
Returning The Favour:
When Regression Benefits From Probabilistic Causal Knowledge

Shahine Bouabid * 1 Jake Fawkes * 1 Dino Sejdinovic 2

Abstract
A directed acyclic graph (DAG) provides valu-
able prior knowledge that is often discarded in
regression tasks in machine learning. We show
that the independences arising from the presence
of collider structures in DAGs provide meaningful
inductive biases, which constrain the regression
hypothesis space and improve predictive perfor-
mance. We introduce collider regression, a frame-
work to incorporate probabilistic causal knowl-
edge from a collider in a regression problem.
When the hypothesis space is a reproducing ker-
nel Hilbert space, we prove a strictly positive gen-
eralisation benefit under mild assumptions and
provide closed-form estimators of the empirical
risk minimiser. Experiments on synthetic and cli-
mate model data demonstrate performance gains
of the proposed methodology.

1. Introduction
Causality has recently become a main pillar of research
in the machine learning community. Historically, machine
learning has been used to help solve problems in the field of
causal inference (Shalit et al., 2017; Zhang et al., 2012). But
recently a different focus has emerged, asking what causality
can do to return the favour to machine learning (Schölkopf
et al., 2021). In this work we continue in this vein, and
aim to answer whether the knowledge of a causal directed
acyclic graph (DAG) underpinning the data generating pro-
cess can assist and improve performance in regression tasks.

When a causal DAG is available, it constitutes a source of
prior knowledge that is typically discarded when addressing
a regression problem. It can however guide the setup of
the regression problem. Classically, the structure of a DAG
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Figure 1. When performing regression in a hypothesis space F
(blue), we implicitly assume that the data generating process could
follow any DAG structure. The optimal regressor f∗ lies in the
subspace of function that satisfy the independence structure arising
from the collider (pink), onto which the projection P maps.

informs on which predictors should be selected to regress a
given response variable Y . This process, known as feature
selection, is solved by selecting the predictors that are either
adjacent to Y , or that influence children of Y . The resulting
set of predictors is called the Markov boundary of Y (Pearl,
1987).

As we will see, the presence of a particular structure in a
Markov boundary is typically overlooked in regression prob-
lems: colliders of the form Y → X1 ← X2. In this work,
we investigate how the conditional independence constraints
arising due to colliders in the Markov boundary can be used
to construct useful inductive biases in a regression problem
and to guide the choice of the hypothesis space. We will see
that the colliders are also unique in that regard: beyond col-
liders, the Markov boundary cannot contain any graphical
structure implying a conditional independence with Y .

To understand the intuition behind colliders, consider this
classic example: imagine we have a randomly timed sprin-
kler (X2) and we want to infer whether it has rained (Y ),
having observed whether the sidewalk is wet (X1). Al-
though the sprinkler and the rain are marginally independent,
knowing whether the sprinkler has been active is important
for determining whether it has rained. Colliders arise natu-
rally in many application domains. For example, in climate
science, the objective may be to regress an environmen-
tal driver Y that, independently from human activity X2,
influences observed global temperatures X1.
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As illustrated in Figure 1, when performing least-square re-
gression over a hypothesis space F , only a subset of F will
comply with the independences arising from the collider. By
considering the projection operator P that maps onto this
subspace, we propose a framework called collider regres-
sion to incorporate inductive biases arising from colliders
into any regressor. We show that when the data generating
process follows a collider, projecting any given regressor
onto this subspace provides a positive generalisation benefit.

We then consider the specific case where the hypothesis
space is a reproducing kernel Hilbert space (RKHS). Be-
cause RKHSs are rich functional spaces that also enjoy
closed analytical solutions to the least-squares regression
problem, they allow us to build intuition for the general
case. We prove a strictly positive generalisation benefit
from projecting the least-squares empirical risk minimiser
in a RKHS, where the size of the generalisation gap in-
creases with the complexity of the problem. We also show
that for a RKHS, it is possible to solve the least-squares
regression problem directly inside the projected hypothesis
subspace and provide closed-form estimators.

We experimentally validate the effectiveness of our method-
ology on a synthetic dataset and on a real world climate
science dataset. Results demonstrate that collider regres-
sion consistently provides an improvement in generalisation
at test time in comparison with standard least-squares re-
gressors. Results also suggest that collider regression is
particularly beneficial when few training samples are avail-
able, but samples from the covariates can easily be obtained,
i.e. in a semi-supervised learning setting.

2. Background
Regression notation Let Y be our target variable over
Y ⊆ R and X be our covariates over X . Our goal is a
standard regression task where we have access to a dataset
D = {x,y} ∈ (X × Y)n of n samples (x(i), y(i)) from
(X,Y ). We aim to minimise the regularised empirical risk

f̂ = argmin
f∈F

1

n

n∑
i=1

(
y(i) − f(x(i))

)2

+ λΩ(f) (1)

where F is a specified hypothesis space of functions
f : X→Y , λ > 0 and Ω(f) > 0 is a regularisation term.
This corresponds to finding a function f̂ that best estimates
the optimal regression function for the squared loss:

f∗(x) = E[Y |X = x]. (2)

For any two functions h, h′ ∈ F , the squared-error general-
isation gap between h and h′ is defined as the difference in
their true risk:

∆(h, h′) = E[(Y − h(X))
2
]− E[(Y − h′(X))

2
]. (3)

Therefore if ∆(h, h′) ≥ 0, it means that h′ generalises
better from the training data than h.

Reproducing kernel Hilbert spaces Let X be some non-
empty space. A real-valued RKHS (H, ⟨·, ·⟩H) is a complete
inner product space of functions f : X → R that admits
a bounded evaluation functional. For x ∈ X , the Riesz
representer of the evaluation functional is denoted kx ∈ H
and satisfies the reproducing property f(x) = ⟨f, kx⟩H,
∀f ∈ H. The bivariate symmetric positive definite func-
tion defined by k(x, x′) = ⟨kx, kx′⟩H is referred to as the
reproducing kernel ofH. Conversely, the Moore-Aronszajn
theorem (Aronszajn, 1950) shows that any symmetric posi-
tive definite function k is the unique reproducing kernel of
an RKHS. For more details on RKHS theory, we refer the
reader to Berlinet & Thomas-Agnan (2011).

Conditional Mean Embeddings Conditional mean em-
beddings (CMEs) provide a powerful framework to repre-
sent conditional distributions in a RKHS (Fukumizu et al.,
2004; Song et al., 2013; Muandet et al., 2016). Given
random variables X,Z on X ,Z and an RKHS H ⊆ RX

with reproducing kernel k : X × X → R, the CME of
P(X|Z = z) is defined as

µX|Z=z = E[kX |Z = z] ∈ H. (4)

It corresponds to the Riesz representer of the conditional
expectation functional f 7→ E[f(X)|Z = z] and can thus
be used to evaluate conditional expectations by taking an
inner product E[f(X)|Z = z] = ⟨f, µX|Z=z⟩H.

Introducing a second RKHS G ⊆ RZ with reproducing
kernel ℓ : Z × Z → R, Grünewälder et al. (2012) propose
an alternative view of CMEs as the solution to the least-
square regression of canonical feature maps ℓZ onto kXE∗ = argmin

C∈B2(G,H)

E[∥kX − CℓZ∥2H]

µX|Z=z = E∗ℓz

(5)

where B2(G,H) denotes the space of Hilbert-Schmidt op-
erators1 from G to H. Given a dataset D = {x, z}, this
perspective allows to compute an estimate of the associated
operator E∗ : G → H as the solution to the regularised
empirical least-squares problem as
Ê∗= argmin

C∈B2(G,H)

1

n

n∑
i=1

∥kx(i)−Cℓz(i)∥2H + γ∥C∥2B2

= k⊤
x (L+ γIn)

−1ℓz

µ̂X|Z=z = Ê∗ℓz = k⊤
x (L+ γIn)

−1ℓz(z)

(6)

where γ > 0, L = ℓ(z, z), kx = k(x, ·) and ℓz = ℓ(z, ·).
We refer the reader to (Muandet et al., 2017) for a compre-
hensive review of CMEs.

1i.e. bounded operators A : G → H such that Tr(A∗A) <
∞. B2(G,H) has a Hilbert space structure for the inner product
⟨A,B⟩B2 = Tr(A∗B).
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3. DAG inductive biases for regression
In this section, we aim to answer how knowledge of the
causal graph of the underlying data generating process can
help to perform regression. We start by reviewing the con-
cept of Markov boundaries and how it is used for feature
selection. We then show that even after feature selection
has been performed, there is still residual information from
colliders that is relevant for a regression problem.

3.1. Markov boundary for feature selection

Since we are focusing on regression, we are interested
in how the DAG can inform us about P(Y |X). Sup-
pose that for some vertex Xi, the DAG informs us that
Y ⊥⊥ Xi | X∖Xi. Stated in terms of mutual information
we have that2 I(Y ;X) = I(Y ;X∖Xi), therefore we can
discard Xi from our set of covariates without any loss of
probabilistic information for P(Y |X).

From a functional perspective, we can interpret this as in-
corporating the inductive bias that the regressor need only
depend on X∖Xi, allowing us to learn simpler functions
which should generalise better from the training set.

By repeating the process of removing features, we can itera-
tively construct a minimal set of necessary covariates that
still retain all the probabilistic information about P(Y |X).
This is known as feature selection (Dash & Liu, 1997).

