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Abstract The majority of AutoML solutions are developed in Python. However, a large percentage

of data scientists are associated with the R language. Unfortunately, there are limited

R solutions available with high entry level which means they are not accessible to everyone.

To fill this gap, we present the forester package, which offers ease of use regardless of the

user’s proficiency in the area of machine learning.

The forester package is an open-source AutoML package implemented in R designed for

training high-quality tree-based models on tabular data. It supports regression and binary

classification tasks. A single line of code allows the use of unprocessed datasets, informs

about potential issues concerning them, and handles feature engineering automatically.

Moreover, hyperparameter tuning is performed by Bayesian optimization, which provides

high-quality outcomes. The results are later served as a ranked list of models. Finally, the

forester package offers a vast training report, including the ranked list, a comparison of

trained models, and explanations for the best one.

1 Introduction

Machine learning is being used more and more in the world around us. Every day, models are

created to assist doctors (Shimizu and Nakayama, 2020), financiers (Jorge et al., 2022), or tourists

(Fararni et al., 2021). With the increasing demand for model building, research is being conducted

on automatically developing tools to build artificial intelligence based solutions.

Many types of models are used in machine learning, such as decision rules (scoring card model) to

complex neural network structures modeling natural language (large language models, for example,

ChatGPT (Bavarian et al., 2022)). Viewing machine learning in terms of tabular data, we have

a wide range of models available, from decision trees and linear or logistic regression to random

forests, SVM, or neural networks. However, tree-based models are the most widely used; the main

reason behind this is their high predictive efficiency. A simple decision tree model gives relatively

satisfactory results, but using multiple trees to create a random forest allows significantly higher

predictive power (Caruana et al., 2008; Grinsztajn et al., 2022).

Automating the process to build machine learning models can include many different components.

For example, the CRoss Industry Standard Process for Data Mining (CRISP-DM) (Wirth and Hipp,

2000) is the most common methodology for data mining, analytics, and data science projects. But

the basic framework of an automatic machine learning system is the preparation of models based

on data entered by the user. This process can be extended in various directions; for example,

a preliminary analysis of the given data can be taken care of to look for potential data errors

or outlier observations, i.e. exploratory data analysis. Another essential element may be the

search space of the model’s hyperparameters. Optimization of hyperparameters can be based on

simple methods such as a predefined parameter grid or random search. Another way to select

hyperparameters is to use Bayesian optimization (Snoek et al., 2012) or meta-learning (Vilalta et al.,

2004; Vanschoren, 2019; Woźnica and Biecek, 2022). After tuning the models with hyperparameter

optimization, the next step we can add is to analyze the results in the form of a leaderboard
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or visualization. By extending with explanatory methods (Biecek and Burzykowski, 2021) and

reporting, the entire machine learning process can be finalized.

Automating the process of machine learning allows access to data science tools for people who are

starting in data analysis and modeling. At the same time, it is an improvement and speeds up the

work of experienced data scientists, who can make at least baseline models using a single line of

code.

In this paper, we present the AutoML package written for the R (R Core Team, 2022) to create

models for regression and binary classification tasks on tabular data. The main goals of the package

are: making the package easy to use, fully automating all the necessary steps inside the ML pipeline,

and providing results that are easy to create, understand and allow diagnostics of the models.

The availability of responsible machine learning methods in the solution allows the results of

complex models to be interpreted. Changing the focus from obtaining the best possible outcomes

to the interpretability of the results is a novelty for the AutoML tools. The implementation of the

forester package can be found in our GitHub repository
1
. The software is open source and contains

comprehensive documentation with examples of use.

2 Related works

Packages for AutoML are prevalent in Python. The first AutoML solutions like Auto-WEKA

(Thornton et al., 2013), was followed by Auto-Sklearn (Feurer et al., 2015, 2022) and TPOT (Tree-

Based Pipeline Optimization Tool) (Olson et al., 2016) which was one of the very first AutoML

methods and open-source software packages developed for the data science community in Python.

But in R, there are few approaches. One of them is the H2O package (LeDell et al., 2022). It is

an open-source library that is an in-memory, distributed, fast, and scalable machine learning

and predictive analytics platform that creates a ranked list of models easily exported for use in

a production environment. The authors have created an easy-to-use interface that automates the

training of multiple candidate models. H2O’s AutoML is also designed for more advanced users by

providing a simple wrapper function that performs many modeling tasks. H2O’s AutoML process

automatically trains models and tunes them at user-specified times. To better understand the quality

of models in H2O, we can rely on metrics such as 𝑅2
and mean square error (MSE). For comparison,

in the forester package, we can compare models using the most commonly used metrics or even

define a new custom metric. What particularly distinguishes the forester package from H2O is

the preprocessing. In the latter’s case, it only includes target encoding and is in the experimental

stage. In the forester package, we have more accurate and extensive preprocessing. In addition,

H2O always requires Java to work, so the user must also install it.

