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Abstract

We study the scaling limits of stochastic gradient descent (SGD) with constant step-
size in the high-dimensional regime. We prove limit theorems for the trajectories
of summary statistics (i.e., finite-dimensional functions) of SGD as the dimension
goes to infinity. Our approach allows one to choose the summary statistics that
are tracked, the initialization, and the step-size. It yields both ballistic (ODE) and
diffusive (SDE) limits, with the limit depending dramatically on the former choices.
We find a critical scaling regime for the step-size below which this “effective
dynamics" matches gradient flow for the population loss, but at which, a new
correction term appears which changes the phase diagram. About the fixed points
of this effective dynamics, the corresponding diffusive limits can be quite complex
and even degenerate. We demonstrate our approach on popular examples including
estimation for spiked matrix and tensor models and classification via two-layer
networks for binary and XOR-type Gaussian mixture models. These examples
exhibit surprising phenomena including multimodal timescales to convergence as
well as convergence to sub-optimal solutions with probability bounded away from
zero from random (e.g., Gaussian) initializations.

1 Introduction

Background. Stochastic gradient descent (SGD) is the go-to method for large-scale optimization
problems in data science. It is used to train complex parametric models on high-dimensional data.
Since its introduction in [39], there has been a tremendous amount of work in analyzing its evolution.

In fixed dimensions, the asymptotic theory of SGD, and stochastic approximations more broadly, is
by now classical. There have been works on path-wise limit theorems, such as functional central limit
theorems and even large deviations principles [39, 31, 28, 22, 17, 7, 16, 6]. At the core of this line of
work is the idea that in the limit where the step-size, or learning rate, tends to zero, the trajectory of
SGD with a fixed loss function (appropriately rescaled in time) converges to the solution of gradient
flow for the population loss with the same initialization. Recently there has been considerable interest
in quantifying the rate of this trajectory-wise convergence to higher order, in terms of a diffusion
approximation. Namely, there are many works developing asymptotic expansions of the trajectory in
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the learning rate [29, 23, 25, 1, 26]. Motivated by this, there is a rich line of work bounding the time
to equilibrium for the associated diffusion approximation (as well as Langevin–type modifications)
under uniform ellipticity assumptions [29, 36, 11, 53]. There is also an interesting line of work
obtaining PDE limits in the “shallow network” regime where the dimension of the parameter space
diverges but the dimension of the data remains constant: see e.g., [32, 40, 12, 45, 2].

In recent years, there has been considerable interest in understanding the high-dimensional setting,
where one is constrained in the amount of data or the run-time of the algorithm due to the high-
dimensional nature of the data and the complexity of the model being trained. In these regimes, one
cannot simply take the learning rate to be arbitrarily small as this would force an unlimited sample
size and run-time. This is a common issue in high-dimensional statistics and the standard analytic
approach is to study regimes where the sample size scales with the dimension of the problem [50, 51].

For SGD with constant learning rate, there has been recent progress on quantifying the dimension
dependence of the sample complexity for various tasks on general (pseudo or quasi-) convex objectives
[8, 9, 44, 34, 21, 15] and special classes of non-convex objectives [19, 47, 3]. There has also been
important work on scaling limits as the dimension tends to infinity for the specific problems of linear
regression [52, 35], Online PCA [52, 24], and phase retrieval [47] from random starts, and teacher-
student networks [41, 42, 20, 49] and two-layer networks for XOR Gaussian mixtures [37] from warm
starts. We also note that the study of high-dimensional regimes of gradient descent and Langevin
dynamics have a history from the statistical physics perspective, e.g., in [13, 14, 43, 30, 10, 27].

Our contributions. We develop a unified approach to the scaling limits of SGD in high-dimensions
with constant learning rate that allows us to understand a broad range of estimation tasks. One of
course cannot develop a high-dimensional scaling limit for the full trajectory of SGD as the dimension
of the underlying parameter space is growing. On the other hand, in practice, one is rarely interested
in the full trajectory; instead one typically tracks the trajectory of various summary statistics of the
algorithm’s evolution, such as the loss, the amplitude of various weights, or correlations between the
classifier and the ground truth (in a supervised setting). We show in Theorem 2.2 that under mild
regularity assumptions, the evolution of these summary statistics converges as the dimension grows
to the solution of a system of (possibly stochastic) differential equations. These effective dynamics
depend dramatically on the initializations (warm vs. random or cold), the parameter regions in which
one is developing the scaling limit, and the scaling of the step-size with the dimension.

In practice, SGD often exhibits two types of phases in training: ballistic phases where the summary
statistics macroscopically change in value, and diffusive phases, where they fluctuate microscopically.
(During training, the evolution can start with either, and can even alternate multiple times between
these phases.) Our approach allows us to develop scaling limits for both types of phases.

