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ABSTRACT

Probabilistic topic models are a powerful tool for extracting latent themes from
large text datasets. In many text datasets, we also observe per-document covariates
(e.g., source, style, political affiliation) that act as environments that modulate a
"global" (environment-agnostic) topic representation. Accurately learning these
representations is important for prediction on new documents in unseen environ-
ments and for estimating the causal effect of topics on real-world outcomes. To this
end, we introduce the Multi-environment Topic Model (MTM), an unsupervised
probabilistic model that separates global and environment-specific terms. Through
experimentation on various political content, from ads to tweets and speeches, we
show that the MTM produces interpretable global topics with distinct environment-
specific words. On multi-environment data, the MTM outperforms strong baselines
in and out-of-distribution. It also enables the discovery of accurate causal effects.1

1 INTRODUCTION

Table 1: Top terms learned by the MTM for a U.S mili-
tary topic learned from political ads in Republican and
Democrat-leaning regions in the U.S. Topic words re-
lated to the U.S military, such as ‘veterans’ and ‘troops’,
receive high probability across all regions. However, top
values in Republican-leaning regions show that words
like ‘freedom’ and ‘terrorists’ receive high probability.
In contrast, terms like ‘home’ are more likely in ads
from Democrat-leaning regions.

Source Top Words
Global america, veterans, war, proud,

iraq, military, troops

Republican-leaning terror, liberties, isis, terrorism,
freedom, terrorists, defeat

Democrat-leaning iraq, stay, guard, veterans, sol-
diers, port, home

Topic models are a powerful tool for text
analysis, offering a principled and efficient
method for extracting latent themes from
large text corpora. These models have
wide-ranging applications in text represen-
tation and in causal analysis (Blei et al.,
2003; Blei and Lafferty, 2006; Sridhar
et al., 2022; Roberts et al., 2014).

Many text corpora include per-document
covariates such as source, ideology, or
style, which influence how the topics
are represented Rosen-Zvi et al. (2012);
Roberts et al. (2014). These covariates can
be thought of as per-document "environ-
mental" factors that modulate the global
topics. Learning representations of topics
while accounting for per-environment vari-
ations is particularly important when pre-
dicting new documents with unseen covari-
ate configurations or performing causal analyses.

To illustrate, consider a collection of political advertisements from multiple U.S. news channels.
While all channels discuss similar topics, such as the U.S military, the manner of discussion varies
by channel. Topic models might mistakenly conflate topic and channel variations, learning separate
military topics for each channel. This issue poses a problem in two main scenarios.

First, for a model to generalize to new unseen channels, topic distributions should reflect channel-
independent themes. Failure to do so can result in spurious associations between channels and topics,
leading to poor predictive performance (see Section 5) (Peters et al., 2016; Arjovsky et al., 2019).
Second, when using topic proportions as variables in causal studies (as treatments or as confounders)
(Ash and Hansen, 2023), covariates such as the chosen channel are pre-treatment variables that need

1We implement the MTM in anonymous GitHub repository.
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be adjusted for. For instance, when studying the impact of political ads on election results (Ash et al.,
2020), failing to adjust for channel variations may result in biased causal estimates (see Section 6).

To address these issues, we propose the Multi-environment Topic Model (MTM). The MTM is
a hierarchical probabilistic model designed to analyze text from various environments, separating
universal terms from environment-specific terms. The MTM assumes that the effect of an environment
on the global topic distribution is sparse. That is, for each topic most words are shared across all
environments, and only a subset are environment-specific. To enforce sparsity, we employ an
automatic-relevance determination prior (ARD) (MacKay, 1992). We fit MTMs with auto-encoding
variational Bayes (Kingma and Welling, 2013). Table 1 shows an example of what MTMs uncover.

Our contributions are as follows:

• We introduce the MTM, which captures consistent and interpretable topics from multiple environ-
ments.

• We create three datasets that facilitate the comparison of text models across different environments
(ideology, source, and style), including held-out, out-of-distribution environments.

• We demonstrate that the MTM achieves lower perplexity in both in-distribution and out-of-
distribution scenarios compared to strong baselines.

• We show that the MTM enables the discovery of true causal effects on multi-environment data.

Section 2 discusses related work on topic modeling, multi-environment learning and treatment
discovery. Section 3 details the construction of the MTM. Section 4 explains how to infer topics using
the MTM. Section 5 presents our empirical studies, which compare the MTM to strong baselines on
multi-environment datasets. Section 6 demonstrates how existing topic models can lead to biased
causal estimates and how the MTM mitigates this issue. Finally, Section 7 explores limitations and
future directions for multi-environment probabilistic models.

2 RELATED WORK

Topic Models. Probabilistic topic models uncover latent themes in large datasets (Blei et al., 2003;
Blei and Lafferty, 2009; Vayansky and Kumar, 2020). Topics uncovered with such models are
commonly used for text analysis (Ash and Hansen, 2023) and for estimating causal effects with
text data (Feder et al., 2022a). Many topic models incorporate per-document covariates to learn
topics that are predictive of certain outcomes or that reflect different data-generating processes
(Rosen-Zvi et al., 2012; Roberts et al., 2014; Sridhar et al., 2022). Other topic models incorporate
environment specific information, such as the Structural Topic Model (STM) (Roberts et al., 2016)
and SCHOLAR (Card and Smith, 2018). These models differ from MTMs in that they assume
covariates influence topic proportions. In contrast, the MTM posits that while the same topics
are discussed across environments, they are framed differently, focusing on environment-specific
variations in word usage rather than shifts in topic proportions. Sparse priors are commonly used in
Bayesian models for enhancing interpretability, and are often complemented by empirical Bayes (EB)
methods for parameter estimation (Tipping, 2001). Carvalho et al. (2010) combine these approaches
to develop the horseshoe estimator, and Brown and Griffin (2010) to study normal-gamma priors.
Efron (2012) provides a comprehensive overview of EB methods. Building on this literature, we use
the ARD prior, which relies on a gamma distribution with parameters learned via EB (MacKay, 1992).
While topics models like KATE (Chen and Zaki, 2017) and the Tree-Structured Neural Topic Model
(Isonuma et al., 2020) enforce sparsity on the topic-word distribution, the MTM applies sparsity to
environment-specific deviations of the topic-word distribution.

