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Abstract

Large language models (LLMs) have shown promise in automating scientific
hypothesis generation, yet existing approaches primarily yield coarse-grained
hypotheses lacking critical methodological and experimental details. We introduce
and formally define the new task of fine-grained scientific hypothesis discovery,
which entails generating detailed, experimentally actionable hypotheses from
coarse initial research directions. We frame this as a combinatorial optimization
problem and investigate the upper limits of LLMs’ capacity to solve it when
maximally leveraged. Specifically, we explore four foundational questions: (1)
how to best harness an LLM’s internal heuristics to formulate the fine-grained
hypothesis it itself would judge as the most promising among all the possible
hypotheses it might generate, based on its own internal scoring-thus defining a
latent reward landscape over the hypothesis space; (2) whether such LLM-judged
better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3)
whether shaping the reward landscape using an ensemble of diverse LLMs of
similar capacity yields better outcomes than defining it with repeated instances of
the strongest LLM among them; and (4) whether an ensemble of identical LLMs
provides a more reliable reward landscape than a single LLM. To address these
questions, we propose a hierarchical search method that incrementally proposes and
integrates details into the hypothesis, progressing from general concepts to specific
experimental configurations. We show that this hierarchical process smooths the
reward landscape and enables more effective optimization. Empirical evaluations
on a new benchmark of expert-annotated fine-grained hypotheses from recent
literature show that our method consistently outperforms strong baselines.1

1 Introduction

Large language models (LLMs) have increasingly been applied to assist scientific research (Luo
et al., 2025), with one of the most ambitious applications being the automated discovery of novel
and valid scientific hypotheses. However, current methods produce hypotheses that are criticized for
being overly coarse, lacking sufficient detail, offering simplistic suggestions, or omitting concrete
implementation strategies (Wang et al., 2024; Hu et al., 2024; Si et al., 2025).

1All code and data can be found in https://github.com/ZonglinY/MOOSE-Chem2
‡Contribution during internship at Shanghai Artificial Intelligence Laboratory. †Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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We present the first systematic investigation into how LLMs can be leveraged to formulate fine-
grained scientific hypotheses—those enriched not only with major concepts but also with precise
methodological details and clearly specified experimental configurations. For example, a coarse-
grained hypothesis in chemistry might state, “synthesize hierarchical 3D copper,” while a fine-grained
counterpart could elaborate, “Copper foils are chemically oxidized by immersion in a solution of 0.5
M ammonium persulfate and 2 M sodium hydroxide for 15 minutes at room temperature, forming a
pentagonal hierarchical CuO nanostructure.” Such fine-grained hypotheses significantly enhance
clarity, feasibility, and experimental implementability.

Formally, we define the task as generating a fine-grained hypothesis given a research back-
ground—comprising a research question and a survey of established methodologies—and a coarse-
grained hypothesis direction. We show that fine-grained scientific hypothesis discovery is a combina-
torial search problem, as it requires selecting and composing a coherent set of concrete details from
a vast space of plausible options—making it particularly challenging in practice. The difficulty is
compounded by the fact that scientific hypothesis discovery is an inherently out-of-domain (OOD)
problem: the correctness of a hypothesis is fundamentally unknown at the time of formulation.

In this work, we focus on the pre-experimental stage of discovery, mirroring how human scien-
tists—prior to empirical testing—iteratively search through the hypothesis space using heuristics and
domain knowledge to identify the hypothesis they themselves would judge as the most promising
among all plausible candidates they could think of during the hypothesis search process.

Our goal is to emulate this cognitive search process using LLMs, which increasingly rival human
scientists in heuristic reasoning and scientific knowledge understanding. This motivates our central
research question (Q1): how to best harness an LLM’s internal heuristics to formulate the fine-
grained hypothesis it itself would judge as the most promising among all possible hypotheses it might
generate? We conceptualize a hypothesis space where each point along the input dimensions (the
x-axis, potentially multidimensional) represents a candidate hypothesis, and each point is assigned
a reward value (on the y-axis) by the LLM based on its internal heuristics. This defines a reward
landscape over the hypothesis space, with the highest peak corresponding to the hypothesis the LLM
internally judges as most promising. Framed this way, Q1 becomes an optimization problem: how
can we navigate this landscape to find stronger local optima—or ideally the global optimum—thus
eliciting the best fine-grained hypothesis the LLM can generate?

A straightforward baseline is greedy search over the reward landscape. However, its non-convex
and complex structure makes naive greedy strategies prone to poor local optima. To address this,
we propose a hierarchical search framework that explicitly models how a finite-capacity reasoning
agent—human or LLM—navigates the hypothesis space. Specifically, it first explores higher-level
conceptual spaces and then incrementally refines into more specific detail spaces. This hierarchical
approach smooths the reward landscape at each hierarchy level—especially at higher, more abstract
levels—enabling convergence to superior local optima compared to greedy search and greedy search
with self-consistency (Wang et al., 2023). The proposed framework naturally scales with the capability
of the underlying LLM’s heuristics, yielding better optima as those heuristics become stronger.

Having investigated how to identify stronger local optima in Q1, we now turn to our second question
(Q2): whether hypotheses judged better by LLMs exhibit stronger alignment with ground-truth
hypotheses? To rigorously address Q2 while avoiding data contamination, we construct a benchmark
of research backgrounds paired with expert-annotated fine-grained hypotheses from chemistry papers
published after January 2024, ensuring these examples were unseen by our LLM (GPT-4o-mini,
October 2023 cutoff). Using this benchmark, we indirectly evaluate Q2 by comparing the recall of
hypotheses discovered by our hierarchical approach—which locates better LLM-internal local op-
tima—with hypotheses identified by baseline methods. Our results consistently show that hypotheses
generated by our method achieve higher recall than those from baselines, providing empirical support
for the reliability of the LLM’s internal reward signal in guiding fine-grained hypothesis discovery.

Until now, the reward landscape guiding hypothesis search has been defined by a single LLM serving
as the evaluator. We now address our third question (Q3): whether defining this landscape with
an ensemble of diverse LLMs of similar capacity yields better outcomes than using equally sized
ensembles of the strongest LLM within that group. Our experiments show that ensembles of repeated
instances of the strongest LLM consistently outperform equally sized ensembles of diverse models,
suggesting that peak model quality is more critical than model diversity in this setting.
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Finally, we consider a fourth question (Q4): whether an ensemble of identical LLMs provides better
reward landscape than a single instance of the same LLM. While Q3 compares ensembles of different
models, Q4 isolates the effect of aggregation alone by controlling for model identity. We find that
even identical LLMs, when sampled independently and aggregated via summarization, yield a reward
signal that better captures novelty without sacrificing overall quality—highlighting a subtle but
important dimension in optimizing hypothesis discovery.

Notably, while our experiments focus on chemistry, the task formulation, methodology, and analysis
of Q1-Q4 are discipline-agnostic. The only domain-specific component is the manually designed
hierarchy (used by the methodology), which can be instantiated for each new discipline encountered.

Overall, the contributions of this work are:

1. We introduce and formalize the fine-grained scientific hypothesis discovery task as a combi-
natorial optimization problem, and release a post-2024 benchmark with expert-annotated
fine-grained hypotheses, specifically designed to prevent data contamination.

2. We explore the limits of LLMs for fine-grained scientific hypothesis discovery by framing it
as an optimization problem over a reward landscape defined by LLM heuristics, with pairwise
comparisons serving as the gradient signal. We also propose a hierarchical heuristic search
framework that theoretically smooths the reward landscape, reduces search complexity, and
identifies superior local optimum by interpolating among discovered optima. Empirically,
this framework consistently outperforms strong baselines in locating better local optima.

3. We analyze this optimization formalization through 4 foundational research questions.

2 Methodology

2.1 Background and Task Motivation

Yang et al. (2025) assume that many chemistry hypotheses can be constructed from a research
background b—typically including the research question and/or background survey—and a set of
inspirations i1, . . . , ik, representing concepts or findings from the literature. It can be formulated as:

h = f(b, i1, . . . , ik) (1)

In practice, however, most hypotheses h generated from Equation 1 tend to be coarse-grained: while
they form cohesive associations between b and the i, they often lack clear hypothesis specification and
the detailed experimental configurations required for direct implementation in a laboratory setting.
Additionally, many such hypotheses contain redundant elements—either due to the inclusion of
unnecessary inspirations or from noise present in the literature that is unrelated to the core knowledge
intended for hypothesis construction.

2.2 Problem Formulation: Fine-Grained Hypothesis Generation as Combinatorial Search

Let hc be a coarse-grained hypothesis direction and hf its fine-grained counterpart, defined as:

hf = {hc, d1, . . . , dm} (2)

Here, {hc, d1, . . . , dm} denotes the meaningful integration of edits d1, . . . , dm into hc, resulting in a
coherent, fine-grained hypothesis. Each edit d corresponds to either (1) the addition of a fine-grained
detail to an existing concept i or the introduction of a new concept i into hc, or (2) the deletion of a
redundant detail or concept from hc. We define two edit candidate sets: D+, containing all details
and concepts that may be added to hc; and D−, containing all details and concepts within hc that
may be removed. The overall edit space is then given by D = D+ ∪D−.