Such a set, S, should satisfy Y ⊥⊥ X∖ S|S and we should
not be able to remove a vertex from S without losing in-
formation about P(Y |X). A set of this form is known as
the Markov boundary of Y (Statnikov et al., 2013), denoted
by Mb(Y ). If the only independences in the distribution
are those implied by the DAG structure3 then the Markov
boundary is uniquely given by

Mb(Y ) = Pa(Y ) ∪ Ch(Y ) ∪ Sp(Y ), (7)

where Pa(Y ) are the parents of Y , Ch(Y ) are the children
of Y and Sp(Y ) are the spouses of Y , i.e. the children’s
other parents. In Figure 2 the Markov boundary of Y is
highlighted in blue.

3.2. Extracting inductive bias for regression

By construction the Markov boundary of Y cannot contain
independence relationships of the form Y ⊥⊥ Xi|X∖Xi.
However, it can still contain unused independence state-
ments that involve Y , and therefore provides useful infor-
mation about the conditional distribution P(Y |X).

For example, the graphical structure in Figure 2 gives

2This follows from I(Y ;X) = I(Y ;X∖Xi)+I(Y ;Xi|X∖Xi)
and the conditional independence gives I(Y ;Xi|X∖Xi) = 0.

3An assumption known as faithfulness (Meek, 1995) which we
take throughout.
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Figure 2. A causal graph with the Markov boundary of Y high-
lighted in blue and vertices outside the Markov boundary high-
lighted in red. Whilst Y and X4 are marginally independent, the
presence of the collider X6 opens the path between Y and X4.

that Y ⊥⊥ X4 and Y ⊥⊥ X5 | X3. This implies that
P(Y |X4) = P(Y ) and P(Y |X3, X5) = P(Y |X3) which by
marginalisation constrains P(Y |X) and so gives us extra
information about it. The presence of these independence
relationships inside Mb(Y ) is only possible because a col-
lider, X6, has allowed for the spouses X4 and X5 to be
within the Markov boundary without being adjacent to Y .

Hence, the presence of collider structures within the Markov
boundary of Y provides additional independence relation-
ships involving Y . The following proposition shows that
the presence of a collider is not only a sufficient condition,
but also necessary.

Proposition 3.1. The Markov boundary of Y contains
a collider if and only if there exists Z ∈ Mb(Y ) and
SZ ⊂ Mb(Y ) such that Y ⊥⊥ Z | SZ .

Proof. We have a conditional independence between two
variables if and only if they are not adjacent (Lemma 3.1, 3.2
Koller & Friedman (2009)) and Mb(Y ) contains a variable
not adjacent to Y if and only if it contains a collider.

The collider structures are thus the only graphical structures
that provide conditional independence statement relevant to
P(Y |X) within the Markov boundary. To the best of our
knowledge, this information is currently left unused when
addressing a regression problem.

However, unlike for the feature selection process, we can-
not simply use these independence statements to discard
covariates and reduce the set of features. This is because
while the spouses of Y are uninformative on their own,
they become informative in the presence of other covari-
ates. Namely in Figure 2, while Y ⊥⊥ X4 we have
Y ̸⊥⊥ X4|X6 because X6 is a collider. Therefore, we have
that I(Y ;X) > I(Y ;X∖ X4) and discarding X4 would
constitute a loss of information.
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4. Collider Regression
In this section, we present a method for incorporating proba-
bilistic inductive bias from a collider structure into a regres-
sion problem, and provide guarantees of improved generali-
sation error. For the sake of clarity, our exposition focuses
on the simple collider structure depicted in Figure 3. We
however emphasise this simplification does not harm the
generality of our contribution and Section 5 shows how
collider regression can be extended to more general DAGs.

X1 X2Y

Figure 3. Simple collider structure

4.1. Simple collider regression setup

Let X1, X2, Y be random variables following the DAG
structure in Figure 3 and taking values in X1 ⊆ Rd1 ,
X2 ⊆ Rd2 and Y ⊆ R respectively. Without loss of general-
ity, we assume that E[Y ] = 0.

Under the squared loss, the optimal regressor is given by

f∗(x1, x2) = E[Y |X1 = x1, X2 = x2]. (8)

Since the collider gives the independence relationship
Y ⊥⊥ X2, we have that

E[f∗(X1, X2)|X2] = E
[
E[Y |X1, X2] | X2

]
= E[Y |X2]

= E[Y ]

= 0,

(9)

where the second line comes from the tower property of the
conditional expectation.

Hence, the optimal regressor f∗ lies in the subspace of
functions that have zero X2-conditional expectation. To
incorporate the knowledge from the DAG into our regression
procedure, we should therefore ensure that our estimate f̂
lies within the same subspace of functions, i.e. we want to
satisfy the zero conditional expectation constraint

f̂ ∈
{
f ∈ F | E[f(X1, X2)|X2] = 0

}
. (ZCE)

We propose to investigate how such a constraint can be
enforced onto our hypothesis and how it benefits generalisa-
tion, starting by the general case of square-integrable func-
tions. In what follows, we will use shorthand concatenated
notations X = (X1, X2), X = X1×X2, x = (x1, x2) ∈ X
and x = (x1,x2) ∈ Xn.

4.2. Respecting the collider structure in the hypothesis

Let L2(X) denote the space of square-integrable functions
with respect to the probability measure induced by X and

suppose F = L2(X). Let E : L2(X) → L2(X) denote
the conditional expectation operator defined by

Ef(x1, x2) = E[f(X1, X2)|X2 = π2(x1, x2)], (10)

where π2(x1, x2) = x2 is simply the mapping that discards
the first component4.

The operator E classically defines an orthogonal projec-
tion over the subspace of X2-measurable functions. L2(X)
thus orthogonally decomposes into its image, denoted
Range(E), and its null-space, denoted Ker(E), as

L2(X) = Ker(E)⊕ Range(E). (11)

Using this notation, satisfying condition (ZCE) corresponds
to having f̂ ∈ Ker(E). Alternatively, if we denote

P = Id−E, (12)

the orthogonal projection onto Ker(E), then we want to
take F = Range(P ) as our hypothesis space.

In general, it may be hard to constrain the hypothesis space
directly to be Range(P ). However, the solution to the em-
pirical risk minimisation problem (1) will always orthogo-
nally decompose within L2(X) as

f̂ = P f̂ + Ef̂, (13)

where only P f̂ ∈ Range(P ) satisfies (ZCE). It turns out
that discarding Ef̂ — the part that does not satisfy the
constraint — will always yield generalisation benefits.

Proposition 4.1. Let h ∈ L2(X) be any regressor from our
hypothesis space. We have

∆(h, Ph) = ∥Eh∥2L2(X). (14)

The generalisation gap is always greater than zero. Hence,
for any given regressor f̂ , we can always improve its test
performance by projecting it onto Range(P ).

In practice, a simple estimator of P f̂ can be obtained by
subtracting an estimate of E[f̂(X1, X2)|X2] as

P̂ f̂(x1, x2) = f̂(x1, x2)− Ê[f̂(X1, X2)|X2 = x2] (15)

by following the procedure outlined in Algorithm 1.

It is worth noting that the second step of Algorithm 1 does
not require observations from Y . As such, it naturally fits a
semi-supervised setup where additional observations D′ =
{x′

1,x
′
2} are available, and can be used to produce a better

estimate of the conditional expectation E[f̂(X1, X2)|X2].

4This notation emphasises that Ef is formally a function of
(x1, x2) and belongs in L2(X)
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Algorithm 1 General procedure to estimate P f̂

1: Regress (X1, X2)→ Y

to get (x1, x2) 7→ f̂(x1, x2)

2: Regress X2 → f̂(X1, X2)

to get x2 7→ Ê[f̂(X1, X2)|X2 = x2]

3: Take P̂ f̂(x1, x2)= f̂(x1, x2)− Ê[f̂(X1, X2)|X2=x2]

4.3. Theoretical guarantees in a RKHS

RKHSs are mathematically convenient functional spaces
and under mild assumptions on the reproducing kernel, they
can be proven to be dense in L2(X) (Sriperumbudur et al.,
2011). This makes them a powerful tool for theoretical
analysis and building intuition which can be expected to
carry over to more general function spaces. For this reason,
in this section we study the case where the hypothesis space
is a RKHS F = H. We denote its inner product by ⟨·, ·⟩H
and its reproducing kernel k : X × X → R.

When solving the least-square regression problem in a
RKHS, it is known that for Tikhonov regularisation Ω(f) =
∥f∥2H, the solution to the empirical risk minimisation prob-
lem (1) inH enjoys a closed-form expression given by

f̂ = y⊤ (K+ λIn)
−1

kx, (16)

where K = k(x,x) and kx = k(x, ·).

Therefore, if we now project f̂ onto Range(P ) as previ-
ously, the projected empirical risk minimiser writes

P f̂ = y⊤ (K+ λIn)
−1

Pkx (17)

with notation abuse Pkx = [Pkx(1) . . . Pkx(n) ]⊤.

Leveraging these analytical expressions, the following result
establishes a strictly non-zero generalisation benefit from
projecting f̂ . The proof techniques follows that of Elesedy
(2021), but is adapted to our particular setup with relaxing
assumptions about the projection orthogonality5 and the
form of the data generating process.

Theorem 4.2. Suppose M = supx∈X k(x, x) < ∞ and
Var(Y |X) ≥ η > 0. Then, the generalisation gap between
f̂ and P f̂ satisfies

E[∆(f̂ , P f̂)] ≥
ηE

[
∥µX|X2

(X)∥2L2(X)

]
(
√
nM + λ/

√
n)

2 (18)

where µX|X2
= E[kX |X2] is the CME of P(X|X2).

This demonstrates that in a RKHS, projecting the empirical
risk minimiser is strictly beneficial in terms of generalisation

5P is not necessarily orthogonal anymore as a projection of H
5E then corresponds to what is referred to as a conditional

mean operator in the kernel literature (Fukumizu et al., 2004).

error. Specifically, if there exists a set with non-zero mea-
sure on which Y ̸= 0 and µX|X2

̸= 0 almost-everywhere,
then the lower bound is strictly positive.

