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ABSTRACT

As software becomes increasingly complex and prone to vulnerabilities, auto-
mated vulnerability detection is critically important, yet challenging. Given the
significant successes of Large Language Models (LLMs) in various tasks, there
is growing anticipation of their efficacy in vulnerability detection. However, a
quantitative understanding of their potential in vulnerability detection is still miss-
ing. To bridge this gap, we introduce a comprehensive vulnerability benchmark
VulBench. This benchmark aggregates high-quality data from a wide range
of CTF (Capture-the-Flag) 1 challenges and real-world applications, with anno-
tations for each vulnerable function detailing the vulnerability type and its root
cause. Through our experiments encompassing 16 LLMs and 6 state-of-the-art
(SOTA) deep learning-based models and static analyzers, we find that several
LLMs outperform traditional deep learning approaches in vulnerability detection,
revealing an untapped potential in LLMs. This work contributes to the under-
standing and utilization of LLMs for enhanced software security.

1 INTRODUCTION

The rapid advancement of software systems has led to an increase in their complexity and sus-
ceptibility to vulnerabilities, thereby heightening security risks. Effective vulnerability detection is
imperative in this scenario, necessitating robust and automated methods. Traditional techniques like
fuzzing, symbolic execution, and static analysis, while valuable, often fall short in addressing the
complexities of modern software systems (AFL; Cadar et al., 2008).

In this context, Large Language Models (LLMs) such as GPT-3.5 and GPT-4 have emerged as
promising tools. Noted for their broad generalization and reasoning capabilities, these models have
shown notable success in diverse applications, including the domain of vulnerability detection (Ope-
nAI; Yang et al., 2023b). Yet, the quantitative assessment of their effectiveness in vulnerability
detection is still underexplored.

A significant obstacle in applying LLMs for vulnerability detection is the lack of high-quality, ac-
curate datasets. Prior research shows that existing vulnerability datasets often lack in quality and
accuracy, achieving detection correctness rates as low as 30% to 50% (Croft et al., 2023; Chen et al.,
2023). This not only hampers the ability to effectively evaluate LLMs but also fails to represent
the complexities of real-world software vulnerabilities, which often arise from interactions across
multiple functions and require a comprehensive understanding of the codebase.

To address these challenges, we introduce VulBench, a comprehensive dataset amalgamating data
from various sources, including CTF challenges, MAGMA (Hazimeh et al., 2020), Devign (Zhou
et al., 2019), D2A (Zheng et al., 2021), and Big-Vul (Fan et al., 2020). This dataset offers a blend of
straightforward CTF challenges and more complex real-world CVE vulnerabilities, catering to both
open-source and closed-source software vulnerability detection scenarios. All datasets are expertly
human-labeled, with the CTF and MAGMA datasets additionally providing the necessary context
for vulnerability assessment.

We have designed and conducted a comprehensive evaluation process to assess the vulnerability
detection capabilities of LLMs. Our assessments are grounded on the multi-level vulnerability data

1https://ctf-wiki.org/en/
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provided within these datasets. Employing two approaches—binary classification to determine the
presence of vulnerabilities within functions, and multi-class classification to identify specific types
of function vulnerabilities—we facilitate nuanced and in-depth judgments by the models. This eval-
uative methodology is consistently applied to both deep learning models and static analysis tools,
ensuring a uniform standard of evaluation across different systems and models.

Our main contributions are as follows:

• We conduct the first large-scale study to quantitatively measure the performance of 16
LLMs in the field of vulnerability detection, setting a benchmark against state-of-the-art
deep learning models and static analyzers.

• The introduction of VulBench, a benchmark that addresses the quality issues prevalent
in existing datasets, offering a comprehensive dataset for more accurate evaluations, along
with the new natural language description for the vulnerabilities.

• Unveiling the untapped potential of LLMs in vulnerability detection, our findings provide
new insights and future research directions in this domain.

• We provide the dataset in Anonymous Github to facilitate future work.

This research not only enhances our understanding of LLMs’ application in software security but
also opens up new avenues for advancements in automated vulnerability detection.

2 RELATED WORK

2.1 BACKGROUND FOR VULNERABILITY DETECTION

1 int main() {
2 char buf[10];
3 char str[10];
4 scanf("%5s", str);
5 gets(buf)
6 if(str[9] == ’a’)
7 system("/bin/sh");
8 else
9 puts("Finished!");

10 return 0;
11 }

Listing 1: Vulnerability example with a
‘Stack Overflow’ Vulnerability.

Vulnerability detection is a crucial task in the field of
computer security. Its primary objective is to identify
potential software security threats, thus reducing the
risk of cyber-attacks. A key resource in this effort is
the CVE database (MITRE), which acts as a platform
for monitoring these vulnerabilities.

Three principal techniques are employed in vulnerabil-
ity discovery: fuzzing, symbolic execution, and static
analysis. Fuzzing (AFL) seeks to uncover software
crashes and anomalies by inundating the system with
diverse random inputs. Conversely, symbolic execu-
tion (Cadar et al., 2008) aims to detect irregularities
by simulating multiple application pathways. Finally,
static analysis (Lu et al., 2019; Wu et al., 2021) exam-
ines the code without executing it to identify potential
vulnerabilities.

Integrating deep learning models into vulnerability exploration often involves feeding source code
into the model for classification (Lu et al., 2021; Hanif & Maffeis, 2022). This approach, which
analyzes the code without execution, is generally classified under static analysis. Nevertheless,
significant advancements have also been made in utilizing deep learning models to augment fuzzing
techniques (Shi et al., 2023; Godefroid et al., 2017).

Listing 1 is an example of a vulnerable function. The data in char buf[10] will overflow into
str[10] due to the unsafe usage of gets(buf);. The duty of vulnerability detection is to detect
that potential stack overflow.

2.2 DEEP LEARNING-BASED MODELS FOR VULNERABILITY DETECTION

This research builds upon recent strides in NLP-driven code analysis for vulnerability detection.
CodeXGLUE (Lu et al., 2021) works with CodeBERT on the Devign (Zhou et al., 2019) dataset rep-
resents a key development in assessing source code vulnerability risk. LineVul (Fu & Tantithamtha-
vorn, 2022) extends these insights by applying the same model to the Big-Vul dataset for nuanced
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detection at both function and line levels. Alternatively, VulBERTa (Hanif & Maffeis, 2022) inno-
vates with a RoBERTa (Liu et al., 2019) model tailored for code through a hybrid BPE-tokenization
scheme. The VulDeePecker (Li et al., 2018; Zou et al., 2019; Li et al., 2021) series introduces and it-
eratively refines the idea of utilizing semantically correlated “code gadgets” and BLSTMs for initial
vulnerability identification, then multi-class categorization, and finally precise location via LLVM
IR analysis. ReVeal (Chakraborty et al., 2022) rounds out the landscape by proving that the efficacy
of vulnerability prediction can be enhanced through the integration of semantic information using
gated graph neural networks (GGNN), combined with refined data handling practices.

2.3 LARGE LANGUAGE MODELS FOR VULNERABILITY DETECTION

Previous research (OpenAI) has demonstrated the potential of LLMs for detecting software vul-
nerabilities, although there is a lack of comprehensive vulnerability-focused data. While GPT-3.5
and GPT-4 have been the primary subjects of study, displaying notable capabilities, evaluations of
open-access LLMs are less common. Studies present mixed results (Cheshkov et al., 2023); while
some LLMs performed on par with naive classifiers, others, specifically GPT-4, have shown signifi-
cant advantages over conventional static analysis tools (Noever, 2023). Enhancements to exploit the
multi-round dialogue proficiency of ChatGPT have prompted improved detection methods (Zhang
et al., 2023), and recent advancements (Chan et al., 2023) have fine-tuned LLMs for identifying
diverse vulnerability patterns, indicating a potential for reaching expert-level performance in vul-
nerability management tasks.

2.4 BENCHMARKS FOR LLMS

Open LLM Leaderboard (Beeching et al., 2023) and MMLU (Hendrycks et al., 2021) evaluates
models on science questions, commonsense inference, etc. MT-bench (Zheng et al., 2023) evaluates
chat assistants in aspects of writing, reasoning, code, and so on. Cheshkov et al. (2023) conducts
the evaluation of vulnerability detection capability on the OpenAI GPT series. Besides, there are
several individual datasets (Zheng et al., 2021; Zhou et al., 2019; Chen et al., 2023) for vulnerability
detection.

3 DATASET

Contrary to past works that assemble vast datasets with multiple vulnerability types automatically,
our focus hinges on the enhancement of the accuracy and validity of datasets. We’ve gathered from
multiple sources relatively condensed yet comprehensive CTF datasets detailing all functions in an
executable binary, and real-world datasets providing only partial functions from huge real-world pro-
grams. Although CTF problems don’t originate from the real world, their associated vulnerabilities
typically mirror real-world scenarios, presenting a miniature depiction of the real world.

3.1 DATASET OVERVIEW

The dataset amalgamates multiple sources of vulnerabilities, comprising CTF challenges,
MAGMA (Hazimeh et al., 2020), and three previous vulnerability datasets (Zheng et al., 2021;
Zhou et al., 2019; Fan et al., 2020) with extensively cleaning. They can be mainly divided into three
types of data sets as follows. The overview of the dataset is shown in Table 1 and the containing
vulnerability types are shown in Table 6.