Inspired by coarse-to-fine strategies in computer vision—where a coarse image is first generated and
then refined with fine-grained details (Tian et al., 2024)—we formulate the transition from hc to hf

as an additional step building on Equation 1, which provides the initial hc.

P (hf |b, hc) = P ({d1, . . . , dm}|b, hc, D) (3)
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This formulation turns P (hf | b, hc) into a combinatorial optimization problem, where the objective
is to select a subset of edits d1, . . . , dm ⊆ D. Let |D| = n and |d1, . . . , dm| = m. The search
space has at least combinatorial complexity Cm

n = n!
m!(n−m)! . This makes the problem particularly

challenging due to three factors: (1) both m and n are unknown; (2) the candidate set D is itself
implicit and potentially very large; and (3) the edits di are not independent—errors early in the
reasoning chain can propagate and impair later decisions.

2.3 Algorithmic Motivation for Hierarchical Heuristic Search (HHS)

Fine-grained hypothesis generation is generally intractable due to the exponential growth of the
search space, where the candidate set |D| is often large or prohibitively so.

A notable exception occurs when the problem exhibits an optimal substructure—i.e., an optimal
solution can be composed from the optimal solutions to its subproblems. This principle underlies
dynamic programming, where solutions are built incrementally from smaller subproblems (first try to
obtain the optimal solution for a smaller subproblem and then iteratively find the optimal solution for
larger subproblems).

We observe that fine-grained hypothesis generation exhibits an optimal substructure. Specifically, the
edits d1, . . . , dm can be organized hierarchically: some address high-level concepts (e.g., functional
groups, catalyst classes), while others specify low-level details (e.g., reagents, catalysts, temperature,
concentration). We assume these edits can be partitioned into p hierarchical levels (p > 1), with
higher levels corresponding to finer details. Then the overall problem can be seen as to determine d in
{1, . . . , p} hierarchies. The subproblem of it can be seen as the determination of d in {1, . . . , p− 1}
hierarchies, etc. Then it is obvious that the optimal solution of a problem can be derived from the
optimal solution of its subproblem, etc.
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Figure 1: Hierarchies designed for chemistry and material science by PhD-level domain expert.

Figure 1 illustrates an example hierarchical decomposition for chemistry, developed in collaboration
with domain experts (PhD-level chemists). The hierarchy spans from high-level mechanistic intent to
low-level experimental configurations, reflecting the granularity typically considered when translating
a conceptual hypothesis into a testable laboratory procedure in chemistry.

Now we have simplified the problem of determining d in all p hierarchies into the iteration of
determining d in each hierarchy sequentially. Nonetheless, even within a single hierarchy, the number
of candidates remains combinatorially large.

A practical approach to this combinatorial complexity is to use heuristics that approximate solutions
rather than exhaustively searching for exact ones. This aligns with how chemists refine hypotheses:
given that hc often represents an unexplored direction, while individual details may be retrievable
from existing databases, the complete set of details is rarely available. Instead, chemists often rely on
domain knowledge and intuition to heuristically identify and progressively integrate plausible details.

Analogously, we propose to leverage LLMs’ internal heuristics to guide the search for d at each
hierarchical level. As LLMs advance, their heuristics—emerging from pretraining over extensive
scientific corpora—will increasingly approximate, and may surpass, those of human experts. The
proposed framework naturally scales with the strength of these heuristics, yielding increasingly better
optima for fine-grained hypothesis discovery as LLM capabilities continue to grow.

In this setting, the candidate space D is not explicitly enumerated but is implicitly embedded within
the LLM’s internal knowledge and reasoning capabilities. The LLM does not select d from a
predefined list, but rather proposes candidates by navigating this latent, heuristic-driven space.
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2.4 Hierarchical Factorization of the Search Problem

For formalization, we partition the implicit candidate space D into p hierarchical levels, where
D(i) ⊆ D represents all potential edits at level i, and D∗(i) ⊆ D(i) denotes the (unknown) ground-
truth edits. The j-th ground-truth edit at level i is denoted as d∗(i)j ∈ D∗(i). Since D is implicitly
determined by hc, we have P (D | hc) = 1, and explicitly condition on D for clarity in the subsequent
factorization. Applying the chain rule hierarchically, Equation 3 can be reformulated as:

P (hf | b, hc) = P
(
{D∗(1), . . . , D∗(p)} | b, hc, D

)
(4)

=

p∏
i=1

P
(
D∗(i) | b, hc, D

∗(<i), D(i)
)

(5)

=

p∏
i=1

|D∗(i)|∏
j=1

P
(
d
∗(i)
j | b, hc, D

∗(<i), d
∗(i)
<j , D(i)

)
, (6)

where D∗(<i) = {D∗(1), . . . , D∗(i−1)} and d
∗(i)
<j = {d∗(i)1 , . . . , d

∗(i)
j−1}.

The key advantage of this hierarchical factorization is that at each level i, the search is restricted to
the reduced candidate set D(i) rather than the full space D, significantly narrowing the search space.
Moreover, as we will show in § 2.6, this hierarchical decomposition smooths the reward landscape
at each hierarchy level, facilitating more stable optimization and enabling the discovery of stronger
local optima in the hypothesis space.

2.5 LLM-Based Implementation of Hierarchical Heuristic Search
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Figure 2: Overview of the proposed Hierarchical Heuristic Search (HHS) framework.

We implement HHS as an LLM-driven agentic process that directly follows the hierarchical factor-
ization formalized in Equation 6. As shown in Figure 2, at each hierarchy level i, Hi−1 represents
the accumulated edits from all previous levels, corresponding to D∗(<i). Within the current level,
hprev denotes the partial hypothesis incorporating the edits selected up to step j−1, i.e., d∗(i)<j . The
candidate set D(i) is not explicitly enumerated but emerges implicitly from the LLM’s internal
heuristics, conditioned on the background b, the hypothesis direction hc, and the edits selected so far.

Specifically, the search for a local optimum hj
i begins from the initial point hi−1, using contextual

information from b, hc, and Hi−2. For hierarchy level i = 1, we set h0 = hc and H0 = ∅, making
the hypothesis direction hc the starting point.

At each iteration, the “Add one d at level i” module prompts an LLM to propose an edit d to hprev,
producing a candidate hcur, which is then refined once for validity, novelty, and specificity. The
“hcur > hprev” module evaluates whether the new hypothesis improves upon the previous one via
LLM-based pairwise comparison, serving as an internal gradient signal for hypothesis optimization.
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This search process continues until no further improvement is observed over k consecutive steps
(default k = 3), at which point the current hypothesis is accepted as a local optimum. Each edit d
may involve either an addition or a deletion, allowing the search path to include retrospection and
self-correction as needed.

Within each hierarchy level, we adapt the design of an evolutionary unit (Yang et al., 2025) to our
task, where the search for the local optimum hi is independently repeated multiple times (set to three
in our implementation), yielding several local optima h1

i , h2
i , and h3

i . These candidates are then
passed to a recombination module, which integrates their complementary strengths to interpolate a
potentially superior local optimum hi within the subspace spanned by h1

i , h
2
i , h

3
i .

2.6 Theoretical Analysis: Smoothing Effects of Hierarchical Heuristic Search
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Figure 3: The smoothing effect of hierarchy on the reward landscape of hypothesis space.

A key observation is that a hypothesis candidate’s performance at lower (more abstract) hierarchy
level can be viewed as an aggregated estimate—approximating an average or soft maximum—of
its higher-level subspace (more concrete). For instance, when evaluating a coarse-grained (more
abstract) concept like “hierarchical 3D copper,” the LLM may implicitly account for its diverse fine-
grained (more concrete) structural variants, some highly relevant, others ineffective. We hypothesize
that the LLM’s assessment to the coarse-grained concept is an aggregation of its fine-grained outcomes,
weighting promising variants within the broader distribution to produce an overall estimate of the
coarse-grained concept’s expected potential.

Building on this observation, the hierarchical abstraction smooths the reward landscape at lower
levels by attenuating local irregularities in the fine-grained space, as the performance of a point at a
lower level can be interpreted as an approximate aggregation or average of the performance across its
corresponding higher-level subspace. This effect is illustrated in Figure 3 (a simplified schematic
projection into a 1D space). Consequently, direct search over the flat, non-hierarchical space tends
to be highly rugged and non-convex, often leading to premature convergence to suboptimal local
optima. In contrast, introducing hierarchical structure progressively smooths the landscape, enabling
more stable and efficient optimization, particularly at lowest levels.

This smoothing effect can also be interpreted in the frequency domain as a form of low-pass filtering,
where high-frequency components of the landscape are attenuated, resulting in a (roughly) spectral
cutoff in the spatial frequency domain, as illustrated in Figure 4.
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Figure 4: Hierarchical design as a low-pass filtering over the spectrum of the reward landscape.

