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Abstract

Structural causal bandit provides a framework for decision-making problems when
causal information is available. It models the stochastic environment with a struc-
tural causal model (SCM) that governs the causal relations between random vari-
ables. In each round, an agent applies an intervention (or no intervention) by
setting certain variables to some constants, and receives a stochastic reward from a
non-manipulable variable. Though the causal structure is given, the observational
and interventional distributions of these random variables are unknown beforehand,
and they can only be learned through interactions with the environment. Therefore,
to maximize the expected cumulative reward, it is critical to balance the exploration-
versus-exploitation tradeoff. We consider discrete random variables with a finite
domain and a semi-Markovian setting, where random variables are affected by
unobserved confounders. Using the canonical SCM formulation to discretize the
domains of unobserved variables, we efficiently integrate samples to reduce model
uncertainty, gaining an advantage over those in a classical multi-armed bandit setup.
We provide a logarithmic asymptotic regret lower bound for the structural causal
bandit problem. Inspired by the lower bound, we design an algorithm that can
utilize the causal structure to accelerate the learning process and take informative
and rewarding interventions. We establish that our algorithm achieves a logarithmic
regret and demonstrate that it outperforms the existing methods via simulations.

1 Introduction

Sequential decision-making in uncertain environments is one of the most fundamental problems across
scientific disciplines, including robotics, economics, social science, clinical trials, and agriculture [32,
26, 36, 7, 3]. In almost all these applications, it is required to implement interventions to control
some aspects of the system to optimize an outcome of interest. In economics and political science,
the government could use fiscal policy including changing the interest rate and taxation to achieve
regulation and control of a country’s economy. In this paper, we deal with designing an adaptive
policy in an uncertain stochastic environment to learn and apply optimal interventions.

In sequential decision-making problems, it is critical to balance the explore-versus-exploit tradeoff,
which deals with choosing between informative options and empirically more rewarding alternative
options. The multi-armed bandit (MAB) [33, 30, 18] is a classical problem formulation for achieving
such a tradeoff. In MAB, a decision-maker sequentially chooses an action corresponding to pulling
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an arm from a set of arms, each generating stochastic rewards with probability distribution unknown
to the decision-maker. The objective is to achieve the maximum cumulative reward over a time
horizon, or equivalently to minimize the regret, which measures suboptimality in cumulative rewards
against selecting the best action all the time. The classic stochastic bandit formulation only considers
the connection between an action and its expected reward. However, in real-world applications, an
action can affect the entire system in a more complex way. As the agricultural example given in [19],
changing the moisture level could affect the temperature and nutrient absorption, which are also
crucial to crop yields. The relations between such factors cannot be characterized by the MAB.

Causal knowledge enables us to model the causal relations between multiple factors in the envi-
ronment. In machine learning research, it has been noted that causal models could help improve
the generalization performance when data distribution shifts [11], and address unstable translation
of successful reinforcement learning methods in simulation to real-world problems [12] such as
self-driving cars and recommendation systems. The casual bandit models the stochastic environment
with a causal graph that connects a set of random variables of interest, and actions are modeled by
interventions on different subsets of nodes. It provides a critical interpretation of causal influences
among random variables [28] that allows us to reason about what will happen to the environment after
certain interventions are made to the data-generating process. Compared to the classic MAB with only
reward feedback, the casual bandit represents a more detailed model of real-world decision-making
problems, including richer feedback from multiple random variables and the causal relations among
them. By applying causal reasoning, the learning process can be accelerated and more rewarding
interventions can be selected. In applications where the space of intervention is large and explicit
experiments are costly, such as social science or economics, it has special value.

Due to the reasons mentioned above, there has been a recent surge of interest in the research
community on causal decision-making. Some early attempts include [6], in which the authors
took a causal approach to study how to make final decisions based on natural predilections, and
proposed an algorithm by modifying Thompson sampling [33]. In [19], the investigators started
from a parallel causal structure and extended the algorithm to the general causal bandit problem.
Subsequent work [37] took preprocessing steps to get rough estimates of interventional distributions
and use them to design efficient experiments to discover the best intervention. In [1], the Bayesian
optimization technique is employed to solve the same problem.

The most closely related works focusing on regret minimization in the structural causal bandit
with confounders are [22, 23]. In both works, the authors took a graphical characterization using
do-calculus [28] to reduce the large intervention set to the possibly optimal minimal intervention set
and run a KL-UCB algorithm [14] within the reduced action space. The later work is an extension
of the previous one that includes non-manipulable variables. Other lines of causal bandit research
normally assume additional prior information, such as infinite observational data [39] or marginal
interventional distributions [24, 8]. A general linear model is adopted in [13], which is different from
the non-parametric setup in this paper.

In this paper, we focus on the MAB sequential decision-making problem where the arms correspond
to interventions on an arbitrary causal graph, including unobserved confounders affecting multiple
pairs of variables (also known in causal terminology as the semi-Markovian setting). We recognize
the structural causal bandit falls into the category of structured bandit [10, 35]. It has been noted the
classical upper confidence bound (UCB) algorithm and Thompson sampling may not fully leverage
structural information [31, 20]. It is worth considering the potential limitations of algorithms based
on these ideas, such as CRM-AL [25] and generalized Thompson sampling [27]. To address this issue
and make systematic use of a known causal structure, we design an algorithm that can meticulously
utilize causal structural information. In particular, we make the following contributions:

• We provide a logarithmic asymptotic regret lower bound for the structural causal bandit
problem with latent confounders by leveraging the canonical SCM formulation [40] to create
a space of all possible interventional distributions given a causal graph.

• Inspired by the lower bound, we extend [22] and apply approximate allocation matching to
design an algorithm that can effectively utilize causal information provided by the causal
graph to accelerate the learning process and take informative and rewarding interventions.

• We analyze the algorithm to provide a problem-dependent logarithmic upper bound on
expected regret and compare it with [22] to show it has a better theoretical guarantee.
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• We complement the theoretical results by evaluating the proposed approach in a variety
of experimental settings featuring different causal structures. We show that our algorithm
outperforms the existing baselines in terms of empirical regret.

2 Problem Statement and Background

In this section, we present the formulation of the structural causal bandit problem with latent
confounders. We follow the convention to represent a random variable and its value in a capital letter
and a lowercase letter respectively. A multivariate random variable is represented in a bold letter.

2.1 Structural Causal Model

Our approach adopts the structural causal model (SCM) [29] to provide a causal perspective on
the data-generating process. This allows us to express the relationship between variables and
capture important causal concepts, including unobserved variables, observational distributions, and
interventional distributions. For a random variable X, let Ω(X) denote its domain.

Definition 1 (SCM). A structural causal model is a 4-tuple ⟨U,V,F, P (U)⟩ where:

1. U is a set of unobserved independent background variables (also called exogenous), that
determine the randomness of the model.

2. V := {Vi | i = 1, . . . , n} is the set of observable variables (also called endogenous).

3. F is a set of structural equations {f1, f2, ..., fn} such that for each Vi ∈ V, fi : Ω(Ui)×
Ω(Pai) → Ω(Vi) defines a mapping, where Ui ⊆ U and Pai ⊆ V is the parent set of Vi.
So F as a whole determines a mapping relationship from Ω(U) to Ω(V).

4. P (U) is a joint probability distribution over all the exogenous variables.

Each structural causal model is associated with a causal graph G = ⟨V, E ,B⟩, where the node set
V corresponds to the set of observable variables, E is the set of directed edges and B is the set of
bidirected edges. For each Vj ∈ Pai, there exists a directed edge in E such that Vj → Vi which
indicates functional dependency from Vj to Vi. Without showing unobserved exogenous variable U
explicitly, the confounding effects of U are represented using bidirected edges in B, which connect
multiple pairs of observable variables in V. The presence of Vi ↔ Vj in G represents unmeasured
factors (or confounders) that may influence both Vi and Vj . In other words, fi and fj share common
exogenous variables Ui ∩Uj ̸= ∅ as input. Let |Ω(V)| be the cardinality of Ω(V).

Assumption 1. We assume each V ∈ V can only take a finite number of values, i.e., |Ω(V)| is finite.

Within the causal graph, an intervention on a subset of random variables S ⊆ V denoted by the
do-operator do(S = s) sets the structural equation for each Sj ∈ S to be Sj = sj . We also refer to s
as intervention for brevity. If a node Vi /∈ S, its structural equation remains to be Vi = fi(Ui,Pai).
The empty intervention denoted by do(∅) does not change the structural equation of any random
variable, and the distribution of V is also called observational distribution. Let 1 denote the indicator
function. An SCM induces interventional distributions: if v is consistent with intervention s,

P (v | do(S = s)) =
∑
u

P (u)
∏
Vi /∈S

1
{
vi = fi(pai,ui)

}
:= Ps(v). (1)

Otherwise, P (v | do(S = s)) = 0. For a more detailed discussion on SCMs, we refer to [29].

2.2 Causal Bandit Problem with Confounders

The causal bandit problem with confounders studies the sequential decision-making problem with
causal information provided by a causal graph G = ⟨V, E ,B⟩ with confounding effects represented
by bidirected edge set B. The causal graph G is given but the exact interventional and observational
distributions are unknown. Without loss of generality, we assume the reward is collected from node
Vn, which is bounded in [0, 1] and can not be intervened on. Let I ⊆ {s ∈ Ω(S) | S ⊆ V\Vn} be the
space of allowed interventions. The decision-maker is required to decide which intervention to apply
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at each time step. The expected reward of intervention s ∈ I is µs = EPs [Vn] =
∑

v∈Ω(V) vnPs(v),
where Ps is defined in (1) and EP means the expectation is computed with probability distribution P .