The second widely-used framework is the mlr3 package (Lang et al., 2019) which provides a frame-

work for classification, regression, survival analysis, and other ML tasks such as cluster analysis.

It provides the ability to perform hyperparameter tuning and feature selection. The package is

well-documented, contains many functions and models, and provides many capabilities. However,

it is different from a typical package for AutoML, as creating models requires knowledge of how to

do it and some time to assemble such a model. It also has its drawbacks, such as the need for more

preprocessing, which would help to use it more easily, for example, the XGBoost model, which

has to have only numerical data without factors. There is also no way to divide the collection into

training, testing, and validation subsets. The mlr3 package provides functionality that builds on

the basic components of machine learning. It can be extended to include preprocessing, pipelining,

visualization, additional learners, additional task types, and more. To create these properties, we

need to install many other libraries. In the forester package, we provide these components at once,

and with a single function, we can perform preprocessing, prepare visualization of the results

1
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Figure 1: A diagram presenting the forester pipeline. The forester analyses poor-quality data with the

in-built data check (1), which points to possible issues, and later data preparation (2) handles

them during the preprocessing. In the next step, the models are trained with default and

random searched parameters and tuned with a Bayesian optimization algorithm (3). In the

end, trained models are evaluated (4) and presented as a ranked list. In addition, the package

offers the user additional features.

and generate a report. A more detailed comparison of the forester package with H2O and mlr3 is
presented in Appendix F.

3 forester AutoML

The forester is an AutoML package automating the machine learning pipeline, starting from the data

preparation, throughmodel training, to the interpretability of the results. This way, weminimize the

user’s time performing basic and often repetitive activities related to the machine-learning process.

Despite the high automation of the pipeline shown in Figure 1, we expose multiple parameters

which advanced data scientists can use to customize the model creation. The whole package relies

on the four pillars described in this section.

1. Data check
The first one, called data check, concerns a data preparation phase. Data preparation is a crucial

part of the modeling process (Rutkowski et al., 2010), so we cannot blindly assume a single way

of transforming the data for all cases. Appropriate data preprocessing is crucial to building

a model with a small error rate. To face that issue, we introduce a data check report summarizing

the dataset with some basic information and pointing out possible problems. Data problems can

affect the following modeling stages and be relevant to any model. The data check report points

out id-like, duplicated, static, or highly correlated columns. Moreover, it points out the outliers,

missing values, and the imbalance of the target. This way we can propose some simple heuristic

data preprocessing methods, yet more advanced users are able to fight the issues mentioned by

studying the data check report on their own.
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2. Data preparation
Preparing the data for modeling is another crucial aspect after checking the data. It can be

done using a dedicated tool, but the forester package offers two general-purpose preprocessing

methods, basic and advanced. The main purpose of this function is to remove the need to

prepare data manually differently for different types of models. The basic preparation consists

of the actions that are necessary for the package to work that is: the removal of static columns,

binarization of the target variable, and imputation of the missing data using the MICE algorithm

(Buuren and Groothuis-Oudshoorn, 2011). The advanced method additionally includes the

removal of id-like columns (features suspected of being id), removal of highly correlated columns

(Spearman’s rank for the numerical features, and Crammer’s V rank for categorical features) as

well as feature selection with the BORUTA algorithm (Kursa and Rudnicki, 2010). Additionally,

every model in the forester package requires a different data format which is also prepared inside

the main function.

3. Model training and tuning
The forester package’s third and most important pillar is model training and tuning. Our solution

focuses on the tree-based model family because of their high-quality performance for various

tabular data tasks. We’ve limited ourselves to 5 well-known engines with different strong and

weak points, so they complement each other.

We have included the basic decision tree from partykit package (Hothorn and Zeileis, 2015)

as an extremely light engine, but mostly, we have focused on the ensemble models. The only

bagging representative is the random forest from the ranger package (Wright and Ziegler, 2017),

which is reluctant to overfit.

We have also considered three different boosting algorithms. The XGBoost model (Chen and

Guestrin, 2016) is highly effective, but due to the need for one hot encoding, it suffers from the

abundance of categorical features. However, the LightGBM model (Ke et al., 2017), which works

best for medium and large datasets, has problems with the small ones. The last engine is the

CatBoost (Prokhorenkova et al., 2018) which can achieve superior performance but requires the

Java environment installed, which is a minor inconvenience.

