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ABSTRACT

Pretraining deep learning models on a large corpus of unlabelled data using self
supervised learning approaches can be an efficient mitigation strategy to deal with
the lack of annotated data. We proposed to use a siamese framework for the pre-
training of a convolutional neural network on the Computing in Cardiology 2021
dataset therefore making it invariant to ECG lead configuration changes. The ob-
tained representation was then trained and tested on a heartbeat classification task
on the MIT BIH Arrhythmia database, and on an external independent set, namely
the INCART database. The proposed model reached a median F1 score of 0.89
on the MIT BIH Arrhythmia database comparable to the 0.90 F1 score obtained
without pretraining. However, the pretrained model obtained a median F1 score
of 0.74 on average over the different leads, compared to 0.53 the model without
pretraining. The proposed pretraining approach, leveraging the availability of rela-
tively large database of un-(or weakly)annotated ECG data, allows for the training
of more generalisable, lead-agnostic, heartbeat classification models. Such an ap-
proach would ensure avoiding overfitting complex deep learning models on the
small MIT-BIH arrhythmia database.

1 INTRODUCTION

Electrocardiogram (ECG) signals represent the electrical activity of the heart, and are used routinely
by cardiologist and clinicians to diagnose cardiovascular diseases. A ventricular heartbeat (V) (cf.
Figure[I)), is an abnormal heart contraction, resulting from the instantaneous depolarisation of ventri-
cle cells. Frequent V heartbeats (Al-Khatib et al.,|2018)) are related to other types of cardiovascular
diseases and monitoring them can be useful for therapeutic aims (Lustgarten et al., 2020). These
heartbeats can be visually identified on the ECG signal, and several automated methods have been
developed (Chazal et al., [2004). More recently, deep learning approaches were tested for heartbeat
classification (Zhang et al., 2021)). However, there is a lack of large fully annotated data. The most
popular widely available database, MIT BIH Arrhythmia database (Moody & Mark, [2001), con-
tains only 48 recordings of 30-minute long 2 leads ECG signals. Therefore, even if this database
includes tens of thousands of heartbeats, the recordings only provide a very limited amount of dif-
ferent heartbeat morphologies as they are sourced form few different subjects. Another limitation of
the MIT-BIH arrhythmia database (Moody & Markl |2001; |[Hong et al., [2020), apart from containing
few patients, is that it contains only two-lead ECG signals, which means that the models trained
on this dataset may not generalise well on other lead configurations. Self-supervised learning may
be a way to circumvent this lack of labeled data. Among self-supervised approaches, siamese net-
works consist in sharing the weights of neural networks provided with several different views of
a given input (Chen & Hel [2021). By doing so, the networks are trained to become invariant to
the transformations between these views. It has been shown that the 12 ECG leads are not equally
important to detect different heart diseases (Green et al., 2007) and ECG classifiers can be affected
by the lead positions and configurations (Reyna et al [2021;|2022). Several approaches have been
attempted to develop lead or patient invariant data representations, and have been successfully ap-
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Figure 1: Illustration of N and V heartbeats before and after preprocessing.

plied for heart disease detection (Kiyasseh et al.| 2021} |Oh et al., [2022)). However, these approaches
were considering a whole ECG recording and not analysing individual heartbeats.

Our contributions are: (i) We pretrained a deep neural network following a siamese scheme on
a large ECG database to be invariant to ECG lead configurations; (ii) We used the obtained data
representation to develop a heartbeat classifier on a scarce database and compared it to a randomly
initialized neural network; (iii) We improved the generalisability of this heartbeat classifier, and
robustness to ECG lead configuration changes.