The magnitude of the lower bound depends on the variance
of ∥µX|X2

(X)∥L2(X) and the lower bound on Var(Y |X).
This indicates that problems with more complex conditional
distributions P(X|X2) and P(Y |X) should enjoy a larger
generalisation gap.

The theorem also suggests that the lower bound on the
generalisation benefit decreases at the rate O(1/n) as the
number of samples n grows. Since for the well-specified
kernel ridge regression problem, the excess risk upper bound
also decreases at rate O(1/n) (Bach, 2021; Caponnetto &
De Vito, 2007), we have that E[∆(f̂ , P f̂)] = Θ(1/n).

In a RKHS, P f̂ can be rewritten using CMEs as

Pf(x1, x2) = f(x1, x2)− ⟨f, µX|X2=x2
⟩H. (19)

Therefore, introducing a kernel ℓ : X2 ×X2 → R, the CME
estimate from (6) allows to devise an estimator of P f̂ as:

P̂ f̂=y⊤(K+λIn)
−1(

kx−K(L+γIn)
−1ℓx2

)
(20)

where L = ℓ(x2,x2), ℓx2
= ℓ(x2, ·) and γ > 0.

4.4. Respecting the collider structure in a RKHS

Similarly to the L2(X) case, the solution to the empirical
risk minimisation problem in H will also decompose as
f̂ = P f̂ +Ef̂ . Thus, we can proceed similarly by simply
discarding Ef̂ to improve performance. However, it turns
out that using elegant functional properties of RKHSs, it
is possible to take a step further and directly take F =
Range(P ). In doing so, we can ensure that our hypothesis
space only contains functions that satisfy constraint (ZCE).

Under assumptions detailed in Appendix C, we can view
the projection P as a well-defined RKHS projection5

P : H → H. In particular, an important assumption
is that the kernel takes the form

k (x, x′) = (r (x1, x
′
1) + 1) ℓ (x2, x

′
2) , (21)

where r : X1 × X1 → R and ℓ : X2 × X2 → R are
also positive semi-definite kernels. This ensures that H
contains functions that are constant with respect to x1.
Thus, the conditional expectation mapping (x1, x2) 7→
E[f(X1, X2)|X2 = x2] belongs to the same RKHS.

If these assumptions are met, we denoteHP = Range(P ).
The following result characterisesHP as a RKHS.
Proposition 4.3. Let P ∗ be the adjoint operator of P inH.
ThenHP is also a RKHS with reproducing kernel

kP (x, x
′) = ⟨P ∗kx, P

∗kx′⟩H (22)

with P ∗kx = kx − µX|X2=π2(x).

5
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Using the projected RKHS kernel kP , it becomes possible
to solve the least-square regression problem directly inside
F = HP . By taking Ω(f) = ∥f∥2HP

, the empirical risk
minimisation problem becomes a standard kernel ridge re-
gression problem inHP which admits closed-form solution

f̂P = y⊤ (KP + λIn)
−1

kP,x, (23)

where KP = kP (x,x) and kP,x = kP (x, ·).

From a learning theory perspective, performing empirical
risk minimisation insideHP should provide tighter bounds
on the generalisation error than on the entire spaceH. This
is because sinceHP ⊂ H, the Rademacher complexity of
HP is smaller than that ofH.

It should be noted that kP depends on the CME
µX|X2=π2(x), which needs to be estimated. Therefore, in
practice, our hypothesis will not lie in the true HP but in
an approximation ofHP and the approximation error will
depend directly on the CME estimation error.

Algorithm 2 RKHS procedure to estimate f̂P

1: Let P̂ ∗kx = kx − µ̂X|X2=π2(x)

2: Let k̂P (x, x′) = ⟨P̂ ∗kx, P̂
∗kx′⟩H

3: Evaluate K̂P = k̂P (x,x) and k̂P,x = k̂P (x, ·)
4: Take f̂P̂ = y⊤(K̂P + λIn)

−1k̂P,x

The estimation of (23) is again a two-stage procedure out-
lined in Algorithm 2. The distinction with the general
L2(X) case is that we do not estimate the conditional expec-
tation of any specific function. Instead, we estimate the con-
ditional expectation operator through µ̂X|X2=x2

, and then
use it through P̂ ∗ to constrain the hypothesis space. This
is possible because in a RKHS, the estimation of the condi-
tional expectation operator can be achieved independently
from the function it is applied to. Due to the assumption on
the kernel introduced in equation 21 there are now alterna-
tive estimators for µ̂X|X2=x2

which we provide details of in
Appendix D.

The estimation of P ∗ in line 1 only requires observations
from X1, X2. Thus, like in the L2(X) case, additional
observations D′ = {x′

1,x
′
2} can help better estimate CMEs,

and thus better approximate the projected RKHSHP .

5. Collider Regression on a more general DAG
We now return to a general Markov boundary. Any Markov
boundary may be partitioned following Figure 5, where X1

contains all direct children of Y , X3 contains all parents of
Y and all other variables are grouped in X2. Furthermore,
we assume that there exists no edge from a variable in X1

to a variable in X2.

This provides us with the probabilistic information that
Y ⊥⊥ X2 | X3 but Y ̸⊥⊥ X2 | X3, X1, which implies in
expectation that E[Y |X3] = E[Y |X2, X3].

X1

X2Y

X3

Figure 5. General Markov boundary collider structure.

If we now denote X = (X1, X2, X3) and f0(x) =
E[Y |X3 = x3], then the optimal least-square regressor
f∗(x) = E[Y |X = x] satisfies

E
[
f∗(X)− f0(X) | X2, X3

]
=E [E[Y |X] | X2, X3]− E [E[Y |X3] | X2, X3]

=E[Y |X2, X3]− E [E[Y |X2, X3] | X2, X3]

= 0.

(24)

Therefore, if we center our hypothesis space on f0, then like
in Section 4.1, we want our centered estimate f̂ − f0 to lie
within the following subspace:

f̂ − f0 ∈
{
f ∈ F | E

[
f(X) | X2, X3

]
= 0

}
. (25)

When F = L2(X), this space can again be seen as the
range of an orthogonal projection, this time defined by

P ′ = Id−E′ (26)

where E′ : L2(X) → L2(X) denotes the conditional ex-
pectation functional with respect to (X2, X3)

E′f(x2, x3) = E[f(X)|X2 = x2, X3 = x3]. (27)

While we focus in Section 4 on the simple collider structure
for the sake of exposition, our result are stated for a general
projection operator and still hold for P ′ — modulo a shift
by f0. Hence, we can still apply the techniques we have pre-
sented to encode probabilistic information from the general
DAG in Figure 5 into a regression problem, with similar
guarantees on the generalisation benefits.

Proposition 5.1. Let h ∈ L2(X) be any regressor from our
hypothesis space. We have

∆(h, f0 + P ′h) = ∥E′h− f0∥2L2(X). (28)

This means that, for any given regressor f̂ , we can al-
ways improve its test performance by first projecting it onto
Range(P ), and then shifting it by f0.

6



Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge

Figure 4. (a) : Test MSEs for the simulation experiment ; dataset is generated using d1 = 3, d2 = 3, n = 50 and 100 semi-supervised
samples ; experiments is run for 100 datasets generated with different seeds ; statistical significance is confirmed in Appendix F ; (b, c, d) :
Ablation study on the number of training samples, number of semi-supervised samples and dimensionality of X2 ; experiments are run for
40 datasets generated with different seeds ; ↑/↓ indicates higher/lower is better ; we report 1 s.d. ; † indicates our proposed methods.

In practice, the estimation strategies introduced in Section 4
can still be applied to obtain an estimate of P ′f̂ . An ad-
ditional procedure to estimate f0 will however be needed.
This can be achieved by regressing Y onto X3. We provide
corresponding algorithms and estimators in Appendix E.

6. Experiments
This section provides empirical evidence that incorporating
probabilistic causal knowledge into a regression problem
benefits performance. First, we demonstrate our method on
an illustrative simulation example. We conduct an ablation
study on the number of training samples, the dimensionality
of X2 and the use of additional semi-supervised samples.
Then, we address a challenging climate science problem
that respects the collider structure. Our results underline the
benefit of enforcing constraint (ZCE) onto the hypothesis.
Code and data are made available6.

Models We compare five models:

1. RF: A baseline random forest model.
2. P -RF: The baseline RF model projected following

Algorithm 1 and using a linear regression to estimate
Ê[f̂(X1, X2)|X2 = x2].

3. KRR: A baseline kernel ridge regression.
4. P -KRR: The KRR model projected following (20).
5. HP -KRR: A kernel ridge regression model fitted di-

rectly in the projected RKHS following Algorithm 2.

For both KRR and RF, we use Proposition 4.1 to compute
Monte Carlo estimates of the expected generalisation gap
E[∆(f̂ , P f̂)], which we denote as ∆-KRR and ∆-RF re-
spectively. This provides an indicator of the greatest achiev-
able generalisation gain if we had access to the exact projec-
tion P . Hyperparameters are tuned using a cross-validated
grid search and model details are specified in Appendix F.

6https://github.com/shahineb/
collider-regression.

6.1. Simulation example

Data generating process We propose the following con-
struction that follows the simple collider structure from
Figure 3. Let d1, d2 ≥ 1 denote respectively the dimen-
sionalities of X1 and X2. We first generate a fixed positive
definite matrix Σ of size (d1 + d2 + 1) which has zero
off-diagonals on the (d1 + d2)

th row and column . We
then follow the generating process described in Algorithm 3
and generate a dataset of n observations D = {x1,x2,y}.
The zero off-diagonal terms in Σ ensure that we satisfy
Y ⊥⊥ X2 and g1, g2 are nontrivial mappings that introduce
a non-linear dependence (details in Appendix F).