Invariant learning from multiple environments. Invariant learning tackles the problem of learning
models that generalize across different environments. Invariant learning through feature pruning was
pioneered by Peters et al. (2016), and has since been developed for variable selection (Magliacane
et al., 2018; Heinze-Deml et al., 2018) and representation learning (Arjovsky et al., 2019; Wald et al.,
2021; Puli et al., 2022; Makar et al., 2022; Jiang and Veitch, 2022). These methods have been applied
in a range of domains, including in natural language processing (Veitch et al., 2021; Feder et al., 2021;
2022b; Zheng et al., 2023; Feder et al., 2024). For causal estimation, invariant learning ensures stable
representations by accounting for confounding variables (Shi et al., 2021; Yin et al., 2021). Our work
considers a related problem of learning stable representations of text from multiple environments,
focusing on a probabilistic approach.

2
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Topics as treatments in causal experiments. A common approach to studying the effects of text
is treatment discovery, which involves producing interpretable features of text that can be causally
linked to outcomes (Feder et al., 2022a). Probabilistic topics models are interpretable and can be
trained without direct supervision, making them the preferred method of choice for social scientists
in these settings Grimmer et al. (2021); Ash and Hansen (2023). For example, Fong and Grimmer
(2016) discovered features of candidate biographies that drive voter evaluations, and Hansen et al.
(2018) estimated a topic model based on the transcripts of the Federal Open Market Committee.
Several recent papers have also applied latent Dirichlet allocation (Blei et al., 2003) to newspaper
corpora and interpreted the content of topics in terms of economic phenomena (Mueller and Rauh,
2018; Larsen and Thorsrud, 2019; Thorsrud, 2020; Bybee et al., 2021). Our experiments contribute
to this literature (Section 6) by demonstrating the importance of using a topic model that is faithful to
the true data-generating process (multi-environment data in our case) when using topics as textual
treatments in a causal study.

3 MULTI-ENVIRONMENT TOPIC MODELS

w

z

θ

γ

β

M

D

E

Figure 1: A graphical model for the
multi-environment topic model (MTM).
M denotes words in a document and D
documents. E denotes the environments
documents are drawn from (determined
by different configurations of covariates
x). z denotes topic assignment, β de-
notes global weights for each word in the
vocabulary, and γ denotes environment-
specific weights.

Consider a corpus of n text documents with the corre-
sponding environment-specific information represented
as D = {(w1,x1), . . . , (wn,xn)}, where each document
wi is paired with its corresponding feature vector xi. Each
document wi is a sequence of m word tokens, given
by wi = {wi1, . . . , wim}, that come from a vocabulary
wij ∈ 1

|V |. The feature vectors {x1, . . . ,xn} capture
the environment-specific information associated with each
document in the corpus. For each document, the envi-
ronment is represented by xi ∈ {0, 1}|E|. xi could be
an indicator vector that represents the channel each ad-
vertisement in a dataset emerged from, or more generally
represent the political affiliation (Republican or Democrat)
or style (speech, article, or tweet) of a document.

Our goal is to learn global topics and their per-environment
adjustments. Recall our running example, where news
outlets discuss the same topics in unique ways. We
want to capture the unique ways these outlets discuss the
same topic while simultaneously extracting common terms
shared among all outlets.

In topic modeling, each document is represented as a mix-
ture of topics, with a local latent variable θi denoting the
per-document topic intensities. Topics are denoted by
β, and each βk is a probability distribution over the vo-
cabulary, βk ∈ Rv. We introduce a new latent variable,
γk ∈ Re×v, where k ∈ {1, . . . ,K}, that is designed to
capture the effect that each environment has on each topic-
word distribution, βk. In a multi-environment topic model,
each document is assumed to have been generated through
the following process:

1. Draw βk ∼ N (·, ·), βk ∈ Rv , k = 1, . . . ,K.
2. Draw γk ∼ p(γ), γk ∈ Re×v , k = 1, . . . ,K.
3. For each document i:

(a) Draw topic intensity θi ∼ N (·, ·).
(b) For each word j:

i. Choose a topic assignment zij ∼ Cat(π(θi)).
ii. Choose a word wij ∼ Cat(π(βz + γz · xi))

The graphical model for the multi-environment topic model is represented in Figure 1. Given data, the
posterior finds the topic and word distributions that best explain the corpus, and the distribution that
best explain the words that are most probable in each environment. For example, given advertisements

3
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displayed in Republican-leaning and Democrat-leaning regions of the U.S, the posterior for MTM
uncovers the topic of U.S military as shown in Table 1. MTM represents the terms discussed by both
outlets in βk, while capturing the particular ways Republican and Democrat-leaning channels discuss
military action γk. We next specify p(γ) using the automatic relevance determination (ARD) prior.

Automatic Relevance Determination (ARD) and Empirical Bayes. MTMs are built with the
additional assumption that documents are generated based on different configurations of observed
covariates. The goal is to separate global from environment-specific information. To do this, we
introduce a new latent variable, γk. We further posit that environment effects on the global topic-word
distribution βk should be sparse. Consider again our running example of ads from Republican and
Democrat-leaning sources. In this case, nearly all words will be shared across sources, so we want to
ensure γk only places high density on terms that are highly probable for a particular source.

In many real-world tasks, the input data contains a large number of irrelevant features. ARD is a
method used to filter them out (MacKay, 1992; Tipping, 2001). Its basis is to assign independent
Gaussian priors to the feature weights. Given the feature weights η, the ARD assigns priors as:

σc ∼ Gamma(a, b) (1)

p(η|α) =
∏
c

N (ηc|0, α−1
c ). (2)

The precisions, α = {αc}, represent a vector of hyperparameters. Each hyperparameter αi controls
how far its corresponding weight ηc is allowed to deviate from zero. Rather than fixing them a-priori,
ARD hyperparameters are learned from the data by maximizing the the likelihood of the data with
empirical Bayes (Carlin and Louis, 2000; Efron, 2012).

In the MTM, ARD places the prior of γe,k,v:

σe,k,v ∼ Gamma(a, b)

γe,k,v ∼ N (0, σ−1
e,k,v).

We set the parameters of the Gamma distribution by maximizing the likelihood of the data:

â, b̂ = argmax
a,b

p(D|a, b). (3)

This prior encourages the majority of the environment-specific deviations to exhibit strong shrinkage.
It drives them towards zero, while allowing some to possess significant non-zero values. We
incorporate it into the MTM to highlight influential environment-specific effects (γ), while still
allowing β to capture most of the variation across documents. In Section 5 we discuss the importance
of this modeling choice.

