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Abstract001

Compositional Zero-Shot Learning (CZSL)002
aims to recognize unseen attribute-object com-003
positions by generalizing from seen ones. Ex-004
isting prompt-based methods often suffer from005
textual feature shift, while graph-based ap-006
proaches are limited by static structures and007
lack compositional adaptability.008

We propose GOTZSL: Optimal Transport-009
Guided Graph-Aware Feature Alignment for010
Compositional Zero-Shot Learning, a unified011
framework that integrates triple prompt tuning,012
a graph-based adapter, and compositional vi-013
sual adaptation. GOTZSL encodes state, object,014
and pair prompts through triple-level text tem-015
plates, refines them via a compositional graph016
aligned with LLM-derived anchors, and disen-017
tangles LoRA-adapted visual features using a018
dual-branch MLP module.019

To improve consistency and generalization, we020
introduce a pairwise optimal transport loss and021
partial label smoothing over semantically re-022
lated classes. Evaluated on UT-Zappos, MIT-023
States, and CGQA under both closed- and open-024
world CZSL settings, GOTZSL achieves state-025
of-the-art performance, demonstrating robust026
compositional reasoning.027

1 Introduction028

Introduction. Inspired by human cognitive abili-029

ties, CZSL has become a central challenge in ma-030

chine learning. CZSL aims to recognize novel com-031

positions of familiar concepts, such as identifying032

“ripe apple” without having seen the specific combi-033

nation during training, as illustrated in Figure 1. It034

requires two key abilities: (1) generalization, i.e.,035

transferring knowledge to unseen attribute-object036

pairs; and (2) relational reasoning, i.e., under-037

standing the semantic compatibility between at-038

tributes and objects (e.g., “ripe” is more likely to039

modify “apple” than “rock”).040

Evaluation in CZSL is typically conducted under041

two settings: Closed-World, where test composi-042

tions are limited to a known set of unseen pairs, 043

and Open-World, where predictions must be made 044

over both seen and unseen compositions jointly, 045

posing a more realistic and challenging scenario. 046

These settings assess a model’s ability to generalize 047

and remain discriminative across a combinatorially 048

large output space. 049

While recent advances have made progress in 050

aligning vision and language representations, most 051

methods treat compositions independently, ignor- 052

ing the relational structure among concepts. In this 053

work, we propose GOTZSL, a graph-aware frame- 054

work that integrates structured knowledge into fea- 055

ture alignment, enabling robust and interpretable 056

CZSL. 057

Concept of "Red" Concept of "Apple"
Red Car Red Tomato Red Strawberry Sliced Apple Green Apple Rotten Apple

Training Phase:

Test Phase:
"Red Apple"

Target Set:
Open World
Closed World

Figure 1: Illustration of the Compositional Zero-Shot
Learning (CZSL) setting. The model is trained on indi-
vidual attribute-object compositions (e.g., “Sliced Ap-
ple”, “Rotten Apple”), but must recognize unseen com-
binations like "Red Apple" during testing.

Prior approaches to Compositional Zero-Shot 058

Learning (CZSL) can be broadly categorized into 059

three paradigms: (1) Dual-classifier methods (Li 060

et al., 2020; Misra et al., 2017), which employ 061

separate classifiers for states and objects but fail 062

to capture their compositional dependencies; (2) 063

Graph-based methods, such as (Mancini et al., 064

2021), which model state-object interactions via 065

Graph Neural Networks (GNNs), or (Karthik et al., 066

2022), which leverage external knowledge to prune 067

implausible compositions; and (3) Semantic align- 068

ment methods (Nagarajan and Grauman, 2018; 069

Nan et al., 2019), which align visual and compo- 070
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sitional embeddings by minimizing distance in a071