Algorithm 3 Data generating process simulation example

1: Input: Σ ≽ 0, σ > 0, g1 :Rd1→Rd1 , g2 : Rd2→Rd2

2:
[
X1 X2 Y

]⊤ ∼ N (0,Σ), ε ∼ N (0, σ2)
3: X1 ← g1(X1) + ε
4: X2 ← g2(X2)
5: return X1, X2, Y

Results Figure 4(a) provides empirical evidence that, for
both KRR and RF, incorporating probabilistic inductive
biases from the collider structure in the hypothesis benefits
the generalisation error.

In addition, Figure 4(b)(c)(d) shows that the empirical gen-
eralisation benefit is greatest when : fewer training samples
are available, semi-supervised samples can be easily ob-
tained and the dimensionality of X2 is larger. This is in
keeping with Theorem 4.2 which predicts the benefit will
be larger when we have fewer labeled samples and a more
complicated relationship between X2 and X1.

Because the decision nodes learnt by RF largely rely on X1

and the early dimensions of X2, increasing the dimensional-
ity of X2 has little to negative effect as shown in Figure 4(d).

7
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6.2. Aerosols radiative forcing

Background The radiative forcing is defined as the differ-
ence between incoming and outgoing flux of energy in the
Earth system. At equilibirum, the radiative forcing should
be of 0 W m-2. Carbon dioxide emissions from human ac-
tivity contribute a positive radiative forcing of +1.89 W m-2

which causes warming of the Earth (Bellouin et al., 2020).

Aerosols are microscopic particles suspended in the atmo-
sphere (e.g. dust, sea salt, black carbon) that contribute a
negative radiative forcing by helping reflect solar radiation,
which cools the Earth. However, the magnitude of their
forcing represents the largest uncertainty in assessments of
global warming, with uncertainty bounds that could offset
global warming or double its effects. It is thus critical to
obtain better estimate of the aerosol radiative forcing.

The carbon dioxide and aerosol forcings are independent
factors7 that contribute to the observed global temperatures.
Hence, by setting Y = “aerosol forcing”, X2 =“CO2 forc-
ing” and X1 = “global temperature”, this problem has a
collider structure and observations from global temperature
and CO2 forcing can be used to regress the aerosol forcing.

Data generating process FaIR (for Finite amplitude Im-
pulse Response) is a deterministic model that proposes a sim-
plified low-order representation of the climate system (Mil-
lar et al., 2017; Smith et al., 2018). Surrogate climate models
like FaIR — referred to as emulators — have been widely
used, notably in reports of the Intergovernmental Panel on
Climate Change (Masson-Delmotte et al., 2021), because
they are fast and inexpensive to compute.

We use a modified version of FaIRv2.0.0 (Leach et al., 2021)
where we introduce variability by adding white noise on
the forcing to account for climate internal variability (Has-
selmann, 1976; Cummins et al., 2020). To generate a sam-
ple, we run the emulator over historical greenhouse gas
and aerosol emission data and retain scalar values for y =
“aerosol forcing in 2020”, x2 = “CO2 forcing in 2020” and
x1 = “global temperature anomaly in 2020”. We perform
this n times to generate dataset D = {x1,x2,y}.

Results Results are reported in Table 1. We observe that
the incorporation of inductive bias from the collider re-
sulted in consistently improved performance for both RF
and KRRs. This shows that while the proposed methodol-
ogy is only formulated in terms of squared error, it can also
improve performance for other metrics.

7this is because whilst human activity can confound CO2 and
aerosol emissions, the timescale on which CO2 and aerosol forcing
operate (century vs week) are so different that the forcings at a
given time can be considered independent.

Table 1. MSE, signal-to-noise ratio (SNR) and correlation on test
data for the aerosol radiative forcing experiment ; n = 50 and 200
semi-supervised samples ; statistical significance is confirmed in
Appendix F ; experiments is run for 100 datasets generated with
different seeds ; ↑/↓ indicates higher/lower is better ; we report 1
standard deviation ; † indicates our proposed methods.

MSE ↓ SNR ↑ Correlation ↑

RF 0.90±0.04 0.44±0.19 0.32±0.08

P -RF† 0.89±0.03 0.49±0.15 0.34±0.07

KRR 0.88±0.04 0.58±0.17 0.37±0.05

P -KRR† 0.86±0.03 0.65±0.13 0.40±0.01

HP -KRR† 0.86±0.03 0.65±0.14 0.40±0.01

7. Discussion and Related Work
Regression and Causal Inference Currently causal infer-
ence is most commonly used in regression problems when
reasoning about invariance (Peters et al., 2016; Arjovsky
et al., 2019). These methods aim to use the causal structure
to guarantee the predictors will transfer to new environ-
ments (Gulrajani & Lopez-Paz, 2020) and recent work dis-
cusses how causal structure plays a role in the effectiveness
of these methods (Wang & Veitch, 2022). Our work takes
a complimentary route in asking how causal structure can
benefit in regression, and, in contrast to prior work, focuses
on a fixed environment.

Causal and Anti-causal learning Our work is closely
related to work on anti-causal learning (Schölkopf et al.,
2012) which argues that P(X) will only provide additional
information about P(Y |X) if we are working in an anti-
causal prediction problem Y → X . This leads the authors
to hypothesise that additional unlabelled semi-supervised
samples will be most helpful in the anti-causal direction. In
our work, we go further and prove a concrete generalisation
benefit from using additional samples from P(X) when
the data generating process follows a collider, a graphical
structure which is inherently anti-causal as it relies on Y
having shared children with another vertex.

Independence Regularisation and Fair Learning Our
work is related to the large body of recent work aiming
to force conditional independence constraints, either for
fairness (Kamishima et al., 2011) or domain generalisa-
tion (Pogodin et al., 2022). However, it is important to note
that if Y satisfies a conditional independence this does not
mean that the optimal least-square regressor E[Y |X] will
satisfy the same conditional independence. For example, let{

Y,X2 ∼ N (0, 1) with Y ⊥⊥ X2

X1 = Y 1{X2 > 0}.
(29)

8
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Then we have E[Y |X1, X2] = X11{X2 > 0}, hence
E[Y |X1, X2] is constant when X2 < 0 but not otherwise.
Therefore E[Y |X1, X2] ̸⊥⊥ X2, even though Y ⊥⊥ X2.

Therefore, our methodology is more similar to ensuring in-
dependence in expectation. Specifically, the RKHS method-
ology is related to work on fair kernel learning (Pérez-Suay
et al., 2017; Li et al., 2022b). However, in contrast to the
work on fair kernel learning where regularisation terms for
encouraging independence are proposed, we go further by
enforcing the mean independence constraint directly onto
the hypothesis space.

Availability of DAG as prior knowledge Our work is
based on the premise of having exact knowledge of the DAG
underlying the data generating structure. This knowledge
typically comes from domain expertise, with examples in
genetics (Day et al., 2016) or in the aerosol radiative forcing
experiment we present. However, when domain expertise
is insufficient, we may need causal discovery methods to
uncover the causal relationships. These methods can be
expensive to run at large scale and can provide a DAG
with missing or extra edges when compared to the true
DAG. If collider regression is run with a partially incorrect
DAG, it is likely that it would degrade the performance, as
such a setting would amount to introducing incorrect prior
information in the model. However, if the estimated DAG
is “close” to the true DAG in the sense of the independence
relationships they induce, then there may still be benefit in
the finite sample regime.

Generality of proposed method Two aspects of the
methodology introduced in Section 5 need to be caveated.
First, it is important to require there exists no edge from
children of Y to spouses of Y , otherwise that would break
the conditional independence Y ⊥⊥ X2|X3. Second, whilst
this is a general procedure that provides a useful inductive
bias and helps restrict the hypothesis class, this procedure
may not account for all the possible inductive biases that
arise from the DAG at its most granular level. The procedure
accounts for the collider constraint that arises from grouping
variables together, not for every collider structure that might
exist in the DAG. Encoding more granular collider structure
would require additional regression steps, and a systematic
way to perform such additional steps remains an interesting
avenue for further research.

8. Conclusion
In this work we have demonstrated that collider structures
within causal graphs constitute a useful form of inductive
bias for regression that benefits generalisation performance.
Whilst we focused on least-square regression, we expect that
the collider regression framework should benefit a wider
range of machine learning problems that aim to make infer-
ences about P(Y |X). For example, a natural extension of
this work should investigate collider regression for classifi-
cation or quantile regression tasks.
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Särkkä, S. Linear operators and stochastic partial differential
equations in gaussian process regression. In International
Conference on Artificial Neural Networks, pp. 151–158.
Springer, 2011.

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang,
K., and Mooij, J. M. On causal and anticausal learning.
In ICML, 2012.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y. Toward causal
representation learning. Proceedings of the IEEE, 109(5):
612–634, 2021.

Shalit, U., Johansson, F. D., and Sontag, D. Estimating
individual treatment effect: generalization bounds and
algorithms. In International Conference on Machine
Learning, pp. 3076–3085. PMLR, 2017.

Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar,
R. J., Passerello, G. A., and Regayre, L. A. Fair v1.3:
a simple emissions-based impulse response and carbon
cycle model. Geoscientific Model Development, 2018.

Song, L., Huang, J., Smola, A., and Fukumizu, K. Hilbert
space embeddings of conditional distributions with appli-
cations to dynamical systems. In Proceedings of the 26th
Annual International Conference on Machine Learning,
2009.

Song, L., Gretton, A., Bickson, D., Low, Y., and Guestrin,
C. Kernel belief propagation. In Proceedings of the
Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pp. 707–715. JMLR Workshop and
Conference Proceedings, 2011.

