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ABSTRACT

After a renaissance phase in which researchers revisited the message-passing
paradigm through the lens of deep learning, the graph machine learning community
shifted its attention towards a deeper and practical understanding of message-
passing’s benefits and limitations. In this paper, we notice how the fast pace of
progress around the topics of oversmoothing and oversquashing, the homophily-
heterophily dichotomy, and long-range tasks, came with the consolidation of
commonly accepted beliefs and assumptions that are not always true nor easy to
distinguish from each other. We argue that this has led to ambiguities around the
investigated problems, preventing researchers from focusing on and addressing
precise research questions while causing a good amount of misunderstandings. Our
contribution wants to make such common beliefs explicit and encourage critical
thinking around these topics, supported by simple but noteworthy counterexamples.
The hope is to clarify the distinction between the different issues and promote
separate but intertwined research directions to address them.

1 INTRODUCTION

The last decade has seen an increasing scholarly interest in machine learning for graph-structured
data (Sperduti & Starita, 1997; Micheli & Sestito, 2005; Gori et al., 2005; Bacciu et al., 2020).
After an initial focus on the design of various message-passing architectures (Gilmer et al., 2017),
inheriting from the recurrent Scarselli et al. (2009) and convolutional (Micheli, 2009) Deep Graph
Networks (DGN), together with the analysis of their expressive power (Xu et al., 2019; Morris et al.,
2023), researchers later turned their attention to the intrinsic limitations of the message-passing
strategy and the relation between the graph, the task, and the attainable performance. We refer,
in particular, to the fact that node embeddings may become increasingly similar to each other as
more message-passing layers are used (Rusch et al., 2023), the loss of information that results from
aggregating too many messages onto a single node embedding (Alon & Yahav, 2021), the presence
of topological bottlenecks (Topping et al., 2022), the existence of neighbors of different classes Wang
et al. (2024), and the propagation of information between far ends of a graph Dwivedi et al. (2022).
Addressing these limitations makes a difference when applying message-passing models, including
foundational ones Beaini et al. (2024), to large and topologically varying graphs at different scales,
from proteins with hundreds of thousands of atoms (Zhang et al., 2023) to dynamically evolving
social networks (Longa et al., 2023) with billions of users, where such limitations manifest together.

A pace of research so rapid can sometimes lead, however, to the premature consolidation of ideas
and beliefs that have not been thoroughly verified. There are several reasons for this to happen:
the (perhaps too) intense pressure to publish, follow the latest scientific trends, and demonstrate
state-of-the-art performance. As a result, we may end up putting the spotlight on positive findings but
overlooking contradictory evidence, eventually accepting hypotheses as canon.
In this paper, we argue and provide evidence that this is potentially the case for the afore-mentioned
issues of oversmoothing (OSM), oversquashing1 (OSQ), heterophily, and long-range dependencies,
driving researchers away by the difficulty of circumventing common beliefs while concurrently
introducing novel contributions. Scientific progress is therefore slowed down both in terms of reduced

1We discuss and address the troubling abuse of the term “oversquashing” in later sections.
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Table 1: List of common beliefs. For a non-exhaustive list of papers that make those claims, please
refer to Table 2 in the Appendix.

Beliefs Beliefs
O

SM 1. OSM is the cause of performance degradation.

O
SQ

6. OSQ synonym of a topological bottleneck.
2. OSM is a property of all DGNs. 7. OSQ synonym of computational bottleneck.

H
om

-H
et 3. Homophily is good, heterophily is bad. 8. OSQ problematic for long-range tasks.

4. Long-range propagation is evaluated on heterophilic graphs. 9. Topological bottlenecks associated with long-range
problems.

5. Different classes imply different features.

workforce and clarity of the problems to be addressed; failure to acknowledge existing inconsistencies
may well lead to a reiterated spreading of questionable claims.
While reviewing the literature, we identify and isolate nine common beliefs that, in our opinion,
cause great confusion and ambiguities in the field. We then demystify such beliefs by providing
simple and possibly memorable counterexamples that should be easy to recall. By encouraging
critical thinking around these issues and separating the different research questions, we hope to foster
further advancements in the graph machine learning field.

Disclaimer: We remark that the goal of this paper is not explicitly pinpointing criticalities in
previous works; on the contrary, these works were fundamental to forming our current understanding
and ultimately producing this manuscript. We also acknowledge that the list of referenced works
cannot be exhaustive, due to the field’s size, and it mainly serves to support our arguments.

Table 1 summarizes our findings about common beliefs in the literature, together with the list of
papers where we could find mentions of them2. We logically divide common beliefs about OSM,
OSQ, and the homophily-heterophily dichotomy. In the following sections, we discuss each belief,
provide counterexamples, and summarize our arguments with take-home messages.

For readers that are less familiar with the topic and its definitions, Appendix B.1 provides a brief
introduction to message-passing models.

2 IS OVERSMOOTHING REALLY A PROBLEM?

Oversmoothing broadly refers to the phenomenon where, as we stack more message-passing layers
in a DGN, the node embeddings become increasingly similar to each other eventually collapsing
into a low-dimensional (Huang et al., 2020; Oono & Suzuki, 2020)–or even single-vector (Cai &
Wang, 2020)–subspace. This creates an almost constant representation, independent of the original
node-feature distribution, and can potentially result in loss of discriminative power along the way (Li
et al., 2018; Cai & Wang, 2020; Oono & Suzuki, 2020).

Formally, et Hℓ ∈ Rn×d be the matrix of node embeddings after ℓ message-passing layers in a DGN,
where n is the number of nodes and d is the hidden dimension. Consider a similarity (or separation)
function π : H → R, where H = Rn×d is the space of all possible embedding matrices. We say that
a DGN experiences OSM if

lim
ℓ→∞

π(Hℓ) = c. (1)

where c is some constant indicating a collapse of embeddings. Deviation metrics (e.g., Dirichlet
Energy (Cai & Wang, 2020), MAD Chen et al. (2020a)) and subspace-collapse criteria (Oono &
Suzuki, 2020; Huang et al., 2024; Roth & Liebig, 2024) all measure the same intuition: as depth
increases, node embeddings shrink toward a nearly constant subspace or degree-proportional vectors.

2.1 BELIEF: OSM IS A PROPERTY OF ALL DGNS.

A widespread claim in the literature is that OSM happens regardless of the specific architecture
or the underlying graph. Early theoretical works support this view by analyzing message-passing

2Sometimes we found overly general claims in the first sections, later refined, which nonetheless contribute
to the spreading of common beliefs.
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propagation as a diffusion process: iterated normalized-Laplacian updates converge to a degree-
weighted stationary distribution (Cai & Wang, 2020; Giraldo et al., 2023), while heat-kernel diffusion
converges to a constant vector (Oono & Suzuki, 2020; Arnaiz-Rodriguez & Velingker, 2024). The
resulting bounds quantify the rate of OSM in terms of the singular values of the feature transform W
and the eigenvalues of the graph structure G.