CTF Dataset: In CTF challenges, particularly the PWN category, participants must identify and
exploit program vulnerabilities to get the Flag, which serves as evidence of task completion. Despite
being shorter than vulnerabilities found in real-world CVEs, there’s a significant number of flawed
functions within CTF PWN tasks, encompassing a broad range of potential memory-related issues
flagged within CVEs. This makes it a suitable and basic method for evaluating the LLM.

CVE Dataset: The CVE dataset typically identifies vulnerable functions by comparing changes
made to the code during CVE remediation. This information, derived from real-world software,
includes not just memory leak vulnerabilities typical to CTF scenarios but a broader range of real-
world vulnerabilities, providing a more strenuous test of LLM’s vulnerability detection capabilities.
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Type Obtaining Method Source Features Count #Label

CTF PWN Problem BUUOJ
Raw decompiled code,

108 5
Reversed decompiled code

Real World
CVE Commit Diff

MAGMA
Source code,

100 8
Raw decompiled code

Devign
Source code

70 7
Big-Vul 108 9

Static Analyzer D2A Source code 69 4

Table 1: Composition and source of the dataset, along with the features available for the model and
the count of binaries or functions in the datasets. In the CTF dataset, the count represents the count
of individual binary, and there exist multiple functions in a binary. In real-world datasets, the count
represents the count of individual bugs, and there exist multiple functions in MAGMA. #Label refers
to the number of different types of vulnerabilities used for multi-label classification in each dataset.

Static Analyser Generated Dataset: The dataset of potential vulnerabilities, garnered via static
analysis, is typically produced using specific tools for this analysis. It involves examining the en-
tirety of a project, where possible weak points are detected by the patterns and constraints. Despite
its usefulness, this method usually generates a relatively high rate of false positives.

3.2 DATASET CONSTRUCTION

3.2.1 CTF

We create a dataset for CTF challenges within the PWN category, by selecting problems from the
BUUOJ platform 2. In the CTF, participants are usually only provided with a binary, devoid of
source code. To cater to Language Models such as LLM, which are less adept at handling assem-
bly code directly, we use IDA (Interactive Disassembler) (Hex-Rays) to extract more interpretable
decompiled code for model input. This is further complicated by the characteristics of the binaries
in CTF competitions. They often lack essential debug and symbolization information, leaving them
devoid of meaningful structure and variable definitions.

To mitigate this, we engage in manual reverse engineering to enhance the structure of the decom-
piled code by restoring recognizable constructs, renaming variables, and annotating the size of global
variables. It’s worth noting that, despite acquiring refined decompiled code via manual reverse engi-
neering, the generated decompiled code often bears intrinsic patterns or code snippets characteristic
from the decompiler, which are rare in the LLM’s training set. As such, our efforts should focus on
optimizing the readability of the decompiled code for LLM and evaluate the utility of such manual
interventions in vulnerability detection, instead of aiming to enhance the decompiled code to mirror
the actual source code distribution. We give an example in Section E.1 to demonstrate the difference
between raw decompiled code and manually reversed decompiled code and the challenges of using
decompiled code directly.

As for the metric, aside from the traditional binary classification and multi-class classification, we
describe the root causes of identified vulnerabilities using clear, descriptive natural language expla-
nations over the ambiguous practice of referencing code lines. An example is shown in Table 7.

3.2.2 MAGMA

Our study also adopts the MAGMA fuzzing dataset, a specialized collection created to assess the
ability of fuzzing tools to trigger hidden vulnerabilities. In the fuzzing process, fuzzers create myriad
testcases by mutating inputs randomly and feeding them into the target program. As vulnerabilities
do not consistently lead to program crashes, relying solely on the execution state of the program is
not an ideal method for detecting whether the vulnerability has been triggered. To address this, the
MAGMA dataset includes specialized markers—referred to as ‘canaries’—on the execution paths
towards the location of vulnerability. When a canary’s check returns true, it implies that the vul-
nerability has been triggered. This approach does not depend on the more rigorous occurrence of

2https://buuoj.cn
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program crashes to ascertain the presence of vulnerabilities. When scrutinizing vulnerabilities, we
analyze the security patches and ‘canaries’ to understand the root cause of the flaws. In Section E.2,
we give an example of how we utilize this information.

To enhance the analysis, we provide additional context such as macro expressions and correlatable
functions related to the vulnerability during the analysis. This additional context is used to simulate
a real-world scenario where understanding the relationships between functions can prove pivotal in
identifying security vulnerability so that we can assess the model’s capability when more context
is provided and its resistance to the impact of extraneous information. Also, we provide two input
features for LLM, the source code extracted from project repositories and the decompiled code
extracted from the compiled binary to mimic the scenarios of closed-source software.

3.2.3 DEVIGN, D2A, BIG-VUL

For the purpose of supplementing our research with real-world vulnerability data, we additionally
incorporate three prior datasets. These include the D2A dataset proposed by Zheng et al. (2021),
the Devign dataset introduced by Zhou et al. (2019), and the Big-Vul dataset discussed in Fan et al.
(2020). Nevertheless, we don’t directly employ these datasets in their entirety. Rather, we take
guidance from previous studies to ensure maximum accuracy and reliability within our dataset.

In Croft et al. (2023), a selection of vulnerability functions are randomly sampled from the triad
of datasets. Those are then manually evaluated to ascertain if they represented authentic security
patches within the git commit to mitigate the interfering factors such as non-functional changes
in the same commit and wrongly identified due to unreliable keyword matching or false positives
from static analysis tools. When constructing the dataset, functions verified as true security patches
(Related to fixing the vulnerability) are marked as vulnerable. On the other hand, functions that
don’t qualify as security patches (Related to code cleanup or irrelevant code changes) are designated
as non-vulnerable. Furthermore, we also consider patched functions to be invulnerable.

In the annotation process, for Big-Vul dataset, we fuse the descriptions from their CVE pages with
existing tags to categorize the types and we illustrate the information provided by Big-Vul dataset
and the annotation process in Section E.3. For Devign dataset, it lacks corresponding vulnerability
types, leading to our reliance on CVE descriptions to distinguish the vulnerability types. As for the
D2A vulnerability dataset, which obtained using a static analysis program that automatically notes
the vulnerability type, it has already been tagged by static analysis tools, facilitating our direct reuse.

4 EVALUATION

4.1 SELECTED MODELS & BASELINES

In our experiment, we select a series of large models, including GPT-3.5, GPT-4 and open-access
LLMs comprises variations of Llama2 and those that underwent SFT on Llama2. The full list of
selected models is in Table 5. We host the models on 48 A800 GPUs across 6 nodes and lever-
age vLLM (Kwon et al., 2023) and text-generation-inference (Huggingface) to expedite the model
inference process. We repeat the requests for 5 times for each vulnerability detection task.

For comparison, we select three deep learning models and three rule-based static analysis tools
according to Steenhoek et al. (2023); Lipp et al. (2022) to serve as baselines. The full list and
description are shown in the Section B. We exclude the VulDeeLocator (Li et al., 2021; Zou et al.,
2019) as it requires a lot of human effort to annotate the execution trace and requires the source code
compile-able. Using these, we aim to ascertain the degree of superiority, in terms of vulnerability
detection, the current LLM possesses compared to traditional methods. Especially, the selected deep
learning models can only perform binary classification as it requires retraining to support multi-class
classification, but the size of our dataset is too limited to support it.

4.2 METRIC

Unlike GPT models that boast of an excellent alignment (Ouyang et al., 2022), other models don’t
come equipped with a mechanism to seamlessly output in a standard format. To address this situa-
tion, we employ the two few-shot methods, 2-shots and 5-shots, to insist on a uniform template for
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Figure 1: Few-shot conversation for binary classification (whether a function is vulnerable) and
multi-class classification (which vulnerability does the function have) in CTF dataset. BC stands for
binary classification. MC stands for multi-class classification.

output, making it easier to parse the answer of models. Within all the datasets, we randomly select
the examples that serve as our few-shot instances. The prompts are formatted in the style of a chat to
ensure alignment with the models’ methods. Each dialogue round incorporated a few-shot instance,
with the substantive question introduced only from the third round onwards. Figures 3 and 4 offer a
clear showcase of the 2-shot prompt at work.

During binary classification, the model is programmed to channel outputs as VULNERABLE: NO
or VULNERABLE: YES. Alternately, in multi-class classification scenarios, the model delivers out-
puts as TYPE: [type], where [type] corresponds to a selection from an exhaustive list. To
minimize parsing complications and take stock of the model’s few-shot ability, we take a leaf out
of MT Bench’s (Zheng et al., 2023) playbook, targeting only the final result that complies with
the stipulated format. Model outputs bereft of matching outputs are branded as invalid. Given
that the 5-shots prompt is near 2000 tokens and the context length of Vicuna-33b-v1.3 and
falcon-40b-instruct are limited to 2048 tokens, not all input may fit within the context
length of these models, so we exclude the 5-shot results of these models.