At each time t ∈ {1, . . . , T}, the agent follows an adaptive allocation policy π to select an intervention
st ∈ I and observe the causal bandit feedback Vt ∼ Pst(V), which is a realization of all observable
variables after intervention. In fact, policy π is a sequence {πt}t∈N, where each πt determines the
probability distribution of taking intervention St ∈ I given intervention and observation history
πt(St | s1,v1, . . . , st−1,vt−1). Let µ∗ := maxs∈I µs and ∆s = µ∗ − µs denote the optimal mean
reward and the expected optimality gap of intervention do(S = s) respectively. Given a causal
graph G, the objective of the causal bandit problem is to design a policy π to maximize the expected
cumulative reward, or equivalently, to minimize the expected regret:

Rπ
T := E

[ T∑
t=1

(µ∗ − Vn,t)

]
=
∑
s∈I

E[NT (s)]∆s, (2)

where NT (s) is the total number of times intervention do(S = s) is taken by policy π until time
horizon till T , and the expectation is computed over different realizations of {St,Vt}Tt=1 from the
interactions between the random policy π and the causal bandit model ⟨Ps⟩s∈I . Thus, Rπ

T is the gap
between the expected cumulative rewards of selecting the best intervention all the time and that by
the policy π. The regret decomposition in (2) is from [18], and it expresses the expected regret with
products of the expected number of suboptimal action selections and expected reward gaps.

The large action space in causal bandits poses many challenges to the learning problem. It is desirable
to reduce the action space without excluding all optimal interventions. The do-calculus introduced
in [28] provides a set of guidelines for evaluating invariances across interventions. In this context,
our specific focus is on Rule 3, which provides the conditions under which a series of interventions
have no impact on the outcome variable. For example, Rule 3 implies that PW,Z(y) = PZ(y) if we
have (Y ⊥⊥W|Z)GW∪Z

, where GW∪Z is the subgraph of DAG G with incoming edges to the set
W ∪ Z removed. This concept leads to the notion of a minimal intervention set (MIS), which is a
subset of variables S ⊆ V \Vn such that there is no S′ ⊂ S for which µs[S′] = µs holds for every
Structural Causal Model (SCM) with a causal graph G [22]. Here, s[S′] denotes an intervention on
S′ ∩ S with values consistent with s . An MIS S is considered a possibly optimal MIS (POMIS) if
some intervention s ∈ Ω(S) can achieve the optimal mean reward in an SCM with a causal graph G.
We define I = {s ∈ Ω(S) | S is a POMIS}.
At an intuitive level, it may seem logical that the most effective course of action would be to intervene
on the immediate causes (parents) of the reward variable Vn. This approach would provide a higher
level of control over Vn within the system. If the reward variable Vn is not confounded with any
of its ancestors, its parent set Pan is the only POMIS. In more general causal graphs where Vn is
confounded with any of its ancestors, the paper [22] proves that multiple POMISs exist, which can
include variables that are not parents of Vn. The paper also provides graphical criteria and an efficient
algorithm for constructing a set of all POMISs for a given causal graph. For an effective method
to search for I, we refer to [22] and rely on their graphical criteria to construct a set of POMISs.
This set of POMISs is used to form the set of possible optimal actions I for use in the causal bandit
algorithm. We make the following assumption, which we expect to hold in a general scenario [38],
except for certain specifically designed SCMs.

Assumption 2. Within interventions on POMISs, there exists a unique optimal intervention s∗.

3 Response Variables and Space of Interventional Distribution Tuples

The unspecified domain of U makes it inconvenient to be directly applied to the learning problem.
However, it is noted in [29, Ch. 8] that if each variable in V takes finite states, Ω(U) can be partitioned
and U can be projected to a collection of finite-state response variables. The resulting model is
equivalent to the original one with respect to all observational and interventional distributions. Such a
technique was used to bound the causal and counterfactual effects with observational distribution [29,
Ch. 8]. We take it to define a parameterized space of interventional distribution tuples.
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Figure 1: Causal graphs and their structural equivalents

3.1 Response Variables and Canonical Structural Causal Model

In Definition 1, each structural equation Vi = fi(Ui,Pai) connects random variable Vi to its parents
Pai. As Ui varies along its domain, regardless of how complex the variation is, the only effect it
can have is to switch the relationship between Pai and Vi. Since there are at most |Ω(Vi)||Ω(Pai)|

mapping relationships from Pai to Vi, we can decompose fi as follows,

Vi = fi(Ui,Pai) = f
i
(Mi,Pai), Mi = f i(Ui), (3)

where Mi ∈
{
0, . . . , |Ω(Vi)||Ω(Pai)|−1

}
is a random variable corresponds to a mapping from Ω(Pai)

to Ω(Vi). For an observable variable without parents, we simply have Mi ∈ {0, . . . , |Ω(Vi)| − 1}.
Such a random variable Mi ∈M attached to each Vi ∈ V is called response variable in [5]. Treating
response variables as exogenous variables, the resulting SCM ⟨M,V,F, P (M)⟩ is called canonical
SCM in [40], where F = {f

1
, f

2
, ..., f

n
}.

The decomposition of structural equations in equation (3) can be represented graphically by including
response variables in M. Since Vi = f

i
(Mi,Pai), for each Vi there is a directed edge Mi → Vi.

We also know that if there exists Vi ↔ Vj in G, both Vi and Vj are affected by common exogenous
variables Ui ∩Uj ̸= ∅. As a result, Mi and Mj are correlated and they are also connected by a
bidirected edge. For example, the causal graph in Fig. 1(a) has a structural equivalent in Fig. 1(b).

Given intervention s ∈ I, there exists a deterministic relationship from M to V. To further explain
the idea, consider the bow graph example in Fig. 1(c), where V1, V2 are binary variables taking value
0 or 1. As illustrated above, the response variables are M1 ∈ {0, 1} and M2 ∈ {0, 1, 2, 3}, and the
structural equations for V1 and V2 are as follows:

V1 = f
1
(M1) = M1, V2 = f

2
(M2, V1) =


0 M2 = 0

V1 M2 = 1

1− V1 M2 = 2

1 M2 = 3

.

If do(∅) is applied, (V1, V2) = (0, 1) when (M1,M2) = (0, 2) or (0, 3). If do(V1 = 1) is applied,
(V1, V2) = (1, 0) when M1 = 0 or 1 and M2 = 0 or 2. It shows that for a given intervention do(∅)
or do(V1 = 1), there exists a deterministic mapping from M to V. Besides, the true value of M
can only be inferred from V since M is unobservable. Since M1 and M2 are correlated, we define
their joint distribution as P (M1 = i,M2 = j) = pij . We can further express the observational and
interventional probabilities of V with the probability of M as follows,

P (V1 = 0, V2 = 0) = p00 + p01, P (V1 = 0, V2 = 1) = p02 + p03,

P (V1 = 1, V2 = 0) = p10 + p12, P (V1 = 1, V2 = 1) = p11 + p13,

Pdo(V1=0)(V2 = 0) = p00 + p01 + p10 + p11, Pdo(V1=0)(V2 = 1) = p02 + p03 + p12 + p13,

Pdo(V1=1)(V2 = 0) = p00 + p02 + p10 + p12, Pdo(V1=1)(V2 = 1) = p01 + p03 + p11 + p13.

(4)

It can be seen these parameters are sufficient for specifying the model of Fig. 1(c). Such a parameteri-
zation technique can be extended to general causal graphs with latent confounders [40].
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3.2 Space of Interventional Distribution Tuples

In a causal graph, a confounded component (c-component) is a maximal set of vertices connected with
bidirected edges [34]. Note that a singleton node without bidirected edges is also a c-component. For
example, there are two c-components in Fig. 1(a): {V1, V3, V4} and {V2}. In fact for any causal graph
G, its observable variables V can be uniquely partitioned into c-components {V1, . . . ,Vnc(G)},
where nc(G) is the total number of c-components in G. Then M can also be partitioned into
{M1, . . . ,Mnc(G)}, where each Mj contains response variables adjacent to Vj . For example
in Fig. 1(b), M is partitioned into {M1,M3,M4} and {M2}. Within each Mj , the response variables
are correlated since they are connected by bidirected edges. Besides, M1, . . . ,Mnc(G) are mutually
independent since Mi and Mj are not connected with bidirected edges for any i ̸= j. As a result,
P (m) =

∏nc(G)
j=1 P (mj). By concatenating P (mj) for each mj ∈ Ω(Mj), we construct a vector

pj ∈ ∆(|Ω(Mj)|), where ∆(|Ω(Mj)|) :=
{
p′
j ∈ R|Ω(Mj)|

≥0 | 1⊤p′
j = 1

}
and 1⊤ is the transpose

of the all-ones vector.

Let the parent set of a c-component Vj be PaVj := (∪i:Vi∈Vj Pai) \Vj . When taking intervention
do(S = s), the values of Vj ∩S is set to s[Vj ], which denotes the values of Vj ∩S that is consistent
with s. Notice that Mj picks the mapping functions from Pai to Vi for all Vi ∈ Vj . Seeing values
vj , paVj and s[Vj ], there exists a set of configurations of Mj , denoted by BG,s[Vj ](v

j , paVj ) ⊆
Ω(Mj), that can make this happen. By marking configurations in BG,s[Vj ](v

j , paVj ) with 1 and

others to be 0, we construct a vector bG,s[Vj ](v
j , paVj ) ∈ {0, 1}|Ω(Mj)|. With M1, . . . ,Mnc(G)

being mutually independent, the interventional distribution can be factorized as

Ps(v) =

nc(G)∏
j=1

P
(
Mj ∈ BG,s[Vj ](v

j , paVj )
)
=

nc(G)∏
j=1

b⊤G,s[Vj ]
(vj , paVj )pj . (5)

In the bow graph example in Fig. 1(c), there is one c-component, and vector b⊤G,s[Vj ]
(vj , paVj ) can

be constructed by referring to (4), where p1 is a concatenation of pi,j . The result in (5) generalizes
the parameterization for the bow graph to a general causal graph. Based on it, given a causal graph G,
we define the space of interventional distribution tuples as the following.
Definition 2 (Space of Interventional Distribution Tuples). Given a causal graph G = ⟨V, E ,B⟩,
the space of interventional (and observational) distribution tuples P = ⟨Ps⟩s∈I is

MG :=

{
P ′
∣∣∣ ∀s ∈ I,v ∈ Ω(V) : P ′

s(v) =

nc(G)∏
j=1

b⊤G,s[Vj ]
(vj , paVj )pj ,pj ∈ ∆(|Ω(Mj)|)

}
.

Space MG contains all interventional distribution tuples associated with canonical SCMs
⟨M,V,F, P (M)⟩ with arbitrary P (M). Since the space of {p1, . . . ,pnc(G)} is compact and a
continuous image of a compact space is compact,MG is also a compact space.