These conclusions, however, rely on restrictive assumptions. Later work has relaxed them by intro-
ducing learnable feature transforms, non-linear activations, and more elaborate architectures (Oono
& Suzuki, 2020; Cai & Wang, 2020; Wu et al., 2023a), yet no existing proof shows inevitable
collapse under realistic training regimes. In practice, remedies such as residual/skip connections,
normalization layers, or gating mechanisms are explicitly architectural changes designed to maintain
local distinctions, calling into question the universality of this OSM claim.
In addition, many studies probe OSM with untrained (weights frozen at initialization) linear GCN
stacks, an experimental choice that hides the effect of learning and may lead to the wrong conclu-
sions, as noted by Zhang et al. (2025). Indeed, Cong et al. (2021, Figure 2) report OSM only for
frozen-weight networks; once parameters start adapting, the models preserve informative variance.

Together, these observations suggest that OSM is not an inevitable consequence of message-passing
but rather a contingent outcome that depends on training dynamics and architectural design choices.

Empirical Example We show a simple training scenario where we see how OSM is not a property
of all DGNs and how different elements make it difficult to draw clear conclusions. We train several
DGNs under two propagation variants: the vanilla AXW update and the rescaled AX(2W ), inspired
by Roth & Liebig (2024, Figure 1). We measure OSM with 2 different metrics: Dirichlet Energy
(DE) and its norm-normalized version, the Rayleigh Coefficient (RQ), which was also previously
used in some works Cai & Wang (2020); Di Giovanni et al. (2023b); Roth & Liebig (2024); Maskey
et al. (2023). Figure 1 shows three key facts: (i) some architectures never collapse, (ii) a minor
rescaling can reverse the trend, and (iii) DE and RQ often disagree. Hence OSM is neither universal
nor straightforward to diagnose.

First, OSM, as measured by Dirichlet Energy (DE), is not universal: GIN’s DE explodes instead of
collapsing in the vanilla setting (a), which shows that changing the aggregation-function may lead to
an opposite behavior of OSM effect.
Second, a minor scaling in the feature transformation (2W instead of W ) flips the behavior of several
models: curves that decayed in (a) now grow or stabilize, and vice-versa. Similar small tweaks
(normalization layers, self-loops, alternative aggregators) can likewise create or remove DE collapse,
which has been leveraged by prior work to propose OSM mitigation approaches, such as the ones
based on feature normalization (Wu et al., 2019; Zhao & Akoglu, 2020; Zhou et al., 2020).
Finally, whether OSM is observed depends on the measure of choice. DE reflects raw smoothness,
whereas the RQ normalizes by the feature norm. As a result, the same model can exhibit mutually
contradictory trends for different metrics Zhang et al. (2025). First, GCN’s DE collapses under
the vanilla aggretation (a), explodes with a simple rescaling (b), yet RQ remains essentially flat in
both normalised plots (c–d), indicating that GCN embeddings are being rescaled, not necessarily
oversmoothed. On the contrary, GAT and SAGE, which had similar behavior as GCN in (a) and
(b), decay using RQ (c-d) at a (roughly) linear rate, highlighting how different architectures respond
differently to the use of RQ instead of DE. Furthermore, subfigure (d) shows that AX(2W ) can
stabilize RQ for certain methods, suggesting that normalizations or small parameter adjustments do
not affect all models uniformly. Therefore, conclusions about OSM depend heavily on metric and
model, an observation that we rarely found in the literature.

In conclusion, OSM is neither inevitable nor uniquely defined: its observation hinges on the archi-
tecture, on seemingly innocuous hyper-parameters, and on which stability metric (DE vs. RQ) one
adopts (Zhang et al., 2022). Therefore, a natural question arises: does OSM actually limit the models’
predictive accuracy? We investigate this question in the next section.

2.2 BELIEF: OSM IS THE CAUSE OF PERFORMANCE DEGRADATION.

Part of the literature focuses on the narrative that OSM is the cause of lower test accuracy in DGNs.
The hypothesis is that if embeddings collapse to a non-meaningful space, then the separability of the
nodes will become challenging and accuracy decreases.

3
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Figure 1: (a-b): We depict the evolution, with increasing number of layers, of the DE = tr(XT∆X)
and the feature norm ∥X∥2F , using W and 2W feature transformations for different architectures.
(c-d): Evolution of the RQ = tr(XT∆X)/∥X∥2F for W and 2W as before. Experiments run on the
Cora dataset for 50 random seeds. A larger version for better visualization is available in Fig. 8.

However, this hypothesis ignores some critical aspects, such as i) the separability of node embeddings
with respect to the nodes’ labels, and ii) how such separability evolves in the intermediate OSM phase
(if it happens, as we discussed before).

Regarding the first statement, although it is true that if there is total collapse to the same value then
the embeddings will not be informative at all, the main problem remains the node embeddings’
separability. As shown in the previous section, some changes in the architectures can avoid OSM,
but they might have no impact on the overall accuracy. For instance, multiplying by two the weight
matrix leads to a general increase in DE for all architectures, however, the accuracy will remain
the same since the embeddings have been simply scaled up and the embeddings’ separability is not
affected negatively. In addition, avoiding an embedding collapse does not necessarily lead to an
improvement in generalization accuracy. For instance, comparing a GCN with and without bias, both
versions show a decrease in performance as the number of layers increases, whereas only GCN shows
a collapse in DE (Rusch et al., 2023, Figure 3).

On the other hand, and related to the second statement, embedding collapse will not always lead to a
decrease in accuracy. OSM happens faster in some subspaces than in others and this effect will be
beneficial if labels are correlated with those subspaces Keriven (2022). For instance, if we classify
points into two classes, and all nodes of distinct classes collapse into different points, the OSM metric
will detect such collapse. However, the separability of the node embeddings will remain possible,
illustrating also the limits of wide-spread used OSM metrics with respect to label information.

This intuitive behavior has been identified in the literature as a form of “beneficial” smoothing
phase (Keriven, 2022; Roth & Liebig, 2024; Wu et al., 2023b)). In this phase, the nodes of each class
first collapse into a class-dependent point before the potential second stage, at which point all nodes
converge to the same representation. Finally, although overall pairwise distances might shrink in
deep layers, within-class distances might contract more than between-class ones, so class separability
improves despite the global collapse, as discussed by Cong et al. (2021).

In conclusion, low accuracy in DGNs cannot be attributed to OSM alone. The separability of node
embeddings plays a major role, where other training problems such as vanishing gradients or over-
fitting also arise when using a big number of layers (Zhao & Akoglu, 2020; Cong et al., 2021; Yang
et al., 2020; Arroyo et al., 2025; Park et al., 2025).