4.3 CTF DATASET

4.3.1 OVERALL PERFORMANCE

We show the result of binary classification and multi-class classification for a single function with an
averaged F1 score over raw decompiled code and manually reversed decompiled code in Figure 1.
The results of the static analyzer and deep learning models are shown in Table 3 and Table 2. The
full result of the CTF dataset is shown in Table 12.

Analysis of the CTF dataset revealed that GPT-4 maintained its acknowledged strong capability in
various arenas—be it binary or multi-class classification—garnering impressive results. However,
the Llama 2 family with RLHF Ouyang et al. (2022); Christiano et al. (2017) does not achieve pro-
jected expectations, suggesting that over-alignment will hurt the capability of the LLM OpenAI.
When compared to the results of the supervised fine-tuned models of the same size, such as the
Platypus or Vicuna, it is seen that these models demonstrated improved performance. Furthermore,
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Table 2: Binary classification results in CTF and real-world datasets on deep-learning-based models.

CTF Real-world
F1 Precision Recall F1 Precision Recall

VulBERTa 0.354 0.350 0.391 0.406 0.456 0.388
LineVul 0.155 0.619 0.187 0.166 0.419 0.193
CodeXGLUE 0.375 0.341 0.617 0.429 0.437 0.462

Table 3: Multi-class classification results in CTF dataset on static analyzer tools, BinAbsInspector
is provided with the binary, flawfinder and cppcheck is proviced with decompiled code.

Raw Decompiled code / Binary Reversed Decompiled code
F1 Precision Recall F1 Precision Recall

flawfinder 0.174 0.229 0.662 0.136 0.178 0.324
cppcheck 0.02 0.029 0.015 0.016 0.010 0.170

BinAbsInspector 0.604 0.652 0.563 / / /

Table 4: Multi-class classification results in MAGMA dataset on static analyzer tools, BinAbsIn-
spector is provided with the binary, flawfinder, and cppcheck are provided with decompiled code
and source code.

Raw Decompiled code / Binary Source Code
F1 Precision Recall F1 Precision Recall

flawfinder 0.064 0.043 0.191 0.052 0.035 0.369
cppcheck 0.069 0.055 0.093 0.096 0.068 0.185

BinAbsInspector 0.011 0.006 0.066 / / /

concerning different quantities of few-shot examples, there is a notable enhancement in the vulner-
ability mining capabilities of most models when comparing 5-shot to 2-shot scenarios.

When comparing with the baselines, static analyzers, and deep learning-based models, the GPT-
3.5 and GPT-4 outperform the best baselines in terms of F1 in binary classification whereas the
open-access models fall behind when compared to VulBERTa and CodeXGLUE. When comparing
open-access models that are trained on identical datasets (eg. Llama 2, Vicuna), we notice that
while the phenomenon of the scaling law persists, enhancements are notably limited. This indicates
that merely augmenting the volume of parameters does not necessarily optimize a model’s capacity
for vulnerability detection adequately. Accordingly, complementing efforts need to be allocated to
enhancing other components, notably the quality of the dataset used. Moreover, in the vulnerabil-
ity detection domain, substantial disparities still exist between models comparable to GPT-3.5 and
large-scale open-access alternatives, despite claims to the contrary.

4.3.2 ABLATION STUDY ON PROVIDED INFORMATION

We conduct a comparison of the model’s capacity when provided with varying types of information.
The lower figure in Figure 8 illustrates the outcome of providing all functions within a binary in
the CTF challenge compared to only a single function is provided. Experimental data revealed
that when provided with reverse-engineered pseudocode, several models, specifically GPT-4, GPT-
3.5, Falcon-40b, and Vicuna, demonstrated improved performance, and a decline is less common. It
suggests these models, much like humans, comprehend well-formatted and readable code better than
merely decompiled code. Interestingly, when comparing performance on giving more context, GPT-
4 showes stable results whether given a single function or the entire binary, while GPT-3.5’s accuracy
decreased when exposed to more functions, suggesting that GPT-4 handles additional context more
effectively. Regarding open-access models, the majority of them have experienced performance
improvements, indicating that given the context allows, acquiring more context can assist the model
in making better judgments. This is true even for datasets like CTF, where vulnerabilities often only
appear within a single function.
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Figure 2: Few-shot conversation for binary classification (whether a function is vulnerable) and
multi-class classification (which vulnerability does the function have) in the real-world dataset.

4.4 REAL-WORLD DATASET

Figure 2 showcases data from the real-world dataset as a collective. Along this, the results of the
static analyzer and deep learning models are shown in Table 4 and Table 2. The full result on the
real-world dataset is shown in Table 13.

As we delve into the challenging area of real-world vulnerability detection, it is evident that all
LLMs, underperform when provided with just a single function. This is due to the fact that a com-
prehensive understanding of the entire program is needed. Despite this, GPT-4 outperforms other
models in scenarios requiring multi-class classifications, where the requisite for high model capa-
bilities is more pronounced. Conversely, performance declines in binary classification scenarios.
But when compared with the deep learning models, the LLM performs relatively worse than them.
Upon examining their predictions in Section 4.5 and H, we discern that their decreased proficiency
often stems from the model’s excessive conservatism—namely, its propensity to yield ‘No Vulnera-
bility’. This tendency contrasts with that of deep learning models, which, when trained on a specific
dataset, strive to make judgments on the input content as far as possible. This may account for
certain disparities between large-scale models and deep learning models.

When considering the single magma functions against those offering a more complete context (as
depicted in the upper figure in Figure 9), there is negligible performance alteration. The LLMs
may find it challenging to discern correctly due to the presence of a large amount of irrelevant
normal coding, consequently undermining performance. The lower figure in Figure 9 extends the
comparison, juxtaposing the magma source code with the decompiled code extracted using IDA —
a comparison that yields similar results. This outcome is out of sync with those recorded in the CTF
competition. We credit this discrepancy to the increased complexity found within the real-world
vulnerability dataset as opposed to the CTF dataset.

4.5 ANALYSIS OF THE MODELS’ PERFORMANCE

In Section H, we have presented and analyzed the performance of models on various datasets. It is
noteworthy that despite the suboptimal performance of all models on real-world datasets, the reasons
for their divergent outcomes are distinct. This includes a common tendency toward conservatism,
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where the models are inclined to identify the absence of vulnerabilities. Notably, models derived
from Reinforcement Learning from Human Feedback (RLHF) exhibit a strong bias towards certain
types of vulnerabilities, highlighting that RLHF may align models more closely with human values
or preferences, yet could also intensify certain biases. This could potentially conflict with RLHF’s
intent to minimize biases related to values or safety, rendering it less suitable for other tasks.

5 DISCUSSION

5.1 EVALUATION ON ROOT CAUSE DESCRIPTION

In this study, we advocate for a vulnerability dataset characterized by natural language. Given
the abundance of results derived from numerous models, manual evaluation of every outcome is
impractical. Further complicating matters, the GPT-4’s limited comprehension of vulnerabilities
restricts its utility as a proficient critic akin to MT Bench (Zheng et al., 2023), thereby undermining
the evaluation of the model’s results. We envisage an expansion of similar datasets, accompanied by
the development of enhanced automated evaluation methodologies.

5.2 LIMITATION OF DECOMPILED CODE

We perform vulnerability detection for closed-source software based on decompiled code, but de-
compiled code itself also has certain limitations, and there will be errors and information loss, pre-
venting the vulnerabilities from being reflected at the decompiled code level. We show a bad case
of decompiled code in Section K. The decompilers must adapt to new compiler-generated assembly
patterns (Basque et al.), which is a challenge beyond the scope of this study. Better yet, assembly
code could be processed directly by an LLM, though its understanding falls short compared to the
original decompiled code. Recent advances in effectively encoding assembly language (Pei et al.,
2023; Wang et al., 2022) might offer a workaround, allowing an LLM to interpret assembly directly,
similar to LLaVA (Liu et al., 2023a), bypassing the need for decompiled code.

5.3 FUTURE FOR VULNERABILITY DETECTION WITH LLM

We illustrate how GPT-4 noticeably surpasses other models on relatively simplistic datasets, such
as CTF, indicative of its certain proficiency in vulnerability mining. Conversely, when considering
the real-world dataset, none of the models, exhibited exceptional vulnerability mining prowess. The
increasing complexity of software necessitates a deeper understanding to conduct effective vulner-
ability research. Enhancing our comprehension of entire projects (Bairi et al., 2023) is crucial to
uncover more significant vulnerabilities. Additionally, tools like static analysis can support LLMs
by providing supplementary data or aiding in challenging tasks (Schick et al., 2023; Yang et al.,
2023a). Moreover, models can act as knowledge repositories, complementing other discovery tech-
niques like fuzzing or static analysis (Li et al., 2023; Liu et al., 2023b).

6 CONCLUSION

In this study, we introduced a comprehensive vulnerability benchmark dataset, VulBench, and
conducted an extensive evaluation of LLMs in the field of software vulnerability detection. Our
research demonstrates that in certain scenarios, LLMs, particularly GPT-4, outperforms traditional
deep learning-based models and static analyzers, especially in CTF datasets. This finding not only
underscores the potential application of LLMs in enhancing software security but also opens new
avenues for future research in automated vulnerability detection.