shared semantic space.072

Despite recent advances, existing methods suf-073

fer from two key limitations: (i) they overlook074

the structural compatibility between attributes and075

objects, and (ii) they optimize visual and textual076

modalities in isolation, hindering generalization to077

unseen compositions. To address this, we propose078

a graph-aware prompt tuning strategy that mod-079

els compositional hierarchies while preserving the080

semantic integrity of primitive concepts.081

Inspired by these insights, we propose082

GOTZSL, a CLIP-based framework that com-083

bines soft prompting, graph-based adaptation,084

and multi-level alignment for CZSL. GOTZSL085

introduces triple prompt templates (state, object,086

composition) for the frozen CLIP text encoder and087

builds a compositional graph refined by a GCN088

using LLM-generated descriptions. To model089

visual primitives, LoRA adapters are injected into090

CLIP’s image encoder for disentangling attribute091

and object features. Cross-modal alignment is092

achieved via contrastive losses across all axes, with093

predictions fused through a weighted strategy.094

The contributions of this paper can be summa-095

rized as follows:096

• First, we propose a novel graph adapter strat-097

egy that constructs a compositional graph to098

explicitly model relationships among state, ob-099

ject, and pair features. To enrich textual se-100

mantics, we incorporate LLM-generated sen-101

tences with diverse attribute-object combina-102

tions. Crucially, the attribute and object to-103

kens appear in varying syntactic contexts.104

• Second, we enhance CLIP’s dual encoders by105

integrating multiple contextual soft prompt to-106

kens and Low-Rank Adaptation (LoRA) mod-107

ules. To improve alignment, we apply data108

augmentations to generate diverse visual prim-109

itives.110

• Third, within the joint feature space, we111

employ optimal transport–guided objectives112

to align multi-branch predictions across at-113

tributes, objects, and pairs. To further enhance114

compositional consistency and mitigate over-115

confidence, we introduce partial label smooth-116

ing over semantically related classes.117

The implementation will be made publicly avail-118

able upon acceptance.119

2 Related Work 120

Compositional Zero-Shot Learning (CZSL) 121

without Pretrained VLMs. Unlike traditional 122

ZSL (Guo and Guo, 2020; Li et al., 2021), which 123

maps global class-level attributes, CZSL requires 124

disentangling and recombining semantic primitives. 125

Earlier CZSL methods fall into four categories: (1) 126

Dual-branch models separately predict attributes 127

and objects and combine results at inference (Li 128

et al., 2022b; Yang et al., 2023a), but lack holis- 129

tic modeling. (2) Transform-based methods learn 130

transitions between compositions (?), yet rely heav- 131

ily on transformation design. (3) Joint embedding 132

models map visual features and composed concepts 133

into a shared space (Purushwalkam et al., 2019), 134

often at the cost of disentanglement. (4) Graph- 135

based approaches (Naeem et al., 2021; Ge et al., 136

2022; Li et al., 2022a; Guo and Guo, 2023) use 137

GNNs to encode relations among primitives and 138

compositions, but usually rely on static graphs and 139

fixed textual features. 140

Prompt Learning for CZSL. Prompt tuning has 141

been recently explored to adapt pretrained vision- 142

language models (VLMs), such as CLIP (Radford 143

et al., 2021a), for CZSL. Methods like CSP (Nayak 144

et al., 2022b) and DFSP (Lu et al., 2023) inject 145

compositional prompts (e.g., “a photo of a sliced 146

apple”) to align visual and textual spaces. However, 147

early approaches suffer from joint training collapse 148

and primitive imbalance, limiting generalization. 149

Recent methods introduce structure-aware 150

prompting. Hierarchical (Huynh and Elhamifar, 151

2023) and conditional prompts (Kang et al., 2023) 152

improve disentanglement and adaptability. Other 153

works (Yang et al., 2023b; Zhang et al., 2023; Jeong 154

et al., 2023) leverage visual or linguistic context to 155

refine prompts. While effective, these methods still 156

struggle to fully disentangle semantic primitives 157

and model their interactions robustly. 158

Graph-based Prompt Integration. Recent ad- 159

vances attempt to integrate graph reasoning with 160

VLMs. Works like (Guo and Guo, 2023; Ge et al., 161

2022) use GCNs over CLIP embeddings to inject 162

relational priors, but often rely on static graphs or 163

hand-crafted text features. These approaches typ- 164

ically overlook the potential of learnable prompts 165

and compositional semantics, motivating our ap- 166

proach to unify graph-based reasoning and prompt 167

learning for CZSL. 168
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the old tiger’s roar still carried
the weight of thunder...

the old tiger’s muscles tensed... CLIP Text 
Encoder
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Figure 2: The overall architecture of GOTZSL. The model integrates three core components: (1) Textual Prompt
Encoding—learnable soft prompts for states, objects, and their compositions are injected into CLIP’s text encoder,
forming a semantic graph refined by a Graph Convolutional Network (GCN) to capture contextual relationships;
(2) Visual Feature Adaptation—the CLIP image encoder is adapted via LoRA and decomposed into state- and
object-specific features through dual-branch extractors; (3) Cross-Modal Alignment and Supervision—visual
and textual embeddings are aligned using contrastive loss, while an OT-based consistency loss enforces alignment
between prediction logits from multiple branches.