Message of the Section

i) OSM is not a property of all DGNs
ii) OSM is not necessarily the cause of performance degradation. The performance is

related to node embeddings’ separability, which can be also affected by many other
elements, such as vanishing gradients.

iii) Therefore, to study the performance of DGNs, it might be better to study how they
achieve separability of node embeddings, and how the OSM relates to node separability.
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3 HOMOPHILY-HETEROPHILY AND THE ROLE OF THE TASK

In the context of node classification, the term homophily (resp. heterophily) generally refers to some
form of similarity (resp. dissimilarity) between a node and its neighbors (McPherson et al., 2001).
This (dis)similarity can be measured with respect to class labels, node features, or both; the vast
majority of works in the literature opt for the first, but this choice is often implicit and taken for
granted, making some statements hard to interpret when one is aware of the other ways to measure it.

3.1 BELIEF: HOMOPHILY IS GOOD, HETEROPHILY IS BAD

A recurrent narrative in the literature is that the message-passing mechanism of DGNs is particularly
suited for homophilic graphs, whereas it is unfit for heterophilic graphs. The apparent motivation is
that, in homophilic graphs, all you need to do to solve a node classification task is to look at similar
neighbors, and a local message-passing strategy implements just the right inductive bias. This is
in contrast to a class-heterophilic graph, where there exist neighboring nodes of a different class
that might make it harder for message-passing to isolate the “relevant information”, intended as
neighbors of the same class. Such a belief is supported by empirical evidence on a rather restricted
set of benchmarks Sen et al. (2008); Namata et al. (2012); Pei et al. (2020) with varying levels of
homophily/heterophily.

class 0

class 1

x1

x2

x3

x4

x6

x5

xi = 1 ∀ i s

distance(s)≥ 5

Figure 2: Left: a fully heterophilic graph inspired by (Ma et al., 2022) where a 1-layer, sum-based
DGN can perfectly classify the nodes due to a difference in the node degree. Right: a highly
homophilic graph where the task is to predict if a node is at a distance greater than five from a specific
node. Here, the performances of a DGN will be poor unless information from nodes of another
community – from the perspective of a class-0 node – is captured.

Researchers already tried to challenge these considerations in the past Ma et al. (2022); Errica (2023);
Luan et al. (2023); Platonov et al. (2023b); Wang et al. (2024). Consider Figure 2 (left), where a
bipartite graph with identical node features is fully class-heterophilic. If we apply a single sum-based
graph convolution, the nodes can be perfectly classified as the resulting embeddings depend on the
incoming degree. Therefore, there exist heterophilic graphs where a DGN can achieve perfect
classification. On the contrary, Figure 2 (right) depicts a highly class-homophilic graph, where nodes
belong to one of two classes if they are at a distance greater or lower than five from a given node
s. In this case, the information on the nodes does not even matter; if we were to follow the above
belief, we would be encouraged to use a few layers of message-passing, and as a result we could
never solve the task perfectly.

3.2 BELIEF: DIFFERENT CLASSES IMPLY DIFFERENT FEATURES

In the previous section, we deliberately ignored the interplay between a node’s features and its class
label, which is induced by the task at hand. The reason is that we wanted to clarify the distinction
with another, more subtle, and problematic belief: nodes belonging from different classes should
have different (to be read as separable) feature distributions. Under this assumption, it is also implicit
that class homophily will imply feature homophily.

Such an assumption is often key in arguments supporting the belief of Section 3.1. Indeed, if nodes of
different classes have different feature distributions, then applying a local message-passing iteration to
a highly class-homophilic graph should “preserve the distance” between node embeddings of different
classes. On the contrary, in a heterophilic setting, a graph convolution would mix information coming
from different feature distributions, which may be detrimental to performances.
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The logic is not incorrect per-se, but our key counterargument is the following: if different classes
imply different feature distributions, why would one need to apply a DGN rather than a simple MLP?
In other words, either there is a very strong assumption that the task does not depend on the
topological information, or the feature-class distributions induced by the task allow us to somehow
take a shortcut in terms of learned function, neglecting the role that the topology might have. Note
that this discussion is irrespective of the denoising/regularizing effects of DGNs in semi-supervised
scenarios compared to MLPs Hoang et al. (2021); Errica (2023).

It appears therefore necessary to consider less trivial and more fine-grained scenarios, where the
feature distributions of different classes partially or totally overlap, the topology has a key role in the
task definition, and topological properties induce a positive/negative effect on the performance of
message-passing models as done, for instance, in recent works (Castellana & Errica, 2023; Zheng
et al., 2024).

3.3 BELIEF: LONG-RANGE PROPAGATION IS EVALUATED ON HETEROPHILIC GRAPHS

The common beliefs of Sections 3.1 and 3.2 have been used to support yet another argument, namely
that we should evaluate the ability of DGNs to propagate long-range information on heterophilic
graphs. The rationale seems to be that, in order for DGNs to perform well, nodes of a given class
should focus on information of similar (w.r.t. class and/or features) nodes; therefore, in a heterophilic
graph, it may be necessary to capture information far away (i.e., long-range) from the immediate
neighborhood.

Once more, what is really important is to distinguish the task, e.g., one that depends on long-range
propagation, from the class labels the task induces on the nodes. As a matter of fact, the “long-
range” task of Figure 2 (right) induces a highly homophilic graph, while the heterophilic graph of
Figure 2 (left) is not associated with a long-range propagation task. Therefore, we cannot draw a
generic relation between long-range tasks and heterophily without making further assumptions.

Message of the Section

i) Generic claims about the performance of DGNs under homophily and heterophily do
not hold, nor does their relation with long-range problems.

ii) Homophily/heterophily is a function of the task, but the converse is not true.
iii) We should move past the coarse homophily-heterophily dichotomy and focus more on

the task and the interplay it induces between features, structure, and class labels.

4 THE MANY FACETS OF “OVERSQUASHING” AND THEIR NEGATIVE
IMPLICATIONS

The term oversquashing originated from Alon & Yahav (2021) and referred to an “exponentially
growing information into fixed-size vector” by repeated application of message-passing. In other
words, oversquashing was associated with the computational tree (Figure 3) induced by message-
passing layers on each node of the graph. Later, oversquashing was connected by Topping et al.
(2022) to the existence of topological bottlenecks: “edges with high negative curvature are those
causing the graph bottleneck and thus leading to the over-squashing phenomenon”. Since then,
researchers have adopted one or even both definitions of oversquashing at the same time, contributing
to an apparent understanding that these definitions subsume the same problem.

