-classifier as the operator generator to select the operator.

pop = softmax (FFN (mean ([CLS] |he))) (7)

Order Predictor The order of the two operands matters when the operator is subtraction, division,
exp or greater. We also take the mean pooling of the [CLS] token embedding and the soft-masked
embeddings produced by the operand generator of the reasoning step as input, and use a bi-classifier
to predict the order of the operands (whether their order is the same as in the input or in the reverse
order).

porder = softmax (FFN (mean ([CLS] |he))) (8)

3.2 TRAINING

To jointly optimize all objectives for numerical reasoning, we minimize the weighted sum of the
negative log-likelihood losses of individual modules.
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L=λt ∗ NLL (log (pt) , rt)
+λlength ∗ NLL

(
log

(
plength

)
, rlength

)
+λe ∗

n∑
i=0

NLL (log (pei ) , r
e
i )

+λop ∗
n∑

i=0

NLL
(
log

(
pop
i

)
, rop

i

)
+λorder ∗

n∑
i=0

NLL
(
log

(
porder
i

)
, rorder

i

)
(9)

where NLL stands for the negative log-likelihood loss function, r indicates the ground truths, λ
represents the weight of each module, and n is the maximum number of reasoning steps.

3.3 DISCUSSIONS

The general design of the NAPG only involves element-wise computations, the single FFN for length
prediction, and 3 sets of FFNs with different parameters but the same architecture for operand gen-
eration, operation generation and order prediction respectively. When generating the program tuple
sequence, the length predictor only needs to compute for once, and the element-wise computations
can be easily parallelized. As for each set of FFNs with different parameters but the same archi-
tecture, their activation function can be easily parallelized, and their linear layers with different
parameters can be parallelized with the batch matrix-matrix multiplication function implemented in
almost all modern linear algebra libraries (Xu et al., 2021a;b).

Compared to autoregressive decoding, non-autoregressive counterparts ignore the decoding history
which may have a potential negative impact on its coherence, but in case with the program generation
for numerical reasoning, the coherence may affect less, while the autoregressive decoding is very
likely to be mislead given the prediction quality is not high (< 50%, as shown in Figure 4).

4 EXPERIMENTS

4.1 SETTINGS

Dataset We conducted our experiments on the MultiHiertt dataset (Zhao et al., 2022). Compared to
other hybrid textual-tabular QA benchmarks, questions of the MultiHiertt dataset may involve mul-
tiple hierarchical tables and longer texts, and the reasoning process required to answer the question
is more complex. The dataset consists of 10,440 questions with 2,513 financial documents, and is
split into three parts: training (75%), development (10%), and test (15%). The labels of the test set
are not publicly available.

Evaluation Metrics Following MultiHiertt, we evaluated the performance of different approaches
with exact matching (EM) and the adopted numeracy-focused F1 (Dua et al., 2019).

Baselines TAGOP (Zhu et al., 2021) first uses the sequence tagging method to extract facts, then
performs only one arithmetic operation with pre-defined operators. FinQANet (Chen et al., 2021)
and MT2Net (Zhao et al., 2022) are able to perform multi-step reasoning, and they both use an
autoregressive LSTM decoder to generate the program. To fairly compare with existing state-of-the-
art results, all our baselines are based on the RoBERTa-large model.

Model Settings We find that the good performing hyper-parameters are different for different
model settings. We tuned hyper-parameters on the development set (§ 4.6). For base model, λop was
set to 2, the others were all set to 1. For large model, λt was set to 2, and λlength was set to 1.5, the
others were set to 1. We set the maximum number of reasoning steps n to 10.

4.2 MAIN RESULTS

We first compare NAPG (with both base and large settings) with our baselines. Results are shown
in Table 1.
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Dev Test
EM F1 EM F1

TAGOP (RoBERTa-large) 19.16 21.08 17.81 19.35
FinQANet (RoBERTa-large) 32.41 35.37 31.72 33.60
MT2Net (RoBERTa-large) 37.05 39.96 36.22 38.43

Ours (RoBERTa-base) 39.27 40.21 38.19 38.81
Ours (RoBERTa-large) 45.79 46.72 44.19 44.81

Table 1: Main results.
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Figure 4: Performance of different numerical reasoning steps on the development set.