In ballistic phases, the effective dynamics are given by an ordinary differential equation (ODE) and
the finite-dimensional intuition that the summary statistics evolve under the gradient flow for the
population loss is correct provided the (constant) learning rate is sufficiently small in the dimension.
When the learning rate follows a certain critical scaling—matching scalings commonly used in the
high-dimensional statistics literature—an additional correction term appears. At this critical scaling,
the phase portrait deviates significantly from that of the population gradient flow. Furthermore, in
microscopic neighborhoods of the fixed points of this ODE, the effective dynamics become diffusive
and are given by SDEs which can exhibit a wide range of (possibly degenerate) behaviors. We note
that the appearance of the correction term in the ballistic phase was first observed in the setting of
teacher-student networks in [41, 42] and very recently investigated in detail in [49].

As a simple, first example of the departure of the effective dynamics in the critical step-size regime
from the classical perspective, we study estimation for spiked matrix and tensor models in Section 3.
In these models, the effective dynamics are exactly solvable and when the step-size scales critically
with the dimension, in the ballistic phase the dynamics have additional fixed points as compared to
the population gradient flow. The stability of these fixed points exhibit sharp transitions at special
signal-to-noise ratios. When initialized randomly, the SGD starts in a microscopic neighborhood of
an uninformative such fixed point, within which its effective dynamics become diffusive and exhibit
a sharp transition between stable and unstable Ornstein–Uhlenbeck processes.

To demonstrate our approach on more complex classification tasks typically studied using neural
networks, we study a Gaussian mixture model analogue of the classical XOR problem in Section 5.
(The XOR problem is arguably the canonical example of a decision boundary requiring at least
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two-layers to represent [33].) Here we find that the natural summary statistics are 22 dimensional,
and their (ballistic) effective dynamics exhibit a rich phenomenology between some 39 fixed point
regions of varying topological dimension. Surprisingly, we find that if we initialize the weights of the
network randomly (following a Gaussian distribution), then the algorithm will converge to a classifier
with macroscopic generalization error with probability 29/32 and then follow a degenerate diffusion.

Before delving into the XOR problem, we first analyze the classification of a two component Gaussian
mixture model in Section 4. This task is of course best solved using a one-layer network i.e., logistic
regression, but with a two-layer network it exhibits some similar phenomenologies to the XOR
problem while being more amenable to finer analysis. Here, we again find that if with random
initial weights, with probability 1/2 the SGD will first converge to a classifier with macroscopic
generalization error, and then follow a degenerate diffusion in a microscopic neighborhood of that set
of unstable fixed points. We demonstrate this both empirically for positive signal-to-noise ratio and
theoretically in the limit where the SNR tends to zero after the dimension tends to infinity.

2 Main result

Suppose that we are given a sequence of i.i.d. data Y1, Y2, . . . taking values in Yn ✓ Rdn with law
Pn 2 M1(Rdn), and a loss function Ln : Xn ⇥ Yn ! R, where here Xn ✓ Rpn is the parameter
space. Consider online stochastic gradient descent with constant learning rate, �n, which is given by

X` = X`�1 � �nrLn(X`�1, Y`) ,

with possibly random initialization X0 ⇠ µn 2 M1(Xn). Our interest is in understanding this
evolution, (X`), in the regime where both pn and dn ! 1 as n ! 1. To this end, suppose that
there is a finite collection of summary statistics of (X`) whose evolution we are interested in. More
precisely, suppose that we are given a sequence of functions un 2 C1(Rpn ;Rk) for some fixed k,
where un(x) = (un

1 (x), ..., u
n
k (x)), and our goal is to understand the evolution of un(X`).

To develop a scaling limit, we need some assumptions on the relationship between how the
step-size scales in relation to the loss, its gradients, and the data distribution. To this end let
H(x, Y ) = Ln(x, Y )� �(x), where �(x) = E[Ln(x, Y )]. Throughout the following, we suppress
the dependence of H on Y and simply write H(x), and instead view H as a random function of x.
Definition 2.1. We say that a triple (un, Ln, Pn) is �n-localizable if there is an exhaustion by
compact sets of Rk, call it (EK)K , and constants 0 < C(K) < 1 (independent of n) such that

1. max1ik supx2u�1
n (EK)||rjui||op  C(K) · ��(3�j)/2

n for j = 2, 3;

2. supx2u�1
n (EK) kr�k  C(K), and

3. max1ik supx2u�1
n (EK) E[hrH,ruii4]  C(K)��2

n , and

max1ik supx2u�1
n (EK) E[hr2ui,rH ⌦rH � V i2] = o(��1

n ).

When these hold we call the sequence (EK) the localizing sequence of (un, Ln, Pn).