In this section, we argue that this is not the case and that, as a community, we should clearly
separate the term “oversquashing” into (at least) two separate terms:

Computational Bottlenecks and Topological Bottlenecks

Computational bottlenecks, defined in Def. 4.1, are inevitably related to the message-passing
architecture, for which the graph is the computational medium, whereas topological bottlenecks
refer to the graph connectivity, usually measured with spectral or curvature metrics defined in
B.3.2. Therefore, the topological bottlenecks are intrinsic to the graph, while the computational

6
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Figure 3: We intuitively visualize what happens when we repeatedly aggregate the neighborhood of
the star node using the message-passing paradigm, where we define the computational bottleneck as
the size of the computational tree (24 computational nodes) for k = 3 vs the receptive field for k = 3
that includes 9 three-hop neighbors).

bottleneck is intrinsic to the architecture or procedure. While these bottlenecks are clearly intertwined,
in the following we show that they do not always coexist, hence it makes sense to treat them as
fundamentally distinct concepts.

Computational and Topological Bottleneck definitions. Although both bottlenecks have been
previously used to measure “oversquashing”, their definitions and measurement approaches also differ
across the literature. There is no universally accepted formal definition of a topological bottleneck;
instead, it is typically characterized using proxy metrics, most often involving the spectral gap of the
curvature. Some of the most significant metrics are summarized in B.3.2.

On the other hand, the computational bottleneck has been usually measured using the receptive
field (Chen et al., 2018; Alon & Yahav, 2021), N k

v , as the set of K-hop neighbors neighbors, which
grows exponentially with the number of layers.

However, when evaluating the actual computational graph produced by message-passing, shown
in Figure 3 (right), duplicate nodes become significant: a node appearing in multiple branches
of the computation tree contributes repeatedly, as each unique walk generates a distinct message.
Consequently, we employ multiset notation to formally define the computational tree for a node v:

M1
v := Nv, MK

v := MK−1
v ⊎

 ⊎
u∈MK−1

v

Nu

 . (2)

Therefore, we can define the notion of an “exponentially-growing receptive field” Alon & Yahav
(2021) as follows:
Definition 4.1 (Computational Bottleneck). For a given node v and number of message passing
layers K, the computational bottleneck of node v is defined as |MK

v |.

We refer the reader to B.4 for further insights, related work, and connections between this definition
and matrix-power interpretations of message passing.

Figure 3 visualises the difference between the set size |NK
v | and the multiset size |MK

v | on a toy
graph and on a stochastic block model (SBM).

4.1 BELIEF: OVERSQUASHING AS SYNONYM OF TOPOLOGICAL BOTTLENECK

The prolific line of work that associates “oversquashing” with topological bottlenecks seems to
have gained popularity with Topping et al. (2022). In that paper, edges with negative curvature
are first associated with (topological) bottlenecks, then a theorem puts in relation message-passing
on a graph containing a bottleneck with the Jacobian sensitivity of node representations, typically
defined by I(u, v) = ∥∂hK

u /∂h
0
v∥ and denoting how much the final representation of a node u

after K layers is influenced by the initial representation of a node v (Xu et al., 2018). Put simply, a

7
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topological bottleneck may imply low sensitivity. However, the converse is not necessarily true:
we can have low sensitivity on a graph where there are no bottlenecks. Figure 4 (left) shows a grid
graph where there are no topological bottlenecks. The repeated application of message passing will,
however, quickly generate a computational bottleneck. Therefore, saying that there are no topological
bottlenecks does not imply that there are no computational bottlenecks.

To improve on topological bottlenecks, a widely investigated approach is graph rewiring (Attali et al.,
2024b), which was also the subject of scrutiny recently (Tortorella & Micheli, 2022; Tori et al., 2025).
Rewiring is based on the intuition that improving topological bottlenecks metrics should improve
the performance of DGNs (Arnaiz-Rodriguez et al., 2022; Banerjee et al., 2022; Karhadkar et al.,
2023; Deac et al., 2022), by reducing the distance between nodes that should communicate. At the
same time, it should become clear now that, under the DGN paradigm, rewiring might worsen the
computational bottleneck – as long as the same number of message-passing layers is used – while
improving the topological one. This perspective was also put forward by Errica et al. (2025), with
a theoretical analysis on how message filtering,3 as shown in Figure 4 (middle), reduces both the
computational bottleneck and sensitivity yet improves performances while leaving the graph structure
unaltered.

x1 x3 x3 x5 x6 x3

h17

h14
h12

h23

v1

v2 v3 v7

v4

v5 v6g

Computational Bottleneck: Mild
Topological Bottleneck: Yes

Sensitivity: Decreases with L

Computational Bottleneck: Severe
Topological Bottleneck: No

Sensitivity: Decreases with L

Figure 4: Left: in a grid graph, the computational bottleneck grows very quickly but there is no
topological bottleneck. Middle: A visualization of the computational graph rooted at node v3 ∈ Vg

for two message passing layers, highlighting how pruning messages reduces the computational
bottleneck. Right: In this graph, there is a topological bottleneck and a mild computational bottleneck.
As with the grid graph (Appendix C), the sensitivity decreases with the number of message-passing
layers.

Another, slightly more technical way to see why low Jacobian sensitivity does not imply the presence
of any topological bottlenecks is to follow the chain of upper bounds that link the metrics used to
measure the computational and topological bottlenecks (Black et al., 2023; Di Giovanni et al., 2023b;
Karhadkar et al., 2023; Arnaiz-Rodriguez et al., 2022). Several recent works (Black et al., 2023;
Di Giovanni et al., 2023a) have shown that sensitivity is bounded by above by a term that includes
the effective resistance, a purely topological distance metric that quantifies the expected commute
time of a random walk between nodes u and v (Klein & Randić, 1993). In particular, the bound
subtracts the lower bound on the maximum effective resistance, which depends on the inverse of
the spectral gap (a proxy for topological bottlenecks) (Chandra et al., 1989; Lovász, 1993). This
connection provides a useful intuition: as the topological bottleneck gets worse, the lower bound on
the maximum effective resistance increases, which in turn reduces the upper bounds on the sensitivity
of Black et al. (2023). However, the converse does not hold. There are graphs where the maximum
effective resistance between distant nodes is large despite the absence of topological bottlenecks.
For instance, consider the example of a grid graph in Figure 4 (left) where there is no topological
bottleneck, yet the effective resistance between diagonally opposite corners grows linearly with the
grid size. As a result, sensitivity between those nodes decays with depth, even though the graph
has no identifiable topological bottlenecks. This illustrates that computational bottlenecks can arise

3The concept of message filtering refers to message passing architectures with the ability to learn how many
messages to exchange between nodes and which messages to filter out.
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independently of topological ones, and that low sensitivity does not necessarily imply the presence
of either of them.

