GOTZSL: Optimal Transport-Guided Graph-Aware Feature Alignment for
Compositional Zero-Shot Learning

Anonymous ACL submission

Abstract

Compositional Zero-Shot Learning (CZSL)
aims to recognize unseen attribute-object com-
positions by generalizing from seen ones. Ex-
isting prompt-based methods often suffer from
textual feature shift, while graph-based ap-
proaches are limited by static structures and
lack compositional adaptability.

We propose GOTZSL: Optimal Transport-
Guided Graph-Aware Feature Alignment for
Compositional Zero-Shot Learning, a unified
framework that integrates triple prompt tuning,
a graph-based adapter, and compositional vi-
sual adaptation. GOTZSL encodes state, object,
and pair prompts through triple-level text tem-
plates, refines them via a compositional graph
aligned with LLM-derived anchors, and disen-
tangles LoRA-adapted visual features using a
dual-branch MLP module.

To improve consistency and generalization, we
introduce a pairwise optimal transport loss and
partial label smoothing over semantically re-
lated classes. Evaluated on UT-Zappos, MIT-
States, and CGQA under both closed- and open-
world CZSL settings, GOTZSL achieves state-
of-the-art performance, demonstrating robust
compositional reasoning.

1 Introduction

Introduction. Inspired by human cognitive abili-
ties, CZSL has become a central challenge in ma-
chine learning. CZSL aims to recognize novel com-
positions of familiar concepts, such as identifying
“ripe apple” without having seen the specific combi-
nation during training, as illustrated in Figure 1. It
requires two key abilities: (1) generalization, i.e.,
transferring knowledge to unseen attribute-object
pairs; and (2) relational reasoning, i.e., under-
standing the semantic compatibility between at-
tributes and objects (e.g., “ripe” is more likely to
modify “apple” than “rock”).

Evaluation in CZSL is typically conducted under
two settings: Closed-World, where test composi-

tions are limited to a known set of unseen pairs,
and Open-World, where predictions must be made
over both seen and unseen compositions jointly,
posing a more realistic and challenging scenario.
These settings assess a model’s ability to generalize
and remain discriminative across a combinatorially
large output space.

While recent advances have made progress in
aligning vision and language representations, most
methods treat compositions independently, ignor-
ing the relational structure among concepts. In this
work, we propose GOTZSL, a graph-aware frame-
work that integrates structured knowledge into fea-
ture alignment, enabling robust and interpretable
CZSL.
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Figure 1: Illustration of the Compositional Zero-Shot
Learning (CZSL) setting. The model is trained on indi-
vidual attribute-object compositions (e.g., “Sliced Ap-
ple”, “Rotten Apple”), but must recognize unseen com-
binations like "Red Apple" during testing.

Prior approaches to Compositional Zero-Shot
Learning (CZSL) can be broadly categorized into
three paradigms: (1) Dual-classifier methods (Li
et al., 2020; Misra et al., 2017), which employ
separate classifiers for states and objects but fail
to capture their compositional dependencies; (2)
Graph-based methods, such as (Mancini et al.,
2021), which model state-object interactions via
Graph Neural Networks (GNNGs), or (Karthik et al.,
2022), which leverage external knowledge to prune
implausible compositions; and (3) Semantic align-
ment methods (Nagarajan and Grauman, 2018;
Nan et al., 2019), which align visual and compo-



sitional embeddings by minimizing distance in a
shared semantic space.

Despite recent advances, existing methods suf-
fer from two key limitations: (i) they overlook
the structural compatibility between attributes and
objects, and (ii) they optimize visual and textual
modalities in isolation, hindering generalization to
unseen compositions. To address this, we propose
a graph-aware prompt tuning strategy that mod-
els compositional hierarchies while preserving the
semantic integrity of primitive concepts.

Inspired by these insights, we propose
GOTZSL, a CLIP-based framework that com-
bines soft prompting, graph-based adaptation,
and multi-level alignment for CZSL. GOTZSL
introduces triple prompt templates (state, object,
composition) for the frozen CLIP text encoder and
builds a compositional graph refined by a GCN
using LLM-generated descriptions. To model
visual primitives, LoRA adapters are injected into
CLIP’s image encoder for disentangling attribute
and object features. Cross-modal alignment is
achieved via contrastive losses across all axes, with
predictions fused through a weighted strategy.