3 Experiment: Investigating the Four Fundamental Questions

3.1 Benchmark Construction, LLM Selection, and Baselines

To our knowledge, no existing benchmark provides annotated fine-grained scientific hypothe-
ses—detailed enough for direct experimental execution. We extend the TOMATO-Chem dataset (Yang
et al., 2025), which includes 51 chemistry papers published after January 2024 in leading journals
such as Nature and Science. Each entry contains a research background b and a coarse-grained
hypothesis hc. We further annotated it with fine-grained hypotheses hf , serving as ground-truth
references created by two PhD-level chemists. To prevent data contamination, all experiments are
conducted using GPT-4o-mini, whose pretraining data cutoff is October 2023.

We compare HHS against two strong baselines widely used in search tasks: (1) greedy search and (2)
greedy search with self-consistency. The latter serves as an ablation of HHS where the hierarchical
decomposition is removed, performing the search in a single stage with each d sampled directly from
the full candidate set D rather than hierarchy-specific subsets D(i). The self-consistency mechanism
is similar to the Recombination module in Figure 2, which interpolate multiple local optima trying to
find a better one. Greedy search represents a further ablation, disabling the Recombination module
entirely and following a single search trace where the first found local optimum (h1

i ) is directly
adopted as the output (hi = h1

i in Figure 2).

3.2 Q1: How to Best Harness an LLM’s Internal Heuristics to Formulate the Fine-Grained
Hypothesis It Would Judge Most Promising Among All It Might Generate?

We frame this question as an optimization problem: Given only a coarse-grained hypothesis hc as
the starting point, and relying entirely on a single LLM, how can we navigate the hypothesis space
to approach the global optimum of the reward landscape, as defined by this same LLM’s internal
heuristics, where each optimization step consists of adding an edit d to hc? In this setting, the LLM
plays a dual role: it serves both as the proposal generator, proposing candidate edits d to formulate
new hypotheses within the hypothesis space, and as the gradient provider, judging whether the new
hypothesis improves upon the current one via its own internal heuristics (e.g., pairwise comparison).

While it is inherently infeasible to determine whether a found local optimum represents the global
optimum, we can empirically compare local optima obtained by different methods with the gradient
provider (pairwise comparison), and therefore check which one is a better local optimum.

As detailed in § 2, the hierarchical design of HHS offers two key advantages over flat search strategies:
(1) less search space to propose each d (from D(i), instead of D), and (2) smoothing the reward
landscape progressively in the hypothesis space. Among these, the smoothing effect is particularly
critical, as it reduces the risk of early convergence to suboptimal local optima and facilitates progress
toward higher peaks in the LLM’s internal reward landscape.

We compare the local optima discovered by HHS against the two baselines. For each pair of local
optima, we conduct both overall evaluations and dimension-specific assessments across four key
criteria: effectiveness, novelty, detailedness, and feasibility. In this context, feasibility reflects the
practical ease of implementing the proposed hypothesis, encompassing factors such as implementation
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complexity and the minimization of redundant steps. Hypotheses that are easy to implement and free
of redundant components are preferred.

We further observe two common trade-offs among these dimensions: (1) between effectiveness
and novelty, as highly novel hypotheses often entail greater scientific risk and uncertainty; and (2)
between detailedness and feasibility, as increased specificity can introduce procedural complexity or
redundancies that diminish experimental feasibility.

We also conducted an expert evaluation involving two chemistry PhD students. For each benchmark
item, one hypothesis was randomly sampled from each method, and the experts were tasked to rank
the three hypotheses. The results from both the LLM-based and expert evaluations on the quality
of local optima discovered by each method are presented in Table 1. To mitigate known position
bias in LLM-based pairwise comparisons—where models tend to favor the first option (Li et al.,
2024)—each pair of local optima was compared six times, with the order of presentation alternated
every three times. A hypothesis was considered to win if it received more than three votes; a tie was
recorded if both received exactly three votes.

Table 1: Comparison between HHS and baseline methods across LLM-based and expert evaluations.
Effectiveness (LLM) Novelty (LLM) Detailedness (LLM) Feasibility (LLM) Overall (LLM) Overall (Expert)

HHS v.s. Greedy Search

Win 74.51% 41.18% 71.57% 67.65% 73.53% 76.47%
Tie 18.63% 18.63% 28.43% 10.78% 18.63% 15.69%
Lose 6.86% 40.20% 0.00% 21.57% 7.84% 7.84%

HHS v.s. Greedy Search + Self-consistency

Win 59.31% 42.16% 56.37% 48.53% 53.43% 74.51%
Tie 24.02% 8.33% 43.14% 18.63% 33.82% 17.65%
Lose 16.67% 49.51% 0.49% 32.84% 12.75% 7.84%

Greedy Search + Self-consistency v.s. Greedy Search

Win 57.84% 48.04% 29.41% 51.96% 54.90% 62.75%
Tie 22.55% 11.76% 65.69% 18.63% 34.31% 21.57%
Lose 19.61% 40.20% 4.90% 29.41% 10.78% 15.69%

3.3 Q2: Whether Hypotheses Judged Better by LLMs Exhibit Stronger Alignment With
Ground-Truth Hypotheses?

§ 3.2 shows that HHS consistently discovers superior local optima compared to baseline methods. We
further investigate whether these optima exhibit stronger alignment with the ground-truth hypotheses.

Table 2: Recall of ground-truth components by discovered hypotheses. #Steps represents the number
of reasoning steps used. HHS represents HHS-3 referred in § 3.5.

Soft Recall Hard Recall #Steps

ChemCrow (M. Bran et al., 2024) 12.28% 7.20% -
Qi et al. (2024) 19.57% 11.15% -
SciMON (Wang et al., 2024) 18.57% 10.09% -
MOOSE (Yang et al., 2024) 20.04% 11.76% -
MOOSE-Chem (Yang et al., 2025) 19.99% 11.98% -

Greedy Search 16.60% 9.92% 9.69
w/ In-context RL 16.76% 10.28% 16.80
w/ Self-consistency 31.53% 17.73% 67.55

HHS (HHS-3) 40.35% 23.04% 282.04
w/ In-context RL 33.63% 21.29% 531.08
w/ Single LLM Gradient (HHS-1) 32.40% 19.95% 747.92

Given the lack of established metrics for this task, we introduce an LLM-based evaluation that
measures how well the discovered hypotheses recover the methodological and experimental details of
the ground-truth hypotheses. The detailed formulations of the two metrics—Soft Recall and Hard
Recall—are provided in Appendix C.
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As shown in Table 2, the hypotheses discovered by HHS—corresponding to better local optima
than those produced by greedy search baselines—achieve consistently higher recall scores than both
greedy search baselines and other comparative methods. Here, in-context RL refers to a mechanism
in which, if the current hypothesis hcur does not outperform the previous one hprev, hcur is inserted
into the LLM’s context to generate a new candidate. We also report the total number of reasoning
steps used by each method. A general trend emerges: increasing the number of reasoning steps tends
to improve recall up to a point, beyond which excessive steps lead to diminishing or negative returns.

3.4 Q3: Whether Defining the Reward Landscape With an Ensemble of Diverse LLMs Yields
Better Outcomes Than Using the Same Number of the Strongest LLMs Among Them?

Table 3: “EF”: Effectiveness, “NV”: Novelty, “DT”: Detailedness, “FS”: Feasibility, “OV”: Overall.
“(GT)” and “(GM)” indicate that the pairwise comparisons were conducted by GPT-4o-mini and
Gemini-1.5-flash, respectively.

EF (GT) NV (GT) DT (GT) FS (GT) OV (GT) EF (GM) NV (GM) DT (GM) FS (GM) OV (GM)

Mixed committee v.s. GPT-4o-mini committee GPT-4o-mini committee v.s. Gemini-1.5-flash committee

Win 20.83% 33.33% 14.58% 33.33% 29.17% 27.08% 31.25% 14.58% 0.00% 18.75%
Tie 41.67% 20.83% 72.92% 18.75% 33.33% 58.33% 52.08% 77.08% 95.83% 68.75%
Lose 37.50% 45.83% 12.50% 47.92% 37.50% 14.58% 16.67% 8.33% 4.17% 12.50%

Gemini-1.5-flash committee v.s. GPT-4o-mini committee Mixed committee v.s. Gemini-1.5-flash committee

Win 16.67% 25.00% 6.25% 37.50% 16.67% 16.67% 33.33% 12.50% 6.25% 18.75%
Tie 41.67% 27.08% 79.17% 25.00% 52.08% 68.75% 35.42% 75.00% 93.75% 64.58%
Lose 41.67% 47.92% 14.58% 37.50% 31.25% 14.58% 31.25% 12.50% 0.00% 16.67%

Mixed committee v.s. Gemini-1.5-flash committee Mixed committee v.s. GPT-4o-mini committee

Win 29.17% 45.83% 10.42% 47.92% 27.08% 8.33% 29.17% 14.58% 6.25% 8.33%
Tie 56.25% 16.67% 85.42% 10.42% 50.00% 77.08% 39.58% 70.83% 93.75% 64.58%
Lose 14.58% 37.50% 4.17% 41.67% 22.92% 14.58% 31.25% 14.58% 0.00% 27.08%

The optimization in HHS relies on the “hcur > hprev?” module (Figure 2), which acts as the gradient
signal driving the search. This raises a key question: does a diverse ensemble of comparably capable
LLMs improve search performance, or is it more effective to use the same number of parallel instances
of the single strongest LLM among the ensemble?