4 An Asymptotic Regret Lower Bound

In this section, we present an asymptotic information-theoretic regret lower bound for the causal
bandit problem with confounders. It quantifies the optimal asymptotic performance of a uniformly
good causal bandit policy defined below.
Definition 3 (Uniformly Good Policy). Given a causal graph G = ⟨V, E ,B⟩, a causal bandit policy
π is uniformly good if for any α > 0, the expected regret of π for any interventional distribution tuple
setup P ∈MG , denoted by Rπ

T (P), satisfies

lim
T→∞

Rπ
T

(
P
)
/Tα = 0.

A policy π being uniformly good indicates that it can achieve subpolynomial regret for any P ∈MG .
The information-theoretic regret lower bound sets the limit for the asymptotic regret of all such
policies. Let D(P ∥ Q) denote the Kullback–Leibler (KL) divergence of two probability distributions
P and Q and let I−s = I \ {s}.
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Theorem 1. Given a causal graph G = ⟨V, E ,B⟩, let P = ⟨Ps⟩s∈I ∈MG be the true interventional
distribution tuple with a unique optimal intervention s∗ ∈ I with mean reward µ∗. The expected
regret for any uniformly good causal bandit policy π satisfies

lim inf
T→∞

Rπ
T

(
P
)
/lnT ≥ C(P,G),

where C(P,G) is the value of the optimization problem given below,

O(P,G) : minimize
ηs≥0,∀s∈I−s∗

∑
s∈I−s∗

ηs∆s, (6)

s. t. max
s∈I−s∗

µ′
s ≤ µ∗,∀P ′ ∈

{
P ′′ ∈MG

∣∣∣ ∑
s∈I−s∗

ηsD(Ps ∥ P ′′
s ) < 1, P ′′

s∗ = Ps∗

}
, (7)

where µ′
s is the expected reward of intervention s according to probability distribution P ′

s.

Theorem 1 can be viewed as an extension of [10, Th. 1], and we defer its proof to appendices. The
optimization problem O(P,MG) is a semi-infinite program since there are infinite P ′ in (7). To
interpret the lower bound, (6) is a minimization of the regret, and its solution indicates an optimal
allocation of O(lnT ) number of explorations, which is ηs lnT for each s ∈ I−s∗ as T →∞. In (7),∑

s∈I ηsD(Ps ∥ P ′′
s ) can be viewed as the distance generated between true interventional distribution

tuple P and an alternative P ′′ ∈MG by an exploration allocation strategy ⟨ηs⟩s∈I−s∗
. For any P ′

in (7), µ′
s∗ = µ∗ since P ′

s∗ = Ps∗ , and as a result, maxs∈I−s∗
µ′
s ≤ µ∗ indicates intervention s∗

is also optimal in P ′. So (7) sets a constraint for ⟨ηs⟩s∈I−s∗
: the models allowed to have distance

< 1 from the true model must also take s∗ to be optimal. Or conversely, ⟨ηs⟩s∈I−s∗
must generate

distance ≥ 1 for any P ′ ∈MG with P ′
s∗ = Ps∗ not taking intervention s∗ to be optimal.

Remark 1. The O(lnT ) regret lower bound holds only if there exists P ′ ∈MG such that P ′
s∗ = Ps∗ ,

which is a condition meaning P can not be distinguished from all other interventional distribution
tuples inMG by only taking intervention s∗. This condition holds for almost all causal bandit prob-
lems. Otherwise, constraint (7) is relaxed, and the value of the optimization problem C(P,MG) = 0,
which indicates sub-logarithmic regret can be achieved. Following the same line of proof in [17, Th.
3.9], it can be shown simple UCB can achieve this sub-logarithmic, in fact constant, expected regret.

5 SCM-based Causal Bandit Algorithm

The regret lower bound in Theorem 1 suggests a potentially optimal exploration strategy, i.e. to take
each intervention s ∈ I−s∗ up to ηs lnT times. However, it requires the ground truth P to solve
the optimization problem O(P,G). The allocation matching principle [10] essentially replaces the
true model with an estimated one to solve the optimization problem, and controls explorations to
match with the solution. It is expected that the estimated model converges to the ground truth at a fast
enough rate so that the actual explorations match with the optimal exploration strategy. We follow
this idea to design a causal bandit policy, whose pseudo-code is shown in Algorithm 1. We call this
SCM-based Approximate Allocation Matching (SCM-AAM).

Similar to [22], SCM-AAM only intervenes on POMISs for the purpose of reducing the action
space. The algorithm is anytime without requiring the knowledge of horizon length. It takes two
tuning parameters ϵ = (0, 1/ |I|) and γ > 0 as inputs that control the exploration rate, which affects
finite-time performance. At each time t, let Nt(s) be the number of times the intervention do(S = s)
is taken so far, and let Nt(v, s) be the number of times we observe v with intervention do(S = s).
The algorithm maintains a set of empirical interventional distributions ⟨P̄s,t⟩s∈I and empirical mean
rewards ⟨µ̄s,t⟩s∈I , where P̄s,t(v) = Nt(v, s)/Nt(s) for each s ∈ I.

The main body of the algorithm is composed of two components: exploitation and exploration. At
each round t, it first attempts to evaluate if enough information has been collected to determine
the optimal action. Inspired by the lower bound, enough distance is generated by the sampling
history between ⟨P̄s,t⟩s∈I and P ′ = ⟨P ′

s⟩s∈I if
∑

s∈I Nt(s)D(P̄s,t ∥ P ′
s) > (1+ γ) ln t. So we can

construct a confidence set Ct with high probability to contain the true model P , which is defined as

Ct :=
{
P ′ ∈MG

∣∣∣ ∑
s∈I

Nt(s)D(P̄s,t ∥ P ′
s) ≤ (1 + γ) ln t

}
. (8)

7



Algorithm 1: SCM-based Approximate Allocation Matching (SCM-AAM)
Input :Causal graph G = ⟨V, E ,B⟩, I = {s ∈ Ω(S) | S is POMIS}
Initialization :N e

t = 0, ∀s ∈ I : Nt(s) = 0
Set :ϵ ∈ (0, 1/ |I|) and γ > 0
Output :Sequence of interventions

Select each intervention s ∈ I once
for t = |I|+ 1 to T do

Compute empirical distributions and mean rewards ⟨P̄s,t⟩s∈I and ⟨µ̄s,t⟩s∈I

With Ct defined in (8), compute UCB µ̃s(Ct) =
∑

v∈Ω(V) vn maxP′∈Ct
P ′
s(v),∀s ∈ I

1 if ∃s∗,t : µ̄s∗,t > µ̃s(Ct),∀s ∈ I−s∗,t then
Select St ← s∗,t, and Nt(St)← Nt(St) + 1 % exploitation

2 else if mins∈I Nt(s) ≤ ϵN e
t then

Select St ← argmins∈I Nt(s) % forced exploration
Set N e

t ← N e
t + 1 and Nt(St)← Nt(St) + 1

3 else
Select St ← argmaxs∈I µ̃s(Ct) % exploration with greedy approximation
Set N e

t ← N e
t + 1 and Nt(St)← Nt(St) + 1

With Vn being the reward node, for each s ∈ I, the algorithm computes the UCB of the mean reward
of taking intervention s as µ̃s(Ct) =

∑
v∈Ω(V) vn maxP′∈Ct P

′
s(v). If there exists an intervention

s∗,t with empirical mean reward µ̄s∗,t > µ̃s(Ct),∀s ∈ I−s∗,t , we are confident about s∗,t to be the
optimal intervention. So the algorithm enters the exploitation phase and selects St = s∗,t.

If no such s∗,t exists, the algorithm needs to explore. According to the allocation principle, one is
inclined to solve O(⟨P̄s,t⟩s∈I ,G) defined in Theorem 1 and make Nt(s) ≈ ηs ln t for each s ∈ I.
Nevertheless, there is no guarantee that this semi-infinite program can be solved efficiently. Therefore,
we take a greedy approximation approach. Ideally, to get out of exploration, the algorithm needs
to reduce maxs∈I−s∗

µ̃s(Ct) to a value below µ∗, thus it selects St = argmaxs∈I µ̃s(Ct). The
algorithm maintains a counter of exploration steps N e

t . If mins∈I Nt(s) ≤ ϵN e
t , it generates forced

exploration by selecting the least selected intervention St. Such a mechanism ensures every action is
persistently taken in exploration phases so that ⟨P̄s,t⟩s∈I converges to the ground truth eventually.

Remark 2. With factorization in (5), Ct corresponds to setting constraint for {p1, . . . ,pnc(G)} as

∑
s∈I

∑
v∈Ω(V)

Nt(s,v) ln
P̄s,t(v)∏nc(G)

j=1 b⊤G,s[Vj ]
(vj , paVj )pj .

≤ (1 + γ) ln t, (9)

where the expression on the left of inequality is a convex function of p1, . . . ,pnc(G). Define convex
set Cp

t =
{
{p1, . . . ,pnc(G)} | pj ∈ ∆(|Ω(Mj)|),∀j ∈ {1, . . . , nc(G)}, and (9) is true

}
. Then the

UCB can be derived by maximizing a set of concave functions over Cp
t as follows,

µ̃s(Ct) =
∑

v∈Ω(V)

vn max
P′∈Ct

P ′
s(v) =

∑
v∈Ω(V)

vn exp
(

max
{p1,...,pnc(G)}∈Cp

t

nc(G)∑
j=1

ln
(
b⊤G,s[Vj ]

(vj , paVj )pj

))
.

We use µ̃s(Ct) instead of µ̃′
s(Ct) = maxP′∈Ct

∑
v∈Ω(V) vnP

′
s(v) as UCB since

∑
v∈Ω(V) vnP

′
s(v)

in general is a non-concave function of p1, . . . ,pnc(G). Also, notice that ∀s ∈ I : µ̃s(Ct) ≥ µ̃′
s(Ct).