The contributions of this paper can be summa-
rized as follows:

* First, we propose a novel graph adapter strat-
egy that constructs a compositional graph to
explicitly model relationships among state, ob-
ject, and pair features. To enrich textual se-
mantics, we incorporate LLM-generated sen-
tences with diverse attribute-object combina-
tions. Crucially, the attribute and object to-
kens appear in varying syntactic contexts.

» Second, we enhance CLIP’s dual encoders by
integrating multiple contextual soft prompt to-
kens and Low-Rank Adaptation (LoRA) mod-
ules. To improve alignment, we apply data
augmentations to generate diverse visual prim-
itives.

Third, within the joint feature space, we
employ optimal transport—guided objectives
to align multi-branch predictions across at-
tributes, objects, and pairs. To further enhance
compositional consistency and mitigate over-
confidence, we introduce partial label smooth-
ing over semantically related classes.

The implementation will be made publicly avail-
able upon acceptance.

2 Related Work

Compositional Zero-Shot Learning (CZSL)
without Pretrained VLMs. Unlike traditional
ZSL (Guo and Guo, 2020; Li et al., 2021), which
maps global class-level attributes, CZSL requires
disentangling and recombining semantic primitives.
Earlier CZSL methods fall into four categories: (1)
Dual-branch models separately predict attributes
and objects and combine results at inference (Li
et al., 2022b; Yang et al., 2023a), but lack holis-
tic modeling. (2) Transform-based methods learn
transitions between compositions (?), yet rely heav-
ily on transformation design. (3) Joint embedding
models map visual features and composed concepts
into a shared space (Purushwalkam et al., 2019),
often at the cost of disentanglement. (4) Graph-
based approaches (Naeem et al., 2021; Ge et al.,
2022; Li et al., 2022a; Guo and Guo, 2023) use
GNNs to encode relations among primitives and
compositions, but usually rely on static graphs and
fixed textual features.

Prompt Learning for CZSL. Prompt tuning has
been recently explored to adapt pretrained vision-
language models (VLMs), such as CLIP (Radford
et al., 2021a), for CZSL. Methods like CSP (Nayak
et al., 2022b) and DFSP (Lu et al., 2023) inject
compositional prompts (e.g., “a photo of a sliced
apple”) to align visual and textual spaces. However,
early approaches suffer from joint training collapse
and primitive imbalance, limiting generalization.

Recent methods introduce structure-aware
prompting. Hierarchical (Huynh and Elhamifar,
2023) and conditional prompts (Kang et al., 2023)
improve disentanglement and adaptability. Other
works (Yang et al., 2023b; Zhang et al., 2023; Jeong
et al., 2023) leverage visual or linguistic context to
refine prompts. While effective, these methods still
struggle to fully disentangle semantic primitives
and model their interactions robustly.

Graph-based Prompt Integration. Recent ad-
vances attempt to integrate graph reasoning with
VLMs. Works like (Guo and Guo, 2023; Ge et al.,
2022) use GCNs over CLIP embeddings to inject
relational priors, but often rely on static graphs or
hand-crafted text features. These approaches typ-
ically overlook the potential of learnable prompts
and compositional semantics, motivating our ap-
proach to unify graph-based reasoning and prompt
learning for CZSL.
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Figure 2: The overall architecture of GOTZSL. The model integrates three core components: (1) Textual Prompt
Encoding—Iearnable soft prompts for states, objects, and their compositions are injected into CLIP’s text encoder,
forming a semantic graph refined by a Graph Convolutional Network (GCN) to capture contextual relationships;
(2) Visual Feature Adaptation—the CLIP image encoder is adapted via LoRA and decomposed into state- and
object-specific features through dual-branch extractors; (3) Cross-Modal Alignment and Supervision—visual
and textual embeddings are aligned using contrastive loss, while an OT-based consistency loss enforces alignment

between prediction logits from multiple branches.

3 Methodology

We introduce GOTZSL, a novel framework that ad-
vances Compositional Zero-Shot Learning (CZSL)
by integrating: (i) triple soft prompts for the
text encoder, (ii) feature adaptation and decom-
position for the image encoder, and (iii) graph-
structured learning over state-object-pair compo-
sitions. GOTZSL addresses the core challenge
of generalizing to unseen attribute-object pairs
through the following components:

* Triple Soft Prompts with Graph Adapta-
tion. We design learnable prompts for state,
object, and composed pair concepts, which
are injected into CLIP’s text encoder. These
prompts are structured into a semantic graph,
where nodes represent compositional primi-
tives and edges encode their relationships. A
unified GCN propagates contextual informa-
tion and optimizes node features through con-
trastive supervision, enhancing the discrim-
inability of valid versus invalid compositions.