4 INFERENCE

With the MTM defined, we now turn our attention to procedures for inference and parameter
estimation. MTMs rely on multiple latent variables: topic-word distributions β, document-topic
proportion θ, and environment-specific deviations on the topic-word distribution γ. Conditional on
the text and document specific features, we perform inference on these latents through the posterior
distribution p(θ, z, β, γ|D), where D = {(w1,x1), . . . , (wn,xn)}.

As calculating this posterior is intractable, we rely on approximate inference. We use black-box vari-
ational inference (BBVI) Ranganath et al. (2014). Using the reparameterization trick we marginalize
out zij , leaving us with only continuous variables (Kingma and Welling, 2013).

We rely on mean-field variational inference to approximate the posterior distribution (Jordan et al.,
1999; Blei et al., 2017). We set ϕ = (θ, β, γ) as the variational parameters, and let qϕ(θ, β, γ) be
the family of approximate posterior distribution, indexed by the variational parameters. Variational
inference aims to find the setting of ϕ that minimizes the KL divergence between qϕ and the posterior
(Blei et al., 2017). To approximate θ, we use an encoder neural network that takes wi as input and
consists of one hidden layer with 50 units, ReLU activation, and batch normalization. Minimizing
this KL divergence is equivalent to maximizing the evidence lower bound (ELBO):

ELBO = Eqϕ [log p(θ, β, γ)+ log p(x|θ, β, γ)− log qϕ(θ, β, γ)]. (4)

4
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To approximate the posterior, we use the mean-field variational family, which results in our latent
variables, θ, β, and γ being mutually independent and each governed by a distinct factor in the
variational density. We employ Gaussian factors as our variational densities, thus our objective is to
optimize the ELBO with respect to the variational parameters:

ϕ = {µθ, σ
2
θ , µβ , σ

2
β , µγ , σ

2
γ}.

The model parameters are optimized using minibatch stochastic gradient descent in PyTorch by
minimizing the negative ELBO. To achieve this optimization, we employ the Adam optimizer
(Kingma and Ba, 2014). The complete algorithm is described in Algorithm 1.

5 EMPIRICAL STUDIES

Our empirical studies are driven by five questions:

1. How stable is the perplexity of MTMs when tested on datasets from different environments?
2. How does stability change when we incorporate environment-specific information (γ) when

calculating MTMs’ perplexity?
3. How does MTMs’ performance compare to other topic model variants?
4. How does using a non-sparse prior on γ effect model performance?
5. In situations where using θ as text representations produce biased causal estimates, can the

MTM lead to more accurate estimates of causal effects?

We find that:

1. In all test settings, the predictive power of the MTM is stable across environments, especially
when incorporating environment-specific effects (γ).

2. When using environment-specific effects from an irrelevant environment (i.e., using article-
specific effects to calculate perplexity for speeches), perplexity drops considerably.

3. Compared to baselines, the MTM has better perplexity on in and out-of-distribution data.
4. Using a non-sparse prior on γ results in significant decrease in performance.
5. Using the topic proportions from the MTM allows uncovering accurate causal effects.

5.1 BASELINES

We compare the multi-environment topic model to the relevant baselines:

• LDA - Latent Dirichlet allocation (LDA) represents a variant of online Variational Bayes inference
for learning (Blei et al., 2003; 2017).

• Vanilla Topic Model - The vanilla topic model (VTM) represents the base version of our model
without any environment-specific variations:

θi ∼ N (·, ·)
βk ∼ N (·, ·)
wij ∼ (π(θi)π(β)).

• Non-sparse MTM - The non-sparse multi-environment (nMTM) represents the MTM, but with a
Normal distribution on the γ prior.

• ProdLDA - ProdLDA represents the distribution over individual words has a product of experts
rather than the mixture model used in LDA (Srivastava and Sutton, 2017; Hinton, 2002). We use
the standard implementation in Pyro (Bingham et al., 2018).

• MTM + γ - The MTM + γ represents the sum of the environment specific effects from a particular
environment, γk,v, to βk,v. We want to evaluate how the performance shifts when including
environment-specific information. For example, in Figure 2 MTM + γ represents the perplexity
when using γk,v + βk,v , rather than solely βk,v , where the γk,v is the learned article specific effects
on the global topic-distribution, β.

• BERTopic - BERTopic generates topics by clustering document embeddings from pre-trained
transformer models, and uses TF-IDF to identify the top words in each cluster. Topic proportions
are calculated by by comparing documents to each document cluster.

• SCHOLAR - SCHOLAR represents a neural topic model that builds on the Structural Topic
Model (Roberts et al., 2014) by using variational autoencoders. It integrates environment-specific
information, allowing the model to flexibly adjust topic distributions (Card and Smith, 2018).
Without environment information it defaults to ProdLDA.

5
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5.2 EVALUATION METRICS

We evaluate topic models using perplexity, topic coherence, and causal estimation. While perplexity
is an imperfect measure of topic models Chang et al. (2009), it remains useful for assessing topic
stability across environments and evaluating the generalizability of models to data from different
distributions. Similarly, like perplexity, automated topic coherence metrics have known limitations
(Hoyle et al., 2021). Coherence is often leveraged for exploratory data analysis Chang et al. (2009).
Our focus is on using model parameters for causal estimation settings, where researchers use topic
models to discover interpretable features of text that can be causally linked to outcomes. For this
reason, we also evaluate the models based on their ability to produce accurate causal effect estimates.

5.3 DATASETS

To empirically study the MTM and the baselines, we construct 3 multi-environment datasets.

Ideological Dataset. The ideological dataset consists of US political advertisements from the
last twenty years. We split the dataset by ideology, and have an even amount of advertisements
from Republican and Democrat politicians (12, 941 samples each). We test all models on three
held-out datasets: Republican-only politicians, Democrat-only politicians, and an even mixture of
advertisements from both parties.

Style Dataset. The style dataset consists of news articles, senator tweets, and senate speeches related
to U.S. immigration. The U.S. immigration articles are gathered from the Media Framing Corpus
(Card et al., 2015). We use all 4, 052 articles in the dataset. We augment the dataset used by Vafa
et al. (2020), which is based on an open-source set of tweets of U.S. legislators from 2009–2017. We
create a list of keywords related to immigration and sample 4, 052 tweets that contain at least one of
the keywords; we repeat the process for Senate speeches from the 111-114th Congress. (Gentzkow
et al., 2018). The environments for the style dataset are defined by the distinct writing styles of tweets,
speeches, and articles.