To answer this, we design three experimental settings: (1) Mixed Committee: the “hcur > hprev?”
module is implemented by an ensemble of three different LLMs—GPT-4o-mini (OpenAI, 2024),
Gemini-1.5-flash (Georgiev et al., 2024), and Claude-3-haiku (Anthropic, 2024); (2) GPT-
4o-mini Committee: the module is implemented by three instances of GPT-4o-mini; (3) Gemini-
1.5-flash Committee: the module is implemented by three instances of Gemini-1.5-flash. Each
committee’s three judgments are then aggregated by a GPT-4o-mini, which produces the final
decision for “hcur > hprev?” representing that committee. All three settings use GPT-4o-mini as the
proposer module for generating edits d at each hierarchy level i.

We compare the local optima generated by these setups using LLM-based pairwise comparisons,
following the protocol in § 3.2, where each pair is evaluated six times to mitigate position bias.
However, since the evaluator is itself an LLM, an additional bias may occur—favoring optima
discovered using gradients from the same model. To control for this, we conduct two sets of
evaluations: one using GPT-4o-mini as the evaluator, and the other using Gemini-1.5-flash.

As shown in Table 3, across both evaluators, the GPT-4o-mini committee consistently outperforms
the mixed committee, which in turn outperforms the Gemini-1.5-flash committee. These results
suggest that leveraging repeated instances of the strongest single model provides a more effective
gradient signal for hypothesis optimization than combining different models of similar capacity.

3.5 Q4: Do Multiple Identical LLMs Yield a Better Reward Landscape Than One?

In experiments of Tables 1 and 2 (except for the HHS-1 line in table 2), the reward landscape was
defined using an ensemble of three identical LLMs, followed by a fourth instance of the same LLM
that aggregated the three judgments into a final, reasoned decision. However, it is unclear on whether
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one LLM would be already enough. To evaluate this, we compare two variants: HHS-3, which uses
an ensemble of three identical instances of GPT-4o-mini (and a fourth instance of the same LLM for
aggregation) to provide the reward signal, and HHS-1, which relies on a single instance of the same
model. Table 4 reports LLM-based pairwise evaluations between the two setups across four criteria.
While overall quality, effectiveness, and detailedness are largely comparable, HHS-3 outperforms in
novelty, whereas HHS-1 shows an advantage in feasibility.

Table 4: Pairwise comparison between HHS-1 and HHS-3 with LLM-based evaluation.
Effectiveness (LLM) Novelty (LLM) Detailedness (LLM) Feasibility (LLM) Overall (LLM)

HHS-1 v.s. HHS-3

Win 21.08% 25.49% 4.41% 41.67% 8.82%
Tie 57.35% 28.92% 94.12% 28.92% 82.35%
Lose 21.57% 45.59% 1.47% 29.41% 8.82%

This result is somewhat counterintuitive. Notably, the summarization step is not a simple majority
vote: the aggregating LLM assesses the relative strength of reasoning across the three perspectives
and selects the most compelling argument. This allows it to surface minority-supported but well-
reasoned views, promoting exploration of more novel or unconventional hypotheses. Consequently,
the aggregated reward signal in HHS-3 becomes more sensitive to creative or atypical ideas that a
single-shot evaluation might overlook, whereas HHS-1 relies on a single comparative judgment at
each step—favoring conventional and well-established hypotheses, at the expense of novelty.

Table 2 presents the recall of ground-truth components for hypotheses generated by HHS-1 and
HHS-3. Across both soft and hard recall metrics, HHS-3 outperforms HHS-1, indicating stronger
alignment with expert-annotated reference hypotheses.

4 Related Work and Discussion

LLM-driven scientific discovery methods typically fall into two categories: (1) direct generation of
hypotheses from a research background—comprising a research question and background survey (Qi
et al., 2024); or (2) retrieval of seemingly unrelated yet potentially useful knowledge fragments, or
inspirations, which are then combined with the background to construct a hypothesis (Yang et al.,
2024, 2025; Wang et al., 2024; Liu et al., 2025b). While these methods show promise in generating
novel ideas, they are often criticized for producing hypotheses that are overly coarse, lacking detail,
or omitting actionable experimental steps (Wang et al., 2024; Hu et al., 2024; Si et al., 2025). In
contrast, our goal is to investigate how LLMs can generate fine-grained scientific hypotheses—those
sufficiently detailed to be directly implemented in laboratory settings. Although this work centers on
the pre-experimental stage of discovery, the framework can in principle extend to the experiment-
guided stage (Liu et al., 2025a; Romera-Paredes et al., 2024; Shojaee et al., 2025; Novikov et al.,
2025) by incorporating experimental feedback into the background survey. Likewise, details retrieved
from papers relevant to the proposed hypothesis can also be integrated into the background survey.

5 Conclusion

We introduce and formalize the fine-grained scientific hypothesis discovery task as a combinatorial
optimization problem. To explore the upper limit of LLMs’ capacity for this task, we frame it as an
optimization problem, and propose hierarchical heuristic search (HHS), which theoretically smooths
the reward landscape, reduces combinatorial complexity through optimal substructure exploitation,
and identifies superior local optimum by interpolating among discovered optima. Empirical results
show that (1) HHS reliably discovers better local optima than flat greedy search baselines, (2)
hypotheses preferred by LLMs often align more closely with expert annotations, (3) repeated use
of the strongest model defines a more effective reward landscape than diverse ensembles, and (4)
aggregating identical LLMs yields a reward signal more sensitive to novelty and higher in recall
than single-instance evaluation. These findings illustrate how hierarchical search can better harness
LLMs’ internal heuristics for scientific discovery. Although evaluated on a chemistry dataset, the
proposed task formulation and methodology are expected to generalize across disciplines, with only
the manually designed hierarchy (Figure 1) requiring domain-specific adaptation.
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A MOOSE-Chem2 Overview I/O Figure

Research Question

Fine-grained 
Research Hypothesis

 Background Survey

Coarse-grained 
Research Direction

Figure 5: Overview of the input and output of the Hierarchical Heuristic Search (HHS) framework,
also known as MOOSE-Chem2.

Figure 5 presents an overview of the input and output of the Hierarchical Heuristic Search (HHS)
framework, also referred to as MOOSE-Chem Chapter 2 (MOOSE-Chem2). The input to the
framework consists of three components: a research question, a background survey, and a coarse-
grained research direction.

The research question defines the scientific goal to be addressed. The background survey summarizes
existing methodologies relevant to the research question. It may optionally include methodologi-
cal or experimental details from prior studies that investigate similar questions or employ similar
methodologies to the given research direction, enabling the framework to leverage richer contextual
knowledge. It may also include experimental results from previously tested fine-grained hypotheses,
which provide additional guidance for search and evaluation. The coarse-grained research direc-
tion—potentially derived from MOOSE-Chem (Yang et al., 2025)—serves as a high-level starting
point that can vary in granularity, ranging from a brief sentence describing a general research direction
to a preliminary hypothesis with partial methodological details.

B Expert Evaluation Instructions

For each research question, you will be presented with three candidate hypotheses alongside a
ground-truth fine-grained hypothesis. The order of the hypotheses is randomized. Your task is to
rank the three candidate hypotheses based on their quality, using the ground-truth hypothesis as a
reference.

Please evaluate the hypotheses based on the following four criteria:

• Effectiveness: How well the hypothesis addresses the research question.

• Novelty: The degree of originality relative to existing knowledge.

• Detailedness: The specificity and clarity of the hypothesis.

• Feasibility: The practical plausibility of experimentally testing or implementing the hypoth-
esis.

Note that two tradeoffs may arise:

• Between effectiveness and novelty

• Between detailedness and feasibility

Use your expert judgment to rank the hypotheses based on a holistic assessment of these criteria. In
rare cases where two hypotheses appear to be of similar quality, assigning them the same rank is
acceptable.
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C Recall Metric Calculation

Each evaluation compares a pair of hypotheses—a ground-truth hypothesis (from literature) and a
candidate hypothesis (generated by the model). The goal is to quantify how much methodological or
experimental content from the ground-truth hypothesis is covered by the candidate.

Step 1. Decomposition. Both hypotheses are decomposed into methodological and experimental
components (details) using structured prompts co-designed with chemistry PhD students. The
prompts guide an LLM to extract key components such as procedures, specific materials, or reaction
parameters. Each component is annotated with its role, function, and context.

Step 2. Scoring via LLM-Judge. For each ground-truth component, the LLM judge searches for
functionally corresponding components in the candidate hypothesis and assigns a coverage score
from 0–3:

• 0: no match;
• 1: vague or partial match;
• 2: close but not exact match;
• 3: exact or specific match.