4.2 BELIEF: OVERSQUASHING AS SYNONYM OF COMPUTATIONAL BOTTLENECK

We briefly complement the previous section with a discussion on “oversquashing” as a computational
bottleneck, which was introduced by Alon & Yahav (2021) and has been the (often implicit) study
subject of works that prune, to some extent, the computational tree induced on every node by the
iterative message-passing process (Rong et al., 2020; Errica et al., 2025). Also in this case, there
exist cases where reducing the computational bottleneck may be harmful: Figure 4 (right) shows a
graph where there is a topological bottleneck but no severe computational bottleneck (for a limited
number of layers). In this case, excessive pruning of the computational tree might cause distant nodes
to interrupt all communications. Therefore, computational and topological bottlenecks are problems
that should be tackled separately.

4.3 BELIEF: OVERSQUASHING IS PROBLEMATIC FOR LONG-RANGE TASKS

Since its definition by Alon & Yahav (2021), oversquashing has often been considered a problem
in long-range tasks. The reason stems from its relation to the exponentially growing computa-
tional tree as the number of message-passing layers increases: whenever a node has to receive
information from another node at distance d, classical (synchronous) message-passing architectures
need to apply at least d layers to capture that information. As a result, the relevant information

Figure 5: Hubs can exhibit
computational bottlenecks.

may get lost due to the exponentially large computational bottleneck.
Importantly, topological bottlenecks can only make the problem
worse, by forcing the information of a group of messages to be
squeezed through an edge – please refer to the next section for a
discussion about long-range tasks and topological bottlenecks.

The main message here is that long-range tasks “force” classical
message-passing architecture to create a computational bottleneck
to propagate the necessary information, but one can observe com-
putational bottlenecks even in short-range tasks. An obvious
example is the high-degree node of Figure 5, where, after just one
layer, the center node receives a high number of messages, effec-
tively creating a computational bottleneck in terms of information
to be squashed into a fixed-size vector. Therefore, while the task of
long-range is related to computational bottlenecks under classical
DGNs, computational bottlenecks are not a prerogative of long-range tasks.

4.4 BELIEF: TOPOLOGICAL BOTTLENECKS ASSOCIATED WITH LONG-RANGE PROBLEMS

The last belief we discuss is that topological bottlenecks are the primary obstacle to solving long-
range tasks. This intuition stems from the fact that narrow cuts impede information flow between
distant parts of the graph. It is indeed true that a topological bottleneck can worsen communication
between distant nodes, especially if the bottleneck lies along a path that connects them. However, this
perspective is limited in two important ways. First, a topological bottleneck is only harmful if it lies
on the information paths between nodes that are supposed to communicate. A topological bottleneck
may exist without affecting task-relevant dependencies. Second, the graph topology can worsen the
long-range communication even in the absence of any identifiable topological bottleneck, by inducing
computational bottlenecks. As we discussed in Section 4.1, the grid graph is an illustrative case:
despite the lack of topological bottlenecks, to connect the opposite corner nodes we need, at least, as
many message-passing layers as the distance between them, thus leading to a huge computational
bottleneck that will likely hamper the ability to process long-range dependencies.

In addition, some of the techniques that reduce topological bottlenecks rely on introducing more
edges or nodes into the graph, with the aim of reducing the distance between far-away nodes that
should communicate. It is important to note that, although these approaches might be beneficial
for the task at hand, they also worsen the computational bottleneck by adding more branches to the
computational tree.
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In conclusion, this highlights a deeper issue: long-range problems are not solely caused by topo-
logical bottlenecks, rather they can be understood as a form of information attenuation caused by
computational bottlenecks in the message-passing mechanism, which can potentially be exacerbated
by topological bottlenecks. Thus, solving a topological bottleneck is neither necessary nor sufficient
to solve all long-range problems.

Message of the Section

i) “Oversquashing” is an ambiguous term that led to unclear research statements. Talking
about computational and topological bottlenecks, instead, better defines the research
scope of a paper, since they are two fundamentally distinct problems.

ii) There can be computational bottlenecks but no topological ones, and vice-versa. Hence,
each of these two bottlenecks, though intertwined, deserves a dedicated research effort.
This also means creating ad-hoc benchmarks for each type of bottleneck rather than
relying solely on real-world tasks, where it is not as easy to distinguish the combined
effect of the two bottlenecks.

iii) Computational bottlenecks can happen in short-range as well as long-range tasks.
iv) Performance issues in long-range tasks are not solely caused by topological bottlenecks;

computational bottlenecks play a role as well.

5 CONCLUSIONS

This paper posits that the fast pace of advances in the graph machine learning field has generated
several commonly accepted beliefs and hypotheses, rooted in the notions of oversmoothing, “over-
squashing”, long-range tasks, and heterophily, which are the cause of misunderstandings between
researchers. Our contribution was to highlight such beliefs in plain sight, provide an explanation
for their emergence, and demystify them when necessary with simple counterexamples. First, we
argued that OSM may not be an actual problem and that node embeddings’ separability should be
preferred when looking for the root causes of performance degradation. Then, we showed how
talking about computational and topological bottlenecks resolves most, if not all, inconsistencies
generated by the inflated use of the “oversquashing” term. Finally, we highlighted the role of the
task in statements involving homophily, heterophily, and long-range dependencies. By providing
much-needed clarifications around these aspects, we hope to foster further advancements in the graph
machine learning field.
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A TABLE OF COMMON BELIEFS WITH REFERENCES

Table 2: List of common beliefs together with a non-exhaustive list of papers that make those claims.

Common Belief and references

O
ve

rs
m

oo
th

in
g

1. OSM is the cause of performance degradation.

(Li et al., 2018; Hamilton, 2020; Cai & Wang, 2020; Chen et al., 2020b;a; Hasanzadeh et al., 2020; Huang et al., 2020; Liu et al., 2020; Rong et al.,

2020; Zhao & Akoglu, 2020; Zhou et al., 2020; Wang & Leskovec, 2021; Zhou et al., 2021; Bodnar et al., 2022; Chen et al., 2022; Hwang et al.,

2022; Rusch et al., 2022; Tortorella & Micheli, 2022; Cai et al., 2023; Maskey et al., 2023; Nguyen et al., 2023; Karhadkar et al., 2023; Rusch et al.,

2023; ud din & Qureshi, 2024; Wu et al., 2023a; Epping et al., 2024; Jamadandi et al., 2024; Roth & Liebig, 2024; Stanovic et al., 2025; Wang et al.,

2025)

2. OSM is a property of all DGNs.

(Xu et al., 2018; Gasteiger et al., 2019; Li et al., 2019; Chen et al., 2020b; Hamilton, 2020; Hasanzadeh et al., 2020; Huang et al., 2020; Zhao &

Akoglu, 2020; Zhou et al., 2020; Alon & Yahav, 2021; Zhou et al., 2021; Abboud et al., 2022; Arnaiz-Rodriguez et al., 2022; Chen et al., 2022;