* Visual Adaptation and Decomposition. We
apply Low-Rank Adaptation (LoRA) to the
upper layers of CLIP’s image encoder to en-
able lightweight fine-tuning. The adapted vi-
sual features are further disentangled via dual
branches into attribute-specific and object-
specific embeddings, facilitating fine-grained

alignment with textual semantics in the shared
space.

* Hierarchical Cross-Modal Alignment. We
optimize a dual-objective: (i) a contrastive
loss aligns visual and textual embeddings of
state-object pairs in the latent space, and (ii)
a novel optimal transport (OT)-based consis-
tency loss aligns prediction logits across state,
object, and pair branches. This two-level su-
pervision enforces semantic coherence and im-
proves generalization to novel compositions.

3.1 Text Encoder

Triple Soft Prompts for Hierarchical Encoding
GOTZSL employs compositional soft prompts to
jointly learn composed and decomposed text repre-
sentations for Compositional Zero-Shot Learning.
Following CSP (Nayak et al., 2022a), we tokenize
and encode the attribute and object names from the
dataset, with each concept mapped to a dedicated
embedding vector. To construct compositional
prompts, we design and fill 3 prompt templates:
(1) “a photo of [attribute] [object]”, (2)
“a photo of [attributel, (3) “a photo of [ob-
ject]”. These templates generate triplet-level rep-
resentations that disentangle and capture attribute
semantics, object categories, and their interactions.
The resulting soft prompts are optimized during
training to align with visual features through our



feature alignment and adapter modules. Further-
more, we encode the template prefix “a photo
of” into three separate learnable context vectors,
each corresponding to the attribute, object, and pair
branches, respectively. This design offers greater
flexibility for triple alignment by allowing indepen-
dent contextual adaptation for each semantic role.
Following PLID (Bao et al., 2024), we leverage
LLM (Zhang et al., 2022) to generate multiple nat-
ural language descriptions for each attribute-object
pair. These sentences are then encoded to obtain
fixed LLM-derived textual features, which serve
as base representations for aligning the learnable
compositional prompts.

Cross-Attention Alignment with Structured Tex-
tual Descriptions To improve the alignment be-
tween attribute-object pairs and their textual repre-
sentations, we incorporate a cross-attention mecha-
nism that fuses learnable prompts with structured
base features derived from a LLM. Given a batch of
attribute-object pairs (a;, 0;), we extract their corre-
sponding LLM-based embeddings T, € RT*5xd,
where T is the number of descriptive tokens per
pair, B is the batch size, and d is the embedding
dimension. In parallel, we construct a query tensor
T, € R>B*d from learnable prompts or class-
level tokens to attend over T}. Both query and
base features are first normalized via LayerNorm.
We then apply multi-head cross-attention, enabling
the query to dynamically attend to semantically
relevant information in the base descriptions:
T, = T,+MHA(LN(T,), LN(T}), LN(T}))
()
Tg“‘ =T, + MLP(LN(T,)) 2)

This design allows the class-level query to selec-
tively aggregate contextual signals from structured
textual descriptions, thereby enriching the output
Tg“t with fine-grained and composition-aware se-
mantics.

Compositional Graph Construction and Graph
Adapter To enrich attribute and object text em-
beddings with structured semantic priors, we con-
struct a compositional graph that captures relation-
ships among attributes, objects, and their composi-
tions. Each node in the graph represents a unique
attribute, object, or attribute-object pair. Edges are
formed based on shared semantics: between an
attribute and a pair sharing the same attribute, or

between an object and a pair sharing the same ob-
ject. Additionally, pair nodes referencing the same
composition are also interconnected. This graph
is processed by a lightweight Graph Adapter—a
Graph Convolutional Network (GCN)—to propa-
gate contextual information and refine learnable
text embeddings via message passing.

We formalize the structure as a semantic graph
G = (V,€), where V denotes the set of nodes
representing compositional units, and £ denotes
the set of bidirectional edges encoding semantic
associations. The node set V consists of three types:
(1) Attribute nodes (S), representing primitive state
concepts (e.g., “wet”, “spotted”); (2) Object nodes
(O), representing entity categories (e.g., “apple”,
“dog”); (3) Reference pair nodes (Crer), representing
fixed attribute-object compositions derived from
LLMs, serving as semantic anchors.