Table 1 shows that: 1) already with the RoBERTa base setting, our method is able to achieve better
performance than the SOTA MT2Net model on both the development (+2.22 EM and +0.25 F1)
and the test set (+1.97 EM and +0.38 F1) even using only a much smaller model than baselines.
2) using the RoBERTa large setting can further boost the performance of NAPG, and lead to huge
improvements over the MT2Net baseline on both the development set (+8.74 EM and +6.76 F1)
and the test set (+7.97 EM and +6.38 F1). It’s worth noting that our approach only modifies the
program generation part of MT2Net, leaving the other parts unchanged. The large performance gain
with our method shows the effectiveness and superiority of NAPG over the LSTM decoder used by
MT2Net.

4.3 PERFORMANCE W.R.T. REASONING STEPS

To verify whether NAPG can really address the error accumulation issue of autoregressive program
generation, we analyze the performance of NAPG and MT2Net w.r.t. different numbers of reasoning
steps. For fairness, we used RoBERTa-large as the encoder of both NAPG and MT2Net. As the test
set is not publicly available, our analysis is performed on the development set and the results of
MT2Net are from Zhao et al. (2022). Results are shown in Figure 4.

Figure 4 shows that: 1) despite the metrics reporting highest scores with 2 reasoning steps, the
general performance trend is descending increasing the number of reasoning steps. 2) our NAPG
approach outperforms the MT2Net in all aspects by a large margin. 3) as the number of reasoning
steps increases, the improvements of our method are much larger over the autoregressive MT2Net
baseline (+11.41 EM and +11.67 F1 when the number of reasoning steps is 3 and +14.42 EM and
+14.43 F1 when the number of reasoning steps is larger than 3).

The performance drop with our non-autoregressive method is much smaller than the autoregressive
MT2Net, showing the advantage of NAPG in handling questions that require inference with long
program sequences. Intuitively, in the generation of longer program sequences, the autoregressive
model is more likely to suffer from exposure bias, the non-autoregressive generation prevents our
method from suffering from this issue and might be the reason for the good performance of NAPG
over MT2Net especially on these challenging questions.
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4.4 PROGRAM GENERATION SPEED ANALYSIS

Non-autoregressive program generation allows our approach to benefit from parallelization. We
compared the program generation speed of NAPG and the LSTM decoder of MT2Net by recording
the time costs of the program generation modules on all numerical reasoning questions in the training
set. Results are shown in Table 2.

Model Time (s) Speed-up

LSTM 168.86 1x
Ours 8.04 21x

Table 2: Time costs for program generation.

Table 2 shows that NAPG is 21 times as fast as the MT2Net, showing the great advantage of non-
autoregressive decoding over the step-by-step autoregressive decoding in terms of speed due to
parallelization.

4.5 PERFORMANCE ANALYSIS W.R.T. QUESTION TYPE

We tested the ability of NAPG and MT2Net in handling different sources of supporting facts with
the RoBERTa-large setting. Results are shown in Table 3.

EM F1
Supporting facts coverage MT2Net Ours MT2Net Ours

text-only questions 34.78 46.96 34.78 46.96
table-only questions 40.83 46.75 41.95 47.98

with ≥ 2 tables 75.86 86.21 75.86 86.21
table-text questions 40.27 45.01 40.94 45.96

with ≥ 2 tables 71.70 72.64 71.70 72.64
Full Results 39.85 45.79 40.59 46.72

Table 3: Performance of different question types on the development set.