The models are trained with three approaches: using the default parameters, performing the

random search algorithm within the predefined parameter space, and running an advanced

Bayesian Optimization algorithm for fine-grained tuning. The first method is the baseline

for other models. With the second one, we can cheaply create multiple models and explore

various parameter combinations. The best and most time-consuming method is the Bayesian

Optimization from the ParBayesianOptimization package. However, it is extremely useful for

complex tasks.

4. Model evaluation
The last pillar is the automatic evaluation of the trained models. The forester package assesses
every trained model by various metrics, such as accuracy, area under the receiver operating

characteristic curve (AUC), and F1 for the binary classification tasks, and Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), or 𝑅2
for the regression tasks. The results are later

presented as a ranked list sorted by the outcomes (for example, ascending order for RMSE, and

descending for AUC). Moreover, the user can define their metrics and provide them for the

evaluation phase.

4 forester features
One of the most important goals for the forester package is the convenience of use and helping the

users to focus more on analyzing the results instead of writing the code. To obtain such a user-

friendly environment, the forester offers plenty of additional features useful for data scientists.
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4.1 Model explanations

In recent years, interpretable machine learning has become a significant trend in machine learning.

The tools providing interpretability such as DALEX (Biecek, 2018) or iml (Molnar et al., 2020)

allow data scientists to explain how the models they create work, making it easier to detect

their misbehavior. Models’ explainability also enhances trust in such tools, even in demanding

environments like medical researchers. To support using explainable methods for the models

trained by the forester, we have created a wrapper for the DALEX explainer compatible with our

package. This way, the user can easily create various explanations for the trained models.

4.2 Saving the outcomes

Another crucial feature is the save function, which lets the user save the training output. Returned

forester object contains lots of information, such as preprocessed dataset, split datasets, split indexes,

ranked lists for training, testing, and validation datasets, the predictions of the model, and much

more. The abundance of objects makes it incredibly important to save the outcomes after the

time-consuming training process.

4.3 Automated report

Last but not least, our solution offers an automatically generated report that helps users quickly

and easily analyze the training results. The main goal of this feature is to ensure that every user

is able to easily assess the quality of the trained models. The report consists of basic information

about the dataset, a data check report, a ranked list of the best ten models, and visualizations

concerning model quality. An example report for the blood-transfusion-service-center dataset (from
the OpenML-CC18 benchmark (Bischl et al., 2021)) is provided in Appendix G.

The plots are divided into two groups; the first one compares the outcomes of different models,

which helps to decide which model is the best. For example, guided by the radar chart comparison

plot, we can choose the model with slightly worse accuracy, but better AUC and F1 values.

The second type of plots concentrates on the model with the best performance, and its most

prominent feature is providing a feature importance plot. This visualization lets us understand

which variables are the most important for the model; thus, we can evaluate its correctness.

It is worth noticing that the reports, mostly visualizations, are different for binary classification

and regression tasks as we measure their performance differently.

5 User interface

5.1 Training function

The forester’s main train() function runs the entire AutoML pipeline, including the data prepa-

ration, model training, and evaluation. To keep the package as simple as possible, the function

requires only the dataset and target column name (Listing 1); however, to keep the tool versatile,

there are lots of custom parameters for more advanced users (Listing 2). With the latter option, the

user can specify the amount of Bayesian optimization iterations, the number of random search

evaluations, proportions of the train, test, and validation subsets, change the preprocessing methods

or even add their evaluation metric.

train_output ← train(data = lisbon , y = 'Price ')

Listing 1: Training models with the forester package and default parameters.
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train_output ← train(data = lisbon ,
y = 'Price ',
verbose = TRUE ,
engine = c('ranger ', 'xgboost ', 'decision_tree ',
'lightgbm ', 'catboost '),
train_test_split = c(0.6, 0.2, 0.2),
bayes_iter = 10,
random_evals = 3,
advanced_preprocessing = FALSE ,
metrics = 'auto ',
sort_by = 'auto ',
metric_function = NULL ,
metric_function_name = NULL ,
metric_function_decreasing = TRUE ,
best_model_number = 5)

Listing 2: Training models with the forester package and custom parameters.

5.2 Extensive features

Apart from the train() function, the user can utilize additional functions, which is helpful during

the modeling process. The check_data() function (Listing 3) enables printing a data check report

outside of the train() function. The save() function (Listing 4) lets us save the outcome of the

training process, whereas the report() function (Listing 5) creates a training report. The last

extension is the explain() function (Listing 6), which creates a DALEX explainer that can be used

to generate multiple visualizations concerning the model interpretability with the DALEX package.

check_data(data = `blood -transfusion -service -center `, y = 'Class ')

Listing 3: Generating a data check report.

save(train_output , name = 'train_output.RData ')

Listing 4: Saving the train output.

report(train_output , 'report.pdf ')

Listing 5: Generating a report from the train output.

exp ← explain(models = train_output$best_models [[1]],
test_data = train_output$data ,
y = train_output$y,
verbose = FALSE)

Listing 6: Creating a model explainer, that lets us use functions from the DALEX package.