3 Methodology169

We introduce GOTZSL, a novel framework that ad-170

vances Compositional Zero-Shot Learning (CZSL)171

by integrating: (i) triple soft prompts for the172

text encoder, (ii) feature adaptation and decom-173

position for the image encoder, and (iii) graph-174

structured learning over state-object-pair compo-175

sitions. GOTZSL addresses the core challenge176

of generalizing to unseen attribute-object pairs177

through the following components:178

• Triple Soft Prompts with Graph Adapta-179

tion. We design learnable prompts for state,180

object, and composed pair concepts, which181

are injected into CLIP’s text encoder. These182

prompts are structured into a semantic graph,183

where nodes represent compositional primi-184

tives and edges encode their relationships. A185

unified GCN propagates contextual informa-186

tion and optimizes node features through con-187

trastive supervision, enhancing the discrim-188

inability of valid versus invalid compositions.189

• Visual Adaptation and Decomposition. We190

apply Low-Rank Adaptation (LoRA) to the191

upper layers of CLIP’s image encoder to en-192

able lightweight fine-tuning. The adapted vi-193

sual features are further disentangled via dual194

branches into attribute-specific and object-195

specific embeddings, facilitating fine-grained196

alignment with textual semantics in the shared 197

space. 198

• Hierarchical Cross-Modal Alignment. We 199

optimize a dual-objective: (i) a contrastive 200

loss aligns visual and textual embeddings of 201

state-object pairs in the latent space, and (ii) 202

a novel optimal transport (OT)–based consis- 203

tency loss aligns prediction logits across state, 204

object, and pair branches. This two-level su- 205

pervision enforces semantic coherence and im- 206

proves generalization to novel compositions. 207

3.1 Text Encoder 208

Triple Soft Prompts for Hierarchical Encoding 209

GOTZSL employs compositional soft prompts to 210

jointly learn composed and decomposed text repre- 211

sentations for Compositional Zero-Shot Learning. 212

Following CSP (Nayak et al., 2022a), we tokenize 213

and encode the attribute and object names from the 214

dataset, with each concept mapped to a dedicated 215

embedding vector. To construct compositional 216

prompts, we design and fill 3 prompt templates: 217

(1) “a photo of [attribute] [object]”, (2) 218

“a photo of [attribute], (3) “a photo of [ob- 219

ject]”. These templates generate triplet-level rep- 220

resentations that disentangle and capture attribute 221

semantics, object categories, and their interactions. 222

The resulting soft prompts are optimized during 223

training to align with visual features through our 224
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feature alignment and adapter modules. Further-225

more, we encode the template prefix “a photo226

of” into three separate learnable context vectors,227

each corresponding to the attribute, object, and pair228

branches, respectively. This design offers greater229

flexibility for triple alignment by allowing indepen-230

dent contextual adaptation for each semantic role.231

Following PLID (Bao et al., 2024), we leverage232

LLM (Zhang et al., 2022) to generate multiple nat-233

ural language descriptions for each attribute-object234

pair. These sentences are then encoded to obtain235

fixed LLM-derived textual features, which serve236

as base representations for aligning the learnable237

compositional prompts.238

Cross-Attention Alignment with Structured Tex-239

tual Descriptions To improve the alignment be-240

tween attribute-object pairs and their textual repre-241

sentations, we incorporate a cross-attention mecha-242

nism that fuses learnable prompts with structured243

base features derived from a LLM. Given a batch of244

attribute-object pairs (ai, oi), we extract their corre-245

sponding LLM-based embeddings Tb ∈ RT×B×d,246

where T is the number of descriptive tokens per247

pair, B is the batch size, and d is the embedding248

dimension. In parallel, we construct a query tensor249

Tq ∈ R1×B×d from learnable prompts or class-250

level tokens to attend over Tb. Both query and251

base features are first normalized via LayerNorm.252

We then apply multi-head cross-attention, enabling253

the query to dynamically attend to semantically254

relevant information in the base descriptions:255

T̃q = Tq+MHA(LN(Tq),LN(Tb),LN(Tb))