Channels dataset. The channels dataset consists of political advertisements run on TV channels
across the United States. We create our two environments by splitting the original dataset and assign-
ing channels from Republican voting regions to one environment, and channels from Democratic
voting regions to the other. Appendix C.1 presents the characteristics of each dataset.

5.4 IN-DISTRIBUTION PERFORMANCE

We compare the perplexity and NPMI of the MTM against baseline models using held-out data
from the same sources observed during training. The number of topics is set to k = 20, and all
probabilistic models are trained for 150 epochs. All results are averaged across three runs. We note
that when we have test data from a distribution that is unseen during training we do not have access to
environment-specific γs. Thus, we can not use γ when calculating perplexity for out-of-distribution
test data. For all subsequent analyses, even when our test data is from the same distribution as our
training data, we evaluate the MTM without γ.

Figure 2 compares performance across models on the ideological dataset, which has two environments,
represented by Republican and Democrat political advertisements. We train on an even number of
ads from each environment. Figure 2 represents perplexity of our baseline models and the MTM. We
see in Figure 2 that the MTM performs significantly better on all test sets. Even when using only the
global topic distribution, β, perplexity is stable on both test sets.

When using Republican-leaning ideological effects in the perplexity calculation for Republican
advertisements we have better perplexity than using β only; however, when we use Republican-
leaning effects on the Democrat-leaning test set performance declines considerably. This indicates
that the information captured in γ is relevant to a specific environment, Republican ads, while
uninformative to Democrat ads. The non-sparse MTM variant performs worse in relation to the MTM
with the ARD prior, conveying the importance of employing a sparse prior. We visualize the top
terms that γk places high density on in Table 15.

Figure 3 represents perplexity of LDA, ProdLDA, SCHOLAR, the VTM, nMTM, and MTM when
trained on the channels dataset. The MTM satisfies our desiderata: its predictive performance is

6
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Figure 2: Perplexity on held-out data across models trained on the ideological dataset, consisting
of political advertisements from Republican and Democrat politicians. The MTM +γR represents
global β with Republican-specific deviations γR. MTM outperforms all baselines on all three test
sets.
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Figure 3: Perplexity on held-out data across models trained on a dataset of political advertise-
ments from channels across different regions of the U.S. The MTM +γR represents global β with
Republican-specific deviations γR. MTM outperforms all baselines across all regions.

consistent across environments, performance declines when using environment-specific effects γk
from an environment that differs from the environment of a test set, and perplexity is better than
baseline models.

We find that the MTM performs slightly worse than some baseline models on NPMI, as shown in
Table 2. Achieving a high NPMI score depends on the top words from each topic co-occurring
frequently within the same document. However, these co-occurring words are not necessarily shared
across all environments, meaning that a model with a high NPMI score can still conflate global and
environment-specific words. In Section 6.2, we demonstrate that models with higher NPMI scores,
such as LDA, provide less accurate causal estimates compared to the MTM.

5.5 OUT-OF-DISTRIBUTION PERFORMANCE

Table 2: NPMI on the ideology and
channels datasets.

Model Ideology Channels
MTM −0.16 −0.1
VTM −0.13 −0.12
BERTopic −0.27 −0.22
LDA −0.13 −0.8
ProdLDA −0.10 −0.14

We investigate how the MTM fits data from unseen (out-of-
distribution) environments using the style dataset, which
contains three environments: articles, tweets, and speeches.
Table 3 shows the perplexity of the VTM, ProdLDA,
nMTM, and MTM when trained on speeches and arti-
cles and tested on tweets. We do not included SCHOLAR

7
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as a baseline because tweets were not seen during training.
MTM performs better than baselines on the in-distribution
tests. On out-of-distribution data the performance gap increases. Further, we find that the nMTM
performs worse than the MTM and VTM, highlighting the importance of sparse priors on γ. Using
the same training data, we also test on political advertisements and find again the MTM outperforms
the VTM. Table 18 in Appendix D presents the full results.

Table 3: Performance (held-out perplexity) across
environments when training on congressional senate
speeches and news articles. The MTM has substantially
lower perplexity, especially when tested on the out-of-
distribution tweets.

In-Distribution OOD
Model Articles Speeches Tweets

VTM 1, 613 1, 598 2, 206
ProdLDA 5, 162 2, 406 13, 807
nMTM 2, 030 1, 987 2, 143
MTM 1,502 1,524 1,690

Table 4: Performance (held-out perplexity) across en-
vironments when training on political ads and news
articles. The MTM has substantially lower perplexity,
especially when tested on the out-of-distribution tweets.

In-Distribution OOD
Model Articles Ads Tweets

VTM 1, 689 1, 159 1, 793
ProdLDA 2, 293 2, 698 9, 454
nMTM 1, 841 1, 468 1, 757
MTM 1,254 662 1,221

We combine environments from the ide-
ological dataset with the style dataset to
train on political ads and articles, and test
on tweets. Table 4 presents the perplexity
of our baseline models and the MTM. We
find that the MTM outperforms the base-
lines on both the in-distribution and out-of-
distribution tests. We find the sparse prior
on γ to be an important factor in improving
model robustness. Without sparsity, MTMs
capture too much global information in γ
(Table 21), hurting out-of-distribution per-
formance. Implementation details are de-
scribed in Appendix C.

6 CAUSAL INFERENCE
WITH TOPIC PROPORTIONS

In the social sciences, learned topic pro-
portions (θs) are often used as a low-
dimensional interpretable representation of
text in causal studies. We describe here the
problem with using topic proportions from
an unadjusted topic model (like the VTM)
to represent text in a causal study on multi-
environment data (Section 6.1). We then
demonstrate empirically why the MTM is
crucial for this setup (Section 6.2).

6.1 WHY ADJUST FOR ENVIRONMENT COVARIATES?

Consider a dataset D = {(wi,xi, yi)}ni=1, where wi are words in document i, xi are pre-treatment
measurements (i.e. the channel that the ad will run on), and yi is the outcome variable. Imagine we
are interested in estimating the causal effect of a topic Ti chosen for document i (e.g., exposure to a
specific topic k) on the outcome yi. The treatment Ti is some measure based on the topic proportions
θi (e.g., a binary indicator for whether topic k received the most amount of mass) (Ash et al., 2020).

In the potential outcomes framework (Rubin, 1974), we denote yi(Ti) as the potential outcome for
unit i under treatment Ti. The average treatment effect (ATE), controlling for pre-treatment variables
X , is defined as:

τ = E[yi(Ti = 1) | xi]− E[yi(Ti = 0) | xi],

where Ti = 1 {argmaxj θij = k}.