Table 3 shows that NAPG outperforms the strong MT2Net baseline in all evaluations. Given that
table-only questions normally require numerical reasoning, and that the number of reasoning steps
positively co-relates to the number of tables, the huge improvements (+10.35 EM and F1) over the
strong baseline (75.86 EM and F1) for table-only questions with no less than 2 tables confirm the
advantage of NAPG in the numerical reasoning of complex questions.

4.6 ABLATION STUDY OF HYPER-PARAMETERS

We explored a number of hyper-parameter values for the combination of training losses (Eq. 9) to
study their effects on performance. Specifically, we first increase only one of all hyper-parameters
to 2 while keeping the others set to 1 in each experiment, and then increase all hyper-parameters
that lead to improvements for either the base setting or the large setting together, while assigning the
hyper-parameter that leads to more improvements with a larger value. Results are shown in Table 4.

Table 4 shows that the best performing settings are different with different model settings. The best
setting among all tested cases for the base setting is to use a λop of 2 while setting the others to 1,
and for the large setting is to use a λop of 2, a λorder of 1.5 while setting the others to 1.

4.7 CASE STUDY

We manually inspect a few samples of MT2Net and our approach from the development set for a
case study. Results are shown in Table 5 (in Appendix).
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Dev
base large

λt λlength λe λop λorder EM F1 EM F1

1 1 1 1 1 38.60 39.54 44.35 45.29

2 1 1 1 1 37.84 38.77 44.92 45.86
1 2 1 1 1 37.45 38.39 44.64 45.57
1 1 2 1 1 37.93 38.87 42.72 43.66
1 1 1 2 1 39.27 40.21 43.77 44.71
1 1 1 1 2 39.18 40.11 43.87 44.81

2 1.5 1 1 1 37.55 38.49 45.21 46.15
1 1 1 2 1.5 37.93 38.87 45.79 46.72

Table 4: Effects of different weights of each module.

Table 5 shows that our method can produce a more accurate program than MT2Net when the number
of reasoning steps is correctly predicted (Type I). NAPG can predict the number of reasoning steps
correctly (Type II and Type III), and generate the correct program sequences for the interpreting of
the answers (Type IV and Type V) when MT2Net fails. We conjecture that the good performance
of NAPG might benefit from the weighted combination of individual loss functions (Eq. 9), which
allows us to tune the model for specific goals (as shown in Table 4), while the sequence generation
of MT2Net fully relies on the single token prediction loss.

5 RELATED WORK

Question Answering Most previous Question Answering studies focus on homogeneous data
(Seonwoo et al., 2020; Ko et al., 2020; Ram et al., 2021; Fajcik et al., 2021; Yang et al., 2021;
Eisenschlos et al., 2021; Yang et al., 2022; Cheng et al., 2022a; Katyayan & Joshi, 2022), such as
unstructured text datastes (Rajpurkar et al., 2016; Dua et al., 2019), or structured tabular datasets
(Iyyer et al., 2017; Katsis et al., 2021; Cheng et al., 2022b). Recently, there are many question an-
swering studies (Chen et al., 2020b; Zhu et al., 2021; Chen et al., 2021; Feng et al., 2022; Li et al.,
2022; Zhao et al., 2022) working on heterogeneous datasets, such as textual-tabular datasets.

Numerical Reasoning Numerical reasoning ability is very important for many NLP tasks (Dua
et al., 2019; Zhang et al., 2021; Zhu et al., 2021; Chen et al., 2021; Zhao et al., 2022). Hybrid
tabular and textual question answering requires numerical reasoning. TAGOP (Zhu et al., 2021)
uses the sequence tagging method to extract facts, and performs a single arithmetic operation based
on predefined operators. FinQANet (Chen et al., 2021) and MT2Net (Zhao et al., 2022) can perform
multi-step reasoning, both of them use the LSTM decoder to autoregressively generate the program.

6 CONCLUSION

Hybrid tabular-textual question answering (QA) requires reasoning from heterogeneous information,
and the types of reasoning can be categorized into numerical reasoning and span extraction. In
this paper, we present a non-autoregressive program generation (NAPG) framework for numerical
reasoning, which facilitates program generation in parallel. Our framework independently generates
complete program tuples containing both the operator and its operands. Compared to previous
autoregressive decoding methods, NAPG does not suffer from exposure bias, and can significantly
boost the program generation speed.