2 METHODS

2.1 DATASETS

The PhysioNet Computing in Cardiology 2021 challenge dataset (CinC) (Reyna et al., [2022) was
used for pre-training. ECG signals were provided with a SNOMED-CT code diagnosis for each
recording, but no individual heartbeat annotation was provided. For monitoring purpose during
training, the CinC dataset was randomly split into a training set containing 80% of the recordings
while 20% of the recordings were kept for validation. Recordings from the INCART database (Tiho-
nenko et al.,2008)) initially included in the CinC dataset were removed (to preserve independence of
the testing database), resulting in a pretraining dataset including 88179 ECG recordings. A heartbeat
classification (normal beats N vs V beats) task was performed as the downstream evaluation. The
MIT-BIH arrhythmia database (Moody & Mark| 2001) (MITAR), containing 48 30-minute record-
ings of 2-lead ECGs with individual heartbeat annotations was used for validation and testing. The
data was split in two sets (DS1/DS2) following (Chazal et al., 2004)), ensuring patient stratification
between sets. During training, DS1 was split into 50% train, and 50% validation sets, stratified by
heartbeat class. The generalisability of the model and the impact of lead positions were assessed on
the INCART database (Tihonenko et al., 2008)), containing 12-lead ECG recordings from 74 subjects
with individual heartbeat annotations.

2.2 ARCHITECTURE

The proposed architecture, inspired by (Vogt, |2019; |Aublin et al.| 2022)), consists in an 11-layer
CNN detailed in Table 3] of the appendix [A] followed by a global max pooling layer leading to 256
features. A projection head and a predictor were added following (Chen et al., [2020; |Chen & He,
2021)) for the pretraining purpose. For the downstream task, the projection head and predictor were
removed and replaced by a single linear layer followed by a softmax activation function.

2.3 PREPROCESSING

Preprocessing of the input consisted in band-pass filtering between 0.5 and 60 Hz, and resampling
to 250Hz. As no heartbeat annotations are available on the CinC Dataset, a QRS detector (Pan &
Tompkins| |[1985) was run to get an estimate of QRS positions. On MITAR, QRS positions were
obtained from the manual annotations. For each heartbeat, a time-window of 1s before the QRS
position, and 0.2s after was extracted, resulting in a 301-sample input vector.

The transformation used for the pretraining task consisted in inputing 2 different (randomly selected)
views of each heartbeat. For the downstream task on MITAR, analysis was only performed on the



Published as a conference paper at ICLR 2023

Name Prgtrained Train . Initial legrning rate | Initial .learning rate
weights Embedding | (Embedding) (Classifier)
randinit no yes 1.1073 1.1073
randfeatures | no no - 1.1073
pretrained | yes yes 1.1073 1.1073
finetune yes no - 1.1073
2Ir yes yes 1.107° 1.1072
Table 1: Training configurations for the heartbeat classifier
randfeatures | randinit | pretrained | finetune | 2Ir
MLII Median | 0.49 0.90 0.87 0.65 0.89
DS2 MLII Q1 0.45 0.89 0.85 0.65 0.87
MLII Q3 0.51 0.90 0.87 0.66 091
Leads median | 0.31 0.53 0.64 0.74 0.72
INCART | Leads QI 0.21 0.28 0.52 0.72 0.62
Leads Q3 0.38 0.68 0.74 0.77 0.77

Table 2: Leads results for the different training configurations on DS2 and INCART

first lead (generally modified lead II). Normalisation was also performed globally with the mean and
standard deviation extracted on the training set of DS1.

Generalisation of classifier performance was tested independently on the 12 available leads of the
INCART database.

2.4 TRAINING

i) Pretraining step. A negative cosine similarity loss with StopGradient (Chen & Hel [2021)) was
chosen, with monitoring of the validation loss. Adam algorithm with weight decay decoupling
(AdamW) (Loshchilov & Hutter| [2019) was used with a stepwise decay schedule learning rate. The
base learning rate was set to 1.10~° and multiplied by 0.75 every 10 epochs.

ii) Downstream task step. Cross-entropy loss was chosen and F1 score was monitored on the vali-
dation set. Five configurations were tested and are summarized in Table 1. AdamW optimizer was
also used but with a base learning rate of 10~3 and a cosine decay schedule until 8.10~* over 50
epochs, except for the 2lr configuration where the network parameter optimization were split into
two parameter groups : the CNN embedding with a base learning rate of 1.10~% and the classifier
with a base learning rate of 10~2. Both groups had a cosine learning rate scheduling over 50 epochs
until a rate of 1.1073.