Hwang et al., 2022; Keriven, 2022; Topping et al., 2022; Rusch et al., 2022; Akansha, 2023; Cai et al., 2023; Di Giovanni et al., 2023a; Errica

et al., 2025; Giraldo et al., 2023; Nguyen et al., 2023; ud din & Qureshi, 2024; Rusch et al., 2023; Shao et al., 2023; Wu et al., 2023a;b; Attali et al.,

2024a;b; Fesser & Weber, 2024; Jamadandi et al., 2024; Roth & Liebig, 2024; Arroyo et al., 2025; Wang et al., 2025)
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om

op
hi

ly
-H

et
er
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ly

3. Homophily is good, heterophily is bad.

(Pei et al., 2020; Zhou et al., 2020; Zhu et al., 2020; Lim et al., 2021; Luan et al., 2021; Wang & Leskovec, 2021; Arnaiz-Rodriguez et al., 2022;

Bodnar et al., 2022; Di Giovanni et al., 2023b; Liu et al., 2023b; Platonov et al., 2023a; Bi et al., 2024; Attali et al., 2024a;b; Gong et al., 2024; Roth

& Liebig, 2024; Zheng et al., 2024)

4. Long-range propagation is evaluated on heterophilic graphs.

(Arnaiz-Rodriguez et al., 2022; Tortorella & Micheli, 2022; Akansha, 2023; Black et al., 2023; Maskey et al., 2023; Huang et al., 2024; Giraldo

et al., 2023; Attali et al., 2024a; Tori et al., 2025)

5. Different classes imply different features.

(Abu-El-Haija et al., 2019; Pei et al., 2020; Lim et al., 2021; Luan et al., 2021; Ma et al., 2022; Sun et al., 2022; Luan et al., 2022; Rusch et al., 2023;

Attali et al., 2024a;b; Bi et al., 2024; Huang et al., 2024; Wang et al., 2024; Zheng et al., 2024)

O
ve

rs
qu

as
hi

ng

6. OSQ synonym of a topological bottleneck.

(Xu et al., 2018; Arnaiz-Rodriguez et al., 2022; Banerjee et al., 2022; Chen et al., 2022; Deac et al., 2022; Sun et al., 2022; Topping et al., 2022;

Tortorella & Micheli, 2022; Akansha, 2023; Balla, 2023; Black et al., 2023; Di Giovanni et al., 2023a; Errica et al., 2025; Gabrielsson et al., 2023;

Giraldo et al., 2023; Karhadkar et al., 2023; Liu et al., 2023a; Nguyen et al., 2023; Shao et al., 2023; Shi et al., 2023; ud din & Qureshi, 2024; Yu

et al., 2023; Attali et al., 2024a;b; Barbero et al., 2024; Di Giovanni et al., 2024; Fesser & Weber, 2024; Huang et al., 2024; Jamadandi et al., 2024;

Southern et al., 2024; Arroyo et al., 2025; Gravina et al., 2025; Stanovic et al., 2025; Tori et al., 2025)

7. OSQ synonym of computational bottleneck.

(Alon & Yahav, 2021; Abboud et al., 2022; Arnaiz-Rodriguez et al., 2022; Banerjee et al., 2022; Chen et al., 2022; Deac et al., 2022; Sun et al.,

2022; Topping et al., 2022; Tortorella & Micheli, 2022; Akansha, 2023; Balla, 2023; Black et al., 2023; Dwivedi et al., 2022; Errica et al., 2025;

Giraldo et al., 2023; Gutteridge et al., 2023; Nguyen et al., 2023; Karhadkar et al., 2023; Shao et al., 2023; Shi et al., 2023; ud din & Qureshi, 2024;

Attali et al., 2024a;b; Barbero et al., 2024; Huang et al., 2024; Southern et al., 2024; Arroyo et al., 2025; Gravina et al., 2025; Stanovic et al., 2025)

8. OSQ problematic for long-range tasks.

(Alon & Yahav, 2021; Abboud et al., 2022; Banerjee et al., 2022; Chen et al., 2022; Deac et al., 2022; Topping et al., 2022; Tortorella & Micheli,

2022; Akansha, 2023; Black et al., 2023; Cai et al., 2023; Di Giovanni et al., 2023a; Errica et al., 2025; Gabrielsson et al., 2023; Karhadkar et al.,

2023; Nguyen et al., 2023; Liu et al., 2023a; Shi et al., 2023; Yu et al., 2023; Barbero et al., 2024; Di Giovanni et al., 2024; Fesser & Weber, 2024;

Huang et al., 2024; Southern et al., 2024; Attali et al., 2024b; Arroyo et al., 2025; Gravina et al., 2025; Stanovic et al., 2025)

9. Topological bottlenecks associated with long-range problems.

(Topping et al., 2022; Tortorella & Micheli, 2022; Akansha, 2023; Black et al., 2023; Karhadkar et al., 2023; Liu et al., 2023a; Shi et al., 2023;

Fesser & Weber, 2024)
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B BACKGROUND

B.1 DEEP GRAPH NETWORKS

We provide a brief excursus into Deep Graph Networks for readers new to the topic.

We can define a graph as a tuple g = (Vg, Eg,Xg,Ag), with Vg the set of nodes, Eg the set of edges
(oriented or not oriented) connecting pairs of nodes. Eg encodes the topological information of the
graph and can be represented as an adjacency matrix: a binary square matrix A where Auv is 1 if
there is an edge between u and v, and it is 0 otherwise. Additional node and edge features belong are
represented by xv ∈ Xg and auv ∈ Ag , respectively. Xg can be, for instance, Rd, d ∈ N+.

The neighborhood of a node v is the set of nodes that are connected to v by an oriented edge, i.e.,
Nv = {u ∈ Vg|(u, v) ∈ Eg}. If the graph is undirected, we convert each non-oriented edge into two
oriented but opposite ones.

The main mechanism of DGNs is the repeated aggregation of neighbors’ information, which gives
rise to the spreading of local information across the graph. The process is simple: i) at iteration ℓ,
each node receives “messages” (usually just node representations) from the neighbors and processes
them into a single new message; ii) the message is used to update the representation of that node.
Both steps involve learnable functions, so DGNs can learn to capture the relevant correlations in the
graph.

Most DGNs implement a synchronous message-passing mechanism, meaning each node always
receives information from all neighbors at every iteration step. This local and iterative processing
is at the core of DGNs’ efficiency since computation can be easily parallelized across nodes. In
addition, being local means being independent of the graph’s size. When one learns the same function
for all message passing iterations, we talk about recurrent architectures, as the GNN of Gori et al.
(2005); Scarselli et al. (2009); on the contrary, when one learns a separate parametrization for a finite
number of iterations (also known as layers), we talk about convolutional architectures as the NN4G
of Micheli & Sestito (2005); Micheli (2009).