Song, L., Fukumizu, K., and Gretton, A. Kernel embeddings
of conditional distributions: A unified kernel framework
for nonparametric inference in graphical models. IEEE
Signal Processing Magazine, 2013.

Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R.
Universality, characteristic kernels and rkhs embedding
of measures. Journal of Machine Learning Research, 12
(7), 2011.

Statnikov, A., Lytkin, N. I., Lemeire, J., and Aliferis, C. F.
Algorithms for discovery of multiple markov boundaries.
Journal of machine learning research: JMLR, 14:499,
2013.

Steinwart, I. and Christmann, A. Support vector machines.
Springer Science & Business Media, 2008.

11



Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
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A. Notations and useful Results
A.1. Notations

Let X be a Borel space, Y ⊆ R and let X and Y be random variables valued in X and Y . We denote (L2(X), ⟨·, ·⟩L2(X))
the Hilbert space of functions from X to R which are square-integrable with respect to the pushforward measure induced by
X , i.e. PX = P ◦X−1.

Let (H, ⟨·, ·⟩H) be a RKHS of functions from X to R with reproducing kernel k : X × X → R. We denote its canonical
feature map as kx for any x ∈ X .

Let A ∈ Rn×n, we denote λmin(A) and λmax(A) the smallest and largest eigenvalues of A respectively.

A.2. Useful results

Theorem A.1 (Theorem 3.11, (Paulsen & Raghupathi, 2016)). LetH be a RKHS on X with reproducing kernel k and let
f : X → R. Then the following are equivalent:

(i) f ∈ H

(ii) there exists c ≥ 0 such that c2k(x, y)− f(x)f(y) is kernel function

Lemma A.2 (Corollary 5.5, (Paulsen & Raghupathi, 2016)). LetH1,H2 be RKHS on X with reproducing kernels k1, k2. If
H1∩H2 = {0}, thenH = H1⊕H2 is a RKHS with reproducing kernel k = k1+k2 andH1,H2 are orthogonal subspaces
ofH.

Proposition A.3. Let (V, ⟨·, ·⟩V) be a Hilbert space, φ : X → V be a mapping function and

k(x, y) = ⟨φ(x), φ(y)⟩V , x, y ∈ X (30)

the kernel function induced by φ. Then the RKHS induced by k is given by

H = {x 7→ ⟨v, φ(x)⟩V | v ∈ V}. (31)

Proof. The proof follows from the application of the Pull-back Theorem [Theorem 5.7](Paulsen & Raghupathi, 2016) to the
linear kernel L : V × V → R, (v, v′) 7→ ⟨v, v′⟩V composed with the feature map φ : X → V .

Lemma A.4. Suppose A ∈ Rn×n is symmetric, let Z be a random variable, x ∈ Rn be a random vector.

E[x⊤Ax | Z] = Tr (AVar(x|Z)) + E[x|Z]⊤AE[x|Z]. (32)

Proof.

E[x⊤Ax | Z] = E
[
Tr

(
Axx⊤) | Z]

(33)

= Tr
(
AE[xx⊤|Z]

)
(34)

= Tr
(
A

(
Var(x|Z) + E[x|Z]E[x|Z]⊤

))
(35)

= Tr (AVar(x|Z)) + Tr
(
AE[x|Z]E[x|Z]⊤

)
(36)

= Tr (AVar(x|Z)) + E[x|Z]⊤AE[x|Z]. (37)

Lemma A.5 ((Mori, 1988)). Let A,B ∈ Rn×n and suppose A symmetric and B positive semi-definite, then

Tr(AB) ≥ λmin(A) Tr(B). (38)

Lemma A.6 (Lemma B.3, (Elesedy, 2021)). Let A ∈ Rn×n, then

λmax(A) ≤ nmax
i,j
|Aij |. (39)
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B. Supporting proofs
B.1. Notations

We start by introducing measure-theoretic notations which will be of use in the supporting proofs.

Let (Ω,F,P) denote a probability space, we denote L2(Ω,F,P) the space of random variables with finite variance, which
we will denote L2(Ω) for conciseness when the σ-algebra is F. Endowed with inner product ⟨Z,Z ′⟩L2(Ω) = E[ZZ ′], L2(Ω)
has a Hilbert structure. For any random variable Z, we denote σ(Z) ⊂ F the σ-algebra generated by Z.

B.2. Proofs of Proposition 4.1

Proposition 4.1. Let h ∈ L2(X) be any regressor from our hypothesis space. We have

∆(h, Ph) = ∥Eh∥2L2(X). (40)

Proof. The conditional expectation Π : Z ∈ L2(Ω) 7→ E[Z|X2] defines an orthogonal projection onto the space of
X2-measurable random variables with finite variance L2(Ω, σ(X2),P). Thus, its range and null space are orthogonal in
L2(Ω).

Let h ∈ L2(X). We have Eh(X) = E[h(X)|X2] = Πh(X) hence Eh(X) is in the range of Π. On the other hand,

E[Ph(X)|X2] = E[h(X)|X2]− E[Eh(X)|X2] = E[h(X)|X2]− E[h(X)|X2] = 0, (41)

therefore Ph(X) is in the null space of Π. Finally, because Y ⊥⊥ X2 we have E[Y |X2] = E[Y ] = 0 by assumption,
therefore Y is also in the null space of Π.

Hence, adopting this random variable view, the desired result simply follows from L2(Ω) orthogonality:

∆(h, Ph) = E[(Y − h(X))2]− E[(Y − Ph(X))2]

= ∥Y − h(X)∥2L2(Ω) − ∥Y − Ph(X)∥2L2(Ω)

= ∥Y − Ph(X)− Eh(X)∥2L2(Ω) − ∥Y − Ph(X)∥2L2(Ω)

= ∥Y − Ph(X)∥2L2(Ω) + ∥Eh(X)∥2L2(Ω) − ∥Y − Ph(X)∥2L2(Ω)

= E[Eh(X)2]

= ∥Eh∥2L2(X).

B.3. Proofs of Proposition 4.3

Proposition 4.3. Let P ∗ be the adjoint operator of P inH. ThenHP is also a RKHS with reproducing kernel

kP (x, x
′) = ⟨P ∗kx, P

∗kx′⟩H (42)

with P ∗kx = kx − µX|X2=π2(x).

Proof of Proposition 4.3. LetHP denote the reproducing kernel with kP . We start by showing that PH ⊆ HP .

Let f ∈ PH, then it admits a pre-image wf ∈ H such that f = Pwf . Hence for any x ∈ X , we get that

f(x) = ⟨f, kx⟩H = ⟨Pwf , kx⟩H = ⟨wf , P
∗kx⟩H. (43)

Hence, f writes as an element of the RKHS induced by the feature map x 7→ P ∗kx and by Proposition A.3 f ∈ HP .

Reciprocally, let us now show thatHP ⊆ PH. Let f ∈ HP , again by Proposition A.3 there exists wf ∈ H such that for any
x ∈ X ,

f(x) = ⟨wf , P
∗kx⟩H = Pwf (x). (44)

This proves that f ∈ PH which concludes the proof.
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B.4. Proofs of Theorem 4.2

Theorem 4.2. Suppose M = supx∈X k(x, x) <∞ and Var(Y |X) ≥ η > 0. Then, the generalisation gap between f̂ and
P f̂ satisfies

E[∆(f̂ , P f̂)] ≥
ηE

[
∥µX|X2

(X)∥2L2(X)

]
(
√
nM + λ/

√
n)

2 (45)

where µX|X2
= E[kX |X2] is the CME of P(X|X2).

Proof of Theorem 4.2. Let Π = E[·|X2] be the L2(Ω) orthogonal projection onto the subspace of X2-measurable ran-
dom variables. For any h ∈ L2(X), we verify that Eh(X) = E[h(X)|X2] = Π[h(X)] hence Eh(X) ∈ Range(Π).
Furthermore, because Y ⊥⊥ X2 we have Π[Y ] = E[Y |X2] = E[Y ] = 0 by assumption, hence Y ∈ Ker(Π).

Now let

x =

X
(1)

...
X(n)

 , y =

Y (1)

. . .
Y (n)

 (46)

denote vectors of n independent copies of X and Y and let

j(x, x′) = ⟨Ekx, Ekx′⟩L2(X) = E[Ekx(X)Ekx′(X)] ∀x, x′ ∈ X . (47)

be the positive definite kernel induced by L2(X) inner product of Ekx and

J = j(x,x) =
[
j(X(i), X(j))

]
1≤i,j≤n

(48)

the resulting Gram-matrix.

Using notations from Section 4.3, we know the solution of the kernel ridge regression problem inH takes the form

f̂ = y⊤ (K+ λIn)
−1

kx. (49)

Hence, by linearity of the projection, we have

Ef̂ = y⊤ (K+ λIn)
−1

Ekx (50)

with notation abuse Ekx = [EkX(1) . . . EkX(n) ]⊤.

Therefore, we can write

∆(f̂ , P̂ f) = ∥Ef̂∥2L2(X) (51)

= EX [Ef̂(X)2] (52)

= EX

[(
y⊤ (K+ λIn)

−1
Ekx(X)

)2
]

(53)

= EX

[
y⊤ (K+ λIn)

−1
Ekx(X)Ekx(X)⊤(K+ λIn)

−1y
]

(54)

= y⊤ (K+ λIn)
−1 EX [Ekx(X)Ekx(X)⊤](K+ λIn)

−1y (55)

= y⊤ (K+ λIn)
−1

J(K+ λIn)
−1y. (56)

Let us now denote for conciseness A = (K+ λIn)
−1

J(K+ λIn)
−1. We have by Lemma XX,

Ey[∆(f̂ , P f̂) | x] = Ey[y
⊤Ay | x] (57)

= Tr(AVar(y|x)) + E[y|x]⊤AE[y|x] Lemma A.4 (58)
≥ Tr(AVar(y|x)), (59)
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where the conditional variance is the diagonal matrix given by

Var(y|x) =

Var(Y
(1)|X(1))

. . .
Var(Y (n)|X(n))

 (60)

because the copies of (X,Y ) are mutually independent.