Edges in £ capture both semantic and structural
relationships between nodes. Specifically, edges
are constructed under the following rules: (1) Be-
tween an attribute node and a pair node if they
share the same attribute; (2) Between an object
node and a pair node if they share the same object;
(3) Between reference pairs and their correspond-
ing attribute or object nodes.

This compositional graph enables joint reason-
ing over both learnable prompt-based features and
fixed LLM-derived textual knowledge. Through
message passing, the Graph Adapter propagates
semantic context across nodes, enriching the
prompt embeddings with composition-aware in-
formation and promoting better generalization to
novel attribute-object pairs.
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Figure 3: Visualization of the bidirectional composi-
tional semantic graph.

Graph Adapter Formulation. Given node fea-
tures for attributes A € RMI*9 objects O €
RIOIXd and attribute-object pairs P € RIP1X4 we
first normalize each type and concatenate to form



the graph input:

A
X = |0 e RIAHOI+P)xd
P

We define an undirected graph G = (V, &),
where for each pair (a;,0;) € P, we add edges
between the pair node and its attribute node a;, as
well as its object node o;. The graph is processed by
a 1-layer GCN (Kipf and Welling, 2016), denoted
GCNConv, yielding updated node features:

X’ = GCNConv(X, €) 3)

We apply residual smoothing to attribute and object

nodes for enhanced generalization:
Al=A+X), 0O=0+X), 4

where X', and X, denote the corresponding slices

of X’. The refined features A’, Q' are used in
downstream compositional alignment.

3.2 Image Encoder

Integrating LoRA Adapter and Multi-View En-
coding To enable efficient fine-tuning, we incor-
porate Low-Rank Adaptation (LoRA) modules into
selected self-attention and feedforward layers of
the image encoder. This lightweight design al-
lows the model to adapt to novel attribute-object
compositions with minimal memory and computa-
tional overhead. Given a batch of composed images
X € REXVXCXHXW "where V denotes the num-
ber of views per instance (typically 3), we designate
the first as the anchor and generate two augmented
views using weak transformations such as color
jitter, contrast adjustment, and flipping.

Vaug = IngnCOde([Xanchora X1, X2]) (5)

The resulting multi-view features V,, facilitate
robust learning of state-object interactions by cap-
turing diverse appearance variations across views.

Aligning Composed Visual Features with Multi-
View Contexts To enhance compositional reason-
ing, we align composed visual features with context
embeddings extracted from multiple augmented
views. View-specific representations are fused via
cross-attention, enabling the composed embedding
to integrate both local and global semantics for im-
proved disambiguation of complex compositions.
Given raw visual features from the anchor view

V anchor and two augmented views V&le)ws, V\(/iQe)ws’

we perform cross-view enhancement as:
Vpair = Vanchor + CA(Vanchor, [V\(,ile)wsp V\(/iQe)ws])
(6)
This operation enriches the anchor view with com-
plementary context, reinforcing the composed vi-
sual representation with cross-view semantics.

Extracting State and Object Representations
from Composed Visual Features Given a com-
posed visual representation, we disentangle it into
separate attribute-sensitive and object-sensitive
components. Two parallel MLP heads are applied
to extract the corresponding features, yielding a
triple representation: | Vpair, Vagr, Vobj] - This de-
composition enables independent alignment with
attribute and object textual embeddings and im-
proves interpretability in compositional recogni-
tion.

Vattr — MLPattr(Vpair)a Vobj = MLPobj (Vpair)
(7

3.3 Training

The overall training framework of GOTZSL is il-
lustrated in Figure 2, which includes triple-branch
text and image encoders, as well as modules for
feature adaptation and extraction. In this section,
we describe the computation of prediction logits
and the corresponding training objectives.