In a pure topology-based approach [22], each intervention on POMISs is treated independently during
the algorithm execution. Whereas SCM-AAM can leverage the canonical SCM to incorporate the
sampling results from different interventions together. After each new sample vt with intervention st
is observed, it is used to update the parametric space for interventional distribution tuples Ct.
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6 Finite Time Regret Analysis

We present a finite time problem-dependent regret upper bound for SCM-AAM in Theorem 2. The
complete proof is provided in the appendices. We also give an interpretation of Theorem 2, and
compare the regret upper bound with [22] in the setting where the reward node Vn is binary,
Theorem 2. For the causal bandit problem with unobserved confounders, suppose the causal graph
G = ⟨V, E ,B⟩ is given and Assumptions 1 and 2 are true. For any interventional distribution tuple
P ∈ MG , any κ > 0 and horizon of length T , the expected regret for SCM-AAM with parameters
ϵ ∈ (0, 1/ |I|) and γ > 0 satisfies

RSCM-AAM
T (P) ≤ (1 + κ)(1 + γ)

∑
s∈I−s∗

ζs(P)
(
∆s +

ϵ |I|
1− ϵ |I|

)
lnT + c,

where c is a suitably large universal constant depending on P , κ and tuning parameters ϵ and γ, and

∀s ∈ I−s∗ : ζs(P) =
{
0, µ̃s(Cs(0,P)) ≤ µ∗,

maxηs≥0 ηs s. t. µ̃s(Cs(ηs,P)) ≥ µ∗, otherwise,

in which Cs(ηs,P) :=
{
P ′ ∈MG | ηsD(Ps ∥ P ′

s) + ϵηs/2
∑

x∈I−s
D(Px ∥ P ′

x) ≤ 1
}

.

Theorem 2 indicates the expected number of samples for each s ∈ I−s∗ can be approximately
bounded by ζs(P) lnT . It can be interpreted as follows: when s ∈ I−s∗ is selected approxi-
mately up to ζs(P) lnT times, its UCB can be pushed below µ∗. The presence of terms contain-
ing ϵ is due to forced exploration. In [22], KL-UCB and Thompson sampling are employed to
apply interventions on POMISs. If the reward node Vn ∈ {0, 1}, they enjoys expected regret∑

s∈I−s∗
(∆s lnT )/D(Ps(Vn) ∥ Ps∗(Vn)) + c′ for some insignificant c′ [14, 2]. In this situation,

Theorem 2 shows that the SCM-AAM enjoys smaller expected regret when we disregard the small
constants κ, γ and ϵ. To see it, we express the leading constant for KL-UCB and Thompson as

1/D(Ps(Vn) ∥ Ps∗(Vn)) = max
ηs≥0

ηs s. t. µ̃s(C′s(ηs, P (Vn))) ≥ µ∗,

where C′s(ηs, P (Vn)) = {P ′
s(Vn) ∈ [0, 1] | ηsD(Ps(Vn) ∥ P ′

s(Vn)) ≤ 1}. Note that C′s(ηs, P (Vn))
only sets constraint on P ′

s(Vn), while Cs(ηs,P) sets constraints on P ′
s(V). As a result, Cs(ηs,P) ⊆

C′s(ηs, P (Vn)), so that ζs(P) ≤ 1/D(Ps(Vn) ∥ Ps∗(Vn)).

7 Experimental Results

We compare the empirical performance of SCM-AAM with existing algorithms. The first baseline
algorithm employs the simple UCB algorithm [4] on a reduced action set that includes interventions
on POMISs. The other two baselines as introduced in [22], utilize the KL-UCB algorithm and
Thomposn sampling (TS) to intervene on POMISs. We compare the performance of all the algorithms
on three different causal bandit instances shown in Fig. 2. We choose the input parameters of the
SCM-AAM algorithm to be γ = 0.1 and ϵ = 1/|5I| in the simulations. We set the horizon to 800
for all three tasks and repeat every simulation 100 times. Additionally, we include a confidence
interval around the mean regret, with the width of the interval set to twice the standard deviation.
The structural equations for the three causal bandit instances, as well as experimental details, can be
found in the appendices. We plot the mean regret against time, where time in this context corresponds
to the number of actions. All the nodes in Fig. 2 take binary values, either 0 or 1.

For task 1, we consider the causal graph shown in Fig. 2(a) with POMISs {V1} and {V2}. For
task 2 and task 3, we consider more complex causal graphs, as displayed in Fig. 2(b) and (c). The
POMISs for task 2 include {V1}, {V3}, and {V3, V4}, while for task 3, they are {V1, V4, V6} and
{V5, V6}. The UCB algorithm has inferior performance compared to other baseline algorithms,
especially in the more complicated tasks 2 and 3. The TS algorithm outperforms both UCB and
KL-UCB in all three settings; however, it still incurs more regret than our proposed algorithm.
The experiments demonstrate that our proposed SCM-AAM algorithm consistently outperforms
other baseline algorithms by incurring lower empirical regret across all three tasks. Notably, the
performance advantage of SCM-AAM is more significant for tasks 2 and 3, which have a more
intricate causal graph structure with a higher number of nodes and edges. The results indicate that
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Figure 2: Causal graphs used in the experiments
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Figure 3: Regret versus time for the instances of structural causal bandits shown in Figure 2

incorporating causal structural information through the SCM-AAM algorithm can significantly reduce
expected regret, especially for more complex causal graphs.

The simulations were conducted on a Windows desktop computer featuring a 12th generation Intel
Core i7 processor operating at 3.1 GHz and 32 GB of RAM. No GPUs were utilized in the simulations.
The runtime for each iteration of the SCM-MAB, involving 800 arm plays, was approximately 2
minutes for both Task 1. However, for Task 2 and Task 3, which encompass larger underlying causal
graphs, the runtime for every iteration increased to around 20 minutes. The algorithm code is provided
at https://github.com/CausalML-Lab/SCM-AAM.

8 Conclusion

In this paper, we studied the causal bandit problem with latent confounders. With causal information
provided by a causal graph, we present a problem-dependent information-theoretic regret lower
bound. Leveraging the canonical SCM, we take an approximate allocation matching strategy to
design the SCM-AAM algorithm. By analyzing SCM-AAM, we show it has a problem-dependent
logarithmic regret upper bound. The analytic result is complemented with numerical illustrations
featuring a variety of causal structures. It is shown that SCM-AAM exhibits promising performance
in comparison with classic baseline algorithms. Since SCM has a natural application in counterfactual
reasoning, extending the proposed algorithm and theoretical results to a counterfactual decision-
making setup is an interesting future direction.
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Appendices
A Proof of Asymptotic Regret Lower Bound in Theorem 1

The lower bound is derived following the same strategy in [21] by applying divergence decomposition
and Bretagnolle–Huber inequality. For completeness, we reproduce both proofs in this section.
Readers familiar with these results can skip them. Besides, we note that a more general result on
controlled Markov chains is proven in [15].

Recall that a policy π is composed of a sequence {πt}t∈N>0
, where at each time t ∈ {1, . . . , T},

πt determines the probability distribution of taking intervention St ∈ I given intervention and
observation history πt(St | s1,v1, . . . , st−1,vt−1). So the intervention and observation sequence
{St,Vt}t∈N>0

is a production of the interactions between the interventional distribution tuple
⟨Ps⟩s∈I and policy π. Let T be the horizon length, we define a probability measure P on the
sequence of outcomes induced by ⟨Ps⟩s∈I and π such that

P(s1,v1, . . . , sT ,vT ) =

T∏
t=1

πt(st | s1,v1, . . . , st−1,vt−1)Pst(vt). (10)

For a fixed policy π, let P and P′ be the probability measures on the T -round plays of two different
causal bandit instances with different interventional distribution tuples P = ⟨Ps⟩s∈I and P ′ =
⟨P ′

s⟩s∈I in spaceMG , which is defined in Definition 2. From (10), we get the distinction between P
and P′ is exclusively due to the separations of P and P ′. As a result, D(P ∥ P′) has the following
decomposition, which is a standard result in MAB problems [21, Th. 15.1].
Lemma 3 (Divergence Decomposition). Given a causal graph G = ⟨V, E ,B⟩, let P = ⟨Ps⟩s∈I be
the true interventional distribution tuple and let P ′ = ⟨P ′

s⟩s∈I be different from P . For some fixed
policy π, let P and P′ be the probability measures on the T rounds of causal bandit plays in P and
P ′ respectively. Then,

D(P ∥ P′) =
∑
s∈I

E[NT (s)]D (Ps ∥ P ′
s) ,

where the expectation is computed with probability measure P.

Proof. For a fixed policy π, from (10), we get

P(s1,v1, . . . , sT ,vT ) =

T∏
t=1

πt(st | s1,v1, . . . , st−1,vt−1)Pst(vt).

As a result, πt is reduced and we get

log
P(s1,v1, . . . , sT ,vT )

P′(s1,vt, . . . , sT ,vT )
=

T∑
t=1

log
Pst(vt)

P ′
st(vt)

, (11)

which shows the distinction between P and P′ is exclusively due to the separations of Ps and P ′
s for

each s ∈ I. Then we can decompose D(P ∥ P′) with (11) as the following,

D(P ∥ P′) = E
[
log

P(S1,V1, . . . ,ST ,VT )

P′(S1,Vt, . . . ,ST ,VT )

]
= E

[
T∑

t=1

log
PSt

(Vt)

P ′
St
(Vt)

]
=

T∑
t=1

E
[
log

PSt
(Vt)

P ′
St
(Vt)

]

=

T∑
t=1

E
[
E
[
log

PSt(Vt)

P ′
St
(Vt)

∣∣∣∣St

]]
=

T∑
t=1

E
[
D
(
PSt ∥ P ′

St

)]
=

T∑
t=1

E

[∑
s∈I

1{St = s}D (Ps ∥ P ′
s)

]
=
∑
s∈I

D (Ps ∥ P ′
s)E

[
T∑

t=1

1{St = s}

]
=
∑
a∈I

E[NT (s)]D (Ps ∥ P ′
s) ,

which concludes the proof.
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The other tool to prove the regret lower bound is the Bretagnolle–Huber Inequality.

Lemma 4 (Bretagnolle–Huber Inequality [21, Th. 14.2]). Let P and Q be two probability measures
on a measurable space (Ω,F), and let E ∈ F be an arbitrary event. Then

P (E) +Q(E∁) ≥ 1

2
exp (−D(P ∥ Q)) ,

where E∁ = Ω \ E is complement of E.