6 Performance
To evaluate the performance of the package, we’ve decided to compare it to the H2O framework on

the binary classification tasks from the OpenML-CC18 benchmark (Bischl et al., 2021) and regression

tasks from OpenML (Vanschoren et al., 2013). Due to the limited computational resources, we have

chosen a subset of 8 datasets for classification and 7 for regression described in Table 1 and Table

2, respectively. The binary classification datasets consisted mainly of categorical variables and

contained many missing values, a significant obstacle for both solutions, whereas the regression

tasks had no missing values and mostly numeric or binary values.
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During the experiment, we trained the forester package three times for each dataset with random

seeds provided for the data splitting function inside the forester. The same splits were later used

for the H2O framework. A singular training iteration was executed for the decision tree, random

forest, LightGBM, and CatBoost engines with ten iterations of the Bayesian optimization and ten

random search evaluations. For the regression task we’ve additionally added an XGboost engine.

To ensure that both frameworks had the same amount of time, we have measured it for every forester
training iteration, and provided it to the respective H2O AutoML runs. This H2O functionality

didn’t work as supposed, and finally this framework had two times longer training time on average.

This factor definitely improved the H2Os results, and we have to bear that in mind during the

outcomes comparison. For further details see Appendix E. Additionally, to ensure the same data

split, we have used the indexes saved during the forester training. The source codes are included in

Appendix A.

The comparison of performance for both frameworks is presented in Figure 2 and Figure 3. For

the raw results, as well as aggregated tabular ones, see Appendix C. As one can see, for the

binary classification task, the forester outperformed the H2O framework on five datasets: banknote-
authentication, blood-transfusion-service-centre, credit-approval, credit-g, and diabetes. The outcomes

for very simple datasets kr-vs-kp and breast-w were similar, and H2O obtained better performance

for the phoneme data. For the regression tasks, the results were comparable to the H2O’s for most

tasks or slightly worse, as for the pol dataset. The results show that the forester creates high-quality
models that are competitive with the existing solutions.

However, our conclusions cannot be too far-fetched since we tested the package for only a few sets

for binary classification and regression tasks. We cannot say that the forester package’s predictive
power is better than H2O, but they clearly are competitive.

Table 1: A subset of OpenML-CC18 benchmark datasets used during the evaluation process of the

forester package, which are tabular data objects presenting the binary classification tasks.

The features are mostly categorical, and they contain lots of missing values.

Name Number of columns Number of rows

kr-vs-kp 37 3196

breast-w 10 699

credit-approval 16 690

credit-g 21 1000

diabetes 9 768

phoneme 6 5404

banknote-authentication 5 1372

blood-transfusion-service-center 5 748

Table 2: A subset of OpenML datasets used during the evaluation process of the forester package,
which are tabular data objects presenting the regression tasks. In this case there were no

missing values, and the features were mostly numerical or binary.

Name Number of columns Number of rows

bank32nh 33 8192

wine_quality 12 6497

Mercedes_Benz_Greener_Manufacturing 378 4209

kin8nm 9 8192

pol 49 15000

2dplanes 11 40768

elevators 19 16599
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on the plot for each dataset. Note that in some cases the dots might overlap. This plot clearly

shows us that the forester performs better than the H2O package on the provided tasks, which

confirms that it is a highly competitive framework.
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Figure 3: Performance comparison for forester and H2O frameworks for the datasets described in

Table 2. Every experiment is conducted 3 times, which results in three observations visible

on the plot for each dataset. Note that in some cases the dots might overlap. This plot shows

us that the forester performs comparably to the H2O package on the provided tasks, which

confirms that it is a highly competitive framework.

7 Limitations and Broader Impact Statement

The forester package has limitations in the availability of models. The library contains only tree-

based models, but this family proves to be extremely versatile. Only binary classification and

regression are available in the current version of the package. Preparing models for multi-criteria

classification, cluster analysis, or survival analysis is currently impossible. However, these features

can be easily implemented in the future. The package currently performs better with smaller

datasets; a large allocation of memory and time is needed for large and complex data.
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One of the strongest points of the forester package is being incredibly easy to use, even if we do

not have broad machine learning expertise. This approach, however, raises the risk that the models

trained with the package will be of poor quality, for example, due to the training on a low-quality

dataset, or that the outcomes will be misunderstood or incorrectly interpreted by the inexperienced

user. The reporting module addresses all of these responsible machine learning concerns, which

informs about possible issues with the data, measures the quality of the models, and provides their

explanations.