We therefore obtain,

Ey[∆(f̂ , P f̂) | x] ≥ Tr(AVar(y|x)) (61)

≥ min
i

Var(Y (i)|X(i)) Tr(A) (62)

≥ ηTr(A) (63)

= ηTr
(
(K+ λIn)

−1
J(K+ λIn)

−1
)

(64)

≥ ηλmin((K+ λIn)
−1)2 Tr(J) Lemma A.5 (65)

≥ η
Tr(J)

(Mn+ λ)2
Lemma A.6. (66)

Finally taking the expectation against x, we get

E[∆(f̂ , P f̂)] ≥ Ex[ηTr(J)]

(Mn+ λ)2
(67)

=
η
∑n

i=1 EX(i) [j(X(i), X(i))]

(Mn+ λ)2
(68)

=
nηE[j(X,X)]

(Mn+ λ)2
(69)

=
ηE[j(X,X)]

(M
√
n+ λ/

√
n)2

(70)

=
ηE

[
∥EkX∥2L2(X)

]
(M
√
n+ λ/

√
n)2

(71)

(72)

Now, for our particular choice of projection E, we have for any x ∈ X that

EkX(x) = EX′ [kX(X ′)|X2 = π2(x)] (73)
= EX′ [k(X,X ′)|X2 = π2(x)] (74)
= ⟨kX ,EX′ [kX′ |X2 = π2(x)]⟩H (75)
= ⟨kX , µX|X2=π2(x)⟩H (76)
= µX|X2=π2(x)(X) (77)

Therefore using the measure-theoretical CME notation from (Park & Muandet, 2020), we have

∥EkX∥2L2(X) = EX′ [EkX(X ′)2] = EX′ [µX|X2=π2(X′)(X)2] = ∥µX|X2
(X)∥2L2(X) (78)

which concludes the proof.

B.5. Proof of Proposition 5.1

Proposition 5.1. Let h ∈ L2(X) be any regressor from our hypothesis space. We have

∆(h, f0 + P ′h) = ∥E′h− f0∥2L2(X). (79)
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Proof. This proof follows the same structure than the proof of Proposition 4.1.

Let Π = E[·|X2, X3] be the L2(Ω) orthogonal projection onto the subspace of (X2, X3)-measurable random variables with
finite variance L2(Ω, σ(X2, X3),P). We have that

Π[Y − f0(X)] = E[Y |X2, X3]− E[f0(X)|X2, X3] (80)
= E[Y |X2, X3]− E[E[Y |X3]|X2, X3] (81)
= E[Y |X2, X3]− E[E[Y |X2, X3]|X2, X3] (Y ⊥⊥ X2|X3) (82)
= 0, (83)

therefore Y − f0(X) ∈ Ker(Π). On the other hand, we can easily verify that for any h ∈ L2(X), we have E′h(X) ∈
Range(Π) and P ′h(X) ∈ Ker(Π).

Therefore, it follows by L2(Ω) orthogonality that for any h ∈ L2(X)

∥Y − h(X)∥2L2(Ω) = ∥(Y − f0(X))− (h(X)− f0(X))∥2L2(Ω)

= ∥(Y − f0(X))− P ′(h− f0)(X)∥2L2(Ω) + ∥E
′(h− f0)(X)∥2L2(Ω)

= ∥Y − (f0(X) + P ′h(X))∥2L2(Ω) + ∥E
′h− f0∥2L2(X) (f0 ∈ Range(E′) = Ker(P ′)).

Which allows to conclude that

∆(h, f0 + P ′h) = E[(Y − h(X))2]− E[
(
Y − (f0(X) + P ′h(X))

)2
]

= ∥Y − h(X)∥2L2(Ω) − ∥Y − (f0(X) + P ′h(X))∥2L2(Ω)

= ∥E′h− f0∥2L2(X).
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C. Conditions for P : H → H to be well-defined
LetH be a RKHS of real-valued functions over X = X1 ×X2 with reproducing kernel k : X ×X → R. In this section, we
discuss conditions under which the orthogonal projection P : L2(X)→ L2(X) can be seen as a well-defined projection
overH ⊂ L2(X).

Formally, let ι : H → L2(X) denote the inclusion operator that maps elements of the RKHS H ∋ f 7→ [f ]∼ to their
equivalence class in L2(X). Saying that P is well-defined as a projection overH means that

Pιf ∈ ιH ∀f ∈ H. (84)

Such construction however raises two issues

1. Since P = Id−E and Eιf : x 7→ E[ιf(X)|X2 = x2] is a function of x2 only, for Eιf to lie in RKHS it is necessary
forH to contain functions that are constant with respect to x1.

2. If f ∈ H, there is no guarantee that Eιf = E[ιf(X)|X2 = π(·)] will also lie inH. In fact, this will often not be true —
e.g. when X is a continuous domain (Song et al., 2009) — and we only have PιH ⊂ L2(X).

In what follows, we permit ourselves to drop the ι notation.

C.1. Issue 1 : H must contain functions constant wrt x1

In general, it is not guaranteed that a RKHS will contain constant functions. In fact, this is not the case for generic RKHSs
such as the RKHSs induced by Gaussian or Matérn kernels (Steinwart & Christmann, 2008). To overcome this issue, we
propose a particular form for the reproducing kernel that will ensure the RKHS contains constant functions with respect to
x1.

Proposition C.1. Let r : X1×X1 → R and ℓ : X2×X2 → R be kernel functions. Then the RKHS with reproducing kernel

k = (r + 1)⊗ ℓ (85)

contains functions that are constant with respect to the first variable x1.

Proof. Let r : X1 ×X1 → R be a kernel function on X1 and consider the kernel defined by r+ = r + 1 with RKHSHr+ .
Let c ∈ R and consider the constant function g(x1) = c ∀x1 ∈ X1.

Then for any x1, x
′
1 ∈ X1 we have

c2r+(x1, x
′
1)− g(x1)g(x

′
1) = c2r(x1, x

′
1) + c2 − c2 (86)

= c2r(x1, x
′
1) (87)

which is a kernel function. By Theorem A.1 we conclude thatHr+ contains constant functions.

We now consider a second kernel ℓ : X2 ×X2 → R with RKHSHℓ and we propose to takeH as the tensor product RKHS

H = Hr+ ⊗Hℓ, (88)

which will have reproducing kernel
k = r+ ⊗ ℓ. (89)

Functions fromH now contain functions which are the product of functions fromHr+ andHℓ and are therefore allowed to
be constant with respect to x1 sinceHr+ contains constant functions.

Note that while this structural assumption may appear to limit the generality of the proposed methodology, tensor product
RKHSs are a widely used form of RKHS (Szabó & Sriperumbudur, 2017; Pogodin et al., 2022; Lun Chau et al., 2022) that
preserve universality of kernels from individual dimension and provide a rich function space.
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Recall now the expression of the finite sample P ∗ estimate used in (20),

P̂ ∗ = Id−k⊤
x (L+ γIn)

−1ℓx2
. (90)

This allows to estimate the projected kernel kP following

k̂P (x, x
′) = ⟨P̂ ∗kx, P̂

∗kx⟩H

=
〈
kx − k⊤

x (L+ γIn)
−1ℓx2

(x2), kx′ − k⊤
x (L+ γIn)

−1ℓx2
(x′

2)
〉
H

= k(x, x′)

− ℓx2(x2)
⊤(L+ γIn)

−1kx(x
′)

− ℓx2(x
′
2)

⊤(L+ γIn)
−1kx(x)

− ℓx2
(x2)

⊤(L+ γIn)
−1K(L+ γIn)

−1ℓx2
(x′

2).

However, for the above derivation to be correct, we need that evaluations of the second kernel ℓ can be obtained by taking an
inner product inH. Namely, we need that

ℓ(x2, x
′
2) = ⟨ℓx2 , ℓx′

2
⟩Hℓ

= ⟨ℓx2 , ℓx′
2
⟩H. (91)

The following result shows that a sufficient condition for this to hold is thatHr itself does not contain constant functions.
As mentioned above, this is a condition satisfied by generic RKHSs such as the RKHSs of the Gaussian kernel or the Matérn
kernels (Steinwart & Christmann, 2008) — which is the RKHS we work with in our experiments.
Proposition C.2. Let H = Hr+ ⊗Hℓ where r+ = r + 1. If Hr does not contain constant functions, then we have that
ℓ(x2, x

′
2) = ⟨ℓx2

, ℓx′
2
⟩H.

Proof. The kernel r+(x1, x
′
1) = r(x1, x

′
1) + 1 here induces a RKHSHr+ (of functions from X1 to R) which does contain

constant functions, e.g., e ∈ Hr+ , where e(x1) = 1, ∀x1 ∈ X1.

This choice of kernel ensures that ℓx2
∈ H when viewed as a function on X1 ×X2, i.e. we can write it as e⊗ ℓx2

, so it is
clear that it belongs toH = Hr+ ⊗Hℓ, since e ∈ Hr+ and ℓx2

∈ Hℓ.

Furthermore, we have

⟨ℓx2
, ℓx′

2
⟩H = ⟨e⊗ ℓx2

, e⊗ ℓx′
2
⟩H

= ⟨e, e⟩Hr+
⟨ℓx2 , ℓx′

2
⟩Hℓ

= ⟨e, e⟩Hr+
ℓ(x2, x

′
2).