A confounder is a variable that influences both the treatment and the outcome. In our context, xi are
covariates that affect the outcome yi (e.g., choosing which channel to run the ad on causally affects
voting outcomes), and might be baked into the topic proportions θi in a topic model (e.g. when
topics include channel information). If we do not adjust for xi when learning θi, our estimate of the
treatment effect might be biased.

Denote the true topic proportions as θi. When xi affects topic assignment, the learned topic pro-
portions θ̂i will be given by: θ̂i = f(θi,xi). Outcome yi is influenced by both the topic Ti and the

8
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confounders xi: yi = g(Ti) + h(xi) + ηi, where g(·) is the effect of the chosen topic, h(·) is the
effect of the covariates, and ϵi is the error term.

Substituting this into the causal effect estimation, we get:

τ̂ = E[yi | 1
{
argmax

j
f(θij ,xi) = k

}
,xi]− E[yi | 1

{
argmax

j
f(θij ,xi) ̸= k

}
,xi].

Comparatively, the true causal effect τ is:

τ = E[yi | 1
{
argmax

j
θij = k

}
,xi]− E[yi | 1

{
argmax

j
θij ̸= k

}
,xi].

In any case where θ̂i is not conditionally independent of xi (as in the VTM), we will get that τ̂ ̸= τ .
By modeling θ̂MTM

i as the sum of βi and γk,xi , the MTM controls for variation in xi and ensures
that θi is conditionally independent of xi. We now turn to empirically test the efficacy of using topic
proportions from MTM and the baseline models for causal estimation on semi-synthetic data.

6.2 ESTIMATING CAUSAL EFFECTS OF TOPICS

Table 5: The top terms for the topic distributions related to energy for the MTM, VTM, and LDA
models, which were trained on the ideological dataset. The VTM identifies two distinct topics
associated with energy-related discourse, each reflecting terminology predominantly used by either
Democrat or Republican viewpoints. LDA identifies a topic related to energy, but it also reflects
Republican viewpoints. For the MTM, variations in word association across political ideologies are
captured through the γ parameter, and it successfully learns a single topic for energy.

Model Source Top Words

MTM
βk: Global energy, oil, choice, world, gas, prices, power, broken, coal, faith
γk: Republican kill, coal, ballot, keystone, faith, destroy, domestic, face, epa, broken
γk: Democrat oil, gouging, clean, price, climate, renewable, alternative, wind,

progress, nextgen

VTM βk (Topic 15) tax, money, dollars, values, energy, breaks, sales, corporations, spend,
increase, gas, reform

βk (Topic 21) america, fight, oil, gas, world, fought, billions, foreign, military,
states, coal, freedom

LDA βk oil, energy, gas, america, white, companies, foreign, drilling,
progress, independence

Table 6: The top terms for the topic distributions related to senior social policies discovered by the
MTM model on the ideological dataset.

Source Top Words
βk: Global health, security, medicare, social, seniors, insurance, costs, drug, healthcare,

companies
γk: Republican takeover, bureaucrats, doctors, health, billion, choices, plans, canceled, sky-

rocketing, log
γk: Democrat companies, privatize, conditions, protections, insurance, health, social, voted,

aarp, age

Based on the ideological dataset, we design two semi-synthetic experiments where we sample an
outcome variable Y from a Bernoulli distribution with parameter p = 0.5. First, we train the MTM,
LDA, VTM, ProdLDA, and BERTopic on the ideological dataset with k = 30 and extract the topic
proportions. We then model Y as a function of a binary predictor T , where T = 1 if the topic
proportion for either the ‘energy’ or ‘senior social policies’ topic (as shown in Table 5 and Table 6)
is the highest among all topic proportions in a given document, and T = 0 otherwise. To any ad
containing two keywords from the energy list [energy, oil, gas, clean] or two from the senior social
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policies list [health, social, security, insurance, seniors, healthcare, pension, retirement], we add 0.2
to the outcome variable Y . We sample 700 ads for each list and additional 700, resulting in 2, 100
samples. We run separate ordinary least squares (OLS) regressions for each experiment.

We select the topic proportion corresponding to the βk that has the most overlapping words with the
energy and senior social policies topics. Since VTM learns two separate topics with equal overlap
with the energy keyword list, we fit a model where T = 1 if the combined topic proportions of the two
energy topics (Topics 15 and 21) are the highest among all topics for a given document. To estimate
the causal effect of the topics, we use the following OLS regression: Y = δ0 + δ1T + δ2X + ϵ
where δ1 represents the marginal effect of the energy topic on Y in one experiment, and the senior
social policies topic in the other. The regression results from the experiments using the MTM,
VTM, ProdLDA, LDA and BERTopic models are summarized in Table 7. We exclude SCHOLAR
from our experiments because its modeling approach allows topic distributions to be influenced by
environment-specific deviations, which contradicts our goal of obtaining global topic representations.
However, we include ProdLDA, which is equivalent to SCHOLAR without environment-specific
information. Using the representation from the MTM, we are able to capture the true effect of 0.2
more accurately than any other model. Models such as LDA, which have higher coherence scores
than MTM, perform worse when estimating causal effects. This is because assigning high probability
to environment-specific terms can improve coherence metrics, but high coherence does not guarantee
unbiased causal estimates when data comes from multiple environments. Table 5 shows how VTM
and LDA can assign high probability to terms reflecting right-leaning ideology, such as ‘military’
and ‘freedom’, within the context of energy, whereas MTM effectively separates global topics from
environment-specific effects. By separating global topics from environment-specific deviations, MTM
controls for the confounding effects of environments, leading to more accurate causal estimates in the
presence of data from different environments. Top words from all models are shown in Appendix D.3.