Label Smoothing for CZSL. To address over-
confidence and training instability arising from la-
bel sparsity and imbalanced primitive distributions,
we apply partial label smoothing to the classifica-
tion objectives for attributes, objects, and composi-
tions. Unlike standard label smoothing, which uni-
formly redistributes confidence across all classes,
our method selectively reallocates a portion of the
probability mass to semantically related composi-
tions. For each training instance, we construct a
smoothing mask based on attribute or object over-
lap with the ground-truth label. For example, for
the composition “sliced banana,” the smoothed tar-
get assigns high confidence to the correct class
while also distributing some weight to composi-
tions like “sliced apple” (same attribute) and “ripe
banana” (same object). Concretely, the ground-
truth receives confidence (1 — ¢), and the remain-
ing € is distributed among related classes. This
structured smoothing strategy enhances semantic
consistency, mitigates overfitting, and improves



generalization to unseen attribute-object combina-
tions.

Compositional classification loss. A cross-
entropy loss, optionally with partial label smooth-
ing, is applied to the composed attribute-object pair
logits to promote accurate compositional predic-
tion. The logits are computed using CLIP simi-
larlty between visual and textual features: zpallr =

?alr . (tpalr)T .

Lpair = Zypalr log (softmax( palr)) 8

Attribute classification loss. A cross-entropy
loss with label smoothing supervising attribute
classification. Attribute logits are computed as
attr attr | (tattr)T.

z, =V,

Lo = Zyam log (softmax(z{"))  (9)

Object classification loss. A cross-entropy loss
with label smoothing applied to object classifi-
cation. Object logits are calculated as z?bj =

v?bj . (tobj)T

Lovj = Zy -log (softmax( bj)) (10)

Pairwise Optimal Transport Loss To promote
compositional generalization, we introduce a pair-
wise optimal transport (OT) loss with entropy reg-
ularization, which aligns the model’s pairwise pre-
dictions with the joint distribution formed by its
attribute and object predictions. Specifically, we
interpret the outer product of attribute and object
probability distributions as a soft joint prediction,
and encourage consistency with the pairwise logits
using the entropy-regularized Wasserstein distance
computed via the Sinkhorn algorithm. Formally,
the loss is defined as:

B B |Al |0

Lor =Y (10, D) =3NS 7). D)

i=1 =1 j=1k=1
(11)

where B is the batch size, T e RAIXIO! denotes
the optimal transport plan for the i-th sample, and
DO =1-P & P(()Zb)J is the cost matrix based
on the outer product between predicted attribute

and object distributions. The transport plan 7'() is

obtained using entropy-regularized Sinkhorn itera-
tions for stable and efficient optimization.

This loss encourages the model to produce con-
sistent compositional predictions across factorized
and holistic outputs, enhancing its ability to gener-
alize to unseen attribute-object combinations.

Total Training Loss. To learn disentangled and
compositional representations for Compositional
Zero-Shot Learning (CZSL), we optimize a multi-
objective loss that supervises both individual com-
ponents (attributes and objects) and their composi-
tions. The total loss is defined as:

Etotal = ﬁpair + ['attr + Eobj + A £OT (12)

where A\ is a hyperparameter that controls the
strength of the optimal transport (OT) guidance.

Each component encourages the model to cap-
ture a distinct aspect of compositional structure:
Lpair focuses on joint composition classification,
Law and Loy supervise disentangled attribute
and object recognition, and Lor provides fine-
grained alignment signals between visual and tex-
tual modalities. This formulation ensures effective
generalization to unseen attribute-object composi-
tions during inference.

Inference with Multi-Branch Logits. During
inference, the model predicts compositional con-
cepts by combining semantic signals from three
branches: pair, attribute, and object. Given the
composed visual feature, we first obtain branch-
specific logits: logits,,;., logits,,., and logits,; via
cosine similarity with their respective textual pro-
totypes, following:

logits =71 (v,t) =771 (V') (13)

where v and t are ¢5-normalized visual and textual
features. To improve compositional consistency,
we integrate these predictions using a rule-based
fusion strategy. Specifically, the final score for each
candidate pair (a;, 0;) is computed as a weighted
combination of its direct pairwise logit and the
product of independent attribute and object proba-
bilities:
(a:,0)

logitsgro™ = av- 10g1tsl()zi"r’oi)+ﬁ - Par(a;) - Poj(0;)
(14)
where Py = softmax(logits,,), Ponj =

softmax (logits, ), and (c, 3) are weighting coeffi-
cients. This fusion encourages agreement between
holistic and factorized predictions, enabling more
robust inference over unseen compositions.



4 [Experiments

Table 1: Dataset statistics and descriptions under the CZSL

setting.