The scoring prompts and examples were jointly developed and audited by PhD students to ensure
calibration and consistency.

Step 3. Aggregation. Two recall metrics are computed:

Soft Recall =
#{components with score > 0}
#{ground-truth components}

, (7)

Hard Recall =
∑

i scorei
3×#{ground-truth components}

. (8)

Soft Recall captures whether relevant components are recovered at all, while Hard Recall further
reflects how precisely they are reproduced.

D Case Study

Example 1:

• Research Question: How can a cost-effective N-type quasi-solid-state thermocell be devel-
oped to boost electricity production from low-grade heat by improving both ion transport
efficiency and electrode performance?

• Hypothesis Candidate (from HHS): The development of a cost-effective N-type quasi-solid-
state thermocell will be achieved through the strategic integration of three core components
to enhance electricity production from low-grade heat (≤100°C):

1. Hierarchical Metal Electrodes: Constructed from a copper-nickel alloy (70% Cu,
30% Ni) optimized for conductivity and corrosion resistance, these electrodes will
feature a dual-layer design incorporating a titanium dioxide (TiO2; CAS number:
13463-67-7) coating, precisely controlled at a thickness of 100 nm to enhance charge
transport by providing a stable interface that reduces charge recombination losses. An
aluminum oxide (Al2O3; CAS number: 1344-28-1) layer will be included to improve
corrosion resistance and reinforce mechanical stability, operating synergistically to
enhance the overall electrochemical performance. The fabrication process will utilize
an eco-friendly dual-step electrochemical deposition in a 0.5 M potassium sulfate
electrolyte at a controlled temperature of 25°C, ensuring micro- and nanoscale porosity
targeting 50-100 nm to maximize surface area as supported by literature demonstrating
that this range optimally enhances charge transfer and ion migration efficiency. This
degree of porosity is expected to lower charge transfer resistance significantly, fostering
improved electrochemical kinetics, which will be verified using scanning electron
microscopy (SEM) for monitoring thickness and porosity.
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2. Metal-Based Redox Couples: The thermocell will utilize copper/copper(I) and
nickel/nickel(II) redox couples, selected for their favorable redox potentials to minimize
side reactions. An integrated cobalt co-catalyst (0.1 M) will serve as an effective
stabilizing agent, enhancing electron transfer kinetics and maintaining the oxidation
states of Cu2+ and Ni2+ during thermal cycling, as demonstrated by prior studies
indicating its role in fostering electron transfer efficiency. Real-time monitoring will
maintain pH levels between 4-7, with adjustable concentrations of redox couples
systematically optimized between 0.5 to 1.5 M based on insights from the literature
regarding their stability and reactivity under varying operational conditions, with
specific methodologies for pH adjustments clearly defined to ensure minimal disruption
during testing.

3. Anisotropic Polymer Materials: The polymer matrix will feature aligned functional
groups (-COOH and -SO3H), which will be developed through controlled mechanical
stretching (5 mm/min at 70°C), a technique known to enhance ionic transport path-
ways by promoting favorable interactions between the polymer backbone and ionic
species. High-conductivity ionic species, specifically Na+ and Li+, will be incorpo-
rated at optimized concentrations (0.5 to 1.0 M), with clear justifications based on
their advantageous solvation properties and diffusion characteristics. The impact of
variations in thermal conditions on ionic conductivity will be quantitatively assessed
through impedance spectroscopy, with diffusion coefficients measured to elucidate
the mechanisms of ionic mobility, providing a detailed connection between thermal
gradients and polymer performance.

This approach clarifies the synergistic interactions and functional enhancements among
hierarchical metal electrodes, optimized redox couples, and engineered polymer materials,
establishing a cohesive mechanism that uses low-grade heat to drive efficient ion migration
and electron transfer within the quasi-solid-state thermocell.

• Expert’s Analysis: The study addresses the question of how to develop a cost-effective
N-type quasi-solid-state thermocell to enhance electricity production from low-grade heat by
improving both ion transport efficiency and electrode performance. The response provides
a detailed and logically structured explanation, covering key aspects related to electrodes,
redox pairs, and polymer gel media. Specifically, the preparation of Hierarchical Metal
Electrodes is highlighted, noting the primary use of copper-containing electrodes, with
a clear principle of providing a stable interface, which aligns well with the ground truth
(gdth) description of 3D hierarchical copper electrodes. Additionally, the study includes
specific characterization of the electrode surface using SEM. However, while the polymer
gel mentions an anisotropic alignment structure, it omits the specific operational methods
for forming this alignment, which is inconsistent with the gdth. Nevertheless, the overall
response encompasses detailed mechanistic explanations and core points related to the
specific operations.

Example 2:

• Research Question: How can a Supramolecular amorphous glass material be engineered
to simultaneously exhibit strong mechanical properties, optical transparency, self-healing
capabilities, and adhesive strength at room temperature?

• Hypothesis Candidate (from HHS): The engineering of multifunctional peptide-based
supramolecular amorphous glass materials will concentrate on creating a robust dynamic
network facilitated by cooperative reversible hydrogen bonds derived from interactions
among four key amino acids: lysine, glutamic acid, aspartic acid, and tyrosine, along with
proline to enhance rigidity. The hypothesized molar ratios will be set at 1:1 for lysine and
glutamic acid, complemented by approximately 0.5:0.5 ratios for aspartic acid and tyrosine.
These ratios are supported by empirical studies that have shown that such compositions
can optimize hydrophilic and hydrophobic interactions, which are essential for improving
mechanical strength, adhesion, andself-healing capabilities .
Lysine’s positively charged ammonium group is hypothesized to establish strong ionic
interactions with the negatively charged carboxylate groups of glutamic acid and aspartic
acid, enhancing the stability of the hydrogen-bonding framework critical for effective energy
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dissipation during mechanical stress. Tyrosine will contribute to the network through π-
stacking interactions, which are expected to maintain the structural integrity and optical
transparency of the material under load. Proline’s unique cyclic structure is anticipated
to provide localized rigidity, supporting favorable peptide conformations and facilitating
effective stress distribution throughout the dynamic network.

A pivotal component of this dynamic system will be the incorporation of structured water ,
maintained at an optimal concentration of 10–15% by weight. Structured water is theorized
to engage in specific hydrogen bonding interactions with the peptide backbone, promoting
molecular mobility and enabling rapid bond reformation necessary for self-healing capa-
bilities at room temperature. The investigation will differentiate between structured and
unstructured water forms, examining the specific interactions that influence bond lifetimes
and recovery dynamics under mechanical stress. Previous research indicates that the interac-
tions between structured water and the peptide backbone are critical for maintaining bond
lifetimes during stress, and these dynamics will be quantitatively assessed through methods
such as differential scanning calorimetry (DSC) and rheological measurements.

The synthesis of these peptide assemblies will be executed under rigorously controlled
environmental conditions. The reaction temperature will be maintained at 25°C to optimize
amino acid interactions and prevent degradation, while systematic variations in pH (5.5 to
8.5) will be conducted to explore their effects on the ionization states of the amino acids and
corresponding hydrogen bonding dynamics. Additionally, ionic strength will be regulated
at approximately 0.15 M using sodium chloride, which is expected to enhance electrostatic
interactions and stabilize the hydrogen bonding network.

To thoroughly investigate these interactions and material properties, a combination of exper-
imental methodologies will be utilized. Dynamic Mechanical Analysis (DMA) will assess
mechanical properties such as tensile strength and elasticity, while rheological assessments
will evaluate the material’s response under stress. Spectroscopic techniques, including NMR
spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, will be employed to
elucidate hydrogen bonding dynamics and monitor molecular interactions. This comprehen-
sive approach aims to clarify the intricate relationships among amino acids and structured
water dynamics, as well as the influences of environmental conditions on the multifunctional
properties of the engineered peptide-based supramolecular materials.

• Expert’s Analysis: In addressing the research question—"How can a supramolecular amor-
phous glass material be engineered to simultaneously exhibit strong mechanical properties,
optical transparency, self-healing capabilities, and adhesive strength at room tempera-
ture?"—the generated scientific hypothesis proposes a notably complex system. This system
is envisioned to comprise five distinct amino acids: lysine, glutamic acid, aspartic acid,
tyrosine, and proline.

Despite the increased complexity of this multi-component approach compared to the simpler
system underlying the real hypothesis (the scientific finding concerning YYY peptide glass),
several key conceptual parallels are evident: Shared Foundation in Peptide-Based Materials:
At their core, both the generated hypothesis and the real scientific finding are centered
on peptide-based materials as the fundamental building blocks for the desired amorphous
glass.Convergent Aim for Dynamic Networks and Functional Properties: Both frameworks
leverage their respective peptide systems with the goal of establishing a dynamic network.
This network is considered crucial for imbuing the material with critical functionalities,
particularly self-healing capabilities and effective adhesive strength.Emphasis on the Role of
Structural Water: In their mechanistic considerations, both hypotheses significantly highlight
the indispensable role of structural water. The real hypothesis (the scientific finding on
YYY glass) successfully demonstrated that a dense, random hydrogen-bonding network,
mediated by water molecules, is fundamental to the YYY glass’s unique structure and its
observed properties. The generated hypothesis also underscores the centrality of cooperative
and reversible hydrogen bonds in the construction and operational dynamics of its proposed
network.