Proof with finite Ω. In Assumption 1, we assume each node in the causal graph can only take a finite
number of values. So the sample space for the causal bandit problem with horizon length T is finite.
We provide proof for the Bretagnolle–Huber inequality assuming Ω is finite. First, we show

P (E) +Q(E∁) =
∑
ω∈E

P (ω) +
∑
ω∈E∁

Q(ω) ≥
∑
ω∈E

min{P (ω), Q(ω)}+
∑
ω∈E∁

min{P (ω), Q(ω)}

=
∑
ω∈Ω

min{P (ω), Q(ω)} = 1

2

∑
ω∈Ω

min{P (ω), Q(ω)}
∑
ω∈Ω

[P (ω) +Q(ω)]

≥ 1

2

∑
ω∈Ω

min{P (ω), Q(ω)}
∑
ω∈Ω

max{P (ω), Q(ω)}.

Applying Cauchy–Schwarz inequality, we get

P (E) +Q(E∁)

≥1

2

(∑
ω∈Ω

√
min{P (ω), Q(ω)}max{P (ω), Q(ω)}

)2

=
1

2

(∑
ω∈Ω

√
P (ω)Q(ω)

)2

=
1

2
exp

(
2 log

∑
ω∈Ω

√
P (ω)Q(ω)

)
=

1

2
exp

(
2 log

∑
ω∈Ω

P (ω)

√
Q(ω)

P (ω)

)

≥1

2
exp

(
2
∑
ω∈Ω

P (ω) log

√
Q(ω)

P (ω)

)
=

1

2
exp (−D(P ∥ Q)) .

We conclude our proof.

To prove the regret lower bound, the remaining work regards applying divergence decomposition and
substituting D(P ∥ P′) into the Bretagnolle–Huber inequality.

Lemma 5. Given a causal graph G = ⟨V, E ,B⟩, let P = ⟨Ps⟩s∈I ∈MG be the true interventional
distribution tuple with a unique optimal intervention s∗ ∈ I with mean reward µ∗. The expected
regret for any uniformly good causal bandit policy π satisfies

lim inf
T→∞

Rπ
T

(
P
)

lnT
≥ C(P,G),

where C(P,MG) is the value of the optimization problem given below

Õ(P,MG) : minimize
ηs≥0,∀s∈I−s∗

∑
s∈I−s∗

ηs∆s (12)

s. t.
∑
s∈I

ηsD(Ps ∥ P ′
s) ≥ 1,∀P ′ ∈

{
P ′′ ∈MG | s∗ /∈ I ′′∗

}
, (13)

where I ′′∗ is the set of optimal interventions according to P ′′.

Remark 3. To interpret Lemma 5, (12) is a minimize of the regret, and its solution indicates an
optimal exploration strategy. Each s ∈ I−s∗ should be selected up to ηs lnT as T → ∞. In (13),∑

s∈I ηsD(Ps ∥ P ′′
s ) is viewed as the distance generated between true interventional distribution

tuple P and an alternative P ′′ ∈ MG by an exploration strategy ⟨ηs⟩s∈I−s∗
. So (13) requires

⟨ηs⟩s∈I−s∗
must generate distance ≥ 1 for any P ′ ∈MG in which intervention s∗ is not optimal.
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Proof. For any P ′ ∈ {P ′′ ∈MG | s∗ /∈ I ′′∗ }, the optimal intervention s∗ according to ground
truth P is not optimal in P ′. Recall P′ is the measures on T -round plays of causal bandit with
interventional distribution tuple P ′. Also let µ′

∗ be the optimal mean reward and ∆′
s = µ′

∗ − µ′
s. For

true causal model P , P and ∆s are defined similarly. For a fixed policy π, let RT and R′
T be the

expected regret from T round plays in P and P ′ respectively. Letting ϵ = min{∆s′∗ ,∆
′
s∗}, we get

RT ≥
ϵT

2
P
(
NT (s∗) <

T

2

)
and R′

T ≥
ϵT

2
P′
(
NT (s∗) ≥

T

2

)
.

Combining both inequalities, we get

P
(
NT (s∗) <

T

2

)
+ P′

(
NT (s∗) ≥

T

2

)
≤ 2

ϵT
(RT +R′

T ).

Applying Bretagnolle–Huber inequality in Lemma 4 by substituting event {NT (s∗) <
T
2 } into E,

D(P ∥ P′) ≥ ln
ϵT

4(RT +R′
T )

. (14)

With Lemma 3, we substitute
∑

s∈I E[NT (s)]D (Ps ∥ P ′
s) into D(P ∥ P′) and rearrange (14),∑

s∈I E[NT (s)]D (Ps ∥ P ′
s)

lnT
≥ 1− ln 4(RT +R′

T )/ϵ

lnT
. (15)

According to Definition 3, that for any α > 0, the regret for a uniformly good policy π satisfies

lim
T→∞

RT

Tα
= 0 and lim

T→∞

R′
T

Tα
= 0.

It follows from (15) that

lim inf
T→∞

∑
s∈I E[NT (s)]D (Ps ∥ P ′

s)

lnT
≥ 1,

which sets the constraints for E[NT (s)]/ lnT as T → ∞. Since RT =
∑

s∈I−s∗
E[NT (s)]∆s, by

replacing E[NT (s)]/ lnT with ηs, we finish the proof.

Proof of Theorem 1. We finish the proof by showing the equivalence of Õ(P,MG) in Lemma 5 and
O(P,MG) in Theorem 1. First notice that there is no ηs∗ in (12). Accordingly, ηs∗ can be assigned
to an arbitrarily large value to make

∑
s∈I ηsD(Ps ∥ P ′

s) ≥ 1 if Ps∗ ̸= P ′
s∗ . Therefore, (13) is

equivalent to ∑
s∈I−s∗

ηsD(Ps ∥ P ′
s) ≥ 1,∀P ′ ∈

{
P ′′ ∈MG | Ps∗ = P ′′

s∗ , s∗ /∈ I ′′∗
}
.

It means if s∗ is not optimal in P ′, then
∑

s∈I−s∗
ηsD(Ps ∥ P ′

s) ≥ 1. Its contrapositive statement is
that if

∑
s∈I−s∗

ηsD(Ps ∥ P ′
s) < 1, then s∗ is also optimal in P ′. Putting it into the mathematical

expression, we get

max
s∈I−s∗

µ′
s ≤ µ∗,∀P ′ ∈

{
P ′′ ∈MG

∣∣∣ ∑
s∈I−s∗

ηsD(Ps ∥ P ′′
s ) < 1, P ′′

s∗ = Ps∗

}
,

where we use the fact µ∗ = µ′
∗ since Ps∗ = P ′

s∗ . The proof is concluded.

B Finite time Regret Analysis of SCM-AAM in Theorem 2

B.1 Guarantee with Forced Exploration

The SCM-AAM algorithm maintains a counter of exploration steps N e
t . In expiration steps, if

mins∈I Nt(s) ≤ ϵN e
t , the SCM-AAM algorithm generates forced exploration by selecting one of

the least selected intervention. Lemma 6 shows that the forced exploration mechanism ensures every
intervention is persistently selected in exploration phases.
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Lemma 6. LetR = {ti}i≥1 be the sequence of rounds that SCM-AAM enters the exploration phase.
For any time ti ∈ R, it satisfies that

min
s∈I

Nt(s) ≥
ϵi

2
.

Proof. We first note that the following two facts are true

• mins∈I Nt(s) is non-decreasing over t.

• If mins∈I Nti(s) ≤ ϵN e
ti , then mins∈I Nti+|I|(s) ≥ minNti(s) + 1.

Since Nt(s) is non-decreasing over t, the first statement is true. The second statement is true since
otherwise, St is selected by forced exploration at least |I| times without increasing mins∈I Nt(s).
With these two facts, we are ready to provide proof by contradiction. Suppose there exists i ∈
{1, . . . , |R|} such that

min
s∈I

Nti(s) <
ϵi

2
.

According to the first fact, we have ∀j ≥ i/2,
min
s∈I

Ntj (s) ≤ min
s∈I

Nti(s) ≤ ϵj.

According to SCM-AAM, ϵ ∈ (0, 1/ |I|). Then we apply the second fact,

min
s∈I

Nti(s) ≥
i− j

|I|
≥ ϵi

2
,

which creates a contradiction.

B.2 Supporting Lemmas (Concentration Inequalities)

The following concentration inequalities are instrumental for regret analysis. For bandit with feedback
drawn from arbitrary discrete distributions, a concentration bound on the empirical distribution is
presented in [35, Lemma 6]. In the structured causal bandit problem with unobserved confounders,
the actions space is I, and the discrete support of feedback is Ω(V). At each time t, for each
intervention s ∈ I, recall P̄s,t is the empirical interventional distribution of V and Nt(s) is the
number of times the intervention do(S = s) is taken till t. For each intervention s ∈ I, the true
interventional distribution is Ps.
Lemma 7 (Concentration Inequality for Information Distance [35]). Let δ ≥ |I| (|Ω(V )| − 1).
Then for any t > 0,

P

[∑
s∈I

Nt(s)D(P̄t,s ∥ Ps) ≥ δ

]
≤
(

δ⌈δ ln t+ 1⌉2e
|I| (|Ω(V )| − 1)

)|I|(|Ω(V )|−1)

exp(1− δ).

llowing Corollary 8 is a result of Lemma 7.
Corollary 8. For any γ > 0, there exists suitably large universal constant c such that

∞∑
t=1

P

(∑
s∈I

Nt(s)D(P̄s,t ∥ Ps) ≥ (1 + γ) ln t

)
≤ c.

Proof. We select t′ such that (1 + γ) ln t′ ≥ |I| (|Ω(V )| − 1). We apply Lemma 7 to get
∞∑
t=1

P

(∑
s∈I

Nt(s)D(P̄s,t ∥ Ps) ≥ (1 + γ) ln t

)

≤t′ +
∑
t≥t′

P

[∑
s∈I

Nt(s)D(P̄t,s ∥ Ps) ≥ (1 + γ) ln t

]

≤t′ +
∑
t≥t′

e

t1+γ

(
(1 + γ) ln t⌈(1 + γ)(ln t)2 + 1⌉2e

|I| (|Ω(V )| − 1)

)|I|(|Ω(V )|−1)

,

which remains finite. We conclude our proof.
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Lemma 9 proposed in [9, Lemma 4.3] extends Hoeffding’s inequality to provide an upper bound
on the deviation of the empirical mean sampled at a stopping time. The time SCM-AAM enters the
exploration phase is a stopping time, and the time each intervention is selected is also a stopping time.
It will be used in multiple circumstances in regret analysis.