Dataset #A #0O Seen Unseen Description

UT- 16 12 83 33 Fine-grained shoes with
Zappos subtle visual attributes.
MIT- 115 245 1262 700 Natural images with
States diverse state-object

pairs.
CGQA 117 150 16122 5536 GQA-based

compositional set with
rich attributes.

In this section, we comprehensively evaluate
GOTZSL on three widely-used compositional vi-
sion benchmarks: UT-Zappos, MIT-States, and
CGQA. These datasets span diverse visual do-
mains, including fine-grained object classification
(e.g., shoes in UT-Zappos), state-based recognition
(e.g., verb-noun compositions in MIT-States), and
texture-centric scenes (e.g., CGQA). We conduct
experiments under both closed-world (CW) and
open-world (OW) settings to assess the generaliza-
tion ability of GOTZSL to unseen attribute-object
compositions. A summary of dataset statistics and
descriptions is provided in Table 1.

Training Details and Evaluation Metrics We
fine-tune GOTZSL with ViT-L/14 (Radford
et al, 2021a) as the CLIP backbone using
AdamW (Kingma and Ba, 2014) and a step-based
scheduler. Training runs for 20 epochs per dataset
with a learning rate of 1 x 10~%; batch size and
other hyperparameters are dataset-dependent. All
experiments are performed on a single NVIDIA
A100 GPU.

We evaluate GOTZSL and recent CLIP-based
CZSL baselines—e.g., TsCA (Li et al., 2024) and
DCDA (Geng et al., 2025)—under both Closed-
World (CW) and Open-World (OW) settings across
three benchmarks: UT-Zappos, MIT-States, and
CGQA. Metrics include Seen Accuracy (S), Un-
seen Accuracy (U), Harmonic Mean (H), and AUC.
Results are shown in Table 2 and Table 3.

We report both quantitative metrics and qualita-
tive insights on compositional disentanglement and
generalization.

Closed-World Evaluation Summary GOTZSL
consistently achieves strong performance across
all benchmarks in the Closed-World setting. On
UT-Zappos, it achieves the best results across all

metrics, including a harmonic mean (H) of 60.0%
and an AUC of 46.9%. On CGQA, GOTZSL sets

a new state-of-the-art with a 34.8% H and 16.4%
AUC, significantly outperforming prior methods.
On MIT-States, it ranks second in seen accuracy
(52.4%) and maintains competitive generalization
with a 39.0% H.

These results highlight GOTZSL’s effectiveness
in compositional reasoning, driven by its ability
to align visual and textual primitives across seen
and unseen compositions. While DCDA shows
strong performance on MIT-States and TsCA re-
mains competitive across all datasets, GOTZSL
exhibits overall superior balance and generaliza-
tion.

Open-World Evaluation Summary In the more
challenging Open-World setting, GOTZSL contin-
ues to perform competitively. On CGQA—the
most difficult benchmark—it achieves the best un-
seen accuracy (11.4%), harmonic mean (15.6%),
and AUC (4.6%), setting a new state-of-the-art. On
UT-Zappos, GOTZSL maintains strong generaliza-
tion with an H of 51.7% and AUC of 36.6%. On
MIT-States, it delivers results comparable to the
top-performing baselines.

These findings confirm that GOTZSL benefits
from structured alignment and disentangled repre-
sentations, enabling robust generalization to novel
attribute-object compositions under both CW and
OW settings.

4.1 Ablation Studies

To further validate the effectiveness of each mod-
ule in GOTZSL, we conduct ablation studies on
the UT-Zappos dataset, as reported in Table 4. The
results show that removing any individual compo-
nent leads to a degradation in overall performance,
highlighting the importance of each module. No-
tably, removing the Graph Adapter results in the
most significant drop in AUC (2.5%), underscoring
the effectiveness of our proposed compositional
graph structure in enhancing compositional gener-
alization.

5 Conclusion

We present GOTZSL, a unified framework for
compositional zero-shot learning that integrates
rich semantic text encoding, multi-view visual en-
coding, disentangled representation learning, and
structured semantic alignment. By leveraging
graph-based reasoning and multi-branch prediction,
GOTZSL achieves strong generalization to unseen



Table 2: Closed-World CZSL results on UT-Zappos, MIT-States and C-GQA datasets. Evaluation metrics include
Seen Accuracy (S), Unseen Accuracy (U), Harmonic Mean (H), and Area Under the Curve (AUC). The best results
are highlighted in bold, and the second-best results are underlined.