Localizability is wider than uniform Lipchitz or smoothness assumptions common to the literature.
In particular, it does not imply that the population loss is Lipschitz everywhere, as we may have thatS

K u�1
n (EK) does not cover Rpn , nor does it imply uniform smoothness of L as we will be taking

�n ! 0 with n. To motivate the scaling relations between 2–3, note that if �n ⇣ p�1
n , corresponding

to linear sample complexity, the scaling relation is the same as what one would get e.g., if rH were
a random vector with independent entries of bounded variance in Rpn and e.g., rui = ��1/2

n e1.

We now turn to the statement of our main result. Let Pk denote the space of positive semi-definite
k ⇥ k matrices and for a function f and measure µ we let f⇤µ denote the push-forward of µ. Let
Jn = (ru`) denote the Jacobian of the summary statistics. Also, let V (x) = E [rH(x)⌦rH(x)]
denote the covariance matrix for rH at a point x and define the corresponding first and second-order
differential operators,

An =
X

@i�@i , and Ln =
1

2

X
Vij@i@j .

We then have the following convergence result.
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Theorem 2.2. Let (X�n
` )` be the SGD initialized from X0 ⇠ µn for µn 2 M1(Rpn) with learning

rate �n for the loss Ln(·, ·) and data distribution Pn. Suppose that un is such that the triple
(un, Ln, Pn) is �n-localizable with localizing sequence (EK). Suppose furthermore that there exists
locally Lipschitz h : Rk ! Rk and ⌃ : Rk ! Pk, such that for every K,

sup k(�An + �nLn)un(x)� h(un(x))k ! 0 , (2.1)

sup k�nJnV JT
n � ⌃(un(x))k ! 0 , (2.2)

where the suprema are over x 2 u�1
n (EK). Then if we let (un(t))t be the linear interpolation of

(un(X
�n
bt��1

n c))t, and the initial data µn, is such that (un)⇤µn ! ⌫ weakly, then, (un(t))t ! (ut)t
weakly as n ! 1, where ut is the solution to

dut = h(ut)dt+
p
⌃(ut)dBt , (2.3)

initialized from ⌫, where Bt is a standard Brownian motion in Rk.

Theorem 2.2 is proved in Appendix C. The proof can be seen as a version of the martingale problem
(see [46]) for high-dimensional SGD.

2.1 Comparison to fixed dimensional perspective: critical v.s. subcritical step-sizes

Let us compare this with the classical limit theory of SGD in fixed dimension. For the sake of
this discussion, suppose that not only does (2.1) hold, but each of the two terms Anu and �nLnu
individually admit n ! 1 limits: namely that there exists f ,g : Rk ! Rk such that

sup
x2u�1

n (EK)

kAnun(x)� f(un(x))k _ k�nLnun(x)� g(un(x))k ! 0 , (2.4)

in which case, evidently (2.1) holds with h = �f + g. When (2.4) both hold, we call f ,g and ⌃ the
population drift, the population corrector, and the diffusion matrix of u respectively.

From the fixed dimensional perspective, when (2.4) holds, one predicts u to asymptotically solve

dut = �f(ut)dt , (2.5)

with initial data u0 ⇠ u⇤µ. as this is its evolution under gradient descent on the population loss
�. Evidently this perspective only applies in the high-dimensional limit of Theorem 2.2 if both the
population corrector g and the diffusion matrix ⌃ are zero. We find that for any triple (un, Ln, Pn),
there is a scaling of the learning rate �n with n below which g = ⌃ = 0, and the effective dynamics
agree with the population dynamics (2.5)—call this the sub-critical scaling regime, where the
classical perspective applies—and a critical scaling regime in which g and ⌃ may be non-zero, and
the high-dimensionality induces non-trivial corrections to f . (In the case of teacher–student networks,
the terms f and g can be compared to the “learning" and “variance" terms in Eq. (14a) of [49].)

To see this, notice that if the triple (un, Ln, Pn) is �n-localizable for some �n ! 0, then it is also
�0n-localizable for every sequence �0n = O(�n). If furthermore (2.4)-(2.2) hold for �n with some f ,g
and ⌃, then these limits also exists for �0n = o(�n) with the same f but with g = ⌃ = 0. As such,
there can be exactly one scaling of �n with n at which g or ⌃ may be non-zero, and for all smaller
scales of learning rate, the fixed-dimensional perspective of (2.5) applies.1

2.2 Ballistic vs. diffusive behavior of effective dynamics

In all of our examples, the diffusion matrix for the effective dynamics of the most natural choice of
summary statistics is zero even in the critical scaling regime where h 6= f . We call this the ballistic
limit. In this case, the effective dynamics of the summary statistics is given by the ODE system

dut = h(ut)dt . (2.6)

In these settings, the phase portrait of the summary statistics is asymptotically that of this flow.