However,

⟨e, e⟩Hr+
= ⟨e, e+ rx1

⟩Hr+
− ⟨e, rx1

⟩Hr+

= ⟨e, r+x1
⟩Hr+

− ⟨e, rx1⟩Hr+

= e(x1)− ⟨e, rx1
⟩Hr+

= 1− ⟨e, rx1
⟩Hr+

.

Now ifHr does not contain constant functions, we have Span({e}) ∩Hr = {0}. Hence, by Lemma A.2 we obtain that e
and rx1 are orthogonal inHr+ which in turn gives that

⟨e, rx1
⟩Hr+

= 0⇒ ⟨e, e⟩Hr+
= 1. (92)

Therefore, ifHr does not contain constant functions we have that

⟨ℓx2 , ℓx′
2
⟩H = ⟨e, e⟩Hr+

ℓ(x2, x
′
2) = ℓ(x2, x

′
2). (93)
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C.2. Issue 2 : P is not necessarily closed as an operator onH

Too Long; Didn’t Read We make the assumption that E[f(X)|X2 = ·] ∈ H for f ∈ H.

Too Short; Want More It is possible to choose the reproducing kernel k such thatH is dense in L2(X). This property
is called L2-universality (Sriperumbudur et al., 2011). Whilst this might suggest that the assumption Ef ∈ H for f ∈ H
could be reasonable when L2-universality is met, in practice no explicit case is provided in the literature where it is easy to
verify that E[f(X)|X2 = ·] ∈ H for f ∈ H.

In fact, a classic counter example given by Fukumizu et al. (2013) is the case whereH is the RKHS of the Gaussian kernel
on X and X ⊥⊥ Z. Then, E[f(X)|Z = ·] is constant for any f ∈ H butH does not contain constant functions (Steinwart &
Christmann, 2008). In the context of our work, we do not have (X1, X2) ⊥⊥ X2 but it nonetheless remains difficult to verify
whether E[f(X)|X2 = ·] ∈ H.

Efforts to study this nontrivial research direction must be highlighted : Mollenhauer & Koltai (2020) show that under
denseness assumptions, it is possible to approximate the conditional expectation operator E : L2(X) → L2(X) with
a Hilbert-Schmidt operator on H with arbitrary precision. Klebanov et al. (2020) propose a rigorous RKHS-friendly
construction of E that only assumes that Ef lies a constant away from H. Most recently, Li et al. (2022a) consider the
weaker assumption that for f ∈ H, Ef lies in an interpolation space between H and L2(X) and prove optimal learning
rates for its estimator.

The theoretical intricacies of such considerations tend however to undermine more “practical”-driven work. For this reason, it
is common to defer such consideration to theoretical research and make the assumption that E[f(X)|X2 = ·] ∈ H (Fukumizu
et al., 2004; Song et al., 2011; Muandet et al., 2016; Hsu & Ramos, 2019; Ton et al., 2021; Chau et al., 2021; Fawkes et al.,
2022). Since the RKHS theory is not central to our motivations but only a tool we use to demonstrate the benefits of collider
regression, we propose to make a similar assumption and delegate this theoretical consideration for future work.
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D. Collider Regression on a simple DAG: estimators
Let k : X × X → R and ℓ : X2 × X2 → R be positive definite kernel. In what follows, we adopt notations from the
Section 4.3. f̂ = y⊤(K+ λIn)

−1kx denotes the solution to the kernel ridge regression problem inH. We abuse notation
and denote the pairwise inner product of feature maps as

⟨kx,kx⟩H =
[
⟨kxi

, kxj
⟩H

]
1≤i,j≤n

=
[
k(xi, xj)

]
1≤i,j≤n

= K. (94)

D.1. For a general choice of kernel k

D.1.1. ESTIMATING µX|X2=x2

We are interested in estimating the CME µX|X2=x2
. Using the CME estimate from (6), we obtain

µ̂X|X2=x2
= k⊤

x (L+ γIn)
−1ℓx2(x2). (95)

D.1.2. ESTIMATING P f̂

Writing out

P f̂(x1, x2) = f̂(x1, x2)− ⟨f̂ , µX|X2=x2
⟩H (96)

= y⊤(K+ λIn)
−1kx(x1, x2)− y⊤(K+ λIn)

−1⟨kx, µX|X2=x2
⟩H, (97)

it appears we can obtain an estimate of P f̂ by substituting µX|X2=x2
with its estimate in the above. We obtain

P̂ f̂(x1, x2) = y⊤(K+ λIn)
−1kx(x1, x2)− y⊤(K+ λIn)

−1 ⟨kx,kx⟩H︸ ︷︷ ︸
K

(L+ γIn)
−1ℓx2

(x2) (98)

= y⊤(K+ λIn)
−1

(
kx(x1, x2)−K(L+ γIn)

−1ℓx2(x2)
)
, (99)

or in functional form
P̂ f̂=y⊤(K+λIn)

−1(
kx−K(L+γIn)

−1ℓx2

)
. (100)

D.2. When k = (r + 1)⊗ ℓ

In Section 4.4, a sufficient assumption for the projection to be well-defined is that the kernel takes the form

k = (r + 1)⊗ ℓ, (101)

where r : X1 ×X1 → R is a positive definite kernel. When we choose this particular form of kernel, alternative estimators
can be devised.

In what follow, we denote r+ = r + 1, r+

x1 = r+(x1, ·) and R+ = r+(x1,x1).

D.2.1. ESTIMATING µX|X2=x2

Going back to the definition of CMEs, we can write

µX|X2=x2
= E[kX |X2 = x2] = E[r+X1

⊗ ℓX2
|X2 = x2] = E[r+X1

|X2 = x2]⊗ ℓx2
= µX1|X2=x2

⊗ ℓx2
. (102)

Therefore, it is sufficient to obtain an estimate of µX1|X2=x2
, which we can get as

µ̂X1|X2=x2
= r

+⊤
x1

(L+ γIn)
−1ℓx2

(x2), (103)

and take as a CME estimator

µ̂X|X2=x2
=

[
r

+⊤
x1

(L+ γIn)
−1ℓx2

(x2)
]
ℓx2

(·) (104)
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D.2.2. ESTIMATING P f̂

Following the similar derivations than in the general case, we obtain

P̂ f̂(x1, x2) = y⊤(K+ λIn)
−1kx(x1, x2)− y⊤(K+ λIn)

−1⟨r+

x1 , r
+

x1⟩Hr+
⟨ℓx2 , ℓx2⟩Hℓ

(L+ γIn)
−1ℓx2(x2) (105)

= y⊤(K+ λIn)
−1

[
kx(x1, x2)−Diag(ℓx2

(x2))R
+

(L+ γIn)
−1ℓx2

(x2)
]
, (106)

where Diag(ℓx2(x2)) is the diagonal matrix that has the vector ℓx2(x2) = ℓ(x2, x2) as its diagonal. Written in functional
form we obtain

P̂ f̂ = y⊤(K+ λIn)
−1

[
kx −Diag(ℓx2

(·))R+

(L+ γIn)
−1ℓx2

]
(107)

D.2.3. ESTIMATING kP

Writing out,

kP (x, x
′) = ⟨P ∗kx, P

∗kx′⟩H (108)
= ⟨kx − µX|X2=x2

, kx′ − µX|X2=x′
2
⟩H (109)

= ⟨kx, kx′⟩H (110)
− ⟨µX1|X2=x2

⊗ ℓx2
, kx′⟩H (111)

− ⟨kx, µX1|X2−x′
2
⊗ ℓx′

2
⟩H (112)

+ ⟨µX1|X2=x2
⊗ ℓx2 , µX1|X2−x′

2
⊗ ℓx′

2
⟩H (113)

= r+(x1, x
′
1)ℓ(x2, x

′
2) (114)

− ⟨µX1|X2=x2
, r+x′

1
⟩Hr+

ℓ(x2, x
′
2) (115)

− ⟨r+x1
, µX1|X2=x′

2
⟩Hr+

ℓ(x2, x
′
2) (116)

+ ⟨µX1|X2=x2
, µX1|X2=x′

2
⟩Hr+

ℓ(x2, x
′
2) (117)

= ℓ(x2, x
′
2)

[
r+(x1, x

′
1)− ⟨µX1|X2=x2

, r+x′
1
⟩Hr+

− ⟨r+x1
, µX1|X2=x′

2
⟩Hr+

+ ⟨µX1|X2=x2
, µX1|X2=x′

2
⟩Hr+

]
(118)

Therefore, substituting µX1|X2=x2
with its estimate, we obtain

k̂P (x, x
′) = ℓ(x2, x

′
2)

×
[
r+(x1, x

′
1)

− ℓx2
(x2)

⊤(L+ γIn)
−1r

+

x1
(x′

1)

− ℓx2
(x′

2)
⊤(L+ γIn)

−1r
+

x1
(x1)

− ℓx2(x2)
⊤(L+ γIn)

−1R
+

(L+ γIn)
−1ℓx2(x

′
2)
]
.

(119a)

(119b)

(119c)

(119d)

(119e)
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E. Collider Regression on a general DAG: algorithms and estimators
Let k : X × X → R, r : X1 ×X1 → R and ℓ : (X2 ×X3)× (X2 ×X3)→ R be psd kernels. We follow the same notation
convention that in the case of a simple collider, except that now ℓ is a kernel over X2 ×X3. Define f0 (x) = E [Y |X3 = x3].
Here g∗ = f∗ − f0 must live in the appropriate subspace of functions which have zero conditional expectation on (X2, X3).