Table 7: The coefficient δ1 from the OLS regressions using various models for the ‘energy’ and
‘senior social policies’ topics. With MTM, we are able to learn substantial effects for both topics,
while other models provide mixed results. Baseline models have the propensity to misrepresent the
underlying topics when trained on data from multiple environments while MTMs are able to learn the
environment-specific information in the γ parameter and capture the global information in β. Note:
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

Model Energy Senior Social Policies
δ1 Coefficient Std. Error δ1 Coefficient Std. Error

MTM 0.200∗∗∗ 0.028 0.203∗∗∗ 0.027
VTM 0.066 0.041 0.000 0.000
LDA -0.263 0.140 0.149∗∗∗ 0.037
ProdLDA 0.150∗∗∗ 0.029 0.085∗ 0.041
BERTopic 0.341 0.410 0.116∗∗∗ 0.032

7 DISCUSSION AND LIMITATIONS

We addressed the problem of modeling text from multiple environments. To that end, we developed
the multi-environment topic model (MTM), an unsupervised probabilistic model that learns a global
topic distribution and adjusts for environment-specific variation. The MTM has stable perplexity
across different environments. It captures meaningful information in the environment-specific latent
variable, performs better in and out of distribution and allows discovery of accurate causal effects.

The MTM has clear limitations, which opens up several avenues for future work. First, as MTMs
rely on a bag-of-words representation, integrating them with more modern neural text representation
models can potentially improve their predictive performance. Second, while we demonstrate that
MTMs allow uncovering true causal effects in multi-environment data, we only evaluate this on
semi-synthetic data. Exploring this question rigorously is out of the scope of this paper, but is an
important problem to address in future work. Finally, another potential avenue for further exploration
not addressed in this paper is the connection between invariant learning and probabilistic models.

Reproducibility We provide the code and data to use the MTM in an anonymous Github repo
anonymous GitHub repository and also attach the code to our submission in a zipfile. Algorithm 1
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also displays the algorithm for the MTM. In the Appendix C we include the MTM hyperparameters
and tokenizer hyperparameters. Appendix C also includes a description of each dataset.
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APPENDIX

A ALGORITHM

Algorithm 1 Multi-environment topic model (MTM)
1: Input: Number of topics K, number of words V , number of environments E
2: Output: Document intensities θ̂, global topics β̂, environment-specific effects on global topics γ̂
3: Initialize: Variational parameters µθ, σ2

θ , µβ , σ2
β , µγ , σ2

γ randomly
4: while the evidence lower bound (ELBO) has not converged do
5: sample a document index d ∈ {1, 2, . . . , D}
6: sample zθ, zβ , and zγ ∼ N (0, I) ▷ Sample noise distribution
7: Set θ̃ = exp(zθ ⊙ σθ + µθ) ▷ Reparameterize
8: Set β̃ = exp(zβ ⊙ σβ + µβ) ▷ Reparameterize
9: Set γ̃ = exp(zγ ⊙ σγ + µγ) ▷ Reparameterize

10: for v ∈ {1, . . . , V } do
11: Set wdv =

∑
k θ̃dk(β̃kv + γ̃ekv) ▷ Log-likelihood term

12: end for
13: Set log p(wd|θ̃, β̃, γ̃) =

∑
v log p(wdv|θ̃, β̃, γ̃) ▷ Sum over words

14: Compute log p(θ̃, β̃, γ̃) and log q(θ̃, β̃, γ̃) ▷ Prior and entropy terms
15: Set ELBO = log p(θ̃, β̃, γ̃) +N · log p(wd|θ̃, β̃, γ̃)− log q(θ̃, β̃, γ̃)
16: Compute gradients ∇ϕELBO using automatic differentiation
17: Update parameters ϕ
18: end while
19: Return approximate posterior means θ̂, β̂, γ̂

B THE HORSESHOE PRIOR

Another way to enforce sparsity on the multi-environment topic model, is with a horseshoe prior for
γ, which is defined as:

γe,k,v | λek, τ ∼ N (0, λ2
e,kτ

2).

Here, λe,k represents the local shrinkage parameter specific to each environment e and topic k, while
τ is the global shrinkage parameter that applies to all γ variables. The horseshoe prior for λe,k has
the following characteristic form:

λe,k ∼ C+(0, 1)

τ ∼ C+(0, 1)

where C+(0, 1) denotes the standard half-Cauchy distribution, which has a probability density
function that is flat around zero and has heavy tails. As such, the prior encourages the majority
of these environment-specific deviations to exhibit strong shrinkage, driving them towards zero,
while allowing some to possess significant non-zero values, thereby highlighting truly influential
environment-specific effects and allowing β to maintain its ability to capture topics across documents.
Thus the hMTM disentangles global from environment-specific influences by capturing the global
topics in β and environment-specific deviations in γ.

In Table 8, words under the topic, βk, related to the energy such as ‘oil’ and ‘water’ receive high
density across all environments in a corpus which consists of political articles, tweets and senate
speeches, whereas words such as ‘projects’ and ‘infrastructure’ receive high density in the γk
representing the senate speech-specific effects, and acronyms like ‘EPA’ receive high density in the
twitter specific effects. Table 9 displays the top terms the hMTM learns in a topic related to healthcare
when trained on the ideological dataset.
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Table 8: The table displays the top words learned by hMTM when trained on the style dataset. The
words in global topics appear in all environments when discussing a given topic, while the words that
receive the top γk values predominately appear in one environment. We observe distinctive word
choices in tweets, articles, and senate speeches, reflecting different communication styles.

Source Top Words

βk: Global energy, oil, water, jobs, air
card, credit, banks, financial, bank

γk: News Articles canada, disaster, wind, property, construction
card, cards, fee, fraud, investment

γk: Senate Speeches national, infrastructure, country, projects, climate
rules, consumers, industry, rates, regulatory

γk: Tweets epa, climate, roll, environment, coal
competition, settlement, consumers, exchange, regulate

Table 9: When trained on the ideology dataset, hMTM learns interpretable environment-specific
terms while simultaneously uncovering meaningful global topics.

Source Top Words
βk: Global health, budget, debt, cost, costs

γk: Republican takeover, debt, health, trillion, bureaucrats

γk: Democrat health, affordable, healthcare, universal, medicaid

C EXPERIMENTAL DETAILS

C.1 DATASETS

Table 10: A summary of the datasets we construct for testing topic models across multiple environ-
ments.

Dataset Style Ideology Political advertise-
ments

Focus of text US Immigration Politics Politics
Environments {Tweets from US

Senators, US Senate
speeches, news arti-
cles}

{Republican, Demo-
crat} politicians

Channels from {Repub-
lican, Democrat} vot-
ing regions

Training set size 4, 052 per environment 12, 941 per environ-
ment

12, 446 per environ-
ment

C.2 STYLE DATASET

The style dataset consists of 12, 156 samples, with an even amount of samples from each environment.
We constructed a vocabulary of unigrams that occurred in at least 0.6% and in no more than 50% of
the documents. We use the same tokenization scheme for all baselines we compare to. We removed
cities, states, and the names of politicians in addition to stopwords. For hMTM, we set λ and τ ,
parameters used in the horseshoe prior, to be 0.4. For MTM, we set the hyperparameters of the
gamma distribution, a and b, to be 3.7 and 0.34 respectively. These values were determined by
training our model for 50 epochs, taking 2 gradient steps for updating a and b in the empirical Bayes
method for every 1 step for the rest of the model. This approach helps guarantee that hyperparameter
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updates are not overshadowed by the updates of the rest of the parameters in the model. We set the
number of topics, k, to be 20 for all experiments in this paper.