By construction of the scaling limit, the phase portrait of the ballistic limit only describes the evolution
of summary statistics on length-scales that are order 1 and time-scales that are order 1/�n. If one is

1Note that if �n = o(�0n), then limiting g,⌃ may not exist for �0n, so there is no super-critical regime.
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then interested in the evolution of un in microscopic o(1) neighborhoods of the fixed points of (2.6),
Theorem 2.2 also allows one to develop separate diffusive limits there.

To understand diffusive regimes, one must apply Theorem 2.2 to a re-centered and re-scaled version
of the summary parameters, ũn(t) = ��↵

n (un(t)� u?) where u? is a fixed point of (2.6).2 To apply
Theorem 2.2, ↵ must be chosen appropriately so that the triple (ũn(t), Ln, Pn) is �n-localizable
and to pick out the next order drifts for ũ—the first order term being zero microscopically close to
u?—and such that the initial data still converges (ũn)⇤µn ! ⌫̃.

This then leads to the rescaled effective dynamics of the summary statistics un near u?:

dũt = h̃(ũt)dt+ ⌃̃1/2(ũt)dBt , with ũ0 ⇠ ⌫̃ . (2.7)

The rescaled effective dynamics are similar in spirit to diffusion approximations typically one finds
for the evolution of SGD near critical points in fixed dimensions. However, we note two important
differences as compared to this perspective. Firstly, since this is a high-dimensional limit of general
summary statistics, (2.7) applies in a neighborhood of a fixed point of the effective ODE system (2.6),
rather than the population dynamics (2.5). Secondly, in many examples (indeed all the ones we study)
the SDE’s we get are degenerate to some degree, so that uniform ellipticity assumptions typically
used to understand hitting and mixing times in these regimes do not apply.

3 Matrix and Tensor PCA

As our first example, we consider the problems of spiked matrix models and spiked tensor models
[38] using SGD. These examples are exactly solvable and only require two summary statistics, a
correlation observable and a radial term. Even with this relative simplicity, we encounter a wide
range of ODE and SDE limits. Interestingly, by means of these SDE limits, we can sharply identify
the signal-to-noise thresholds for solving the recovery problem by means of the SGD.

Suppose that we are given data of the form Y = �v⌦k +W where W is an i.i.d. Gaussian k-tensor,
v 2 Rn is a unit vector, and � = �n > 0 is the signal-to-noise ratio. Our goal is infer v. We
take as loss the (negative) log-likelihood namely, L(x, Y ) = ||Y � x⌦k||2.3 The pair of summary
statistics m = m(x) := hx, vi and r2? = r2?(x) := kx � mvk2 = kxk2 � m2 are such that
�(x) = �2�mk + (r2? +m2)k + c, and the law of L only depends on them: see Section D.1.

For the pair un = (u1, u2) = (m, r2?), Theorem 2.2 yields the following effective dynamics. In our
normalization with � > 0 fixed, the regime �n = o(1/n) is sub-critical and the regime �n = ⇥(1/n)
is critical; we focus on this normalization for presentation, but note that with different scalings of �n,
the critical learning rates change. For notational simplicity, let R2 := m2 + r2?.

Proposition 3.1. Fix k � 2, � > 0, c� > 0 and let �n = c�/n.4 Then un(t) converges as n ! 1 to
the solution of the following ODE initialized from limn!1(un)⇤µn:

u̇1 = 2u1(�ku
k�2
1 � kR2k�2) ,

u̇2 = �4kR2(k�1)(u2 � c�) .
(3.1)

We are able to identify and classify the set of fixed points of this effective dynamics. (Recall that the
dynamics transits ballistically between these fixed points in ��1

n many steps.) We focus on the critical
step-size regime with c� = 1 where one sees from (3.1) that u2 ! 1, which is where a random vector
in Rn lies, and where the problem in the matrix case is most directly related to an eigenvalue problem
(see Appendix D for the generic c� dependencies).
Proposition 3.2. Eq. (3.1) has isolated fixed points classified as follows. Let �c(k) be as in (D.4)
and m†(k,�)  m?(k,�) be as in (D.5) (if k = 2, �c = 1 and m† = m? =

p
�� 1):

1. An unstable fixed point at (0, 0) and a fixed point at (0, 1); if k = 2, (0, 1) is stable if
� < �c(2) and unstable if � > �c(2); if k > 2 (0, 1) is always stable.

2One might also wish to rescale time like ���
n , where � may depend on t; we leave this to future work.