However, the performance of all models, including LLMs, drops in more complex real-world
datasets. This suggests that while LLMs show promise in handling simplified scenarios, they still
face challenges in understanding and analyzing complex software systems. Future research could
focus on enhancing the ability of LLMs to process complex projects and explore how to synergize
LLMs with other vulnerability detection techniques such as fuzzing or static analysis to maximize
their strengths. In summary, this study paves new paths for understanding and utilizing LLMs to
improve software security, providing valuable insights and directions for the advancement of auto-
mated vulnerability detection technologies.
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Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. Code Llama: Open Foundation Models for Code, August 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language Models Can Teach Themselves
to Use Tools, February 2023.

12

https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/
https://cve.mitre.org


Under review as a conference paper at ICLR 2024

Ji Shi, Zhun Wang, Zhiyao Feng, Yang Lan, Shisong Qin, Wei You, Wei Zou, Mathias Payer, and
Chao Zhang. AIFORE: Smart fuzzing based on automatic input format reverse engineering. In
32nd USENIX Security Symposium (USENIX Security 23), pp. 4967–4984, Anaheim, CA, August
2023. USENIX Association. ISBN 978-1-939133-37-3. URL https://www.usenix.org/
conference/usenixsecurity23/presentation/shi-ji.

B. Steenhoek, M. Rahman, R. Jiles, and W. Le. An empirical study of deep learning models for
vulnerability detection. In 2023 IEEE/ACM 45th International Conference on Software En-
gineering (ICSE), pp. 2237–2248, Los Alamitos, CA, USA, may 2023. IEEE Computer Soci-
ety. doi: 10.1109/ICSE48619.2023.00188. URL https://doi.ieeecomputersociety.
org/10.1109/ICSE48619.2023.00188.

InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities.
https://github.com/InternLM/InternLM, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
July 2023.

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao
Zhang. jTrans: Jump-aware transformer for binary code similarity detection. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 1–13, Virtual
South Korea, July 2022. ACM. ISBN 978-1-4503-9379-9. doi: 10.1145/3533767.3534367.

David Wheeler. Flawfinder, September 2023. URL https://dwheeler.com/flawfinder/.

Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant, and Kangjie Lu. Under-
standing and detecting disordered error handling with precise function pairing. In 30th
USENIX Security Symposium (USENIX Security 21), pp. 2041–2058. USENIX Association, Au-
gust 2021. ISBN 978-1-939133-24-3. URL https://www.usenix.org/conference/
usenixsecurity21/presentation/wu-qiushi.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-GPT for Online Decision Making: Benchmarks and
Additional Opinions, June 2023a.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie
Tang. GPT Can Solve Mathematical Problems Without a Calculator, September 2023b.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual pre-
trained model. In The Eleventh International Conference on Learning Representations (ICLR),
2023. URL https://openreview.net/forum?id=-Aw0rrrPUF.

Chenyuan Zhang, Hao Liu, Jiutian Zeng, Kejing Yang, Yuhong Li, and Hui Li. Prompt-enhanced
software vulnerability detection using chatgpt. arXiv preprint arXiv:2308.12697, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-Bench and Chatbot Arena, July 2023.

13

https://www.usenix.org/conference/usenixsecurity23/presentation/shi-ji
https://www.usenix.org/conference/usenixsecurity23/presentation/shi-ji
https://doi.ieeecomputersociety.org/10.1109/ICSE48619.2023.00188
https://doi.ieeecomputersociety.org/10.1109/ICSE48619.2023.00188
https://github.com/InternLM/InternLM
https://dwheeler.com/flawfinder/
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-qiushi
https://openreview.net/forum?id=-Aw0rrrPUF


Under review as a conference paper at ICLR 2024

Yunhui Zheng, Saurabh Pujar, Burn Lewis, Luca Buratti, Edward Epstein, Bo Yang, Jim Laredo,
Alessandro Morari, and Zhong Su. D2a: A dataset built for ai-based vulnerability detection
methods using differential analysis. In Proceedings of the 43rd International Conference on
Software Engineering: Software Engineering in Practice, ICSE-SEIP ’21, pp. 111–120. IEEE
Press, 2021. ISBN 9780738146690. doi: 10.1109/ICSE-SEIP52600.2021.00020. URL https:
//doi.org/10.1109/ICSE-SEIP52600.2021.00020.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective Vulnera-
bility Identification by Learning Comprehensive Program Semantics via Graph Neural Networks.
Curran Associates Inc., Red Hook, NY, USA, 2019.

Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. µVulDeePecker: A Deep Learning-
Based System for Multiclass Vulnerability Detection. IEEE Transactions on Dependable and
Secure Computing, pp. 1–1, 2019. ISSN 1545-5971, 1941-0018, 2160-9209. doi: 10.1109/
TDSC.2019.2942930.

14

https://doi.org/10.1109/ICSE-SEIP52600.2021.00020
https://doi.org/10.1109/ICSE-SEIP52600.2021.00020


Under review as a conference paper at ICLR 2024

A SELECTED LARGE LANGUAGE MODELS

Table 5 shows the selected LLMs and their corresponding model size. We use the model name on
Huggingface.

Name Size
ChatGLM2-6b (Du et al., 2022; Zeng et al., 2023) 6B
Llama-2-7b-chat-hf (Touvron et al., 2023)

7BVicuna-7b-v1.5 (Chiang et al., 2023)
Vicuna-7b-v1.5-16k
Llama-2-13b-chat-hf

13B
Vicuna-13b-v1.5
Vicuna-13b-v1.5-16k
Baichuan2-13B-Chat (Baichuan, 2023)
Internlm-20b-chat (Team, 2023) 20B
Vicuna-33b-v1.3 33B
CodeLlama-34b-Instruct (Rozière et al., 2023) 34B
Falcon-40b-instruct (Almazrouei et al., 2023) 40B
Llama-2-70b-chat-hf

70B
Platypus2-70B-instruct (Lee et al., 2023)
GPT-3.5 (Ouyang et al., 2022)

/
GPT-4 (OpenAI)

Table 5: Names and sizes of the large models selected in the experiment, matched with their name
on Huggingface.

B SELECTED BASELINES

We have selected three deep learning models and three rule-based static analysis tools according
to Steenhoek et al. (2023); Lipp et al. (2022) to serve as baselines when comparing with the LLMs.
The basic methods of the baselines are shown above.

• LineVul (Fu & Tantithamthavorn, 2022): CodeBERT-based model trained on the Devign
dataset.

• CodeXGLUE (Lu et al., 2021): CodeBERT-based model trained on the Big-Vul dataset.
• VulBERTa (Hanif & Maffeis, 2022): Roberta-based model trained on the Devign dataset

with custom tokenization pipeline.
• Cppcheck (Marjamäki, 2023): using a combination of syntactic and semantic analysis tech-

niques to detect potential vulnerable C/C++ source code.
• Flawfinder (Wheeler, 2023): implements a syntactic analysis technique that scans C/C++

source code to report potential security flaws.
• BinAbsInspector (Keenlab, 2022): a static analyzer works on Ghidra’s Pcode to scan vul-

nerabilities in binaries

C DATASET DETAILS

Table 6 shows the specific types of vulnerabilities contained in each dataset, and in multi-label
classification, the label of each dataset is composed of the vulnerability types of the respective
datasets and No Vulnerability. When we conduct binary classification experiments, our focus
is function-level vulnerabilities, hence we break down complex datasets like CTF and MAGMA into
individual functions for evaluation. For datasets like Devign, D2A, and Big-Vul, which are already
segmented into functions, we directly input them for evaluation, without extra processing.
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Dataset Types of Vulnerabilities

CTF buffer overflow, format string vulnerability, integer overflow, type confusion,
use after free

MAGMA buffer overflow, integer overflow, math error, memory leak, null pointer
dereference, resource exhaustion, type confusion, use after free

Devign buffer overflow, divide by zero, integer overflow, lack of sanity check,
memory leak, null pointer dereference, race condition

Big-Vul buffer overflow, improper control, integer overflow, math error, memory leak,
null pointer dereference, race condition, resource exhaustion, use after free

D2A buffer overflow, integer overflow, null pointer dereference, resource exhaustion

Table 6: The types of vulnerabilities contained in each dataset.

D ILLUSTRATION OF THE NEED OF CONTEXT

We illustrate the need for context instead of only a single function is adequate in vulnerabil-
ity detection in Listing 2, even if there are some patterns matched. kbuf = kzalloc(len,
GFP KERNEL); allocates a memory block. But it returns -EFAULT directly without freeing the
kbuf if copy from iter full(kbuf, len, from) returns 0. It is a common pattern for
memory leak. But we still cannot determine whether it will lead to memory leak until we look inside
the implement of the function copy from iter full cause it may free the memory passed as
parameters if anything goes wrong.