Early stopping (if no improvement in the monitored metric was observed after 20 epochs) was im-
plemented in both steps.

Optimiser details are summarized in Appendix

3 RESULTS

F1 scores (median, first and third quartile) obtained on DS2 and INCART are assembled in table @
Lead by lead analysis is given in table [dand depicted in figure[5]in appendix [B]

Similar results, with no statistical significant difference (Wilcoxon test), were obtained on DS2 for
the randinit, pretrained and 2Ir approaches. Pretrained models (finetune, 21r) however outperform
other approaches on the INCART database. The finetune technique outperforms all other approaches
especially on precordial leads V1, V2, V3 where performance for all other techniques show a sig-
nificant drop (cf table [d).

Pretrained models also show significantly lower F1 variability over multiple runs (standard deviation
0.02 for pretrained and 2lIr, 0.01 for finetune) than other approaches (0.06 for randfeatures and 0.04
for randinit).

Figure 2] depicts the F1 score per lead and model. The cluster of lower F1 score on leads V1 to V3
for 2Ir, pretrained, and randinit techniques is clearly visible.
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Figure 2: F1 scores swarmplot for the INCART database.

4 DISCUSSION

Comparison between the randfeatures and the finetune results seems to be suggesting that the pre-
training effictively learns a transferable representation of the ECG signal.

The result variability indicates that despite pretraining overfitting on the DS1 database is still occur-
ring. This may be showing that the DS1 dataset is too small for training of a DL model and indicates
the need for the release of a larger database of fully annotated ECG signals. On the other hand,
training only the final linear layer (finetune) seems not to be flexible enough for high performance
on DS2. This motivated the 2Ir approach, allowing slight changes on the CNN feature extractor, to
finely adapt the representation for the downstream task.

To overcome the limited size of MITAR database, even though many recently proposed DL solu-
tions were trained on it 2020), other larger ECG databases were also released but most
often contain annotation from automated software, which implies that training DL on such database
might only replicate performance from currently available medical software.

As demonstrated by the pefomance of pretrained models on the INCART database, pretraining im-
proves the robustness of the classifier to different lead configurations, which is consistent with the
capacity of learning invariance when using siamese networks (Chen & He), [2021)).

In this study we have only tested the SimSiam pretraining approach so far. Future studies will include
the evaluation of other self-supervised techniques such as BYOL, contrastive learning (CLOCS,
Lead-agnostic) (Kiyasseh et all, 2021} [Oh et al., [2022).

It may become possible to skip certain denoising steps, by applying representation learning to be
invariant to a family of transformations mimicking the presence of physiological noise. This may be
highly beneficial for situations where robust and efficient noise suppression is currently not possible.
A good example of such a case consists of ECG signals acquired during magnetic resonance imaging
examinations, where magnetohydrodynamic (MHD) effect distorts ECG signals and accurate MHD

suppression remains challenging (Oster et al.}, 2014} [Oster & Clifford, 2017).

5 CONCLUSION

In this study, we discussed the generalization difficulties of automated heartbeat classifiers developed
with the MIT BIH arrhythmia database, and illustrated how classifier performance can be affected
by different lead configurations. We addressed that issue by applying a Siamese neural network to
develop lead invariant feature extractors, rendering subsequent automated heartbeat classifiers less
sensible to lead configurations.
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A IMPLEMENTATION DETAILS

A.1 SIAMESE ARCHITECTURE

Figure [3] illustrates the used neural network for pretraining and the heartbeat classification task.
Details on the network layers for the different stages of the architecture are provided in Table[3] On
pretraining, the neural network is given two views from an ECG. One view is passed forward until
the Predictor, while the other is passed only until the Projector. Then the gradient backpropagation
is blocked on the branch which was passed only until the projector, in order to avoid mode collapse.

On the downstream task, the weights from the Embedding that was pretrained on the CinC dataset
are reused in the Embedding of the new neural network.