(1)
256

Tout
q = T̃q + MLP(LN(T̃q)) (2)257

This design allows the class-level query to selec-258

tively aggregate contextual signals from structured259

textual descriptions, thereby enriching the output260

Tout
q with fine-grained and composition-aware se-261

mantics.262

Compositional Graph Construction and Graph263

Adapter To enrich attribute and object text em-264

beddings with structured semantic priors, we con-265

struct a compositional graph that captures relation-266

ships among attributes, objects, and their composi-267

tions. Each node in the graph represents a unique268

attribute, object, or attribute-object pair. Edges are269

formed based on shared semantics: between an270

attribute and a pair sharing the same attribute, or271

between an object and a pair sharing the same ob- 272

ject. Additionally, pair nodes referencing the same 273

composition are also interconnected. This graph 274

is processed by a lightweight Graph Adapter—a 275

Graph Convolutional Network (GCN)—to propa- 276

gate contextual information and refine learnable 277

text embeddings via message passing. 278

We formalize the structure as a semantic graph 279

G = (V, E), where V denotes the set of nodes 280

representing compositional units, and E denotes 281

the set of bidirectional edges encoding semantic 282

associations. The node set V consists of three types: 283

(1) Attribute nodes (S), representing primitive state 284

concepts (e.g., “wet”, “spotted”); (2) Object nodes 285

(O), representing entity categories (e.g., “apple”, 286

“dog”); (3) Reference pair nodes (Cref), representing 287

fixed attribute-object compositions derived from 288

LLMs, serving as semantic anchors. 289

Edges in E capture both semantic and structural 290

relationships between nodes. Specifically, edges 291

are constructed under the following rules: (1) Be- 292

tween an attribute node and a pair node if they 293

share the same attribute; (2) Between an object 294

node and a pair node if they share the same object; 295

(3) Between reference pairs and their correspond- 296

ing attribute or object nodes. 297

This compositional graph enables joint reason- 298

ing over both learnable prompt-based features and 299

fixed LLM-derived textual knowledge. Through 300

message passing, the Graph Adapter propagates 301

semantic context across nodes, enriching the 302

prompt embeddings with composition-aware in- 303

formation and promoting better generalization to 304

novel attribute-object pairs. 305

Compositional Graph

Old Tiger
Young Tiger

Red Flag
Red Shoe

Blue Sky
Blue Shirt

Blue
Good

Red
Tree

Tiger

Apple

Sliced Apple
Peeled Apple

Attribute
Nodes

Object
Nodes

Pair
Nodes

Figure 3: Visualization of the bidirectional composi-
tional semantic graph.

Graph Adapter Formulation. Given node fea- 306

tures for attributes A ∈ R|A|×d, objects O ∈ 307

R|O|×d, and attribute-object pairs P ∈ R|P|×d, we 308

first normalize each type and concatenate to form 309
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the graph input:310

X =

ÂÔ
P̂

 ∈ R(|A|+|O|+|P|)×d311

We define an undirected graph G = (V, E),312

where for each pair (ai, oi) ∈ P , we add edges313

between the pair node and its attribute node ai, as314

well as its object node oi. The graph is processed by315

a 1-layer GCN (Kipf and Welling, 2016), denoted316

GCNConv, yielding updated node features:317

X′ = GCNConv(X, E) (3)318

We apply residual smoothing to attribute and object319

nodes for enhanced generalization:320

A′ = A+X′
A, O′ = O+X′

O (4)321

where X′
A and X′

O denote the corresponding slices322

of X′. The refined features A′,O′ are used in323

downstream compositional alignment.324

3.2 Image Encoder325

Integrating LoRA Adapter and Multi-View En-326

coding To enable efficient fine-tuning, we incor-327

porate Low-Rank Adaptation (LoRA) modules into328

selected self-attention and feedforward layers of329

the image encoder. This lightweight design al-330

lows the model to adapt to novel attribute-object331

compositions with minimal memory and computa-332

tional overhead. Given a batch of composed images333

X ∈ RB×V×C×H×W , where V denotes the num-334

ber of views per instance (typically 3), we designate335

the first as the anchor and generate two augmented336

views using weak transformations such as color337

jitter, contrast adjustment, and flipping.338

Vaug = ImgEncode([Xanchor,X1,X2]) (5)339

The resulting multi-view features Vaug facilitate340

robust learning of state-object interactions by cap-341

turing diverse appearance variations across views.342

Aligning Composed Visual Features with Multi-343

View Contexts To enhance compositional reason-344

ing, we align composed visual features with context345

embeddings extracted from multiple augmented346

views. View-specific representations are fused via347

cross-attention, enabling the composed embedding348

to integrate both local and global semantics for im-349

proved disambiguation of complex compositions.350

Given raw visual features from the anchor view351

Vanchor and two augmented views V
(1)
views,V

(2)
views, 352

we perform cross-view enhancement as: 353

Vpair = Vanchor + CA(Vanchor, [V
(1)
views,V

(2)
views])