OOD experiments:

When training on speeches and articles and testing on tweets the training dataset has 8104 samples.
We constructed a vocabulary of unigrams that occurred in at least 0.8% and in no more than 50% of
the documents. For MTM, we set the hyperparameters of the gamma distribution, a and b, to be 2.92
and 0.25 respectively. These values were determined by training our model for 50 epochs, taking 2
gradient steps for updating a and b in the empirical Bayes method for every 1 step for the rest of the
model.

When training on ads and articles and testing on tweets the training dataset has 8104 samples. We
constructed a vocabulary of unigrams that occurred in at least 0.2% and in no more than 50% of the
documents. For MTM, we set the hyperparameters of the gamma distribution, a and b, to be 2.87
and 0.25 respectively. These values were determined by training our model for 50 epochs, taking 2
gradient steps for updating a and b in the empirical Bayes method for every 1 step for the rest of the
model.

C.3 IDEOLOGICAL DATASET

We construct a vocabulary of unigrams that occurred in at least 0.6% and in no more than 40% of
the documents. We remov cities, states, and the names of politicians in addition to stopwords. For
hMTM, we set λ and τ , parameters used in the horseshoe prior, to be 0.5. For MTM, we set the
hyperparameters of the gamma distribution, a and b, to be 4.0 and 0.11 respectively. These values
were determined by training our model for 15 epochs, taking 2 gradient steps for updating a and b in
the empirical bayes method for every 1 step for the rest of the model.

C.4 POLITICAL ADS DATASET

The style dataset consists of 24, 892 samples, with an even amount of samples from each environment.
We construct a vocabulary of unigrams that occurrs in at least 0.6% and in no more than 40% of
the documents. We remove cities, states, and the names of politicians in addition to stopwords. For
hMTM, we set λ and τ , parameters used in the horseshoe prior, to be 0.4. For MTM, we set the
hyperparameters of the gamma distribution, a and b, to be 3.8 and 0.13 respectively. These values
were determined by training our model for 15 epochs, taking 2 gradient steps for updating a and b in
the empirical Bayes method for every 1 step for the rest of the model.

C.5 HYPERPARAMETERS

For auto-encoding VB inference, we used an encoder with two hidden layers of size 50, ReLU
activation, and batch normalization after each layer. For stochastic optimization with Adam, we use
automatic differentiation in PyTorch. We used a learning rate of 0.01 based on implementation from
Sridhar et al. (2022). These methods were trained on a T4 GPU.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 IN-DISTRIBUTION PERFORMANCE

Channels dataset.
Table 11 presents a sample advertisement from a Democrat and Republican-leaning region respec-
tively.
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Table 11: An example of advertisements from our dataset. KSWB is a San Diego based news channel,
and WKRG is a station licensed to Mobile, Alabama.

Source Text
Alabama (WKRG) What does Governor Bob Riley call over 70,000 new jobs? A great start.

His conservative leadership’s given us the lowest unemployment in Al-
abama history, turning a record deficit into a record surplus. Now Gov-
ernor Riley has delivered the most significant tax cuts in our history. The
people get up every morning and work, they are the ones that allowed us to
have the surplus. The only thing I’m saying, they should have some of it
back. Governor Bob Riley, honest, conservative leadership.

California (KSWB) State budget cuts are crippling my classroom. So I can’t believe the Sacra-
mento politicians cut a backroom deal that will give our state’s wealthiest
corporations a new billion dollar tax giveaway. A new handout that can
only mean larger class sizes and even more teacher layoffs. But passing
Prop 24 can change all that. Prop 24 repeals the unfair corporate giveaway
and puts our priorities first. Vote yes on Prop 24 because it’s time to give
our schools a break, not the big corporations. their corporate giveaway
and puts their priorities first. Vote yes on Prop 24 because it’s time to give
our schools a break, not the big corporations.

Table 12: Perplexity of the hMTM when trained on a dataset of political advertisements from channels
in different regions of the U.S. γ represents Republican leaning effects.

Model Republican Democrat

hMTM + γ 545 664
hMTM 622 651

Style dataset.
Table 13 represents the perplexity of gensim LDA, vanilla topic model, ProdLDA, nMTM, and MTM.
It also includes the performance when using environment-specific information, γ. Here γ represents
the article-specific effects on our topic-word distribution β. Notably, when using the article-specific
effects for calculating perplexity on a test set consisting of only articles, the perplexity improves.
Indicating that the article-specific effects captured in γ uncover information relevant to articles.
However, when we use article-specific effects to calculate the perplexity on speeches, the perplexity
declines considerably, whereas when we use only β, our perplexity remains stable across test sets,
indicating that it captures a robust distribution of topics. The non-sparse variant of the MTM, nMTM,
performs worse than the MTM and also the VTM baseline, indicating the importance of placing a
sparse prior on γ. We visualize the top terms that γk places high density on in Table 14.

Table 13: Model perplexities when training on all three sources and testing on unseen data from each
environment. γ corresponds to article-specific effects. VTM, ProdLDA, and LDA are less stable than
the MTM.

Model Articles Speeches Tweets

LDA 9344 3007 3.936× 1012

VTM 1345 1461 1584
ProdLDA 2757 2427 2000
nMTM 1586 1754 1716
hMTM 1215 1306 1309
hMTM + γ 1051 1333 1218
MTM 1181 1298 1112
MTM + γ 1048 1426 1017
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Table 14 reflects how MTM learns environment specific effects, and global topics when trained
on the style dataset. In the topic related to immigration, β captures words that are appear across
environments like ‘country’ and ‘law’ whereas words like ‘secretary’ and ‘homeland’ are predominant
in senate speeches and ‘naturalization’ is predominant in articles.

Table 14: Top words for a particular topic distribution learned by MTM when trained on the style
dataset. The words in global topics appear across environments, while the words that receive the top
γ values predominantly appear in one environment. We observe distinctive word choices in tweets,
articles, and senate speeches, reflecting different communication styles.