MIT-States UT-Zappos C-GQA
Method S U H AUC| S U H AUC| S U H AUC
CLIP (Radford et al., 2021b) 302 400 261 110 | 158 491 156 50 | 75 250 86 14
COOP (Zhou et al., 2022) 344 476 298 135 | 521 493 346 188 | 205 268 17.1 44
CSP (Nayak et al., 2022a) 466 499 363 194 | 642 662 466 33 | 288 268 205 62
DSEP (Lu et al., 2023) 469 52 373 206 | 667 717 472 36 | 382 32 271 105
GIPCOL (Xu et al., 2024) 485 496 366 199 | 65 685 488 362 | 32 284 225 714
Troica (Nayak et al., 2022a) 49 53 393 221 | 668 738 546 417 | 41 357 294 124
CDS-CZSL (Nayak et al, 2022a) | 503 529 392 224 | 639 748 527 395 | 383 342 281 111
PLID (Bao et al., 2024) 497 524 390 221 | 673 688 524 387 | 388 33 279 11
MSCI (Wang et al., 2025) 502 534 399 228 | 674 755 592 458 | 424 382 317 142
DCDA (Geng et al., 2025) 571 555 431 270 | 691 741 572 442 | 385 288 253 94
TSCA (Li et al., 2024) 512 529 399 23 | 687 758 585 461 | 438 389 331 152
GOTZSL(Ours) | 524 520 390 229 | 704 750 60.0 469 | 455 407 348 164

Table 3: Open-World CZSL results on UT-Zappos, MIT-States, and C-GQA datasets. Evaluation metrics include
Seen Accuracy (S), Unseen Accuracy (U), Harmonic Mean (H), and Area Under the Curve (AUC). The best results
are highlighted in bold, and the second-best results are underlined.

MIT-States UT-Zappos C-GQA
Method S U H AUC| S U H AUC| S U H AUC
CLIP (Radford et al., 2021b) 301 143 128 3.0 157 206 112 22 7.5 46 40 027
COOP (Zhou et al., 2022) 346 93 123 28 | 521 315 289 132 | 210 46 55 070
CSP (Nayak et al., 2022a) 463 157 174 57 | 641 441 389 227 | 287 52 69 1.20
DSFP (Lu et al., 2023) 475 185 193 68 | 66.8 60 44 303 | 383 72 104 24
GIPCOL (Xu et al., 2024) 48.5 16 179 63 65 45 401 235 | 316 55 73 1.3
Troica (Nayak et al., 2022a) 48.8 187 20.1 72 | 664 612 478 33 408 79 109 27
CDS-CZSL (Nayak et al., 2022a) | 494 21.8 22.1 85 | 647 613 482 323 | 376 82 116 27
PLID (Bao et al., 2024) 49.1 187 20 73 | 676 555 466 308 | 391 75 106 25
MSCI (Wang et al., 2025) 492 206 212 79 | 674 630 532 373 42 106 1377 338
DCDA (Geng et al., 2025) 550 277 267 120 | 678 625 514 358 | 353 6.4 8.5 1.76
TsCA (Li et al., 2024) 508 21.7 223 87 | 698 634 522 371 |443 114 147 45
GOTZSL(Ours) | 4998 215 219 85 | 673 625 517 366 | 440 114 156 4.6
Table 4: Ablation results for GOTZSL on UT-Zappos in I imitations

the Close-World setting.

Ablation Experiment | S U H AUC
w/o GraphAdapter 68.1 73.0 547 444
w/o LoRaAdapter 69.5 737 59.1 458
w/o Text CrossAttention 70.0 73.8 59.0 45.8
w/o Visual Disentanglers 69.0 73.6 588 464
w/o Visual CrossAttention | 71.0 739 592 465
Ours (Full) | 704 750 60.0 46.9

attribute-object compositions across diverse bench-
marks. Our results demonstrate the effectiveness
of combining graph-aware structured textual pri-
ors with fine-grained visual cues in compositional
settings.

Two key limitations are identified in GOTZSL:
(1) The current fusion mechanism relies on fixed
weights, which may limit adaptability to diverse
visual domains; (2) The model assumes clean
attribute-object annotations during training, which
may not generalize well to noisy or weakly labeled
data. Addressing these limitations presents op-
portunities for future work in adaptive fusion and
weakly supervised compositional learning.
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