Example 3:
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• Research Question: How can computational methods be used to accurately predict and im-
prove the reactivity and selectivity of modular diazo transfer (MoDAT) reactions, especially
reactions with primary amines? And to design new reagents based on computational models.

• Hypothesis Candidate 1 (from HHS): We propose to systematically investigate the reactivity
and selectivity of modular diazo transfer (MoDAT) reactions utilizing azide-based reagents,
with a specific focus on para-substituted benzyl azide derivatives modified with strong
electron-withdrawing groups (EWGs) such as nitro (–NO2) and cyano (–CN), as well as
weaker electron-withdrawing groups (e.g., fluoro (–F) and chloro (–Cl)), and electron-
donating groups (EDGs) like methoxy (–OCH3). Our central hypothesis posits that the
electronic nature and precise positioning of these substituents will significantly modulate the
electrophilicity of the azide moiety, which will in turn influence the stability and geometrical
configurations of intermediates and transition states during nucleophilic attacks by primary
amines.
The experimental work will be executed under controlled laboratory conditions using a
Schlenk line to maintain an inert nitrogen atmosphere for at least 30 minutes prior to reaction
initiation, minimizing moisture exposure. Reactions will be conducted at a temperature
of 95–105°C, chosen based on literature findings indicating optimal kinetic performance
while preserving the stability of diazo intermediates. We will employ polar aprotic solvents
such as dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), which are anticipated
to enhance solvation of the azide and improve nucleophilicity of the primary amines. A
stoichiometric ratio of 1:1.5 (benzyl halide to sodium azide) will be applied, and reactant
concentrations will be maintained at approximately 10–20 mM, a range supported by
preliminary studies demonstrating optimal reactivity and solubility.
To deepen our mechanistic understanding, we will utilize advanced computational tech-
niques, primarily Density Functional Theory (DFT) with specific emphasis on the B3LYP
functional and a 6-31G(d) basis set. This will allow us to thoroughly assess the impacts
of substituent variations on charge distributions and transition state energies. In particular,
we will quantify how the introduction of strong EWGs influences the electrophilicity of the
azide, predicted to lower activation energy for nucleophilic attacks, while the EDGs may
provide stabilization during transition state formation. A rigorous electronic structure analy-
sis will be employed to visualize the overlap between the nucleophilic orbital of primary
amines and the electrophilic centers of the diazo derivatives.
To ensure a comprehensive evaluation of solvent effects, we will systematically conduct
reactions in both polar protic solvents, such as ethanol, and polar aprotic solvents, like
DMSO, maintaining a concentration of 50% v/v relative to the reaction volume. This will
elucidate how solvent polarity and hydrogen-bonding capacity impact the stability of zwitte-
rionic intermediates and transition states. Furthermore, we will establish a robust iterative
feedback mechanism that directly correlates our computational predictions to empirical data
from high-resolution techniques, including NMR spectroscopy and mass spectrometry. Dis-
crepancies exceeding a predefined threshold—such as a 10% difference between predicted
and observed yields—will prompt specific adjustments to our computational models, thus
refining our understanding of the factors influencing MoDAT reactions. This structured
approach aims to enhance the design of azide-based reagents tailored for improved reactivity
and selectivity in synthetic applications involving primary amines.

• Hypothesis Candidate 2 (Greedy + self-consistency): This study aims to investigate the re-
activity and selectivity of modular diazo transfer (MoDAT) reactions by designing tailored
azide-based reagents that incorporate strategically positioned electron-withdrawing groups
(EWGs), specifically nitro (–NO2) and cyano (–CN) moieties. These groups will be sys-
tematically evaluated at distances of 2 Å, 4 Å, and 6 Å from the azide functionality. This
selection is grounded in existing literature, which suggests that such variations in EWG
positioning can significantly influence the electrophilicity of the azide, thereby stabilizing
transition states during nucleophilic interactions with primary amines. The specific rationale
for these distances is based on prior studies indicating that alterations beyond these ranges
may lead to diminished effects on reactivity or unfavorable sterics.
The primary amines selected for this investigation—n-butylamine, phenethylamine, ben-
zylamine, and ethylamine—exhibit varying degrees of steric hindrance and electronic
characteristics, allowing for a comprehensive analysis of their reactivity profiles when paired
with engineered azide reagents. This choice effectively captures a spectrum of nucleophilic
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behavior and enhances our understanding of how both electronic and steric factors operate
within MoDAT reactions.
An integrated computational strategy will be employed utilizing density functional theory
(DFT) calculations focused on the B3LYP functional, supplemented by other functionals
(e.g., M06-2X and PBE0) to ensure accuracy and validation of outcomes. In addition to
DFT, we will incorporate transition state theory and potentially machine learning approaches
to analyze the reactivity patterns further. We will conduct extensive mapping of activation
energy profiles and transition state geometries to uncover the relationships between EWG
positioning, electron density distributions, and transition state stability. Molecular dynamics
(MD) simulations will also be utilized to explore solvation effects across differing solvent
environments, including acetonitrile, methanol, and DMSO, examining how these solvents
influence reaction pathways and stabilize charged intermediates.
Empirical validation of computational models will incorporate a structured approach to
varying critical parameters such as azide reagent concentrations and molar ratios of primary
amines to azides, along with solvent compositions, to derive quantitative metrics, including
reaction yields, rate constants, and activation energies. Statistical analyses will employ
techniques such as ANOVA and regression models to extract significant trends from the
experimental data. This iterative feedback mechanism will facilitate a dynamic refinement
process, whereby experimental outcomes directly inform adjustments to computational
predictions. Through this comprehensive methodological framework, we aim to elucidate
the interplay between EWG distances and steric factors, ultimately leading to the design of
innovative azide-based reagents optimized for selective transformations of primary amines.

• Hypothesis Candidate 3 (Greedy): This research aims to systematically investigate the re-
activity and selectivity of modular diazo transfer (MoDAT) reactions utilizing azide-based
reagents, focusing on a set of primary amines: benzylamine, 2-aminopropane, and cy-
clohexylamine. This selection combines varying steric and electronic profiles, enabling
comprehensive evaluation of how solvent and reaction conditions influence reactivity and
selectivity across different nucleophilicity ranges. Initial studies will determine baseline
reactivities through systematic kinetic measurements, assessing critical parameters such as
rate constants and product ratios under controlled conditions.
Reactant concentrations will be evaluated at specific increments of 0.1 M (0.1 M, 0.5 M,
and 1.0 M), and the temperature will be optimized through a systematic approach involving
stepwise assessments from 25°C to 60°C, analyzing how these variations affect reaction
progress. A comprehensive assessment of solvent effects will be performed, including the
examination of solvent mixtures (e.g., varying concentrations of water, DMSO, and possible
co-solvents) to quantify their influence on nucleophilicity and overall reactivity.
Advanced computational methods, including density functional theory (DFT) calculations
with the M06-2X functional and a 6-31G basis set, will be employed to simulate the
MoDAT reaction environment accurately. We will analyze key molecular descriptors such
as nucleophilicity, electrophilicity, and steric hindrance to construct predictive models of
reactivity. These analyses will guide experimental design, with a feedback mechanism
where discrepancies between computational predictions and experimental observations will
result in specific adjustments to molecular descriptors or computational parameters, refining
the predictive capabilities of the models.
Following these investigations, the design of innovative azide-based reagents will be under-
taken to optimize MoDAT reactions. This design process will emphasize the incorporation
of electron-withdrawing groups like trifluoromethyl and cyano, aimed at enhancing both sta-
bility and selectivity by stabilizing the transition state. Rigorous standardized experimental
protocols will ensure reproducibility, including specific techniques for measuring yields and
selectivity ratios over controlled reaction durations. By integrating mechanistic insights from
computational and empirical findings, this research will elucidate the key factors influencing
reactivity and selectivity in diazo transfer reactions, enhancing our understanding of these
critical processes.

• Expert’s Analysis: 1 conducted a relatively comprehensive analysis, for instance, suggesting
that modifying the azide reagent with functional groups could improve it, which aligns with
the original text. However, 2 and 3 did not. This time, 1 has an obvious error: the speculated
temperature is incorrect, and the proposed temperature is experimentally unfeasible, as azide
reagents are prone to explosion at high temperatures. Of course, temperature is a minor
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point, and overall, 1 is still acceptable. 2 deviates significantly from the original text in
terms of the research design approach. Compared to 2, 3 lacks consideration of the group
effect in the research design, making 3 the weakest. Finally, all three mentioned using DFT
calculations, and although there are deviations in details from the original text, the approach
is correct.

Example 4:

• Research Question: How can photoredox catalysis be used to exploit the latent reactivity of
phosphorus ylides, allowing them to participate in a formal three-component cycloaddition
that converts inert C–H and C=P bonds into C–C and C=C bonds, creating versatile synthetic
building blocks in an efficient, controlled manner?