1 static ssize_t qrtr_tun_write_iter(struct kiocb *iocb, struct iov_iter *from)
2 {
3 struct file *filp = iocb->ki_filp;
4 struct qrtr_tun *tun = filp->private_data;
5 size_t len = iov_iter_count(from);
6 ssize_t ret;
7 void *kbuf;
8 kbuf = kzalloc(len, GFP_KERNEL);
9 if (!kbuf)

10 return -ENOMEM;
11 if (!copy_from_iter_full(kbuf, len, from))
12 return -EFAULT;
13 ret = qrtr_endpoint_post(&tun->ep, kbuf, len);
14 return ret < 0 ? ret : len;
15 }

Listing 2: Vulnerable funtion in CVE-2019-19079.
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E EXAMPLE IN EACH DATASET

E.1 CTF DATASET

In Listing 3, we give an example of raw decompiled code from IDA in a CTF binary. With the
removal of symbol information, the initial global variables are now replaced with identifiers that are
represented as addresses; for instance, dword 202050 and unk 202060. Likewise, any infor-
mation regarding structures is removed. The revised way of accessing potential structure member
variables now involves an address offset method, whose representative equivalent is *(( QWORD
*)&unk 202070 + 4 * i). This differs from the previous, more common method which in-
volved direct member name access.

1 int dword_202050;
2 char unk_202060[16];
3 char unk_202070[8];
4 _QWORD qword_202078[17];
5
6 unsigned __int64 sub_B0E()
7 {
8 unsigned int v1; // [rsp+0h] [rbp-10h] BYREF
9 unsigned int i; // [rsp+4h] [rbp-Ch]

10 unsigned __int64 v3; // [rsp+8h] [rbp-8h]
11
12 v3 = __readfsqword(0x28u);
13 if ( dword_202050 > 5 )
14 {
15 puts("You can’t add any more notes!");
16 exit(0);
17 }
18 for ( i = 0; i <= 4 && *((_QWORD *)&unk_202070 + 4 * i); ++i )
19 ;
20 puts("How long is your note?");
21 _isoc99_scanf("%u", &v1);
22 if ( i > 0x80 )
23 {
24 puts("Too long!");
25 exit(0);
26 }
27 *((_QWORD *)&unk_202070 + 4 * i) = 1LL;
28 qword_202078[4 * i] = malloc(v1 + 1);
29 puts("Input your note name and note content:");
30 sub_AD6((char *)&unk_202060 + 32 * i, 21LL);
31 sub_AD6(qword_202078[4 * i], v1);
32 ++dword_202050;
33 puts("Done!");
34 return __readfsqword(0x28u) ˆ v3;
35 }

Listing 3: A single function inside CTF problem t3sec2018 xueba. Decompiled code from
IDA along with used global variables.

We restored the structure and renamed variables of the decompiled code shown in Listing 3, and
the outcomes are showcased in Listing 4. Despite the manual reverse engineering effort, the control
flow was not simplified. Moreover, certain patterns necessitated by compiler operations, such as the
stack overflow canary check indicated by the code line v2 = readfsqword(0x28u);, have
been preserved. The decompiled code references library function names typically used internally
by compilers, such as isoc99 scanf, rather than their more common equivalents, like scanf.
However, the structural reverse engineering has clarified that multiple identifiers - unk 202060,
unk 202070, and qword 202078 - from Listing 3 are, in fact, references to the same structured
variable Note notes[5]. The IDA, which utilizes access patterns to deduce structure, can not
merge these identifiers. This reverse engineering procedure addresses this problem, enhancing the
comprehensibility of the program’s functioning.

Given a more understandable decompile, we can determine the vulnerability inside this function,
and this will serve as the natural language description of the vulnerability. It is shown in Table 7
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1 struct Note
2 {
3 char name[16];
4 __int64 used;
5 char *content;
6 };
7
8 Note notes[5];
9

10 void add_note()
11 {
12 int v0;
13 unsigned int i;
14 unsigned __int64 v2;
15
16 v2 = __readfsqword(0x28u);
17 if ( note_count > 5 )
18 {
19 puts("You can’t add any more notes!");
20 exit(0);
21 }
22 for ( i = 0; i <= 4 && notes[i].used; ++i )
23 ;
24 puts("How long is your note?");
25 _isoc99_scanf("%u", &v0);
26 if ( i > 0x80 )
27 {
28 puts("Too long!");
29 exit(0);
30 }
31 notes[i].used = 1LL;
32 notes[i].content = (char *)malloc((unsigned int)(v0 + 1));
33 puts("Input your note name and note content:");
34 read_str(notes[i].name, 0x15u);
35 read_str(notes[i].content, v0);
36 ++note_count;
37 puts("Done!");
38 }

Listing 4: A single function inside CTF problem t3sec2018 xueba. Manually reversed
decompiled code from IDA along with used global variables.

the name in the Node struct has only a size of 16. But in the statement
read str(notes[i].name, 0x15u);, the attacker can feed at most 0x15 bytes into
notes[i].name, leading to a Buffer-Overflow vulnerability.

Table 7: The natural language description of vulnerability inside Listing 4.

E.2 MAGMA DATASET

1 static int wav_write_header(SF_PRIVATE *psf, int calc_length) {
2 ...
3 #ifdef MAGMA_ENABLE_FIXES
4 /* Make sure we don’t read past the loops array end. */
5 if (psf->instrument->loop_count > ARRAY_LEN(psf->instrument->loops))
6 psf->instrument->loop_count = ARRAY_LEN(psf->instrument->loops);
7 #endif
8 #ifdef MAGMA_ENABLE_CANARIES
9 MAGMA_LOG("%MAGMA_BUG%",

10 apsf->instrument->loop count > ARRAY LEN(psf->instrument->loops));
11 #endif
12 for (tmp = 0; tmp < psf->instrument->loop_count; tmp++) {
13 int type;
14 type = psf->instrument->loops[tmp].mode;
15 ...
16 }
17 ...
18 }

Listing 5: MAGMA example (SND025) with an ‘Out-of-Bound-Read’ Vulnerability.
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In Listing 5, we show a case where we can use the ‘canary’ and the corresponding fixes to
help understand the root cause of the vulnerability in the MAGMA dataset. In each MAGMA
bug, the corresponding source code contains two marco MAGMA ENABLE CANARIES and
MAGMA ENABLE FIXES to check whether the bug is triggered and the fixes for the bug. The code
snippets inside marco MAGMA ENABLE CANARIES will act as the ‘canary’ for checking whether
the vulnerability is triggered during Fuzzing. The code inside marco MAGMA ENABLE FIXES
will serve as the fix for this vulnerability. In this example, we identify the flaw as an ‘Out-of-
Bound-Read’ according to the canary psf->instrument->loop_count > ARRAY_LEN(psf->instrument->

loops) and correlate with subsequent code, that is psf->instrument->loops[tmp].mode.

E.3 BIG-VUL DATASET

In Listing 6, we show an example from Big-Vul dataset to demonstrate how we normalize the ‘CWE
ID’, ‘Summary’, and ‘Vulnerability Classification’ into the label of multi-class classification. In
the original Big-Vul dataset, there are ‘CWE ID’, ‘Summary’, and ‘Vulnerability Classification’
to describe the vulnerability of the function, however, they do not always exist. For example, in
the vulnerable function in Listing 6, it contains ‘CWE ID’ (CWE-416) and ‘Summary’ (Shown
in Table 8 but the ‘Vulnerability Classification’ is absent. Then we can determine that there is a
‘Use-After-Free’ vulnerability in this function.

1 int blk_init_allocated_queue(struct request_queue *q)
2 {
3 WARN_ON_ONCE(q->mq_ops);
4
5 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
6 if (!q->fq)
7 return -ENOMEM;
8
9 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))

10 goto out_free_flush_queue;
11
12 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
13 goto out_exit_flush_rq;
14
15 INIT_WORK(&q->timeout_work, blk_timeout_work);
16 q->queue_flags |= QUEUE_FLAG_DEFAULT;
17
18 /*
19 * This also sets hw/phys segments, boundary and size
20 */
21 blk_queue_make_request(q, blk_queue_bio);
22
23 q->sg_reserved_size = INT_MAX;
24
25 if (elevator_init(q))
26 goto out_exit_flush_rq;
27 return 0;
28
29 out_exit_flush_rq:
30 if (q->exit_rq_fn)
31 q->exit_rq_fn(q, q->fq->flush_rq);
32 out_free_flush_queue:
33 blk_free_flush_queue(q->fq);
34 return -ENOMEM;
35 }

Listing 6: A Big-Vul example (CVE-2018-20856) containing a Use-After-Free vulnerability.

An issue was discovered in the Linux kernel before 4.18.7. In block/blk-core.c, there is
an blk drain queue() use-after-free because a certain error case is mishandled.

Table 8: Summary of Listing 6 in Big-Vul dataset

19



Under review as a conference paper at ICLR 2024

F CASE STUDY

Here we show some cases (1 CTF and 2 real-world cases) where GPT-4 understand the code cor-
rectly and successfully detect the vulnerabilities. The vulnerable functions are shown in Listing 7,
Listing 8 and Listing 10, and the corresponding answers of GPT-4 are shown in Table 9, Table 10,
and Table 11.