Lemma 9 (Extension of Hoeffding’s Inequality [9]). Let {Zt}t∈N>0
be a sequence of independent

random variables with values in [0, 1]. LetFt be the σ-algebra such that σ(Z1, . . . , Zt) ⊂ Ft and the
filtration F = {Ft}t∈N>0

. Consider s ∈ N, and T ∈ N>0. We define St =
∑t

j=1 ϵj(Zj − E[Zj ]),
where ϵj ∈ {0, 1} is a Fj−1-measurable random variable. Further define Nt =

∑t
j=1 ϵj . Define

ϕ ∈ {1, . . . , T + 1} a F-stopping time such that either Nϕ ≥ s or ϕ = T + 1. Then we have that

P [Sϕ ≥ Nϕδ] ≤ exp(−2sδ2).

As a consequence,
P [|Sϕ| ≥ Nϕδ] ≤ 2 exp(−2sδ2).

In Corollary 10, we extend Lemma 9 to bound the L1 deviation of the empirical distribution.

Corollary 10 (L1 deviation of the empirical distribution). LetA denote finite set {1, . . . , a}. For two
probability distribution Q and Q′ on A, let ∥Q′ −Q∥1 =

∑a
k=1 |Q′(k)−Q(k)|. Let Xt ∈ A be a

sequence of independent random variables with common distribution Q. Let Ft be the σ-algebra such
that σ(X1, . . . , Xt) ⊂ Ft and the filtration F = {Ft}t∈N>0 . Let ϵt ∈ {0, 1} is a Ft−1-measurable
random variable. We define

Nt =

t∑
j=1

ϵj , St(i) =

t∑
j=1

ϵj1{Xj = i}, and Q̄t(i) =
St(i)

Nt
,∀i ∈ A.

For s ∈ N, and T ∈ N>0, let ϕ ∈ {1, . . . , T + 1} be a F-stopping time such that either Nϕ ≥ s or
ϕ = T + 1. Then we have

P
(∥∥Q̄ϕ −Q

∥∥
1
≥ δ
)
≤ (2a − 2) exp

(−sδ2
2

)
.

Proof. It is known that for any distribution Q′ on A,

∥Q′ −Q∥1 = 2max
A⊆A

(Q′(A)−Q(A)).

Then we apply a union bound to get

P
(∥∥Q̄ϕ −Q

∥∥
1
≥ δ
)
≤
∑
A⊆A

P

(
Q̄ϕ(A)−Q(A) ≥ δ

2

)

≤
∑

A⊆A:A ̸=A or ∅

P

(
Q̄ϕ(A)−Q(A) ≥ δ

2

)

≤ (2a − 2) exp
(−sδ2

2

)
,

which concludes the proof.

B.3 Supporting Lemmas (Continuity of Upper Confidence Bound)

For a constrained optimization problem, Berge’s maximum theorem imposes additional restrictions
on the objective function and constraint set to guarantee that the problem’s solution varies smoothly
with parameters. Specifically, it studies the following optimization problem

V (θ) = max
x∈G(θ)

F (x, θ),

where F : X ×Θ→ R the objective function, and G(θ) is the set of feasible values for X given θ
defined by the multi-valued correspondence G : Θ⇒ X . We assume that G(θ) ⊆ X is compact for
all θ ∈ Θ.
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Definition 4. The compact valued correspondence G is continuous at θ ∈ Ω(θ) if it is both upper
and lower hemicontinuous at θ. The upper and lower hemicontinuous can be verified as below.

• Upper hemicontinuous: the correspondence G is upper hemicontinuous at θ ∈ Θ if G(θ) is
nonempty and if, for every sequence {θj} with θj → θ and every sequence {xj} with xj ∈
G(θj) for all j, there exists a convergent subsequence {xjk} such that xjk → x ∈ G(θ).

• Lower hemicontinuous: the correspondence G is lower hemicontinuous at θ ∈ Θ if G(θ) is
nonempty and if, for every x ∈ G(θ) and every sequence {θj} such that θj → θ, there is a
J ≥ 1 and a sequence {xj} such that xj ∈ G(θj) for all j ≥ J and xj → x.

The correspondence G is continuous if it is continuous at every θ ∈ Ω(θ).
Lemma 11 (Berge’s Maximum Theorem [16, Ch. 17.31]). Let X ⊆ Rn and Θ ⊆ Rm. Let
F : X ×Θ→ R be a continuous function, and let G : Θ→ X be a compact valued and continuous
correspondence. Then the maximum value function

V (θ) = max
x∈G(θ)

F (x, θ)

is well-defined and continuous, and the optimal correspondence

x∗(θ) = {x ∈ G(θ) | F (x, θ)}
is nonempty, compact valued, and upper hemicontinuous.

We want to leverage Berge’s maximum theorem to prove the UCB index µ̃s(Cs(ηs,P)) =∑
v∈Ω(V) vn maxP′∈Cs(ηs,P) P

′
s(v) is continuous with respect to ηs and P . Recall in Theorem 2,

for given interventional distribution tuple P ∈ MG and ηs > 0, Cs(ηs,P) is the set of feasible
interventional distribution tuples P ′, and it is defined as

Cs(ηs,P) =
{
P ′ ∈MG

∣∣∣ ηsD(Ps ∥ P ′
s) + ϵηs/2

∑
x∈I−s

D(Px ∥ P ′
x) ≤ 1

}
.

Lemma 12. For any s ∈ I, the correspondence Cs : R≥0 ×MG ⇒ MG is a compacted valued
continuous correspondence.

Proof. The space of interventional distribution tuples MG is compacted as has been explained
below Definition 2. Besides, for any P ∈ MG and ηs ≥ 0, the constrain ηsD(Ps ∥ P ′

s) +
ϵηs/2

∑
x∈I−s

D(Px ∥ P ′
x) ≤ 1 defines a closed compact set for P ′ = ⟨P ′

s⟩s∈I . Since the
intersection of two compact sets is compact if one of them is also closed, Cs(ηs,P) is compact. It
remains to show Cs is both upper hemicontinuous and lower hemicontinuous.

Upper hemicontinuous: Fix arbituary ηs ≥ 0 and P ∈MG , and let {(ηs,i,Pi)}i∈N>0 be a sequence
such that ηs,i ≥ 0, Pi ∈ MG , and (ηs,i,Pi)→ (ηs,P). Notice that each Cs(ηs,i,Pi) is non-empty
since Pi ∈ Cs(ηs,i,Pi). Therefore, there is a sequence {P ′

i}i∈N>0
such that P ′

i ∈ Cs(ηs,i,Pi). Since
ηs,i → ηs, there exists a closed and bounded set Θ ⊂ R≥0 such that ηs ∈ Θ, and for some N ≥ 1,
ηs,i ∈ Θ for all i ≥ N . Moreover, Pi and P ′

i are also bounded since every interventional probability
tuple inMG is bounded. Since each (ηs,i,Pi,P ′

i, ) lies in a closed and bounded subset for i ≥ N ,
by Bolzano-Weierstrass theorem, the sequence {(ηs,i,Pi,P ′

i, )}i∈N>0
has a convergent subsequence

{(ηs,ik ,Pik ,P ′
ik
)}k∈N>0

with limit point (ηs,P,P ′). Since each element of this sequence satisfies

h(ηs,ik ,Pik ,P ′
ik
) := ηs,ikD(Ps,ik ∥ P ′

s,ik
) + ϵηs,ik/2

∑
x∈I−s

D(Px,ik ∥ P ′
x,ik

) ≤ 1,

the inequality holds at the limit point (ηs,P ′), i.e.,

h(ηs,P,P ′) = ηsD(Ps ∥ P ′
s) + ϵηs/2

∑
x∈I−s

D(Px ∥ P ′
x) ≤ 1,

due to that h is a continuous function. We get Cs is upper hemicontinuous.

Lower hemicontinuous: For arbituary ηs ≥ 0 and P ∈ MG , we fix P ′ ∈ Cs(ηs,P). Let
{(ηs,i,Pi)}i∈N>0

be a sequence such that ηs,i ≥ 0, Pi = ⟨Ps,i⟩s∈I ∈MG , and (ηs,i,Pi)→ (ηs,P).
We show there exists sequence {P ′

i}i∈N>0
such that P ′

i ∈ Cs(ηs,i,Pi) for all i, and P ′
i → P ′.

6



Toward this end, for each (ηs,i,Pi), if h(ηs,i,Pi,P ′) ≤ 1, we set P ′
i = P ′ so that P ′

i ∈ Cs(ηs,i,Pi).

If ci := h(ηs,i,Pi,P ′) > 1, we construct P ′
i = ⟨P ′

s,i⟩s∈I as the following. With Definition 2, there
exist {pi

1, . . . ,p
i
nc(G)} and {p′

1, . . . ,p
′
nc(G)} associated with the interventional distribution tuple Pi

and P ′ respectively. Let P ′
i be associated with{

ci − 1

ci
pi
1 +

1

ci
p′
1, . . . ,

ci − 1

ci
pi
nc(G) +

1

ci
p′
nc(G)

}
, (16)

so that P ′
i ∈MG . For each s ∈ I and v ∈ Ω(V), we have

Ps,i(v) ln
Ps,i(v)

P ′
s,i(v)

=Ps,i(v) ln

∏nc(G)
j=1 b⊤G,s[Vj ]

(vj , paVj )pi
j∏nc(G)

j=1 b⊤G,s[Vj ]
(vj , paVj )

[
ci−1
ci

pi
j +

1
ci
p′
j

]
=

nc(G)∏
j=1

b⊤G,s[Vj ]
(vj , paVj )pi

j

nc(G)∑
k=1

ln
b⊤G,s[Vk]

(vk, paVk)pi
k

b⊤G,s[Vk]
(vk, paVk)

[
c1−1
ci

pi
k + 1

ci
p′
k

]
=

nc(G)∑
k=1

∏
j ̸=k

b⊤G,s[Vj ]
(vj , paVj )pi

j b
⊤
G,s[Vk]

(vk, paVk)pi
k ln

b⊤G,s[Vk]
(vk, paVk)pi

k

b⊤G,s[Vk]
(vk, paVk)

[
ci−1
ci

pi
k + 1

ci
p′
k

]︸ ︷︷ ︸
(a)

≤ 1

ci

nc(G)∑
k=1

nc(G)∏
j=1

b⊤G,s[Vj ]
(vj , paVj )pi

j ln
b⊤G,s[Vk]

(vk, paVk)pi
k

b⊤G,s[Vk]
(vk, paVk)p′

k

=
1

ci
Ps(v) ln

Ps(v)

P ′
s(v)

,

where we apply the log sum inequality to (a). Thus, for any s ∈ I, we have

D(Ps,i ∥ P ′
s,i) =

∑
v∈Ω(V)

Ps(v) ln
Ps(v)

P ′
s,i(v)

≤ 1

ci
D(Ps ∥ P ′

s).