• Hypothesis Candidate 1 (from HHS): The mechanism for activating phosphorus ylides in a
formal three-component cycloaddition via photoredox catalysis can be articulated in four
key steps, each supported by optimized experimental conditions:
1. Initiation of Single-Electron Transfer (SET): Irradiation of phosphorus ylides with specific
wavelengths of visible light (400–450 nm) from a high-intensity LED source (approximately
20 mW/cm2), validated by studies demonstrating effective radical generation at this intensity
(Smith et al., 2020), promotes SET using suitable photoredox catalysts (e.g., [Ru(bpy)3]2+ or
[Ir(dF(CF3)ppy)2(bpy)]). The resulting radical cation exhibits enhanced electrophilicity due
to significant charge localization, which is further assisted by strong electron-withdrawing
substituents such as carbonyl or nitro groups. Empirical evidence indicates an increase in
reactivity by up to 2.5-fold as supported by Hammett parameters.
2. Stabilization via Zwitterionic Intermediate: The radical cation transitions to a zwitterionic
intermediate, characterized by resonance stabilization through delocalized π-electrons
and non-covalent interactions, such as hydrogen bonding in polar aprotic solvents like
acetonitrile (dielectric constant ≈ 37) and DMSO (dielectric constant ≈ 47). To optimize
stabilization, a 1:1 (v/v) mixture of these solvents will be used, taking advantage of their
combined dielectric properties (≈ 38) to enhance charge separation and stabilize reactive
intermediates. Literature supports this approach, showing improved reaction kinetics (Miller
et al., 2021).
3. Selective Nucleophilic Attack: The zwitterionic intermediate selectively engages in
nucleophilic attacks on activated C–H and C=P bonds, particularly those adjacent to strong
electron-withdrawing groups. Maintaining phosphorus ylide concentrations at 0.1-0.5 M
and controlling reaction temperatures precisely within an optimized range of 10-25 °C, as
indicated by previous studies on radical stability, will minimize side reactions. An inert
atmosphere (nitrogen or argon) will be established by purging the reaction vessel for 30
minutes before use, effectively mitigating oxidation. Real-time NMR (utilizing 1D and 2D
techniques) and GC-MS metrics will be employed to monitor yield and product distribution
effectively, specifying analytical conditions (e.g., temperature settings and flow rates) to
ensure accurate assessment of outcomes.
4. Concerted Formation of Products: The reaction culminates in the concerted formation of
new C–C and C=C bonds, facilitating the synthesis of valuable carbocycles and synthetic
building blocks. The influence of substituent identity and positioning (ortho, meta, para) on
reactivity will be quantitatively analyzed using NMR and HPLC techniques. This systematic
approach will provide insight into the efficiency and selectivity of the cycloaddition process,
explaining how each factor contributes to overall reactivity.
By integrating these components clearly and methodically, this hypothesis presents a com-
prehensive exploration of how photoredox catalysis can unveil new reactivity pathways for
phosphorus ylides, fully addressing the research question with explicitly defined roles of
each mechanistic step and comprehensive definitions for specialized terms provided for
clarity.

• Hypothesis Candidate 2 (Greedy + self-consistency): This study aims to investigate how
photoredox catalysis can elucidate specific reactivity mechanisms in diphenylphosphinyl
ylides, focusing on their participation as intermediates in formal three-component cycload-
dition reactions that convert inert alkyl C–H bonds and coordinated C=P bonds into C–C
and C=C bonds. We will concentrate on diphenylphosphinyl ylides due to their capacity
to facilitate charge inversion processes, which are crucial for generating stabilized radical
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intermediates. Specifically, we will examine how the electronic structure of diphenylphos-
phinyl ylides transforms upon excitation under visible light (e.g., at wavelengths of 400-450
nm) into polar intermediates, leading to the generation of stable benzylic radicals from C–H
bond cleavage and allylic radicals from C=P bond activation—both essential for effective
cycloaddition.

1. Charge Inversion Mechanisms: We will clarify the mechanisms of charge inversion by
detailing the electronic transitions involved, emphasizing the role of excited state lifetimes
and how solvent polarity affects the stabilization of generated radicals. Our discussion will
include specific references to known photoredox systems and their operational parameters
in literature, enhancing our findings with context.

2. Role of π-Stacking Interactions: We will investigate the influence of π-stacking inter-
actions, specifying the optimal inter-ring distances and energy considerations between the
stabilized radicals and electrophilic carbon centers from substrates like 2,6-dibromoaryl
and 2,4-difluoroaryl. This section will include quantitative assessments of radical coupling
reactivity, aiming to determine coupling efficiencies and product selectivity through methods
such as 1H NMR and UV-Vis spectroscopy.

3. Solvent and Temperature Effects: We will analyze solvent effects by conducting reactions
in a range of solvents with varied dielectric constants, including a thorough comparison
of polar solvents like acetonitrile and non-polar solvents like dichloromethane. We will
detail how these solvents are expected to influence radical stabilization and the kinetics of
cycloaddition, providing a theoretical framework based on established solvent interaction
models. Additionally, we will justify the controlled temperature range of room temperature
to 50°C by linking it to the expected stability of radical intermediates and the kinetics of the
reactions, ensuring optimal conditions for product yield and selectivity.

4. Experimental Conditions: Reactions will be conducted under carefully controlled condi-
tions, with temperature justification focusing on maintaining the balance between radical
stability and reaction kinetics. We will outline how these conditions directly relate to the
completed cycloaddition mechanism and the anticipated outcomes of the study.

By systematically elucidating these mechanisms—specifically charge inversion, π-stacking
interactions, and solvent effects—we aim to develop robust methodologies for the efficient
generation of versatile synthetic building blocks from simple molecular precursors.

• Hypothesis Candidate 3 (Greedy): Investigate how photoredox catalysis enhances the re-
activity of phosphorus ylides through selective nucleophilic attack on α, β-unsaturated
carbonyl compounds, such as crotonaldehyde, which are activated to form stable radical
cation intermediates via photoredox-driven single-electron transfer (SET) processes. These
radical cations, characterized by their electrophilicity, promote effective nucleophilic attacks
by phosphorus ylides, generating stabilized carbon radical intermediates that significantly
enhance their reactivity in subsequent bond-forming transformations. Conduct a formal
three-component cycloaddition by introducing a nucleophilic amine, such as ammonia or an
aniline derivative, selected based on its electronic properties which influence the stabilization
of the radical intermediates and affect product selectivity. Detail specific optimized reaction
conditions, including the use of polar aprotic solvents like acetonitrile, which facilitate
radical stability, and employ a specific light wavelength of 400 nm to ensure efficient exci-
tation of the photocatalyst. These conditions will be designed to minimize potential side
reactions and maximize the conversion of inert C–H and C=P bonds into desired C–C and
C=C bonds through well-defined mechanistic pathways, addressing the nuanced interplay
between reaction parameters and final product outcomes.

• Expert’s Analysis: 1 accurately predicted the light source wavelength range, metal catalyst
system, and solvent system, such as the use of Ir catalyst and acetonitrile as the solvent, all
of which align with the original text. In contrast, 2 only correctly predicted the wavelength
range and solvent system but failed to specify the metal catalyst system, which is crucial
in organic chemical reactions. Therefore, 2 is inferior to 1. Finally, 3 did not predict the
light source wavelength range or the metal catalyst system, missing several key pieces of
information, making it the weakest.
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E Expert Analysis of Hypothesis Quality

E.1 Convergence to Ground-Truth Local Optima

To complement our quantitative evaluations, we asked domain experts to qualitatively assess how
well the hypotheses generated by HHS aligned with the expert-annotated fine-grained hypotheses in
our benchmark.

The distribution of expert assessments across all evaluated examples is as follows:

• Reached a completely different region—likely a distinct local optimum with scientific
plausibility: 60%

• Reached the vicinity of the ground-truth local optimum, but with differing details:
24%

• Reached the vicinity of the ground-truth local optimum, but failed to fully elaborate or
specify the key details: 16%

Here, the “ground-truth local optimum” refers to the expert-extracted fine-grained hypothesis from a
publication, which serves as the reference target. “Reaching the vicinity of a local optimum” indicates
that the generated hypothesis converges to a coherent and internally consistent formulation that is
conceptually close to the ground-truth hypothesis, though not necessarily identical in detail.

The relatively high divergence rate (60%) reflects an inherent tradeoff in our experimental setup. For
many research questions, multiple hypotheses can be plausible yet structurally distinct. Guiding the
model toward the exact ground-truth hypothesis requires:

1. initializing the search process from a starting point sufficiently close to the ground-truth
optimum;

2. but avoiding initialization that is too close or too specific, as this would risk leaking the
ground-truth answer.

To strike this balance, we derive the initial search point from the annotated coarse-grained hypothesis
hc by applying an ambiguation procedure. This involves removing or abstracting key details to
produce a generalized version of hc—for example, replacing “a specific protein” with “a protein” or
“a catalyst”—thus preserving the overall research direction while preventing answer leakage.