A.2 LOSS FUNCTIONS AND OPTIMIZERS

The SimSiamLoss is based on the cosine similarity distance. Given 2 vectors z1, T2

T1.x
d(l‘l,xg) =1- 12 (1)

maz(x1,x1,€)
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Figure 3: Illustration of the pretraining and downstream task. Green arrows illustrates the backpropagation
paths.

Let z, p be respectively the projector and predictor output. Then given 2 views x1, x5 of the network

L(z1,x2) = 1+ 0.5d(p1, StopGradient(z2)) + 0.5d(p2, StopGradient(z)) (2)
where StopGradient means the backpropagation is blocked on the gradient computation.
Adam optimizer with weight decay decoupling |Loshchilov & Hutter| (2019) was used.

For both pretraining and downstream task, scheduler’s initial and final learning rates were manually
searched over the range [10761072].

B DETAILED LEAD RESULTS
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Stage

Layer

Input

1 lead ECG beat (batch,1,301)

Embedding

(x2)
(x2)
(x2)

(x2)
(x2)

BN, Conv(16),ReLU

AvgPool

AvgPool

AvgPool

Conv(32), BN, ReLU
Conv(32), BN, ReLLU
Conv(64), BN, ReLU

Conv(64), BN, ReLU
Conv(128), BN, ReLLU

Conv(256), BN, ReLU

Pooling

Global Max Pooling

Projector

(x2)

Linear(256, 256), BN

Predictor

Linear(256, 64), BN, GeLLU
Linear(64, 256)

Classifier

Linear(256, 2)

Table 3: Neural Network stages. BN is a batch normalization layer, Conv(n) is a 1d convolutional layer, with n
filters, and kernel size of 7 and stride of 1. AvgPool is a 1d average pooling layer with kernel size of 2, stride

of 2 and no padding.
randfeatures | randinit pretrained | finetune 2Ir
DS2 0.50(0.06) 0.89(0.04) | 0.87(0.02) | 0.66(0.01) | 0.89(0.02)
I 0.004(0.002) | 0.46(0.12) | 0.63(0.07) | 0.68(0.01) | 0.67(0.02)
I 0.46(0.07) 0.74(0.04) | 0.79(0.05) | 0.77(0.01) | 0.79(0.03)
11 0.37(0.11) 0.61(0.07) | 0.65(0.05) | 0.70(0.01) | 0.71(0.03)
AVR 0.17(0.09) 0.25(0.09) | 0.57(0.14) | 0.74(0.01) | 0.75(0.04)
AVL 0.06(0.02) 0.29(0.10) | 0.56(0.09) | 0.45(0.01) | 0.64(0.04)
INCART | AVF 0.43(0.09) 0.72(0.06) | 0.76(0.06) | 0.74(0.01) | 0.77(0.03)
Vi 0.23(0.09) 0.24(0.07) | 0.43(0.12) | 0.82(0.01) | 0.56(0.07)
V2 0.33(0.11) 0.26(0.04) | 0.37(0.09) | 0.75(0.01) | 0.43(0.06)
V3 0.35(0.08) 0.33(0.05) | 0.43(0.08) | 0.73(0.01) | 0.49(0.04)
V4 0.29(0.06) 0.62(0.07) | 0.68(0.09) | 0.74(0.01) | 0.72(0.04)
V5 0.42(0.06) 0.72(0.05) | 0.81(0.03) | 0.79(0.01) | 0.87(0.02)
Vo6 0.28(0.05) 0.67(0.04) | 0.74(0.03) | 0.82(0.01) | 0.86(0.03)
Leads Average | 0.28(0.14) 0.49(0.21) | 0.62(0.14) | 0.72(0.10) | 0.69(0.13)

Table 4: F1 score (Mean (and standard deviation)) for DS2 and on each lead of INCART. T

Average” corresponds to the mean F1 score over the INCART 12 leads.

he line “’Leads
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Figure 5: Lead by lead F1 scores on the INCART database.



	Introduction
	Methods
	Datasets
	Architecture
	Preprocessing
	Training

	Results
	Discussion
	Conclusion
	Implementation Details
	Siamese architecture
	Loss functions and optimizers

	Detailed lead results