3Note that one might also add additional penalty terms. The case of a ridge penalty is treated in Section D.
4The sub-critical regime of �n = o(1/n) is recovered by sending c� ! 0 in the below.
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(a) (b) (c) (d)

Figure 1: Matrix PCA summary statistics in dim. n = 1500 run for 10n steps at � = 0.8 < �c in
(a)–(b) and � = 1.2 > �c in (c)–(d). Here, ⇥ and � mark the stable fixed points of the systems.
(a) and (c) demonstrate the stable and unstable OU processes that arise as diffusive limits of the m
variable, and (b) and (d) depict the trajectories in (m, r2?) space.

2. If � > �c(k): when k = 2, two stable fixed points at (±m?(2), 1). When k � 3, two
unstable fixed points at (±m†(k), 1) and two stable fixed points at (±m?(k), 1).

Remark 1. The presence of two pairs of fixed points when k � 3 with non-zero correlation with v may
seem surprising—indeed it indicates that even some warm starts will fail to attain good correlation
with the signal when � is finite. This is an interesting consequence of the corrector in (3.1) and if one
tracked the c� dependence in the above, the fixed point m† goes to zero as c� ! 0 and this barrier to
recovery from warm starts vanishes as one approaches sub-critical step-sizes.

Let us now consider a rescaling of un in a microscopic neighborhood of the saddle set m = 0. This
captures the initial phase from a random start: if µn ⇠ N (0, In/n), then (un)⇤µn ! �(0,1) weakly.
Now rescale and let ũn = (

p
nm, r2?). Evidently, ⌫̃ = limn(ũn)⇤µn = N (0, 1)⌦ �1.

Proposition 3.3. Fix k � 2, � > 0 and �n = 1/n. Then ũn(t) converges as n ! 1 to the solution
of the following SDE initialized from ⌫̃:

dũ1 = 2ũ1(2�1k=2 � kũk�1
2 )dt+ 2(kũk�1

2 )
1/2dBt

dũ2 = �4kũk�1
2 (ũ2 � 1)dt .

(3.2)

We see that ũ2 solves an autonomous ODE which converges exponentially to 1. When k = 2, the
equation for ũ1 then converges to 4(�� 1)ũ1dt+ 2

p
2dBt for large t. This is an OU process which

is stable when � < 1 and unstable when � > 1. By stitching together the prelimits of these OU
processes at a sequence of scales interpolating between that of ũn and un, one could in principle
establish that for any � > 1, SGD reaches the stable fixed points at (±m?(2), 1) in O(n log n) steps
(with precise asymptotics, etc.), while when � < 1, the mean-reverting nature of the OU suggests
it needs a much larger number of samples in order to correlate with the vector v. See Figure 1 for
numerical verification of this intuition. When k � 3, the tensor PCA problem is known to be hard for
SGD to solve without a polynomially diverging sample complexity or � [3]. Accordingly, when � is
kept finite in n, the expression for ũ1 in (3.2) is always a stable OU-type process. Interestingly, one
can also capture the (diverging) signal-to-noise threshold for SGD to recover v in tensor PCA by our
methods. Indeed, for k � 3 if one considers �n = ⇤n(k�2)/2 (matching the predicted gradient-based
algorithm threshold from [4]), ũn would instead converge to the solution of

dũ1 = 2ũ1(k⇤� kũk�1
2 )dt+ 2(kũk�1

2 )
1/2dBt ,

dũ2 = �4kũk�1
2 (ũ2 � 1)dt ,

which transitions between stable and unstable OU processes at ⇤c(k) = 1, as in the matrix case.

4 Two-layer networks for classifying a binary Gaussian mixture

As our second example, we consider the problem of supervised classification of a binary Gaussian
mixture model (binary GMM) using a two-layer network. Our goal here is to demonstrate how our
approach can be used to analyze the performance of SGD for multi-layer networks, and indeed we
will find the calculations here to be relevant in Section 5 where we consider XOR-type GMM’s.

Let us now formalize the problem. Suppose that we are given i.i.d. samples of the form Y = (y,X),
where y is a Ber(1/2) random variables and, conditionally on y, we have X ⇠ N ((2y � 1)µ, I/�),
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where µ 2 RN is a fixed unit vector, I is the identity on RN , and � > 0 is the signal-to-noise ratio.
Here, y is the class label and X is the data.

For the sake of concreteness, we consider classification via the following architecture (though our
techniques generalize to other settings mutatis mutandis): The first layer has weights (W1,W2) 2
RN ⇥ RN and ReLu activation, g(x) = x _ 0; and the second layer has weights v1, v2 2 R and
sigmoid activation, �(x) = 1/(1+e�x). Our parameter space is then Xn = R2N+2 and we therefore
take n = 2N + 2 when applying Theorem 2.2. As we are interested in supervised classification, we
take the usual binary cross-entropy loss with `2 regularization,

L
�
(vi,Wi)i2{1,2}; (y,X)