Our experiments on the MultiHiertt dataset show that: 1) our proposed model can bring about large
improvements (+7.97 EM and +6.38 F1 points) over the strong MT2Net baseline, establishing a
new state-of-the-art performance, while being much faster (∼21x) in program generation. 2) the
performance drop of our method is also significantly smaller than the autoregressive LSTM decoder
of MT2Net with increasing numbers of numerical reasoning steps.
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Type I

Question: How much did the company 2019s valuation allowance decrease from
2011 to 2012?
Reference: -0.09542 subtract(19520,21579), divide(#0,21579)
MT2Net: -0.10548 [’subtract(’, ’19520.0’, ’21579.0’, ’)’, ’divide(’, ’#0’, ’19520.0’,
’)’, ’EOF’]
Ours: -0.09542 [’subtract(’, ’19520.0’, ’21579.0’, ’)’, ’divide(’, ’#0’, ’21579.0’, ’)’]

TypeII

Question: What’s the total amount of theU.S. dollars sold for Pounds sterling in the
years where U.S. dollars sold for Pounds sterling is greater than 1?
Reference: 735.0 add(390,268), add(#0,77)
MT2Net: 658.0 [’add(’, ’390.0’, ’268.0’, ’)’, ’EOF’]
Ours: 735.0 [’add(’, ’390.0’, ’268.0’, ’)’, ’add(’, ’#0’, ’77.0’, ’)’]

Type III

Question: How much of profit before taxes is there in total (in 2017) without U.S.
tax reform impact and Gain on sale of equity investment? (in million)
Reference: 5639.0 add(4082,1256), add(#0,301)
MT2Net: 5554.0 [’add(’, ’4082.0’, ’1256.0’, ’)’, ’add(’, ’#0’, ’301.0’, ’)’, ’subtract(’,
’#1’, ’85.0’, ’)’, ’EOF’]
Ours: 5639.0 [’add(’, ’4082.0’, ’1256.0’, ’)’, ’add(’, ’#0’, ’301.0’, ’)’]

Type IV

Question: What’s the average of the Fuel for Amount in the years where Wheelabra-
tor is positive?
Reference: 626.66667 add(603,649), add(#0,628), divide(#1,3)
MT2Net: 626.0 [’add(’, ’603.0’, ’649.0’, ’)’, ’divide(’, ’#0’, ’const 2’, ’)’, ’EOF’]
Ours: 626.66667 [’add(’, ’603.0’, ’649.0’, ’)’, ’add(’, ’#0’, ’628.0’, ’)’, ’divide(’,
’#1’, ’3.0’, ’)’]

Type V

Question: What’s the total amount of U.S. large cap stocks , U.S. small cap stocks,
Non-U.S. large cap stocks and Non-U.S. small cap stocks in 2013? (in million)
Reference: 273.0 add(140,56), add(#0,56), add(#1,21)
MT2Net: 322.0 [’add(’, ’140.0’, ’56.0’, ’)’, ’add(’, ’#0’, ’21.0’, ’)’, ’add(’, ’#1’,
’21.0’, ’)’, ’add(’, ’#2’, ’21.0’, ’)’, ’add(’, ’#3’, ’21.0’,
Ours: 273.0 [’add(’, ’140.0’, ’56.0’, ’)’, ’add(’, ’#0’, ’56.0’, ’)’, ’add(’, ’#1’, ’21.0’,
’)’]

Table 5: Case study. Type I: MT2Net produces the correct program length but takes a wrong
operand. Type II: MT2Net under-generates the program sequence. Type III: MT2Net over-generates
the program sequence. Type IV: MT2Net selects the wrong operator and operands and ends the de-
coding early. Type V: MT2Net takes the wrong operand and is stuck in the loop.
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