8 Conclusions
This paper presents an R package for AutoML, creating models for regression and binary classifica-

tion tasks conducted on tabular data. Our solution addresses the needs we have observed in AutoML

tools in various programming languages. The main goals of the package are to keep the package

stable and easy to use, to automate all the necessary steps inside the ML pipeline, and to provide

results that are easy to create, understand and allow for diagnostics of the models. To achieve these

results, we have focused only on the best representatives from the family of tree-based models

that show superiority over other methods on tabular data. Furthermore, we provide additional

functions that allow the user to save the models, create explanations and create a report describing

the learning process and explaining the developed models. Experiments carried out tentatively

indicate that more predictive power is obtained using our solution than currently existing solutions

in R.

9 Submission Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We introduced the forester package and described its

potential. The Section 3 and Section 4 describe the various features.

(b) Did you describe the limitations of your work? [Yes] See Section 7.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 7.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] We believe that

our paper conforms to the guidelines.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We have no

theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We have no theoretical

results.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit version), an in-

structive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] See Appendix A.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] The most important results analyzed in this paper are presented or mentioned

(via a link) in the Appendix C.
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(c) Did you include scripts and commands that can be used to generate the figures and tables in

your paper based on the raw results of the code, data, and instructions given? [Yes] The code

is available on the package’s GitHub repository in the form of R Markdown notebook, see

Appendix A.

(d) Did you ensure sufficient code quality such that your code can be safely executed and

the code is properly documented? [Yes] The code is available on the package’s GitHub

repository in the form of R Markdown notebook, see Appendix A.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces,

fixed hyperparameter settings, and how they were chosen)? [Yes] The training details are

mentioned in the main paper Section 6, as well as in the source code described in Appendix

A.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] The methods were compared on the same train, test,

and validation subsets, and the hyperparameter search space was the default one for each

AutoML framework.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[No] The package at this point is pretty straightforward and doesn’t contain many com-

ponents that could alter the outcomes. A possible ablation study could be applied to the

advanced preprocessing method, however, we did not have enough computational power

for running the benchmark again.

(h) Did you use the same evaluation protocol for themethods being compared? [Yes] Themodels

were compared by the same metrics for classification: accuracy, AUC and F1 and for

regression: RMSE, MSE, 𝑅2
i MAE.

(i) Did you compare performance over time? [No] We did not have enough resources for

multiple experiments executions.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

As described in the Section 6, we’ve performed three runs of the forester and H2O training

with the random seeds set for the train, test, and validation splits as the values 123, 2137,

and 21.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A] We do not have error bars on the visualizations, but we provide

exact values without any statistical aggregations.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used

a tabular benchmark consisting of 8 datasets describing the binary classification tasks from

the OpenML-CC18 benchmark, as described in Section 6.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See Appendix B.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [N/A] During the experiments, all computa-

tions were conducted by the AutoML frameworks, and no additional tuning was included.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] A full list of the cited

papers/tools is described in the references.
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(b) Did you mention the license of the assets? [Yes] Used assets, mostly R packages, are

describes in the Appendix D.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes]

The forester package is a new asset https://github.com/ModelOriented/forester.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Section 6, we are using OpenML-CC18 and its data. We cited all

data sources according to the guidelines of datasets on OpenML (and in OpenML-CC18).

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Our data does not contain personally identifiable

information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We did not do research with human subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not do research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not do research with human subjects.
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A Source Code

The source code of the experiments, prepared visualizations, and tables from Appendix C is

available in the GitHub repository https://github.com/ModelOriented/forester/tree/main/
misc/experiments as the forester_benchmark.Rmd file. The markdown notebook file describes

the installation process, and it can be safely executed with the guidance of our remarks between

the code chunks.

B Resources

As mentioned in the Section 6, our team was limited in computational power. The experiment was

conducted on our private PC with 32GB of RAM, CPU: 11th Gen Intel(R) Core(TM) i7-11700KF @

3.60GHz (16 cores), and the GPU: NVIDIA GeForce RTX 3070 Ti, however as the forester is not yet
implemented to work on the GPU, only the CPU was used.