Source Top Words

βk: Global Topics country, law, status, policy, illegal, immigrants, immigration,
border, citizenship

γk: News Articles immigration, primary, illegal, immigrants, legal, naturalization,
states, driver, citizenship

γk: Senate Speeches immigration, border, security, gang, secretary, everify, home-
land, colleagues, america

γk: Tweets country, discuss, policy, immigration, reform, illegal, applica-
tions, check, plan

Ideological dataset. Table 15 represents the top terms the MTM learns on ideological dataset. Table
16 reflects the perplexity of the hMTM across the different test sets.

Table 15: When trained on the ideological dataset MTM learns meaningful terms for the Republican
and Democrat environments, while simultaneously uncovering meaningful global topics.

Source Top Words
βk: Global health, seniors, insurance, medicare, plan, costs, drug,

affordable, healthcare, fix

γk: Republican obamacare, health, takeover, bureaucrats, replace, medi-
care, supports, repeal, lawsuits, choices

γk: Democrat health, companies, protections, conditions, deny, insurance,
prices, voted, drug, gut

Table 16: Perplexity performance of hMTM when trained on a dataset of political advertisements
from Republican and Democrat politicians. hMTM with γ represents a combination of the learned
topic distribution β, where γ indicates the Republican deviations on each word distribution of β.

Model Republican Democrat Neutral

hMTM 547 541 551
hMTM + γ 516 569 550

D.2 OUT-OF-DISTRIBUTION PERFORMANCE

We further investigate how the MTM performs when tested on data that was unseen during training
using our style dataset. We train on political news articles and senate speeches and then test on
political advertisements. These political advertisements come from our ideological dataset.

Table 18 represents the perplexity of the VTM and MTM when trained on articles and speeches and
tested on advertisements.
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Table 17: hMTM also has lower perplexity than baseline models when tested on out-of-distribution
data. Here we trained on congressional senate speeches and news articles and tested on tweets from
U.S. senators.

Model Articles (Perplexity) Speeches (Perplexity) Tweets (Perplexity)

hMTM 1, 481 1, 451 1, 625

Table 18: MTM has lower perplexity than baseline models when tested on out-of-distribution
data. Here we trained on congressional senate speeches and news articles and tested on political
advertisements.

Model Advertisements

VTM 1, 771
ProdLDA 8, 912
nMTM 2, 131
MTM 1, 603
hMTM 1,503

D.3 ESTIMATING CAUSAL EFFECTS OF TOPICS

Table 19: The top terms for the topic distributions related to senior social policies for the MTM,
VTM, ProdLDA, Gensim LDA, and BERTopic models.

Model Source Top Words

MTM
βk: Global health, security, medicare, social, seniors, insurance, costs,

drug, healthcare, companies
γk: Republican takeover, bureaucrats, doctors, health, billion, choices, plans,

canceled, skyrocketing, log
γk: Democrat companies, privatize, conditions, protections, insurance,

health, social, voted, aarp, age

ProdLDA βk (Topic 21) security, medicare, social, seniors, protect, benefits, age, pri-
vatize, retirement, earned

VTM βk (Topic 0) health, medicare, seniors, insurance, costs, affordable, cover-
age, prescription, conditions, lower, drugs, cost, premiums,
charge, deny

Gensim LDA βk (Topic 8) security, social, medicare, seniors, benefits, protect, cut, retire-
ment, age, plan

BERTopic βk (Topic 2) health, social, medicare, insurance, security, planned, parent-
hood, seniors, drug, cancer
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Table 20: The top terms for the topic distributions related to energy for the ProdLDA, LDA, and
BERTopic models, which were trained on the ideological dataset.

Model Source Top Words
ProdLDA βk (Topic 1) energy, oil, clean, prices, gas, foreign, alternative, renewable, econ-

omy, drilling

LDA βk (Topic 10) oil, energy, gas, america, white, companies, foreign, drilling,
progress, independence

BERTopic βk (Topic 19) oil, money, case, tied, fraud, illegal, outsider, ethics, interests,
denounced

E HMTM VS MTM

Model criticism aims to identify the limitations of a model in a specific context and suggest areas for
improvement (Blei, 2014; Gelman and Shalizi, 2012). Although hMTM and MTM exhibit strong
performance compared to other topic model variants, it is crucial to verify the expected behavior of
the newly introduced γ parameter.

According to Occam’s Razor principle, models with unnecessary complexity should not be preferred
over simpler ones (MacKay, 1992). As indicated in Table 21, hMTM is less sparse and exhibits greater
uncertainty regarding its parameter values compared to MTM. Employing the ARD prior leads to a γ
parameter that is not only more sparse but also more effective in capturing environment-specific terms.
This is evident from MTM’s superior performance on both in-distribution and out-of-distribution
data. Besides having considerably lower perplexity, nMTM is also less sparse than both models.

We want to ensure that a given word w that is highly probable in a certain environment ei and a
specific topic k occurs more frequently in documents discussing topic k in environment ei than in
documents discussing the same topic in a different environment ej . We introduce a metric: count
opposite. It represents the number of words (from the top 10 γ words for each environment and
each topic) that have a higher frequency in the test set environment opposite to the one they are
associated with. For instance, if γ, in the context of a Republican-leaning environment, assigns a high
probability to the word ’wasteful’ occurring in discussions about taxation, this word should appear
more frequently in a subset of Republican-leaning advertisements about taxation than in a subset of
Democrat-leaning advertisements on the same topic. Among the words receiving high γ values for a
given environment and topic, these words are more likely to occur in the dataset corresponding to
the environment represented by γ in MTM than in hMTM for the same dataset. We find the median
Count Opposite of the top 10 words for each topic and γ environment is 1.0 for MTM and 2.0 for
hMTM. Motivating the use of the ARD prior.

Model Group Perp. Sparsity µγ σγ

nMTM Republican 949 3.6% 7.1× 10−3 0.4
Democrat 936 3.8% 6.7× 10−3 0.4

hMTM Republican 662 41.64% 7.13× 10−4 0.21
Democrat 651 42.70% −2.92× 10−3 0.24

MTM Republican 598 79.95% 5.45× 10−5 0.03
Democrat 604 79.89% 1.37× 10−4 0.03

Table 21: Comparing the sparsity of different variants of MTMs we find the MTM with an ARD prior
to be the most sparse. Sparsity is defined as any value less than 0.01.
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