F.1 CTF CASE 1

In CTF problem huxiangbei 2019 namesystem shown in Listing 7 and corresponding answer
in Table 9, GPT-4 successfully identify a1[v0] = a1[v0 + 1] will cause two pointers inside
the a1 point to the same memory, resulting the possible Use-After-Free vulnerability.

1 void __fastcall delete_name()
2 {
3 unsigned int v0; // [rsp+Ch] [rbp-4h]
4
5 printf("The id you want to delete:");
6 v0 = read_int();
7 if ( v0 <= 0x13 && a1[v0] )
8 {
9 free(a1[v0]);

10 a1[v0] = 0LL;
11 while ( (int)(v0 + 1) <= 19 )
12 {
13 a1[v0] = a1[v0 + 1];
14 ++v0;
15 }
16 puts("Done!");
17 }
18 else
19 {
20 puts("Invalid id !!");
21 }
22 }

Listing 7: Function delete name in CTF challenge huxiangbei 2019 namesystem.

Output:
The code has a potential Use-After-Free vulnerability. The vulnerability occurs in the delete name() func-
tion:
void fastcall delete name()
{

...
free(a1[v0]);
a1[v0] = 0LL;
while ( (int)(v0 + 1) ≤ 19 )
{

a1[v0] = a1[v0 + 1];
++v0;

}
...

}
After freeing the memory at a1[v0], the function shifts a1[v0 + 1] to a1[v0] without checking if a1[v0 + 1]
is NULL. This could lead to a use-after-free vulnerability when the program accesses the freed memory in
subsequent operations.

TYPE: Use-After-Free

Table 9: GPT-4’s Answer for Listing 7 in Multi-class Classification.
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F.2 REAL WORLD CASE 1

In function from real-world program ‘tcpdump’ shown in Listing 8, the LLM identifies the difference
between the first call to l strnstart and the subsequent l strnstart, and report that as a
possible vulnerability. However, to verify the exploitability of this vulnerability, we need to examine
the function l strnstart. The developer may check the length inside l strnstart as shown
in Listing 9.

1 beep_print(netdissect_options *ndo, const u_char *bp, u_int length)
2 {
3
4 if (l_strnstart("MSG", 4, (const char *)bp, length)) /* A REQuest */
5 ND_PRINT((ndo, " BEEP MSG"));
6 else if (l_strnstart("RPY ", 4, (const char *)bp, length))
7 ND_PRINT((ndo, " BEEP RPY"));
8 else if (l_strnstart("ERR ", 4, (const char *)bp, length))
9 ND_PRINT((ndo, " BEEP ERR"));

10 else if (l_strnstart("ANS ", 4, (const char *)bp, length))
11 ND_PRINT((ndo, " BEEP ANS"));
12 else if (l_strnstart("NUL ", 4, (const char *)bp, length))
13 ND_PRINT((ndo, " BEEP NUL"));
14 else if (l_strnstart("SEQ ", 4, (const char *)bp, length))
15 ND_PRINT((ndo, " BEEP SEQ"));
16 else if (l_strnstart("END", 4, (const char *)bp, length))
17 ND_PRINT((ndo, " BEEP END"));
18 else
19 ND_PRINT((ndo, " BEEP (payload or undecoded)"));
20 }

Listing 8: A real-world function named beep print.

Output:
The function has a buffer overflow vulnerability due to the code:
if (l strnstart("MSG", 3, (const char *)bp, length)) /* A REQuest */

ND PRINT((ndo, " BEEP MSG"));

The issue lies in the second argument of l strnstart() function, which should be 3 instead of 4. This
is because the string "MSG" has a length of 3, not 4. If the length of bp is less than 3, the function will
read beyond the buffer boundary, leading to a buffer overflow vulnerability.

TYPE: Buffer-Overflow

Table 10: GPT-4’s Answer for Listing 8 in Multi-class Classification.

1 static int
2 l_strnstart(netdissect_options *ndo, const char *tstr1, u_int tl1,
3 const char *str2, u_int l2)
4 {
5 if (!ND TTEST LEN(str2, tl1)) {
6 /* We don’t have tl1 bytes worth of captured data
7 * for the string, so we can’t check for this
8 * string. */
9 return 0;

10 }
11 if (tl1 > l2)
12 return 0;
13 return (strncmp(tstr1, str2, tl1) == 0 ? 1 : 0);
14 }

Listing 9: l strnstart function called inside beep print. The commit (guyharris) to fix
this CVE did not modify how the l strnstart is called, instead, the developer add an extra
check on length.
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F.3 REAL WORLD CASE 2

In function from real-world program V8 shown in Listing 10, GPT-4 uses its knowledge to identify
that context ->CallFunction will potentially retain a reference to the object, yielding a Use-
After-Free vulnerability. This requires that the LLM has internal knowledge about the side effects of
the calling function. However, when dealing with a new project, it requires that the called function
is present in the context as the LLM does not know the project.

1 void CallbackAndDie(bool succeeded) {
2 v8::Isolate* isolate = context_->isolate();
3 v8::HandleScope handle_scope(isolate);
4 v8::Local<v8::Value> args[] = {v8::Boolean::New(isolate, succeeded)};
5 context_->CallFunction(v8::Local<v8::Function>::New(isolate, callback_),
6 arraysize(args), args);
7 delete this;
8 }

Listing 10: A real-world function named CallbackAndDie.

Output:
The code snippet appears to be a callback function for a V8 JavaScript engine context. It
creates a handle scope and calls a function with the given arguments. After the function
call, the object is deleted. There is a potential Use-After-Free vulnerability if the callback
function retains a reference to the object and attempts to access it after the “delete this” statement.

TYPE: Use-After-Free

Table 11: GPT-4’s Answer for Listing 10 in Multi-class Classification.

F.4 REAL WORLD CASE 3

In the function from a real-world Lua program shown in Listing 11, all LLMs fail to identify the
integer overflow vulnerability. This vulnerability is still challenging for experienced security re-
searchers, which requires LLMs to understand how integers are stored in computers, and to realize
that the logic of this code segment fails to consider the only corner case: the result of taking the nega-
tion of INT MIN is still INT MIN. When the findvararg function is called, if n equals INT MIN,
it leads to integer overflow in the expression *pos=ci->func - nextra + (n-1).

1 static const char *findvararg(CallInfo *ci, int n, StkId *pos) {
2 if (clLvalue(s2v(ci->func))->p->is_vararg) {
3 int nextra = ci->u.l.nextraargs;
4 if (n <= nextra) {
5 *pos = ci->func - nextra + (n - 1);
6 return "(vararg)"; /* generic name for any vararg */
7 }
8 }
9 return NULL; /* no such vararg */

10 }
11
12 const char *luaG_findlocal(lua_State *L, CallInfo *ci, int n, StkId *pos) {
13 StkId base = ci->func + 1;
14 const char *name = NULL;
15 if (isLua(ci)) {
16 if (n < 0) /* access to vararg values? */
17 return findvararg(ci, -n, pos);
18 else
19 name = luaF_getlocalname(ci_func(ci)->p, n, currentpc(ci));
20 }
21 /* 12 lines here */
22 if (pos)
23 *pos = base + (n - 1);
24 return name;
25 }

Listing 11: A real-world integer overflow vulnerability in lua.
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G ILLUSTRATION OF FEW SHOT LEARNING CONVERSATION

To ease the parsing process, we use a few shot learning to teach the models how to answer the
question in a predefined format, especially those models not aligned to follow human instruction
well, such as Baichuan2, internlm, and falcon. We show how we format the 2-shot conversation
template in Figure 3 and Figure 4. In each few-shot conversation, we teach the model to follow the
format as VULNERABLE: NO, VULNERABLE: YES or TYPE: [type].

Please note that the following codes and corresponding example answers for only for illustration.

Please review and analyse the following code, determine whether it is vulnerable.
Think step by step. Answer as "VULNERABLE: YES/NO".
beep_print(netdissect_options *ndo, const u_char *bp, u_int length)
{

if (l_strnstart("MSG", 4, (const char *)bp, length)) /* A REQuest */
ND_PRINT((ndo, " BEEP MSG"));

else if (l_strnstart("RPY ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP RPY"));

else if (l_strnstart("ERR ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP ERR"));

else if (l_strnstart("ANS ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP ANS"));

else if (l_strnstart("NUL ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP NUL"));

else if (l_strnstart("SEQ ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP SEQ"));

else if (l_strnstart("END", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP END"));

else
ND_PRINT((ndo, " BEEP (payload or undecoded)"));

}

The function has a buffer overflow vulnerability due to the code:
if (l_strnstart("MSG", 4, (const char *)bp, length)) /* A REQuest */

ND_PRINT((ndo, " BEEP MSG"));
If the length of bp is less than 4, the function will read beyond the buffer 
boundary, leading to a buffer overflow vulnerability.