E.1. Algorithms

Algorithm 4 General procedure to estimate f0 + P ′ĝ

1: Regress X3 → Y to get x3 7→ f̂0(x3)

2: Take Ỹ = Y − f̂0(X3)
3: Regress (X1, X2, X3)→ Ỹ to get (x1, x2, x3) 7→ ĝ(x1, x2, x3)

4: Regress (X2, X3)→ ĝ(X1, X2, X3) to get (x2, x3) 7→ Ê[ĝ(X1, X2, X3)|X2 = x2, X3 = x3]

5: Take P̂ ′ĝ(x1, x2, x3) = ĝ(X1, X2, X3)− Ê[ĝ(x1, x2, x3)|X2 = x2, X3 = x3]

6: return f̂0 + P̂ ′ĝ

Algorithm 5 RKHS procedure to estimate f0 + P ′ĝ

1: Estimate µ̂X|X2=x2,X3=x3

2: Regress X3 → Y to get x3 7→ f̂0(x3)

3: Take ỹ = y − f̂0(x3)
4: Take ĝ = ỹ⊤(K+ λIn)

−1kx

5: Let P̂ ′ĝ = ĝ − ⟨ĝ, µ̂X|X2=·,X3=·⟩H
6: return f̂0 + P̂ ′ĝ

Algorithm 6 RKHS procedure to estimate f0 + ĝP ′

1: Estimate µ̂X|X2=x2,X3=x3

2: Regress X3 → Y to get x3 7→ f̂0(x3)

3: Take ỹ = y − f̂0(x3)
4: Let P̂ ′∗kx = kx − µ̂X|X2=x2,X3=x3

5: Let k̂P ′(x, x′) = ⟨P̂ ′∗kx, P̂
′∗kx′⟩H

6: Evaluate K̂P ′ = k̂P ′(x,x) and k̂P ′,x = k̂P ′(x, ·)
7: Take ĝP ′ = ỹ⊤(K̂P ′ + λIn)

−1k̂P ′,x

8: return f̂0 + ĝP ′

E.2. Estimators for a general kernel k

E.2.1. ESTIMATING µX|X2=x2,X3=x3

µ̂X|X2=x2,X3=x3
= k⊤

x (L+ γIn)
−1ℓx2,x3

(x2, x3). (120)

E.2.2. ESTIMATING P ′ĝ

P̂ ′ĝ = ỹ⊤(K+λIn)
−1(

kx−K(L+γIn)
−1ℓx2,x3

)
. (121)
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E.3. Estimators when k = (r + 1)⊗ ℓ

E.3.1. ESTIMATING µX|X2=x2,X3=x3

µ̂X|X2=x2
=

[
r

+⊤
x1

(L+ γIn)
−1ℓx2,x3((x2, x3))

]
ℓx2,x3(·) (122)

E.3.2. ESTIMATING P ′ĝ

P̂ ′ĝ = ỹ⊤(K+ λIn)
−1

[
kx −Diag(ℓx2,x3(·))R

+

(L+ γIn)
−1ℓx2,x3

]
(123)

E.3.3. ESTIMATING kP ′

k̂P ′(x, x′) = ℓ ((x2, x3), (x
′
2, x

′
3))

×
[
r+(x1, x

′
1)

− ℓx2,x3
((x2, x3))

⊤(L+ γIn)
−1r

+

x1
(x′

1)

− ℓx2,x3
((x′

2, x
′
3))

⊤(L+ γIn)
−1r

+

x1
(x1)

− ℓx2,x3((x2, x3))
⊤(L+ γIn)

−1R
+

(L+ γIn)
−1ℓx2,x3((x

′
2, x

′
3))

]
.

(124a)

(124b)

(124c)

(124d)

(124e)
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F. Details on experiments
F.1. Models

➣ RF We use the scikit-learn (Pedregosa et al., 2011) sklearn.ensemble.RandomForestRegressor imple-
mentation which we tune for

• n_estimators

• max_depth

• min_samples_split

• min_samples_leaf

using a cross-validated grid search over an independently generated validation set.

➣ P -RF Once RF has been fitted as f̂ , we estimate E[f̂(X1, X2)|X2] by fitting a linear regression model of X2 onto
f̂(X1, X2).

➣ KRR We implement our own kernel ridge regression in PyTorch (Paszke et al., 2019). The kernel is taken as

k
(
(x1, x2), (x

′
1, x

′
2)
)
=

(
κθ1(x1, x

′
1) + 1

)
κθ2(x2, x

′
2), (125)

where κθ denotes the Gaussian kernel with lengthscale θ > 0

κθ(u, u
′) = exp

(
−∥u− u′∥22

θ

)
. (126)

The kernel lengthscales θ1, θ2 and the regularisation weight λ > 0 are tuned using a cross-validated grid search on an
independently generated validation set.

➣ P -KRR Once KRR has been fitted as f̂ = y⊤ (K+ λIn)
−1

kx, we estimate the CME and use it to estimate
P f̂(x1, x2) = f̂(x1, x2)− ⟨f̂ , µX|X2=x2

⟩H following

µ̂X|X2=x2
= k⊤

x (L+ γIn)
−1ℓx2

(x2) (127)

⇒P̂ = Id−µ̂X|X2=· (128)

= Id−k⊤
x (L+ γIn)

−1ℓx2 (129)

⇒P̂ f̂ = f̂ − f̂k⊤
x (L+ γIn)

−1ℓx2 (130)

= y⊤ (K+ λIn)
−1

kx − y⊤ (K+ λIn)
−1

K(L+ γIn)
−1ℓx2 (131)

= y⊤(K+ λIn)
−1(

kx −K(L+ γIn)
−1ℓx2

)
(132)

The kernel on X2 is taken as ℓ = κθ2 . The CME regularisation weight γ > 0 is tuned using a cross-validated grid search on
an independently generated validation set.

➣HP -KRR We use the same base kernel as for KRR with again ℓ = κθ2 . We implement our estimator of the projected
kernel kP is GPyTorch (Gardner et al., 2018)9. The kernel lengthscales and regularisation weights are tuned using a
cross-validated grid search on an independently generated validation set.

9which can be readily incorporated into GP regression pipelines.
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F.2. Simulation example

Data generating process Algorithm 7 outlines the procedure we use to generate a positive definite matrix Σ that encodes
independence between X2 and Y .

Algorithm 7 Procedure to generate Σ

1: Input: d1 ≥ 1, d2 ≥ 1
2: # Generate a 4× (d1 + d2 + 1) random matrix
3: for i ∈ {1, . . . , d1 + d2 + 1} do
4: Mi ∼ N (0, I4)
5: Mi ←Mi / ∥Mi∥2
6: end for
7: # Make Y column orthogonal to all X2 columns
8: MY ←Md1+d2+1

9: for i ∈ {d1 + 1, . . . , d1 + d2} do
10: Mi ←Mi − (M⊤

i MY )MY

11: end for
12: M ←

[
M1 | . . . |Md1+d2

| MY

]
∈ R4×(d1+d2+1)

13: Σ←M⊤M + 0.01 ∗ Id1+d2+1

14: # Normalise variances to 1
15: Λ← Diag(Σ)
16: Σ← Λ−1/2ΣΛ−1/2 Σ

Non-linear mappings The mappings g1 and g2 are applied to each component of the input vectors and are given by

g1(u) = u+ 0.1 cos(2πu2) (133)

g2(u) = u+ 0.1 sin(2πu2). (134)

Statistical significance table

Figure 6. p-values from a two-tailed Wilcoxon signed-rank test between all pairs of methods for the test MSE of the simulation example.
The null hypothesis is that scores samples come from the same distribution. We only present the lower triangular matrix of the table for
clarity of reading.
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F.3. Aerosol radiative forcing

Statistical significance table

Figure 7. p-values from a two-tailed Wilcoxon signed-rank test between all pairs of methods for the test MSE of the aerosol radiative
forcing experiment. The null hypothesis is that scores samples come from the same distribution. We only present the lower triangular
matrix of the table for clarity of reading.

Figure 8. p-values from a two-tailed Wilcoxon signed-rank test between all pairs of methods for the test SNR of the aerosol radiative
forcing experiment. The null hypothesis is that scores samples come from the same distribution. We only present the lower triangular
matrix of the table for clarity of reading.
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Figure 9. p-values from a two-tailed Wilcoxon signed-rank test between all pairs of methods for the test correlation of the aerosol
radiative forcing experiment. The null hypothesis is that scores samples come from the same distribution. We only present the lower
triangular matrix of the table for clarity of reading.
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G. Future direction
G.1. Extension to Gaussian processes

Extension to Gaussian processes The methodology presented can naturally be extended to the Bayesian counterpart
of kernel ridge regression, Gaussian processes (GPs) (Rasmussen & Williams, 2005). One can either apply the projection
operator P : L2(X) → L2(X) to the GP prior (or posterior), or use the projected kernel kP to specify the covariance
function10.

However, such approach raises important questions from a theoretical perspective. If f ∼ GP(0, k), the application of
the L2(X) projection to f will result in a linearly transformed GP Pf ∼ GP(0, PkP ∗) (Särkkä, 2011) and its draws
will lie in the range of P . In contrast, since draws from a GP almost surely lie outside the RKHS associated with its
covariance (Kanagawa et al., 2018), draws from f ∼ GP(0, kP ) will almost surely lie outsideHP . It is therefore unclear
whether these draws will lie in the range of the projection and satisfy the desired constraint for f . On the other hand, the
posterior mean of the GP will always lie inHP .

Furthermore, the projection is targeted at improving performance in mean square error. Because this metric is not necessarily
adequate to evaluate GPs, it is unclear whether applying the projection would result in a performance improvement on more
commonly used metrics for GPs such as maximum likelihood.

10Our implementation of k̂P is available in GPyTorch (Gardner et al., 2018) and can be readily incorporated into GP regression
pipelines.
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