C Raw results

In this section we provide information about the raw results mentioned in the Section 6 which were

used in the Figure 2. Raw results for train, test, and validation datasets are available in the GitHub

repository https://github.com/ModelOriented/forester/tree/main/misc/experiments/raw_
training_results. In this section we offer the results aggregated as the mean values of the metrics

which are presented in the Table 3, Table 4, and Table 5 for the binary classification tasks. These

tables also broaden our perspective by providing AUC and F1 values. The results for the regression

tasks are presented in the Table 6, Table 7, and Table 8. These tables also broaden our perspective

by providing MSE, R2, and MAE values.
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Table 3: This table provides mean accuracy, AUC, and F1 values for the forester and H2O framework

for all binary classification training datasets used in the benchmark.

task_name framework accuracy auc f1

banknote-authentication forester 1 1 1

banknote-authentication H2O 0.929 0.923 0.905

blood-transfusion-service-center forester 0.77 0.752 1

blood-transfusion-service-center H2O 0.7 0.682 0.519

breast-w forester 1 1 1

breast-w H2O 0.998 0.998 0.997

credit-approval forester 0.999 1 1

credit-approval H2O 0.961 0.959 0.955

credit-g forester 0.967 0.998 1

credit-g H2O 0.906 0.855 0.938

diabetes forester 0.991 0.999 1

diabetes H2O 0.874 0.871 0.826

kr-vs-kp forester 1 1 1

kr-vs-kp H2O 0.999 0.999 0.965

phoneme forester 1 1 1

phoneme H2O 1 1 1

Table 4: This table provides mean accuracy, AUC, and F1 values for the forester and H2O framework

for all binary classification testing datasets used in the benchmark.

task_name framework accuracy auc f1

banknote-authentication forester 0.995 0.995 1

banknote-authentication H2O 0.933 0.927 0.915

blood-transfusion-service-center forester 0.796 0.772 0.976

blood-transfusion-service-center H2O 0.713 0.707 0.54

breast-w forester 0.976 0.984 0.986

breast-w H2O 0.971 0.97 0.959

credit-approval forester 0.885 0.931 0.942

credit-approval H2O 0.882 0.882 0.87

credit-g forester 0.733 0.79 0.865

credit-g H2O 0.743 0.64 0.829

diabetes forester 0.768 0.823 0.799

diabetes H2O 0.753 0.727 0.643

kr-vs-kp forester 0.994 0.999 0.991

kr-vs-kp H2O 0.991 0.991 0.991

phoneme forester 0.909 0.96 0.867

phoneme H2O 0.904 0.895 0.842
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Table 5: This table provides mean accuracy, AUC, and F1 values for the forester and H2O framework

for all binary classification validation datasets used in the benchmark.

task_name framework accuracy auc f1

banknote-authentication forester 1 1 1

banknote-authentication H2O 0.916 0.908 0.887

blood-transfusion-service-center forester 0.775 0.773 0.833

blood-transfusion-service-center H2O 0.675 0.68 0.509

breast-w forester 0.938 0.968 0.956

breast-w H2O 0.967 0.97 0.953

credit-approval forester 0.855 0.908 0.939

credit-approval H2O 0.867 0.862 0.842

credit-g forester 0.705 0.788 1

credit-g H2O 0.758 0.635 0.846

diabetes forester 0.747 0.803 0.866

diabetes H2O 0.755 0.735 0.656

kr-vs-kp forester 0.99 0.999 0.99

kr-vs-kp H2O 0.99 0.99 0.99

phoneme forester 0.901 0.954 0.851

phoneme H2O 0.9 0.896 0.839

Table 6: This table provides mean RMSE, MSE, 𝑅2
, and MAE values for the forester and H2O framework

for all regression training datasets used in the benchmark.

task_name framework rmse mse r2 mae

2dplanes forester 0.697 0.5 0.974 0.423

2dplanes H2O 0.984 0.969 0.95 0.785

bank32nh forester 0.001 0 1 0.001

bank32nh H2O 0.054 0.003 0.806 0.037

elevators forester 0.001 0 0.978 0.001

elevators H2O 0.002 0 0.942 0.001

kin8nm forester 0.012 0 0.997 0.009

kin8nm H2O 0.066 0.004 0.937 0.051

Mercedes_Benz_Greener_Manufacturing forester 2.456 6.13 0.963 0.775

Mercedes_Benz_Greener_Manufacturing H2O 7.806 61.115 0.625 4.935

pol forester 1.139 1.483 0.999 0.699

pol H2O 1.803 3.251 0.998 0.829

wine_quality forester 0.071 0.005 0.993 0.031

wine_quality H2O 0.161 0.027 0.965 0.124
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Table 7: This table provides mean RMSE, MSE, 𝑅2
, and MAE values for the forester and H2O framework

for all regression testing datasets used in the benchmark.