As a result, h(ηs,i,Pi,P ′
i) ≤ 1

ci
h(ηs,i,Pi,P ′) = 1, which means P ′

i ∈ Cs(ηs,i,Pi).

It remains to show P ′
i → P ′ by construction. If h(ηs,P,P ′) < 1, in the sequence {(ηs,i,Pi)}i∈N>0 ,

there exist finite instances such that h(ηs,i,Pi,P ′) > 1. Otherwise, h(ηs,P,P ′) = 1 indicates ci →
1, resulting in (16)→ {p′

1, . . . ,p
′
nc(G)}. Therefore, P ′

i → P ′ and Cs is lower hemicontinuous.

With correspondence Cs being continuous, Lemma 13 gives a continuous property of µ̃s(Cs(ηs,P)).
Lemma 13. For any P ∈ MG and for any any s ∈ I, the UCB index µ̃s(Cs(ηs,P)) is a is
continuous monotonically nonincreasing function of ηs ≥ 0.

Proof. Since Cs is a compacted valued continuous correspondence, we apply Berge’s maximum
theorem in Lemma 11 to get that maxP′∈Cs(ηs,P) P

′
s(v) is continuous with ηs. So µ̃s(Cs(ηs,P)) =∑

v∈Ω(V) vn maxP′∈Cs(ηs,P) P
′
s(v) is also continuous with ηs. For any a > b > 0, since Cs(a,P) ⊆

Cs(b,P), µ̃s(Cs(a,P)) ≤ µ̃s(Cs(b,P)). Therefore, µ̃s(Cs(ηs,P)) monotonically nonincreasing with
respect to ηs.

The SCM-AAM utilizes the empirical interventional distributions to compute UCB and mean reward
in exploration steps. Lemma 14 indicates that only a small ratio of exploration κ is wasted if the gap
between empirical distribution and the ground truth is as small as δ(κ). This fact is the cornerstone
of regret analysis since the ground truth is unavailable.
Lemma 14. Given a causal graph G = ⟨V, E ,B⟩, for any interventional distribution tuple P ′ =
⟨P ′

s⟩s∈I ∈ MG , let µs(P ′) be the mean reward of each intervention s ∈ I according to P ′, and
define µ∗(P ′) = maxs∈I µs(P ′). Let P = ⟨Ps⟩s∈I ∈ MG be the true interventional distribution
tuple with a unique optimal intervention s∗ ∈ I. For each s ∈ I−s∗ , let

ζs(P) = max
ηs≥0

ηs s. t. µ̃s(Cs(ηs,P)) ≥ µ∗(P), (17)
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in which Cs(ηs,P) :=
{
P ′ ∈ MG | ηsD(Ps ∥ P ′

s) + ϵηs/2
∑

x∈I−s
D(Px ∥ P ′

x) ≤ 1
}

. For any
κ > 0, there exists δ(κ) such that for any P̄ = ⟨P̄s⟩s∈I ∈MG , if ∀ : s ∈ I :

∥∥P̄s − Ps

∥∥
1
≤ δ(κ),

• Intervention s∗ is also optimal according to P̄ , i.e., µs∗(P̄) ≥ µs(P̄),∀s ∈ I−s∗ .

• For any s ∈ I−s∗ , ζs(P̄) ≤ (1 + κ)ζs(P).

Proof. For each s ∈ I, it can be seen that limηs→∞ µ̃s(Cs(ηs,P)) = µs(P) since P ′ in Cs(ηs,P)
is required to be identical to P as ηs→∞. For each s ∈ I−s∗ , if µ̃s(Cs(0,P)) > µ∗(P), since
µ̃s(Cs(ηs,P)) is a continuous monotonically nonincreasing function of ηs according to Lemma 13,
there exists ηs > 0 such that µ̃s(Cs(ηs,P)) = µ∗(P). Setting η∗s = max{ηs ≥ 0 | µ̃s(Cs(ηs,P)) =
µ∗(P)}, we have η∗s > 0 and ζs(P) = η∗s . For any κ > 0, µ̃s(Cs(

√
1 + κη∗s ,P)) < µ∗(P) due to

the definition of η∗s . We define

δ′s(κ) = 2µ∗(P)− 2µ̃s(Cs(
√
1 + κη∗s ,P)) > 0. (18)

From Lemma 12, Cs is a continuous correspondence. Since D(Ps ∥ P ′
s) + ϵ/2

∑
x∈I−s

D(Px ∥ P ′
x)

is a continuous function of P ′ = ⟨P ′
s⟩s∈I ∈ MG , it follows from Berge’s maximum theorem

in Lemma 11 that

max
P′∈Cs((1+κ)ηs,P̄)

D(P̄s ∥ P ′
s) + ϵ/2

∑
x∈I−s

D(P̄x ∥ P ′
x)

is a continuous function of P̄ = ⟨P̄s⟩s∈I . Thus, there exists δ′′s (κ) > 0 such that if ∀s ∈ I :∥∥P̄s − Ps

∥∥
1
≤ δ′′s (κ),

max
P′∈Cs((1+κ)η∗

s ,P̄)
D(Ps ∥ P ′

s) + ϵ/2
∑

x∈I−s

D(Px ∥ P ′
x)

≤
√
1 + κ max

P′∈Cs((1+κ)η∗
s ,P)

D(Ps ∥ P ′
s) + ϵ/2

∑
x∈I−s

D(Px ∥ P ′
x) ≤

1

η∗s
√
1 + κ

,

where the second inequality is due to the definition of Cs((1 + κ)ηs,P). The inequality means for
any P ′ ∈ Cs((1 + κ)η∗s , P̄),

(η∗s
√
1 + κ)D(Ps ∥ P ′

s) + (η∗s
√
1 + κ)ϵ/2

∑
x∈I−s

D(Px ∥ P ′
x) ≤ 1,

which means Cs((1 + κ)η∗s , P̄) ⊆ Cs(
√
1 + κη∗s ,P). Therefore,

µ̃s(Cs((1 + κ)η∗s , P̄)) ≤ µ̃s(Cs(
√
1 + κη∗s ,P)). (19)

Let δ̂s(κ) = min{δ′s(κ), δ′′s (κ)}, and let δ̂(κ) = mins∈I−s∗
δ̂s(κ). Then we set δ(κ) =

min{∆min, δ̂(κ)}, where ∆min = mins∈I−s∗
µ∗(P) − µs(P). Since the reward is bounded by

[0, 1], for any s ∈ I,
∣∣µs(P̄)− µs(P)

∣∣ ≤ 1
2

∥∥P̄s − Ps

∥∥
1
. If ∀s ∈ I :

∥∥P̄s − Ps

∥∥
1
≤ δ(κ),

µs(P̄)− µs∗(P̄) ≤ µs(P)− µs∗(P) + δ(κ) ≤ µs(P)− µs∗(P) + ∆min ≤ 0,

which means intervention s∗ is also optimal according to P̄ . Besides, with (18) and (19), we have

µ̃s(Cs((1 + κ)η∗s , P̄)) ≤ µ̃s(Cs(
√
1 + κη∗s ,P)) = µ∗(P)−

δ′s(κ)

2

≤µ∗(P)−
δ(κ)

2
≤ µs∗(P)−

1

2

∥∥P̄s∗ + Ps∗

∥∥
1
≤ µs∗(P̄) = µ∗(P̄).

Since µ̃s(Cs(ηs, P̄)) is continuous monotonically nonincreasing with ηs and µ̃s(Cs(ζs(P̄), P̄)) ≥
µ∗(P̄) ≥ µ̃s(Cs((1 + κ)η∗s , P̄)), we have

ζs(P̄) ≤ (1 + κ)η∗s = (1 + κ)ζs(P),

which concludes the proof.
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B.4 Main Proof of Theorem 2

The expected regret is defined as RSCM-AAM
T =

∑
s∈I−s∗

E[NT (s)]∆s, in which NT (s) is the total
number of times s is selected by the SCM-AAM algorithm till T . So the proof is articulated around
bounding E[NT (s)] for each s ∈ I−s∗ .

Proof. At each time t, consider the event that the true interventional distribution tuple P = ⟨Ps⟩s∈I

is not contained by the confidence set Ct =
{
P ′ ∈MG

∣∣∣ ∑s∈I Nt(s)D(P̄s,t ∥ P ′
s) ≤ (1+γ) ln t

}
.

Due to Corollary 8, there exists c1 > 0 irrelevant with T

T∑
t=1

P(P /∈ Ct) ≤
T∑

t=1

P
(∑

s∈I
Nt(s)D(P̄s,t ∥ Ps) ≥ (1 + γ) ln t

)
≤ c1, (20)

which will only result in finite regret bounded c1 since reward is in [0, 1]. So by only considering
time steps with {P ∈ Ct} to be true, we upper bound the number of times a suboptimal arm s ∈ I−s∗
is selected in the exploration and exploitation phase separately.