The neighborhood aggregation is usually implemented using permutation-invariant functions, which
make learning possible on cyclic graphs that have no consistent topological ordering of their nodes.
A rather general and classical neighborhood aggregation mechanism for node v at layer/step ℓ+ 1 is
the following:

hℓ+1
v = ϕℓ+1

(
hℓ
v, Ψ({ψℓ+1(hℓ

u) | u ∈ Nv})
)

(3)

where hℓ
u is the node embedding of u at layer/step ℓ, ϕ and ψ implement learnable functions, and

Ψ is a permutation invariant aggregation function. Note that h0
v = xv. For instance, the Graph

Convolutional Network of Kipf & Welling (2017) implements the following aggregation, which is a
special case of the above equation:

hℓ+1
v = σ(Wℓ+1

∑
u∈N (v)

L̂uvh
ℓ
u), (4)

with L̂ being the normalized graph Laplacian, W is a learnable weight matrix and σ is a non-linear
activation function.

B.2 SOME OSM DEFINITIONS

In order to keep the paper self-contained and to illustrate the different ways OSM has been defined,
we briefly review the most common definitions. The following subsection summarizes the most
commonly used OSM metrics. Some of these metrics are used in the main text.

Let D = diag(d1, . . . , dn) be the degree matrix with du =
∑

v Auv. The combinatorial graph
Laplacian is defined as L = D −A, with eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. In addition, the
symmetric normalized Laplacian, defined by L̂ = I−D1/2AD1/2, normalizes each entry to remove
the influence of node degrees and its spectrum lies in [0, 2].
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DE Chung (1997) was used to measure OSM in Cai & Wang (2020) is defined as

D̂E(Hℓ) = Tr((Hℓ)T L̂Hℓ) =
1

2

∑
u,v∈E

∥∥∥∥ hu√
du

− hv√
dv

∥∥∥∥2
2

(5)

Note that DE can also be computed using L

DE(Hℓ) = Tr((Hℓ)TLHℓ) =
1

2

∑
u,v∈E

∥hu − hv∥22 (6)

Other OSM metrics include with respect to the norm of node embeddings. For instance, Rayleigh
Quotient (RQ) Chung (1997), which can be seen as normalized DE, is defined by

RQ =
Tr((Hℓ)T L̂Hℓ)

∥Hℓ∥2F
(7)

first proposed for OSM analysis in (Cai & Wang, 2020) and later used by (Yang et al., 2020;
Di Giovanni et al., 2023b; Roth & Liebig, 2024; Maskey et al., 2023). RQ discerns whether
embeddings become relatively smoother, independent of magnitude.

Mean Absolute Deviation (MAD) (Chen et al., 2020a) averages cosine dissimilarity between a node
and its neighbors.

MADG(H
ℓ) =

1

n

∑
v∈V

∑
u∈Nv

1− hℓ
v
T
hℓ
u

∥hℓ
v∥ ∥hℓ

u∥
(8)

The smoothness metric SMV Liu et al. (2020) captures a global node-distance average over all node
pairs:

SMV =
1

n

∑
u∈V

1

n− 1

∑
v ̸=u∈V

1

2

∥∥∥∥ hu

∥hu∥
− hv

∥hv∥

∥∥∥∥ (9)

In the main text, we primarily consider DE and RQ. However, all notions convey the same intuition,
loss of discriminative variation, yet, as we show, can disagree in practice.

Convergence-rate results. Known theoretical bounds show DE(Hk) decays exponentially with
depth k (e.g., the rate depends on weight spectra and graph eigenvalues) (Oono & Suzuki, 2020;
Huang et al., 2020). Such convergence rate results primarily make assumptions on the architecture,
weight matrix, and activation functions, and may be altered by skip connections, normalization layers,
or simple rescaling such as 2W (Roth & Liebig, 2024).

For instance Cai & Wang (2020) propose a bound on the DE of two consecutive message passing
layers (similar bounds found in Oono & Suzuki (2020); Zhou et al. (2021))

D̂E(Hℓ) ≤ (1− λ2)
2sℓmaxD̂E(Hℓ−1)

being sℓmax the square of the maximum singular value of W ℓ, and λ2 the second smallest eigenvalue
of the Laplacian, i.e. the spectral gap. The proof holds when sℓmax < 1/(1− λ2).

In addition, Di Giovanni et al. (2023b) further relate Laplacian eigenvalues and weight spectra to
explain whether RQ converges to 0 (collapse) or to λmax (no collapse).

B.3 SOME OSQ DEFINITIONS

For completeness, we summarize some of the most commonly used metrics in the OSQ literature
and their relationships. These quantities mainly measure three different aspects of the graph: (i)
sensitivity/Jacobian measures that capture how information from a distant node u affects a target
node v after K message-passing layers; (ii) topological bottleneck proxies such as Cheeger-type
cut ratios, graph spectrum or curvature scores; and (iii) distance-based quantities such as effective
resistance that upper-bound information flow.
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B.3.1 SENSITIVITY

For a K-layer GNN let h(k)u denote the embedding of node u at layer k. A first proxy for OSQ is the
Influence Score of Xu et al. (2018),

I(u, v) =

∥∥∥∥∂hK
u

∂h0
v

∥∥∥∥ . (10)

Black et al. (2023) sum these sensitivities over all unordered pairs,∑
u̸=v∈V

∥∥∥∥∂hK
u

∂h0
v

∥∥∥∥ , (11)

to obtain a graph-level indicator of how much information is lost.

Di Giovanni et al. (2023b) propose a symmetric Jacobian obstruction that removes self-influence and
degree bias. They define the Jacobian obstruction of node v with respect to node u at layer m as

J̃
(m)
k (v, u) :=

(
1

dv

∂h
(m)
v

∂h
(k)
v

− 1√
dvdu

∂h
(m)
v

∂h
(k)
u

)
+

(
1

du

∂h
(m)
u

∂h
(k)
u

− 1√
dvdu

∂h
(m)
u

∂h
(k)
v

)
, (12)

being the extension to the Jacobian obstruction of node v with respect to node u after m layers
defined as

Õm(u, v) =

m∑
k=0

∥∥∥J̃(m)
k (v, u)

∥∥∥ . (13)

B.3.2 TOPOLOGICAL BOTTLENECKS

Many OSQ papers measure topological (structural) bottlenecks using spectral or curvature quantities.
Note that here we give an intuition based on the spectral metrics Arnaiz-Rodriguez et al. (2022);
Karhadkar et al. (2023); Banerjee et al. (2022), but a significant part of the literature uses metrics
based on curvature Topping et al. (2022); Liu et al. (2023a); Giraldo et al. (2023); Nguyen et al.
(2023).