task_name framework rmse mse r2 mae

2dplanes forester 1.003 1.007 0.948 0.802

2dplanes H2O 1.004 1.008 0.948 0.802

bank32nh forester 0.08 0.006 0.548 0.053

bank32nh H2O 0.076 0.006 0.599 0.05

elevators forester 0.002 0 0.884 0.002

elevators H2O 0.002 0 0.911 0.001

kin8nm forester 0.113 0.013 0.816 0.087

kin8nm H2O 0.084 0.007 0.899 0.065

Mercedes_Benz_Greener_Manufacturing forester 7.554 57.195 0.626 5.039

Mercedes_Benz_Greener_Manufacturing H2O 7.583 57.598 0.623 5.222

pol forester 4.739 22.508 0.987 2.242

pol H2O 3.198 10.278 0.994 1.3

wine_quality forester 0.614 0.377 0.505 0.451

wine_quality H2O 0.604 0.365 0.521 0.43

Table 8: This table provides mean RMSE, MSE, 𝑅2
, and MAE values for the forester and H2O framework

for all regression validation datasets used in the benchmark.

task_name framework rmse mse r2 mae

2dplanes forester 0.999 0.997 0.948 0.799

2dplanes H2O 1 0.999 0.948 0.8

bank32nh forester 0.082 0.007 0.544 0.053

bank32nh H2O 0.078 0.006 0.591 0.052

elevators forester 0.002 0 0.875 0.002

elevators H2O 0.002 0 0.907 0.001

kin8nm forester 0.111 0.012 0.822 0.085

kin8nm H2O 0.083 0.007 0.899 0.065

Mercedes_Benz_Greener_Manufacturing forester 8.464 73.039 0.559 5.261

Mercedes_Benz_Greener_Manufacturing H2O 8.458 72.911 0.56 5.373

pol forester 4.379 19.256 0.989 1.885

pol H2O 3.01 9.087 0.995 1.213

wine_quality forester 0.632 0.399 0.478 0.466

wine_quality H2O 0.624 0.389 0.492 0.447

D Used assets

In this section we describe the packages used for both forester, and the experiments. The packages

outside of the forester required for the experiments are listed in the Table 9. Additional requirement

for the catboost and H2O packages is installed Java. The packages required by the forester as well
as their versions used during the experiment are presented in the Table 10.
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Table 9: The packages and their versions under which the experiments were executed and supplemental

materials were created.

package version license

xlsx 0.6.5 GPL-3

stringr 1.5.0 MIT

ggbeeswarm 0.6.0 GPL (>= 2)

dplyr 1.0.10 MIT

ggplot2 3.4.0 MIT

tictoc 1.1 Apache License (== 2.0)

H2O 3.38.0.1 Apache License (== 2.0)

forester 1.2.1 GPL-3

OpenML 1.12 BSD_3_clause

Table 10: The forester package’s dependencies and their versions used during the experiments.

package version licence

Boruta 7.0.0 GPL (>= 2)

catboost 1.1.1 Apache License (== 2.0)

crayon 1.5.2 MIT

DALEX 2.4.2 GPL

data.table 1.14.2 MPL-2.0

ggplot2 3.4.0 MIT

ggradar 0.2 GPL

ggrepel 0.9.3 GPL-3

knitr 1.40 GPL

lightgbm 3.3.2 MIT

mice 3.14.0 GPL-2 | GPL-3

mltools 0.3.5 MIT

ParBayesianOptimization 1.2.4 GPL-2

partykit 1.2-16 GPL-2 | GPL-3

pROC 1.18.0 GPL (>= 3)

ranger 0.14.1 GPL-3

rcompanion 2.4.18 GPL-3

rmarkdown 2.16 GPL-3

splitTools 0.3.2 GPL (>= 2)

testthat 3.1.6 MIT

tibble 3.1.8 MIT

tinytex 0.43 MIT

varhandle 2.0.5 GPL (>= 2)

xgboost 1.6.0.1 Apache License (== 2.0)

stats 4.1.2 Part of R 4.1.2
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E Execution times comparison

In this section we briefly explore the times needed for every experiment execution for both frame-

works. The results presented in Table 11, and Table 12 show that final execution times differ, despite

setting exactly the same times for H2O experiment as the forester had. Our empirical results show

that the H2O runs lasted two times longer on average than the forester, which puts a different

light on the comparison of the frameworks performance. Raw results needed for these tables are

available in the GitHub repository https://github.com/ModelOriented/forester/tree/main/
misc/experiments/execution_times.