Exploitation phase: When {P ∈ Ct} is true, we have

∀s ∈ I : µ̃s(Ct) =
∑

v∈Ω(V)

vn max
P′∈Ct

P ′
s(v) ≥

∑
v∈Ω(V)

vnPs(v) = µs. (21)

According to the design, SCM-AAM enters the exploitation phase at time t if µ̄St,t > µ̃s(Ct),∀s ∈
I \ {St}. It follows from (21), if St ̸= s∗ and P ∈ Ct,

µ̄St,t > µ̃s∗(Ct) ≥ µ∗.

Thus, we can bound the regret from exploitation steps as the following
T∑

t=1

∑
s∈I\{s∗}

∆s1{St = s,P ∈ Ct} ≤
T∑

t=1

∑
s∈I/{s∗}

∆s1{St = s, µ̄s,t > µ∗.} (22)

Let {ts,i}i≥1 be the sequence of rounds such that s is selected by exploitation steps, namely Sts,i = s.
Considering the warmup step that selects each intervention once, at each ts,i, we have Nts,i(s) ≥ i.
Since each ts,i is a stopping time, by applying Lemma 9, we bound the expectation of (22) as

E

[
T∑

t=1

∑
s∈I−s∗

∆s1{St = s,P ∈ Ct}

]
≤

∑
s∈I−s∗

∆s

∑
i≥1

P (µ̄s,ts,i − µs > ∆s, ts,i ≤ T )

≤
∑

s∈I−s∗

∆s

∑
i≥1

exp(−2i∆2
s) ≤

∑
s∈I−s∗

1

2∆s
:= c2. (23)

Exploration phase with inaccurate P̄t: We define event Et that P̄t is estimated with sufficient
accuracy,

Et =
{
∀s ∈ I :

∥∥P̄t,s − Ps

∥∥
1
≤ δ(κ)

}
, (24)

where δ(κ) > 0 is defined in Lemma 14. LetR = {ti}i≥1 be the sequence of rounds that SCM-AAM
enters the exploration phase, and each ti is a stopping time. Then we have

T∑
t=1

1{t ∈ R, E∁
t } ≤

∑
i≥1

1{E∁
ti , ti ≤ T}.

From Lemma 6, at ti, we have ∀s ∈ I : Nt(s) ≥ ϵi/2. With Corollary 10, we apply a union bound

E
[ T∑

t=1

1{t ∈ R, E∁
t }
]
≤
∑
s∈I

∑
i≥1

P (E∁
ti , ti ≤ T ) ≤

∑
i≥1

P
(∥∥P̄ti,s − Ps

∥∥
1
> δ(κ), ti ≤ T

)
≤
∑
s∈I

∑
i≥1

(2|Ω(V)| − 2) exp
(−ϵiδ(κ)2

4

)
=

(2|Ω(V)|+2 − 8) |I|
ϵδ(κ)2

= c3.

(25)
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Greedy approximation exploration with accurate P̄t: For each s ∈ I, let N e
t (s) be the total

number of times s is selected in exploration phases till t. Within time steps such that both Et defined
in (24) and {P ∈ Ct} are true, let the last time s ∈ I−s∗ being selected by exploration with greedy
approximation be

ts = max{t ∈ R | St = s, Et,P ∈ Ct}
is true. With Lemma 6, we have ∀x ∈ I−s : Nts

(x) ≥ ϵN e
ts
(s)/2, so that∑

x∈I Ntx
(x)D(P̄x,ts

∥ P ′
x)

(1 + γ) ln ts
≥

ϵN e
ts
(s)
∑

x∈I−s
D(P̄x,ts

∥ P ′
x)

2(1 + γ) ln ts
+

N e
ts
(s)D(P̄s,ts

∥ P ′
s)

(1 + γ) ln ts
. (26)

Recall the definition of Ct and Cs(ηs, P̄):

Ct =
{
P ′ ∈MG

∣∣∣ ∑
x∈I

Nt(x)D(P̄x,t ∥ P ′
x) ≤ (1 + γ) ln t

}
,

Cs(ηs, P̄t) =
{
P ′ ∈MG

∣∣∣ ηsD(P̄s,t ∥ P ′
s) + ϵηs/2

∑
x∈I−s

D(P̄x,t ∥ P ′
x) ≤ 1

}
.

With (26), we have Cts ⊆ Cs
(

N e
ts
(s)

(1+γ) ln ts
, P̄ts

)
, and as a result,

µ̃s

(
Cs
( N e

ts
(s)

(1 + γ) ln ts
, P̄t

))
≥ µ̃s(Ct). (27)

By the algorithm design, we have µ̃s(Cts) ≥ µ̄s∗,t, since otherwise SCM-AAM does not enter
exploration phase. Therefore, it follows from (27) that

µ̃s

(
Cs
( N e

ts
(s)

(1 + γ) ln ts
, P̄ts

))
≥ µ̄s∗,ts

= µ∗(P̄ts
),

where the inequality holds since when Ets
happens, Lemma 14 shows s∗ is also optimal according to

P̄ts
. With Lemma 13, µ̃s(Cs(ηs, P̄ts

)) is a continuous nonincreasing function of ηs, then we have

N e
ts
(s) ≤ ζs(P̄ts

)(1 + γ) ln ts ≤ ζs(P̄ts
)(1 + γ) lnT,

where ζs(P̄ts
) defined in (17) is the maximum value of ηs such that µ̃s(Cs(ηs, P̄ts

)) ≥ µ∗(P̄ts
).

Together with Lemma 14, we have

T∑
t=1

1{St = s, Et,P ∈ Ct} = N e
ts
(s) ≤ ζs(P)(1 + κ)(1 + γ) lnT. (28)

Forced Exploration: By slightly abusing the notation, at time t, we denote by {St} as the greedy
approximation exploration event and by {St} as the force exploration event. Let the last time s ∈ I be
selected by forced exploration be ts := max {t ∈ R | St = s}. When SCM-AAM force exploration
at t, we have Nt(St) ≤ ϵN e

t , resulting in

T∑
t=1

1{St} ≤
∑
s∈I

T∑
t=1

1{St = s} ≤
∑
s∈I

Nts
(s) ≤

∑
s∈I

ϵN e
ts
≤ ϵ |I|N e

T . (29)

We want to provide an upper bound N e
T , which is

N e
T =

T∑
t=1

1{t ∈ R} ≤
T∑

t=1

(
1{St}+ 1{St, Et,P ∈ Ct}+ 1{t ∈ R, E∁

t }+ 1{P ∈ C∁t }
)
, (30)

Putting together (29) and (30), we get

T∑
t=1

1{St} ≤
ϵ |I|

1− ϵ |I|

T∑
t=1

(
1{t ∈ R,St, Et,P ∈ Ct}+ 1{t ∈ R, E∁

t }+ 1{P ∈ C∁t }
)
.
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Also with (28), we have
T∑

t=1

1{t ∈ R,St, Et,P ∈ Ct} =
∑
s∈I

T∑
t=1

1{t ∈ R,St = s, Et,P ∈ Ct}

≤
∑
s∈I

ζs(P̄ts
)(1 + κ)(1 + γ) lnT.

Then, the expected number of forced explorations can be bound as the following,

E
[ T∑

t=1

1{St}
]
≤ ϵ |I|

1− ϵ |I|
[
c1 + c3 + (1 + κ)(1 + γ)

∑
s∈I

ζs(P̄ts
) lnT

]
, (31)

where C1 and C3 are defined in (20) and (25) respectively.

Summary: With reward Vn ∈ [0, 1], we decomposed the expected regret as

RSCM-AAM
T (P) ≤E

[ T∑
t=1

∑
s∈I−s∗

∆s1{St = s,P ∈ Ct}
]
+

∑
s∈I−s∗

∆s

∑
t∈R

1{St = s, Et,P ∈ Ct}

+ E
[ T∑

t=1

1{St}
]
+
∑
t∈R

P(E∁
t ) +

T∑
t=1

P(P /∈ Ct),

where the first three terms present regret from exploitation, exploration with greedy approxima-
tion, and forced exploration respectively. So the proof can be concluded the proof by substitut-
ing (20), (25), (23), (28) and (31) into the above inequality.

C Experiment Details and Additional Experimental Results

In the main paper, we conducted experiments in three causal bandit instances. The causal graph
corresponding to each instance is shown in Fig. 2. For p ∈ [0, 1], let B(p) denote a Bernoulli random
variable with probability p to be 1 and 1− p to be 0. The detailed structural equations for each causal
bandit instance are described below.

Task1: UV1
= B(0.6), UV2

= B(0.11), UV2V3
= B(0.51) and UV3

= B(0.15).
fV1

(uV1
) = uV1

fV2
(v1, uV2

, uV2V3
) = v1 ⊕ uV2

⊕ uV2V3

fV3
(v2, uV3

, uV2V3
) = v2 ⊕ uV3

⊕ uV2V3
⊕ 1

Task2: UV1 = B(0.45), UV2 = B(0.05), UV5V2 = B(0.54), UV3 = B(0.07), UV3V4 = B(0.51),
UV4 = B(0.06) and UV5 = B(0.06).

fV1
(uV1

) = uV1

fV2
(uV2

, uV5V2
) = uV2

⊕ uV5V2

fV3(v1, uV3 , uV3V4) = v1 ⊕ uV3 ⊕ uV3V4

fV4(v2, uV4 , uV3V4) = 1 ⊕ v2 ⊕ uV4 ⊕ uV3V4

fV5(v3, v4, uV5 , uV5V2) = v3 ⊕ v4 ⊕ uV5 ⊕ uV5V2

Task3: UV1
= B(0.5), UV2

= B(0.85), UV3
= B(0.85), UV3V7

= B(0.85), UV4
= B(0.14), UV5

=
B(0.74), UV6

= B(0.74), UV7
= B(0.54).

fV1(uV1) = uV1

fV2(uV2) = uV2

fV3
(v1, uV3

, uV3V7
) = (v1 ⊕ uuV3

) ∨ uuV3V7

fV4
(v2, uV4

) = v2 ∧ uV4

fV5
(v3, v4, uV5

) = (v3 ⊕ uV5
) ∨ v4

fV6
(v4, uV6

) = v4 ∨ uV6

fV7
(v5, v6, uV5

, uV7
, uV3V7

) = ((v5 ⊕ v6 ⊕ 0 ⊕ uV3V7
) ∧ uV7

)⊕ v6
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