Consequently, even when the search begins in the correct conceptual region, the model may naturally
diverge toward a nearby but distinct local optimum, especially given the openness of the hypothesis
space and the heuristic-driven nature of the optimization process.

E.2 Coverage of Experimentally Critical Details

In addition to alignment with the reference hypotheses, we evaluated the extent to which the generated
hypotheses captured the critical experimental details required for practical implementation.

Among all the details mentioned in the generated hypotheses, approximately 40% are experimentally
important—regardless of their accuracy (which is not the focus of this analysis). The remaining
60% are peripheral or have minimal impact on the actual experiment.

Among all the important details that should be included, about 50% are mentioned in the generated
hypotheses.

Peripheral details refer to contextual or environmental factors with limited relevance to the core
experiment—for instance, ambient humidity or weather conditions, which may only affect specific
reactions.

This highlights a key challenge: while LLMs can generate rich and context-aware hypotheses, they
often fail to prioritize the most essential components for experimental planning. Future work may
explore techniques to guide LLM attention toward experimentally salient information.
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Table 5: Error analysis of hypotheses generated by HHS. Two PhD-level chemistry experts conducted
the evaluation: one analyzed the top 30 samples and the other the remaining 21.

Missing key chemical substances 14/30
Excessive details in characterization methods 28/30
Feasibility issues 18/30
Limitations of characterization methods 08/30
Insufficient basis for material selection 22/30
Lack of design comparison experiments 12/30
Ignoring data validation and reproducibility 10/30

Severe deviation from feasibility 8/21
Missing or incorrect key chemicals or reaction systems 9/21
Incorrect explanation of chemical principles 12/21
Incorrect prediction of experimental system 10/21

Table 6: Error analysis on why HHS’s hypotheses are better than the greedy search baselines’. Two
PhD-level chemistry experts conducted the evaluation: one analyzed the top 30 sample pairs and the
other the remaining 21.

Insufficient performance metrics 25/30
Complexity of experimental conditions 16/30
Insufficient explanation details 29/30
Inadequate description of preparation plan 22/30
Vague research objectives 28/30
Cost and scalability issues 13/30

Poor feasibility 12/21
Errors in research plan details 21/21
Insufficient explanation details 19/21
Clear experimental system 21/21

F Error Analysis

Two PhD-level chemistry experts conducted the error analyses. Table 5 summarizes the main error
types observed in hypotheses generated by HHS, while Table 6 analyzes the reasons why HHS
outperforms the greedy search baseline.

G Hypothesis Search Prompt

The following prompt is used to guide both the baseline methods and our proposed method, HHS,
during the hypothesis refinement process. To ensure fair comparison, the prompt is designed in
a controlled way: we use a shared core prompt across all methods, with minimal differences.
Specifically, the portion highlighted in orange is unique to HHS and introduces the hierarchical
structure used in its search process.

This design isolates the effect of hierarchical search. As illustrated below, the only difference between
HHS and the baseline (Greedy Search + Self-Consistency) lies in the hierarchical prompting. The
core content—including the role of the assistant, editing instructions, and structural expectations—is
kept identical.

This enables a controlled ablation-style comparison, attributing observed improvements specifically
to the hierarchical design.
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The complete prompt is as follows:

You are assisting with scientist’s research. Given their research question, a survey on the past methods
for the research question, and a preliminary coarse-grained research hypothesis for the research
question, please help to make modifications into the coarse-grained hypothesis, to make it one step
closer to a more effective and more complete fine-grained hypothesis.

The modification can be two-folds: (1): delete or change an existing improper detail or information
in the existing hypothesis; (2) add and integrate one detail to the existing hypothesis. If you choose
to add a detail, do not simply append new information to the existing hypothesis. Instead, think
thoroughly how the new detail relates to the existing components and integrate it seamlessly into
the hypothesis to create a new coherent and unified hypothesis. In addition if you choose to add a
detail to a general information, if the corresponding general information is correct, you should try to
keep the corresponding general information in the updated hypothesis and also mention the details,
instead of replacing the general information with the details. In this way, it would be much easier for
scientists to understand both the general infomration/structure and the details from your generated
hypothesis. It would be also easier for scientists to propose better details, inspired by your suggested
details, following the general information.

Please remind that this is about research: research is about discover a new solution to the problem
that ideally is more effective and can bring new insights. Usually we don’t need the hypothesis to
contain lots of known tricks to make it work better: we want to explore the unknown, which ideally is
more effective than the known methods and can also bring in new insights. Therefore, a research
hypothesis is usually about a small set (usually less than eight) of major components (and lots of
details on how to implement these major components), which overall composes a novel and complete
solution to the research question, which potentially can bring in new insights. Hypotheses that include
an excessive number of irrelevant or unnecessary major components, which do not contribute to
addressing the research question, are less favorable, as we only want to know exactly what are the key
components that fundamentally make the hypothesis work. If you think any ancillary components that
can truly assist with the research question, you may mention what are the key components and what
are the ancillary components to avoid the ambiguity of which components are the key component.
The reaction mechanism, however, is not classified as a major component or detail (and therefore not
limited by the number of major components). Instead, a novel and valid reaction mechanism can be a
good source of insights. If previous hypothesis already contains too many major components, you
should consider to replace some of the major components with more effective ones (but not to add
more major components), or to give more details to the existing major components for clarity and
ease of implementation (instead of adding or replacing major components).

Here we are searching for the fine-grained hypothesis in a hierarchical way. The rationale is that, we
can classify any complete set of modifications into several hierarchy, with different levels of details. If
we do not search in a hierarchical way, we need to consider all the available details in all hierarchy
levels for each search step, which (1) has a very high complexity, and (2) first search a low-level detail
might largely influence the following search of a high-level detail: it might stuck in one high-level
detail corresponding to the already searched low-level detail without considering the other low-level
details corresponding to other high-level details, making the search process stuck in a local minumum
at the beginning.

Here we roughly classify all possible modifications into five hierarchies: (1) Mechanism of the
Reaction: Describes how the reaction proceeds at a conceptual level, focusing on electron flow, bond
formation and breaking, and any intermediates or transition states involved. This is the theoretical

“blueprint” that explains why the reaction works; (2) General Concept or General Component Needed:
Identifies the type of reagent or functional group required (e.g., “a strong acid,” “a Lewis base,”

“an activated aromatic ring”) without committing to a specific chemical. It outlines the broader
roles that are necessary for the mechanism to proceed; (3) Specific Components for the General
Concept: Narrows down from the general category to a particular substance (e.g., “concentrated
HCl” for a strong acid, “benzene” for an aromatic ring). This makes the reaction hypothesis testable
by specifying which chemicals fulfill the roles; (4) Full Details of the Specific Components: Provides
exact structural or molecular information—such as SMILES strings, IUPAC names, purity, or CAS
numbers. These details ensure clarity and reproducibility so researchers know precisely which
substances to use; (5) Experimental Conditions: Specifies the practical setup—temperature, pressure,
solvent system, reaction time, atmosphere, and any work-up procedures. This final layer describes
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how to carry out the reaction in a laboratory setting. And we are searching for modifications
hierarchy by hierarchy: hierarchy (1) first, and then hierarchy (2), and so on. Hypothesis from
a higher hierarchy is an expansion of the hypothesis from its previous hierarchy, with additional
information described above.

The research question is:

The survey is:

Now please help to make modifications into the coarse-grained hypothesis, to make it one step closer
to a more effective and more complete fine-grained hypothesis. Please do not include the expected
performance or the significance of the hypothesis in your generation. Please answer the question in
the following response format. (response format: ’Reasoning Process: Revised Hypothesis: ’)

H Experiment Compute Resources

We implement our proposed framework as an agentic LLM system using GPT-4o-mini using
OpenAI’s official API. Generating the final hypothesis via the HHS optimization process—converging
to the final local optimum at hierarchy level 5—typically involves several hundred or even to a
thousand iterative search steps.

I Limitation

While HHS consistently discovers higher-quality local optima compared to baseline methods, it
does not guarantee convergence to the global optimum. Addressing this limitation remains an open
direction for future research.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we have summarized the contributions in the end of the introduction
section. They accurately reflect the scope of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention it in the conclusion section: “The limitation is that HHS is not
guaranteed to reach to a global optimum, and we leave it as a future research direction.”
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In Section 2, we provide detailed information about the assumptions and
corresponding proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information about the experimental configurations and
evaluation protocols. More details can be found in the supplement.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code, data, and instructions can be found in
https://github.com/ZonglinY/MOOSE-Chem2

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details about hyperparameters are provided in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All details about statistical significance are provided in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention that we use “GPT-4o-mini”. More details are mentioned in the
supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We check the code of Ethics, and we don’t think this research has violated it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Discussions about social impacts are provided in the supplement.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in this paper are properly credited and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code, data, and instructions can be found in
https://github.com/ZonglinY/MOOSE-Chem2

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve LLMs as any important
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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