Table 11: The comparison of mean execution times in seconds for the forester and H2O for binary

classification experiments.

task_name forester H2O difference relative difference

banknote-authentication 818.33 2521.33 -1703 0.28

blood-transfusion-service-center 155.67 555.67 -400 0.26

breast-w 451.33 797.33 -346 0.57

credit-approval 805 1513 -708 0.53

credit-g 2453 4234 -1781 0.58

diabetes 1645.67 2643.67 -998 0.62

kr-vs-kp 451.33 806.67 -355.33 0.57

phoneme 2748.33 3695.33 -947 0.67

Table 12: The comparison of mean execution times in seconds for the forester and H2O for regression

experiments.

task_name forester H2O difference relative difference

2dplanes 401 1050.67 -649.67 0.38

bank32nh 708.67 1214.67 -506 0.58

elevators 720.33 1435.33 -715 0.5

kin8nm 544.67 1564 -1019.33 0.35

Mercedes_Benz_Greener_Manufacturing 848 1371.67 -523.67 0.61

pol 756 1548.33 -792.33 0.49

wine_quality 1317.33 2130 -812.67 0.63

F Package comparison

We have prepared a notebook showing the differences between the packages described in the

related work section. The document includes a comparison of package installation, a description

of available preprocessing, variable selection options, and model tuning. In addition, visual-

izations, methods of explainable machine learning, report preparation, and reference to avail-

able package documentation are described. We do not give a final assessment of the best pack-

age because it could be subjective, but we expose the reader to criticism. Notebook is avail-

able in the GitHub repository https://github.com/ModelOriented/forester/blob/main/misc/
experiments/framework_comparison.Rmd.
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Forester report
version 1.2.1

2023-05-20 01:36:36

This report contains details about the best trained model, table with metrics for every trained model, scatter
plot for chosen metric and info about used data.

The best models

This is the binary_clf task.
The best model is: xgboost_RS_5.

The names of the models were created by a pattern Engine_TuningMethod_Id, where:

• Engine describes the engine used for the training (random_forest, xgboost, decision_tree, lightgbm,
catboost),

• TuningMethod describes how the model was tuned (basic for basic parameters, RS for random search,
bayes for Bayesian optimization),

• Id for separating the random search parameters sets.

More details about the best model are present at the end of the report.

no. name accuracy auc f1
13 xgboost_RS_5 0.7919 0.8088 0.2791
7 ranger_RS_4 0.7785 0.6965 0.1538

18 lightgbm_RS_5 0.7785 0.7361 0.4211
2 xgboost_model 0.7718 0.7090 0.4138

14 lightgbm_RS_1 0.7718 0.7578 0.3704
4 ranger_RS_1 0.7651 0.7930 NaN
6 ranger_RS_3 0.7651 0.7228 NaN

10 xgboost_RS_2 0.7651 0.7801 NaN
11 xgboost_RS_3 0.7651 0.7367 NaN
16 lightgbm_RS_3 0.7651 0.7690 NaN
21 lightgbm_bayes 0.7651 0.7340 0.3636
8 ranger_RS_5 0.7584 0.7579 0.0526

12 xgboost_RS_4 0.7517 0.6609 0.3729
19 ranger_bayes 0.7517 0.7333 0.2449
20 xgboost_bayes 0.7517 0.7409 0.2449
1 ranger_model 0.7450 0.7063 0.3214
3 lightgbm_model 0.7450 0.6842 0.3871
9 xgboost_RS_1 0.7450 0.6619 0.3667

15 lightgbm_RS_2 0.7181 0.6058 0.3824
17 lightgbm_RS_4 0.7181 0.6058 0.3824

1

G Report example



no. name accuracy auc f1
5 ranger_RS_2 0.7114 0.6929 0.2712

Plots for all models

xgboost_model

lightgbm_RS_1
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Feature Importance for the best model - xgboost_RS_5

xgb.Booster

0.880 0.882 0.884 0.886 0.888

V4

V3

V2

V1

Root mean square error (RMSE) loss after permutations

created for the xgb.Booster model
Feature Importance

Details about data

——————– CHECK DATA REPORT ——————–

The dataset has 748 observations and 5 columns which names are:

V1; V2; V3; V4; Class;

With the target value described by a column: Class.

No static columns.

No duplicate columns.

No target values are missing.

No predictor values are missing.

No issues with dimensionality.

Strongly correlated, by Spearman rank, pairs of numerical values are:

V2 - V3: 1;

These observations migth be outliers due to their numerical columns values:

1 10 116 342 496 497 498 499 5 500 501 503 504 505 506 518 529 747 748 ;

Dataset is unbalanced with: 3.202247 proportion with 1 being a dominating class.
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Columns names suggest that none of them are IDs.

Columns data suggest that none of them are IDs.

——————– CHECK DATA REPORT END ——————–

The best model details

------------ Xgboost model ------------

Parameters
niter: 20
evaluation_log:

iter : train_auc
1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :
10 :
11 :
12 :
13 :
14 :
15 :
16 :
17 :
18 :
19 :
20 :
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