�
= �yv · g(WX) + log(1 + ev·g(WX)) + p(v,W ) , (4.1)

where g is applied component wise and p(v,W ) := (↵/2)(||v||2 + ||W ||2).
It can be shown (see Lemma E.1) that the law of the loss at a given point, (v,W ) 2 Xn, depends
only on the 7 summary statistics,

un = (v1, v2,m1,m2, R
?
11, R

?
12, R

?
22), (4.2)

where mi = Wi ·µ and R?
ij = W?

i ·W?
j with W?

i = Wi�miµ denoting the part of Wi orthogonal
to µ. For a point, (v,W ) 2 Xn, let

Aµ
i = E[X ·µ1Wi·X�0(�(v ·g(WX))� y)] ,

A?
ij = E[X ·W?

j 1Wi·X�0(�(v ·g(WX))� y)] , (4.3)

Bij = E[1Wi·X�01Wj ·X�0(�(v ·g(WX))� y)2].

By Lemma E.1, these are functions only of un, and we denote them as such, e.g., Aµ
i = Aµ

i (un).
The critical scaling for � is then of order ⇥(1/n) and we obtain the following effective dynamics.
Proposition 4.1. Let un be as in (4.2) and fix any � > 0 and �n = c�/N. Then un(t) converges to
the solution of the ODE system, u̇t = �f(ut) + g(ut), initialized from limn!1(un)⇤µn, with:

fvi = miA
µ
i (u) +A?

ii(u) + ↵vi,

fmi = viA
µ
i (u) + ↵mi,

fR?
ij
= viA

?
ij(u) + vjA

?
ji(u) + 2↵R?

ij ,

and correctors gvi = gmi = 0, gR?
ij
= c�

vivj
� Bij for i, j = 1, 2.

Due to the Gaussian integrals defining f ,g, it is difficult to analyze the ODE system defined by
Proposition 4.1, let alone any rescaled effective dynamics. For ease of analysis, we next send � ! 1
corresponding to a small noise regime for the Gaussian mixture. We emphasize that this limit is taken
after n ! 1 and therefore is still approximately on the critical scale of � = ⇥(1) at which there is a
transition in the existence of any fixed point which is a good classifier. In particular, if � = �n is any
diverging sequence, then the limiting effective dynamics would exactly match that attained by now
sending � ! 1. In Figure 2, we demonstrate numerically that the following predicted fixed points
from the � ! 1 limit match those arising at finite large n and � > 0.5

Proposition 4.2. The � ! 1 limit of the ODE system of Proposition 4.1 is given by

ṁi =

⇢ vi
2 �(�v ·m)� ↵mi m1m2 > 0
vi
2 �(�vimi)� ↵mi else

,

v̇i =

⇢mi
2 �(�v ·m)� ↵vi m1m2 > 0
mi
2 �(�vimi)� ↵vi else

,

and Ṙ?
ij = �2↵R?

ij . The fixed points of this system are classified as follows. All fixed points have
R?

ij = 0 and mi = vi for i, j = {1, 2}. In (v1, v2), the coordinates are classified by

1. A fixed point at (v1, v2) = (0, 0) that is stable if ↵ > 1/4.
5For large �, this is indeed a quantitative approximation as f ,g exhibit locally Lipschitz dependence on ��1,

so the corresponding dynamics converges as � ! 1 by classical well-posedness results (see, e.g., [48])
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(a) (b) (c) (d)

Figure 2: Binary GMM in dim. N = 250 with � = 100 and ↵ = 0.1. (a) fraction of runs converging
to the optimal classifier (⇥ marking the predicted 1/2 fraction), and (b) endpoints of (m1,m2) in 200
runs (⇥ denoting the � = 1 predicted stable fixed points and � the unstable rings). (c)–(d) diffusive
limits, first for m1, and then for the pair m1,m2 where the diffusion can be seen to be of rank 1.

2. If ↵ < 1/4, two unstable sets of fixed points at the quarter-circles given by (v1, v2) having
v1v2 > 0 such that v21 + v22 = C↵ for C↵ := log(1� 2↵)� log(2↵).

3. If ↵ < 1/4, two stable fixed points at (v1, v2) equals (
p
C↵,�

p
C↵) and (�

p
C↵,

p
C↵).

If µn is e.g., given by (v1, v2) ⇠ N (0, I2) and W1,W2 ⇠ N (0, IN/(�N)) then ⌫ := lim(un)⇤µn

is N (0, I2) in the v1, v2 coordinates, and is in the basin of attraction of the quarter-circles of item (2)
with probability 1/2 and the basin of attraction of the stable fixed points of (3) with probability 1/2.