VULNERABLE: YES

Please review and analyse the following code, determine whether it is vulnerable. 
Think step by step. Answer as "VULNERABLE: YES/NO".
static int announce_self_create(uint8_t *buf, uint8_t *mac_addr)
{

uint32_t magic = EXPERIMENTAL_MAGIC;
uint16_t proto = htons(ETH_P_EXPERIMENTAL);
/* FIXME: should we send a different packet (arp/rarp/ping)? */
memset(buf, 0, 64);
memset(buf, 0xff, 6); /* h_dst */
memcpy(buf + 6, mac_addr, 6); /* h_src */
memcpy(buf + 12, &proto, 2); /* h_proto */
memcpy(buf + 14, &magic, 4); /* magic */
return 64; /* len */

}

The memset function is used to initially set the entire buffer to zero, ensuring 
there's no lingering junk data. The function doesn't take any untrusted inputs from 
the outside. The only input is mac_addr, and we assume the code calling this 
function ensures it's a valid MAC address. There is no apparently vulnerability in 
the function.

VULNERABLE: NO

Few-shot Conversation

Please review and analyse the following code, determine whether it is vulnerable.
Think step by step. Answer as "VULNERABLE: YES/NO".
[Code to be evaluated]

User Conversation

Figure 3: Few-shot conversation for binary classification (whether a function is vulnerable). Texts
in the green box are the queries, and texts in the yellow box are the model’s answers.

23



Under review as a conference paper at ICLR 2024

Please review and analyse the following code, determine whether it has vulnerabilities in the 
following type list.
[Possible Types of Vulnerabilities]
Think step by step. Answer as [Your Explanation] TYPE: [Vulnerability TYPE].
beep_print(netdissect_options *ndo, const u_char *bp, u_int length)
{

if (l_strnstart("MSG", 4, (const char *)bp, length)) /* A REQuest */
ND_PRINT((ndo, " BEEP MSG"));

else if (l_strnstart("RPY ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP RPY"));

else if (l_strnstart("ERR ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP ERR"));

else if (l_strnstart("ANS ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP ANS"));

else if (l_strnstart("NUL ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP NUL"));

else if (l_strnstart("SEQ ", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP SEQ"));

else if (l_strnstart("END", 4, (const char *)bp, length))
ND_PRINT((ndo, " BEEP END"));

else
ND_PRINT((ndo, " BEEP (payload or undecoded)"));

}

The function has a buffer overflow vulnerability due to the code:
if (l_strnstart("MSG", 4, (const char *)bp, length)) /* A REQuest */

ND_PRINT((ndo, " BEEP MSG"));
If the length of bp is less than 4, the function will read beyond the buffer 
boundary, leading to a buffer overflow vulnerability.

TYPE: Buffer-Overflow

Please review and analyse the following code, determine whether it has vulnerabilities in the 
following type list.
[Possible Types of Vulnerabilities]
Think step by step. Answer as [Your Explanation] TYPE: [Vulnerability TYPE].
static int announce_self_create(uint8_t *buf, uint8_t *mac_addr)
{

uint32_t magic = EXPERIMENTAL_MAGIC;
uint16_t proto = htons(ETH_P_EXPERIMENTAL);
/* FIXME: should we send a different packet (arp/rarp/ping)? */
memset(buf, 0, 64);
memset(buf, 0xff, 6); /* h_dst */
memcpy(buf + 6, mac_addr, 6); /* h_src */
memcpy(buf + 12, &proto, 2); /* h_proto */
memcpy(buf + 14, &magic, 4); /* magic */
return 64; /* len */

}

The memset function is used to initially set the entire buffer to zero, ensuring 
there's no lingering junk data. The function doesn't take any untrusted inputs from 
the outside. The only input is mac_addr, and we assume the code calling this 
function ensures it's a valid MAC address.There is no apparently vulnerability in 
the function.
TYPE: No-Vulnerability

Few-shot Conversation

Please review and analyse the following code, determine whether it has vulnerabilities in the 
following type list.
[Possible Types of Vulnerabilities]
Think step by step. Answer as [Your Explanation] TYPE: [Vulnerability TYPE].
[Code to be evaluated]

User Conversation

Figure 4: Few-shot conversation for multi-class classification (determine a function’s vulnerability
type). Texts in the green box are the queries, and texts in the yellow box are the model’s answers.
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H ANALYSIS OF THE MODELS’ PERFORMANCE

H.1 CONFIGUATION

In Figures 5, 6, and 7, we present the confusion matrices for select representative models. Within
these matrices, each row enumerates the percentage of accurate or inaccurate classification of a
specific vulnerability type against each predicted category. We demonstrate the results on the CTF,
Big-Vul, and MAGMA datasets. As for the CTF and MAGMA datasets, we mix the ‘single’ function
result and ‘all’ functions result. In the table, the row labeled ‘No Vulns’ indicates that the function
is devoid of vulnerabilities. The column titled ‘Invalid’ quantifies the percentage wherein the model
outputs results that are incompatible with the expected template outlined in Section 4.2.

H.2 MODELS’S BEHAVIOUR

Upon analyzing the CTF dataset, as shown in Figure 5, both GPT-4 and GPT-3.5 predominantly yield
correct responses with GPT-4 slightly ahead. However, GPT-3.5 tends to answer ‘No Vulnerability’
in the MAGMA and Big-Vul datasets, respectively. GPT-4’s performance, while cautious, is marred
by a tendency to incorrectly flag potential ‘Null Pointer Dereference’ and ‘Memory Leak’ issues due
to the lack of additional context, resulting in hypersensitivity and the misconception.

The Llama 2 models, despite using similar datasets for pretraining and the same RLHF methods for
alignment, display starkly different behaviors across datasets. The 70B consistently predicts ‘Buffer
Overflow’ on the CTF dataset, while the 13B variant exhibits a random pattern in its responses,
showing a marginal tendency towards ‘Use After Free’. This bias is more evident on the Big-Vul
and MAGMA datasets, which is also replicated in the Baichuan2 and Internlm models.

Meanwhile, regarding the Vicuna and Platypus models, which are fine-tuned on the Supervised Fine-
Tuning (SFT) datasets, there is a greater propensity to output ‘No Vulnerability’ when uncertain.
Platypus, in particular, despite leveraging a substantial corpus of GPT-4 generated data, fails to
reach the level of GPT-4, exhibiting behaviors that are not entirely consistent with GPT-4 but are
noticeably conservative, frequently returning ‘No Vulnerability’.

H.3 CAPABILITIES ON DIFFERENT VULNERABILITIES

In conducting a specific analysis of a model’s capacity for different kinds of vulnerabilities, it has
been observed that in CTF, the model exhibits optimal performance in identifying ‘Integer Overflow’
vulnerability, almost always recognizing them correctly. Simultaneously, the model is relatively
proficient in handling ‘Format String’ vulnerability. Apart from the models having a significant bias,
most models struggle with type confusion during CTF encounters. This may be in part because the
models are pre-trained with considerably fewer examples of type confusion, and also because type
confusion often occurs in multiple functions, which place higher demands on the model’s capability.

However, in the MAGMA and Big-Vul datasets, Platypus2, which utilizes significant training cor-
pus derived from GPT-4, demonstrate certain detection capabilities for Buffer Overflow, possibly
because examples of ‘Buffer Overflow’ are more common in the standard internet corpus. Nev-
ertheless, these models do not perform as well with other types of vulnerabilities. Surprisingly,
Llama 2 70B, which has a tendency to output ‘Buffer Overflow’, shows a remarkably good result in
detecting ‘Race Conditions’ in the Big-Vul dataset, presenting an intriguing phenomenon.

H.4 MODEL BIAS

In response to the considerable biases toward certain vulnerabilities observed across various models,
we can discern that these biases—manifest in models such as Llama 2 Chat, Baichuan2, and In-
ternLM—are likely interconnected with the RLHF. During the RLHF process, it’s conceivable that
models might develop a propensity for outputs that align more with human values or preferences
rather than reflecting the ultimate truth—especially when they lack the capability to independently
evaluate the flaws. This tendency to err towards human-like prejudice when presenting a vulnerabil-
ity is evident. Conversely, models derived through SFT exhibit significantly another biases, tending
to be comparatively conservative.
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Figure 5: Confusion matrix of different models on the CTF dataset
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Figure 6: Confusion matrix of different models on the Big-Vul dataset
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Figure 7: Confusion matrix of different models on the MAGMA dataset
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I FULL EVALUATION RESULT

We show the full evaluation result in Table 12 and Table 13.