First, the topological bottleneck can be measured by Cheeger Constant Chung (1997), which is the
size of the min-cut of the graph.

hG = min
S⊂V

|{e = (u, v) : u ∈ S, v ∈ S̄}|
min{vol(S), vol(S̄)}

A small hG means one can separate G into two large-volume parts by removing only a few edges, i.e.
a severe topological bottleneck. Cheeger’s inequality links hG to the spectrum of G:

h2G
2

≤ λ2 ≤ 2hG,

where λ2 is the second eigenvalue of the normalized Laplacian.

B.3.3 PAIRWISE DISTANCES

The commute time between two nodes Lovász (1993) is defined as the expected number of steps that
a random walker needs to go from node u to v and come back. The Effective Resistance between two
nodes Chandra et al. (1989), Ruv, is the commute time divided by the volume of the graph Klein &
Randić (1993), which is the sum of the degrees of all nodes in the graph. The effective resistance
between two nodes is computed as

Ru,v = L+
ii + L+

jj − 2L+
ij

being L+ =
∑

i>0
1
λi
ϕiϕ

T
i the pseudoinverse of L

Then, some measures derived from this metric can be connected with the topological bottleneck Chung
(1997); Chandra et al. (1989); Qiu & Hancock (2007). For instance, the maximum effective resistance
of a graph is connected with the Cheeger constant as per Rmax = maxu,v∈V Ruv

Rmax ≤ 1

h2G
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and thus also bounded by the spectral gap as
1

nλ2
≤ Rmax ≤ 2

λ2
.

In addition, the total effective resistanceRtot = 1/2
∑

u,v∈V Ruv is bounded to the spectral gap Ellens
et al. (2011):

n

λ2
≤ Rtot ≤

n(n− 1)

λ2
Note that the total effective resistance also equals the sum of the spectrum of L+ Rtot = n

∑n
2 1/λn.

B.3.4 CONNECTING SENSITIVITY AND TOPOLOGICAL DISTANCES

The larger Total Effective Resistance (Rtot =
∑

(u,v)∈V Ruv) is, the lower the sum of pairwise
sensitivities Black et al. (2023): ∑

u,v∈V×V

∥∥∥∥∥∂h(r)v

∂h
(0)
u

∥∥∥∥∥ ≤ c(b−Rtot) (14)

The larger the Effective Resistance is, the higher the Symmetric Jacobian Obstruction Di Giovanni
et al. (2023b):

Õm(u, v) =

m∑
k=0

∥∥∥J̃(m)
k (v, u)

∥∥∥ ≤ c Ru,v (15)

B.4 COMPUTATIONAL BOTTLENECK

Oversquashing can also be seen through the perspective of the message-passing computational graph:
each message-passing layer expands the set of nodes whose features can influence a target node. If
this receptive field grows fast, any fixed-width DGN “squash” many signals into a single vector.

Receptive Field Following Chen et al. (2018); Alon & Yahav (2021) the receptive field was defined
recursively as:

NK
v := NK−1

v ∪ {w | w ∈ Nu ∧ u ∈ NK−1
v } and N 1

v = Nv (16)

which can be also seen as the set of K-hop neighbors neighbors, i.e. nodes that are reachable from v
within K hops The number of nodes in each node’s receptive field can grow exponentially with the
number of layers |NK

v | = O (exp(K)) Chen et al. (2018). For instance, in a rooted binary tree each
layer has exactly bK−1 new neighbors, so |NK

v | = 1 + b+ b2 + · · ·+ bK−1 = Θ(bK).

When evaluating the actual computational graph resulting from message-passing, duplicates matter:
a node that appears in several branches of the computation tree contributes multiple times, since each
distinct walk contributes a separate message. We therefore use the multiset notation to define the
computational tree for a node v in Eq. 2, reproduced here for convenience::

M1
v := Nv, MK

v := MK−1
v ⊎

 ⊎
u∈MK−1

v

Nu

 . (17)

Therefore, we defined in Def. 4.1 the computational bottleneck of node v as the size of the computa-
tional tree, |MK

v |, for a given node v and number of message passing layers K.

The size of the computational bottleneck (multiset receptive field) at node v, can be computed as:

|MK
v | :=

K∑
ℓ=1

∥Aℓ[v, :]∥1 =

K∑
ℓ=1

∑
u∈V

(Aℓ)u,v (18)
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This definition counts every distinct length-ℓ walk from v to any node u. Equation equation 18 is
exactly the row–sum of the powers of the adjacency matrix; it therefore matches the size of the
computational tree.

Note that the size of the set-based receptive field corresponds to the support of the multiset MK
v ,

denoted NK
v := supp(MK

v ). Therefore, the multiset size |MK
v | is always greater than or equal to

the size of the support, |MK
v | ≥ |NK

v |, since it accounts for path multiplicity.

In early deep-graph networks literature, Micheli (2009) introduced the idea by using the term
“contextual window”: deeper layers aggregate exponentially many paths unless skip connections or
global pooling curb the growth. The multiset perspective in Eq. equation 18 makes this explosion
explicit and the matrix computation directly links to matrix-power interpretations of message passing.

Figure 6 visualises the difference between the set size |NK
v | and the multiset size |MK

v | on a toy
graph and on a stochastic block model (SBM).

⋆

⋆

N 1
⋆ N 2

⋆ N 3
⋆

N 3
⋆ = 9

|M3
⋆| = 24

⋆ ⋆⋆

Figure 6: Computational Bottleneck. Illustration of a receptive field – defined with sets (K-
hop neighborhood) – and the definition of computational bottleneck measured as the size of the
computational graph – defined with multisets.

In conclusion, we note that in message-passing, the computational bottleneck is driven not by how
many distinct vertices are in the K-hop neighborhood, but by the size of the computational graph.
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C SENSITIVITY DECREASES ON A GRID GRAPH WITHOUT TOPOLOGICAL
BOTTLENECKS

To show that low sensitivity does not necessarily imply a topological bottleneck, Figure 7 analyzes
sensitivity’s decreasing trend when the number of message passing layers L increases on the grid
graph of Figure 4 of size 10× 10. Increasing the size of the embedding space postpones the collapse
of the sensibility.
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Figure 7: We plot the sensitivity of the grid graph of Figure 4 for the Graph Convolutional Network
Kipf & Welling (2017) model for different node embedding sizes.
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D OVERSMOOTHING DOES NOT ALWAYS HAPPEN

For enhanced clarity and to allow for a more detailed examination of the OSM behavior discussed in
Section 2, a larger version of Figure 1 is provided in Figure 8.
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Figure 8: Larger version of Figure 1. (a-b): We depict the evolution, with increasing number of
layers, of the DE = tr(XT∆X) and the feature norm ∥X∥F , using W and 2W feature transforma-
tions for different architectures. (c-d): Evolution of the RQ = tr(XT∆X)/∥X∥ for W and 2W as
before. Experiments run on the Cora dataset for 50 random seeds.
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