Let us pause to interpret this result. The stable fixed points when ↵ < 1/4 are the optimal classifiers,
whereas the unstable set of fixed points given by item (2) misclassify half of the data. Therefore,
the above indicates that when solving the above task with randomly initialized weights, one of the
following two scenarios occur, each with probability 1/2 (w.r.t. the initialization): the algorithm will
converge to the optimal classifier in linear time or it will appear to have converged to a macroscopically
sub-optimal classifier on the same timescale, see Figure 2(a)–(b).

It is then natural to ask about the behaviour of the SGD in the latter regime, after it converges to the
sub-optimal classifiers which lie on the aforementioned quarter-circles. Proposition 4.2 rigorously
justified the exchange of n ! 1 and � ! 1 limits in the ballistic phase. In the diffusive phase, one
could in principle find the quarter circle of fixed points of the ODE in Proposition 4.1 and consider
rescaled observables ṽi, m̃i corresponding to blowing up vi,mi in diffusive O(n�1/2) neighborhoods
about them to get SDE limits from Theorem 2.2. In order to have explicit formulae, in what follows,
we consider the diffusive limits obtained when taking � = 1, for which we know the precise
locations of these fixed points from Proposition 4.2. This also captures the limit obtained by taking
any �n diverging faster than O(n1/2); the numerics of Figure 2(c)–(d) demonstrate its qualitative
consistency with the behavior in microscopic neighborhoods of fixed points even at � finite.
Proposition 4.3. Let �n = 1/N , (a1, a2) 2 R2

+ be such that a21+a22 = C↵ and let ṽi =
p
N(vi�ai)

and m̃i =
p
N(mi � ai). When � = 1, the SDE system obtained by applying Theorem 2.2 to ũn is

dṽi = ↵(m̃i � ṽi) + ai(↵� 2↵2)
X

ak(ṽk + m̃k) + ⌃̃
1/2dBt · evi ,

dm̃i = ↵(ṽi � m̃i) + ai(↵� 2↵2)
X

ak(ṽk + m̃k) + ⌃̃
1/2dBt · emi ,

Ṙi? = �↵Ri? Ṙ?
12 = �2↵R?

12 ,

where ⌃̃ is a constant matrix whose only non-zero entries are ⌃̃ṽiṽj = ⌃̃m̃im̃j = ⌃̃ṽim̃j = ↵2aiaj .

Notice that this diffusion matrix is rank 1, so this diffusion is non-trivial but degenerate even in the
rescaled coordinates (ṽi, m̃i). Moreover, the entries of ⌃̃ vanish on the axes a1 = 0 or a2 = 0. In
particular, crossing from the unstable quarter ring into the quadrants v1v2 < 0 where the stable fixed
points lie is impossible in the noiseless setting, and happens on a much larger timescale at finite �.

5 Two-layer networks for the XOR Gaussian mixture

We end by applying our methods to supervised learning for an XOR-type Gaussian mixture model in
RN with a two-layer network. The ballistic phase of this problem was recently studied in [37].
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(a) (b) (c) (d)

Figure 3: XOR GMM in dim. N = 250 with � = 1000 and ↵ = 0.1. (a) Fraction of runs converging
to the optimal classifier (⇥ marking the predicted 29/32 and 3/32) and (b) endpoints of (mµ

1 ,m
µ
2 ) in

200 runs (⇥ denoting the � = 1 predicted stable fixed points, � the unstable rings). (c)–(d) display
the rank-2 diffusive limits in the regime of Proposition 5.1 in (mµ

1 ,m
µ
2 ) and (mµ

1 ,m
⌫
3) coordinates.

Suppose that we are given i.i.d. samples of the form Y = (y,X), where y is Ber(1/2) as before and
X has the following distribution: if y = 1 then X is a 1/2-1/2 mixture of N (µ, I/�) and N (�µ, I/�)
and if y = 0 it is a 1/2-1/2 mixture of N (⌫, I/�) and N (�⌫, I/�), where � > 0, and µ, ⌫ are
orthogonal unit vectors. Here, y is the class membership label and X is the data.

Consider the corresponding classification problem using a two-layer neural network, ŷ(X) =
�(v · g(WX)), where � and g are as in Section 4. We take W to be a 4⇥N matrix and v to be a
4-vector, and consider the binary cross-entropy loss as before. It is shown in Lemma F.1 that the law
of the loss at a point (v,W ) depends only on the following 22 variables: for 1  i  j  4,

vi , mµ
i = Wi · µ , m⌫

i = Wi · ⌫ , R?
ij = W?

i ·W?
j (5.1)

where W?
i = Wi �mµ

i µ�m⌫
i ⌫ is the part perpendicular to µ, ⌫. With the choice of un given by

these variables, for any fixed � > 0, the localizability criterion of Definition 2.1 can be verified to
hold as long as �n = O(1/n). In particular, we can apply Theorem 2.2 to obtain limits in both the
ballistic and diffusive phases. For the precise equations in the ballistic phase, see Proposition F.2.