Table 12: Full evaluation results on CTF dataset

Size Model Type
Binary Classification Multi-class Classification

F1 Precision Recall F1 Precision Recall

6B ChatGLM2
2 Shot 0.281 0.177 0.672 0.103 0.182 0.237
5 Shot 0.255 0.168 0.529 0.081 0.181 0.135

7B

Llama-2
2 Shot 0.291 0.171 0.966 0.104 0.170 0.179
5 Shot 0.288 0.171 0.917 0.099 0.172 0.190

Vicuna
2 Shot 0.310 0.188 0.882 0.135 0.195 0.302
5 Shot 0.325 0.198 0.902 0.128 0.203 0.282

Vicuna-16k
2 Shot 0.331 0.234 0.567 0.164 0.212 0.301
5 Shot 0.335 0.232 0.601 0.147 0.208 0.215

13B

Llama-2
2 Shot 0.291 0.172 0.948 0.133 0.184 0.279
5 Shot 0.302 0.181 0.916 0.103 0.187 0.192

Baichuan2
2 Shot 0.294 0.178 0.845 0.189 0.202 0.198
5 Shot 0.289 0.170 0.972 0.068 0.186 0.217

Vicuna
2 Shot 0.336 0.246 0.530 0.188 0.203 0.208
5 Shot 0.359 0.257 0.592 0.145 0.210 0.173

Vicuna-16k
2 Shot 0.329 0.236 0.545 0.169 0.195 0.226
5 Shot 0.336 0.238 0.571 0.167 0.202 0.211

20B InternLM
2 Shot 0.304 0.190 0.762 0.158 0.188 0.206
5 Shot 0.325 0.206 0.768 0.142 0.202 0.242

33B Vicuna
2 Shot 0.333 0.213 0.768 0.168 0.205 0.267
5 Shot / / / / / /

34B CodeLlama
2 Shot 0.319 0.224 0.553 0.148 0.207 0.226
5 Shot 0.340 0.239 0.590 0.120 0.214 0.287

40B Falcon
2 Shot 0.318 0.208 0.675 0.193 0.206 0.262
5 Shot / / / / / /

70B
Llama-2

2 Shot 0.295 0.173 0.993 0.100 0.197 0.340
5 Shot 0.309 0.183 0.989 0.098 0.196 0.321

Platypus
2 Shot 0.352 0.289 0.455 0.234 0.246 0.236
5 Shot 0.364 0.288 0.504 0.228 0.248 0.221

/
GPT-3.5

2 Shot 0.440 0.327 0.689 0.305 0.307 0.381
5 Shot 0.429 0.340 0.590 0.296 0.305 0.308

GPT-4
2 Shot 0.466 0.319 0.861 0.296 0.300 0.439
5 Shot 0.483 0.356 0.750 0.379 0.357 0.489
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Table 13: Full evaluation results on the real-world dataset

Size Model Type
Binary Classification Multi-class Classification

F1 Precision Recall F1 Precision Recall

6B ChatGLM2-6b
2 Shot 0.344 0.455 0.301 0.063 0.125 0.060
5 Shot 0.274 0.456 0.218 0.065 0.134 0.073

7B

Llama-2
2 Shot 0.588 0.463 0.891 0.106 0.150 0.124
5 Shot 0.566 0.458 0.823 0.115 0.156 0.139

Vicuna
2 Shot 0.413 0.478 0.382 0.111 0.171 0.113
5 Shot 0.470 0.465 0.495 0.138 0.201 0.129

Vicuna-16k
2 Shot 0.144 0.454 0.088 0.109 0.148 0.101
5 Shot 0.165 0.457 0.101 0.095 0.141 0.079

13B

Llama-2
2 Shot 0.527 0.453 0.706 0.083 0.140 0.110
5 Shot 0.555 0.475 0.725 0.089 0.174 0.150

Baichuan2
2 Shot 0.525 0.467 0.659 0.124 0.157 0.130
5 Shot 0.588 0.450 0.936 0.101 0.188 0.168

Vicuna
2 Shot 0.114 0.476 0.067 0.107 0.143 0.116
5 Shot 0.133 0.510 0.080 0.093 0.189 0.078

Vicuna-16k
2 Shot 0.063 0.440 0.035 0.090 0.124 0.094
5 Shot 0.073 0.360 0.042 0.093 0.143 0.089

20B InternLM
2 Shot 0.419 0.496 0.392 0.135 0.151 0.136
5 Shot 0.453 0.491 0.455 0.132 0.154 0.127

33B Vicuna
2 Shot 0.411 0.487 0.406 0.159 0.191 0.155
5 Shot / / / / / /

34B CodeLlama
2 Shot 0.297 0.487 0.218 0.078 0.150 0.096
5 Shot 0.243 0.438 0.178 0.073 0.140 0.119

40B Falcon
2 Shot 0.305 0.465 0.251 0.155 0.183 0.154
5 Shot / / / / / /

70B
Llama-2

2 Shot 0.528 0.468 0.708 0.126 0.175 0.189
5 Shot 0.581 0.472 0.837 0.118 0.209 0.237

Platypus2
2 Shot 0.166 0.562 0.102 0.119 0.138 0.131
5 Shot 0.212 0.432 0.149 0.135 0.194 0.130

/
GPT-3.5

2 Shot 0.128 0.490 0.076 0.088 0.111 0.094
5 Shot 0.131 0.437 0.079 0.103 0.113 0.123

GPT-4
2 Shot 0.187 0.501 0.120 0.159 0.187 0.207
5 Shot 0.175 0.509 0.111 0.136 0.157 0.141
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J ABLATION STUDY ON PROVIDED INFORMATION

We conduct some ablation studies on how different information provided to LLMs is affecting their
performance. We compare the impact of manually reversed decompiled code in the CTF dataset, the
impact of only decompiled code provided in the MAGMA dataset, and the impact of larger context
provided instead of only a single function provided in both the CTF and MAGMA datasets. The
result of the CTF dataset is shown in Figure 8 and the result of the MAGMA dataset is shown in
Figure 9.
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Figure 8: CTF’s F1 score averaged over 2 types of shots (2 shots and 5 shots) and 2 types
of classification (Binary classification and multi-class classification). Upper: Comparison be-
tween raw decompiled code from IDA (CTF-IDA) and manually reversed decompiled code
(CTF-Reversed). Lower: Comparison between only a single function is provided to the
LLM (CTF-Single-Function) and all functions in a binary are provided to the LLM
(CTF-All-Function).
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Figure 9: MAGMA’s F1 score averaged over 2 types of shots (2 shots and 5 shots).
Upper: Comparison between raw decompiled code (MAGMA-Binary) and source code
(MAGMA-Source). Lower: Comparison between only a single function is provided to the LLM
(MAGMA-Single-Function) and all functions related to the vulnerability are provided to the
LLM (MAGMA-All-Function).
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K BAD CASES OF DECOMPILED CODE

In this section, we show two common examples where IDA fails to recover the semantics of the
original source code by decompiled code. As shown in Figure 10, line v0 = alloca(...);
in decompiled code actually corresponds to sub rbp, rax in assembly code, which means that
the decompiled code translates the assembly code incorrectly, ignoring that it is a dynamic stack
allocation. And in Figure 11, IDA 7.6 cannot understand the switch statement generated by a
newer compiler, resulting completely wrong decompiled code (A bare jmp rax). This requires
extra manuall effect to fix in a newer IDA.

unsigned __int64 calc_sum()
{

void *v0; // rsp
__int64 *v1; // rbx
__int64 i; // [rsp+0h] [rbp-30h] BYREF
__int64 v4; // [rsp+8h] [rbp-28h]
__int64 *v5; // [rsp+10h] [rbp-20h]
unsigned __int64 v6; // [rsp+18h] [rbp-18h]

v6 = __readfsqword(0x28u);
v0 = alloca(16 * ((4 * n + 30) / 0x10uLL));
v5 = &i;
for ( i = 0LL; i >= 0 && i < n; ++i )
{

printf("num[%ld] = ", i + 1);
v1 = &v5[i];
*v1 = read_long();

}
v4 = 0LL;
for ( i = 0LL; i < n; ++i )

v4 += v5[i];
printf("SUM = %ld\n", v4);
return __readfsqword(0x28u) ^ v6;

}

push rbp
mov rbp, rsp
push rbx
sub rsp, 28h
mov rax, fs:28h
mov [rbp+var_18], rax
xor eax, eax
mov rax, cs:n
shl rax, 2
lea rdx, [rax+0Fh]
mov eax, 10h
sub rax, 1
add rax, rdx
mov ecx, 10h
mov edx, 0
div rcx
imul rax, 10h
sub rsp, rax
mov rax, rsp
add rax, 0Fh
shr rax, 4
shl rax, 4
mov [rbp+var_20], rax
......

Decompile	code Assembly	code

Figure 10: Decompiled code and assembly code of function calc sum in CTF challegnge
zer0pts 2020 protrude.

__int64 __fastcall lua_gc(__int64 a1, 
unsigned int a2)
{

if ( a2 <= 0xB )
__asm { jmp rax }

return lua_gc_cold();
}

__int64 __fastcall lua_gc(lua_State_0 
*L, unsigned int a2, int a3)
{

global_State_0 *l_G; // rbx
__int64 result; // rax
l_mem v5; // rsi
_BOOL4 v6; // [rsp+Ch] [rbp-1Ch]

l_G = L->l_G;
switch ( a2 )
{

case 0u:
l_G->gcrunning = 0;
result = a2;
break;

...

endbr64
push rbp
push rbx
sub rsp, 18h
mov rbx, [rdi+18h]
cmp esi, 0Bh
ja lua_gc_cold
lea rcx, unk_2A320
mov eax, esi
mov rbp, rdi
movsxd rax, dword ptr
[rcx+rax*4]
add rax, rcx
db 3Eh
jmp rax
mov esi, 2
call luaC_changemode
xor eax, eax
add rsp, 18h
pop rbx
pop rbp
retn
......

Decompile	code Assembly	code

IDA	7.6

IDA	8.3

Figure 11: Decompiled code and assembly code of function containing switch in IDA Pro 7.6 and
8.3.
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