The fixed points of the ballistic dynamics, again in the limit � ! 1 after n ! 1, are classified as
follows (see Proposition F.3). If ↵ > 1/8, then the only fixed point is at un = 0. If 0 < ↵ < 1/8, then
let (I0, I+µ , I�µ , I+⌫ , I�⌫ ) be any disjoint (possibly empty) subsets whose union is {1, . . . , 4}. Each
such partition corresponds to a connected component of fixed points. Corresponding to a such tuple,
the connected component of fixed points has R?

ij = 0 for all i, j, and

1. mµ
i = m⌫

i = vi = 0 for i 2 I0,
2. mµ

i = vi > 0 such that
P

i2I+
µ
v2i = �logit(4↵) and m⌫

i = 0 for all i 2 I+µ ,

3. �mµ
i = vi > 0 such that

P
i2I�

µ
v2i = �logit(4↵) and m⌫

i = 0 for all i 2 I�µ ,

4. m⌫
i = vi < 0 such that

P
i2I+

⌫
v2i = �logit(4↵) and mµ

i = 0 for all i 2 I+⌫ ,

5. �m⌫
i = vi < 0 such that

P
i2I�

⌫
v2i = �logit(4↵) and mµ

i = 0 for all i 2 I�⌫ .

There are 39 connected components of fixed points, 4! of which are stable, one for each permutation
where I+µ , I�µ , I+⌫ , I�⌫ are all singletons. For the proof of this limit, see Proposition F.3.

We can also compute the probability that the effective dynamics in the ballistic phase converges
to a stable fixed point (as opposed to an unstable one). From a Gaussian initialization µn where
vi ⇠ N (0, 1) and Wi ⇠ N (0, IN/N) independently, this probability will converge to 3/32.

As an example of the diffusions that can arise in the rescaled effective dynamics at the unstable fixed
points, let us consider the unstable fixed points in which v has the correct signature (two positive, two
negative) but for each of those we are at a corresponding quarter-ring. Here, the dynamics effectively
becomes a pair of 2 two-layer GMM’s on quarter-rings (as in Section 4), that are anti-correlated. More
precisely, let (a1,µ, a2,µ) be such that a21,µ + a22,µ = C↵ and (a3,⌫ , a4,⌫) such that a23,⌫ + a24,⌫ = C↵,
for C↵ = �logit(4↵). Take as fixed points about which we expand to be vi = mµ

i = ai,µ > 0 and
vi = m⌫

i = ai,⌫ < 0 for i = 3, 4. Namely, we let

ṽi =

⇢p
N(vi � ai,µ) i = 1, 2p
N(vi � ai,⌫) i = 3, 4

,
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and let

m̃µ
i =

p
N(mµ

i � ai,µ) i = 1, 2

m̃⌫
i =

p
N(m⌫

i � ai,⌫) i = 3, 4 .

(We set m̃⌫
i = 0 for i = 1, 2 and m̃µ

i = 0 for i = 3, 4 in ũn effectively removing those variables.)

Proposition 5.1. Let �n = 1/N and let ũn = (ṽi, m̃
µ
i , m̃

⌫
i , R

?
ij). When � = 1, Theorem 2.2 can be

applied and ũn(t) converges to the solution of the SDE dũ(t) = �h̃(ũ)dt+
p
⌃(ũ)dBt where

h̃ṽi =

(
↵(ṽi � m̃µ

i )� ai,µ(↵� 4↵2)
P

k=1,2 ak,µ(ṽk + m̃µ
k) i = 1, 2

↵(ṽi � m̃⌫
i )� ai,⌫(↵� 4↵2)

P
k=3,4 ak,⌫(ṽk + m̃⌫

k) i = 3, 4
,

h̃m̃µ
i

(resp., h̃m̃⌫
i
) is like hṽi for i = 1, 2 (resp., i = 3, 4) with ṽi and m̃µ

i (resp., m̃⌫
i ) swapped,

h̃R?
ij
= 2↵R?

ij , and ⌃̃ is the constant rank-2 matrix whose non-zero entries are

⌃̃ṽiṽj = ⌃̃m̃µ
i m̃

µ
j
= ⌃̃ṽim̃

µ
j
= 3↵2ai,µaj,µ if i, j 2 {1, 2} ,

⌃̃ṽiṽj = ⌃̃m̃⌫
i m̃

⌫
j
= ⌃̃ṽim̃⌫

j
= 3↵2ai,⌫aj,⌫ if i, j 2 {3, 4} ,

⌃̃ṽiṽj = ⌃̃m̃µ
i m̃

⌫
j
= ⌃̃mµ

i ,vj
= ⌃̃ṽim̃⌫

j
= �↵2ai,µaj,⌫ if i 2 {1, 2}, j 2 {3, 4} .
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