(6) 354

This operation enriches the anchor view with com- 355

plementary context, reinforcing the composed vi- 356

sual representation with cross-view semantics. 357

Extracting State and Object Representations 358

from Composed Visual Features Given a com- 359

posed visual representation, we disentangle it into 360

separate attribute-sensitive and object-sensitive 361

components. Two parallel MLP heads are applied 362

to extract the corresponding features, yielding a 363

triple representation:
[
Vpair,Vattr,Vobj

]
. This de- 364

composition enables independent alignment with 365

attribute and object textual embeddings and im- 366

proves interpretability in compositional recogni- 367

tion. 368

Vattr = MLPattr(Vpair),Vobj = MLPobj(Vpair)
(7) 369

3.3 Training 370

The overall training framework of GOTZSL is il- 371

lustrated in Figure 2, which includes triple-branch 372

text and image encoders, as well as modules for 373

feature adaptation and extraction. In this section, 374

we describe the computation of prediction logits 375

and the corresponding training objectives. 376

Label Smoothing for CZSL. To address over- 377

confidence and training instability arising from la- 378

bel sparsity and imbalanced primitive distributions, 379

we apply partial label smoothing to the classifica- 380

tion objectives for attributes, objects, and composi- 381

tions. Unlike standard label smoothing, which uni- 382

formly redistributes confidence across all classes, 383

our method selectively reallocates a portion of the 384

probability mass to semantically related composi- 385

tions. For each training instance, we construct a 386

smoothing mask based on attribute or object over- 387

lap with the ground-truth label. For example, for 388

the composition “sliced banana,” the smoothed tar- 389

get assigns high confidence to the correct class 390

while also distributing some weight to composi- 391

tions like “sliced apple” (same attribute) and “ripe 392

banana” (same object). Concretely, the ground- 393

truth receives confidence (1− ϵ), and the remain- 394

ing ϵ is distributed among related classes. This 395

structured smoothing strategy enhances semantic 396

consistency, mitigates overfitting, and improves 397
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generalization to unseen attribute-object combina-398

tions.399

Compositional classification loss. A cross-400

entropy loss, optionally with partial label smooth-401

ing, is applied to the composed attribute-object pair402

logits to promote accurate compositional predic-403

tion. The logits are computed using CLIP simi-404

larity between visual and textual features: zpair
i =405

v
pair
i · (tpair)⊤.406

Lpair = −
B∑
i=1

y
pair
i · log

(
softmax(zpair

i )
)

(8)407

Attribute classification loss. A cross-entropy408

loss with label smoothing supervising attribute409

classification. Attribute logits are computed as410

zattr
i = vattr

i · (tattr)⊤.411

Lattr = −
B∑
i=1

yattr
i · log

(
softmax(zattr

i )
)

(9)412

Object classification loss. A cross-entropy loss413

with label smoothing applied to object classifi-414

cation. Object logits are calculated as z
obj
i =415

v
obj
i · (tobj)⊤.416

Lobj = −
B∑
i=1

y
obj
i · log

(
softmax(zobj

i )
)

(10)417

Pairwise Optimal Transport Loss To promote418

compositional generalization, we introduce a pair-419

wise optimal transport (OT) loss with entropy reg-420

ularization, which aligns the model’s pairwise pre-421

dictions with the joint distribution formed by its422

attribute and object predictions. Specifically, we423

interpret the outer product of attribute and object424

probability distributions as a soft joint prediction,425

and encourage consistency with the pairwise logits426

using the entropy-regularized Wasserstein distance427

computed via the Sinkhorn algorithm. Formally,428

the loss is defined as:429

LOT =
B∑
i=1

〈
T (i), D(i)

〉
=

B∑
i=1

|A|∑
j=1

|O|∑
k=1

T
(i)
jk ·D(i)

jk

(11)430

where B is the batch size, T (i) ∈ R|A|×|O| denotes431

the optimal transport plan for the i-th sample, and432

D(i) = 1 − P
(i)
attr ⊗ P

(i)
obj is the cost matrix based433

on the outer product between predicted attribute434

and object distributions. The transport plan T (i) is435

obtained using entropy-regularized Sinkhorn itera- 436

tions for stable and efficient optimization. 437

This loss encourages the model to produce con- 438

sistent compositional predictions across factorized 439

and holistic outputs, enhancing its ability to gener- 440

alize to unseen attribute-object combinations. 441

Total Training Loss. To learn disentangled and 442

compositional representations for Compositional 443

Zero-Shot Learning (CZSL), we optimize a multi- 444

objective loss that supervises both individual com- 445

ponents (attributes and objects) and their composi- 446

tions. The total loss is defined as: 447

Ltotal = Lpair + Lattr + Lobj + λLOT (12) 448

where λ is a hyperparameter that controls the 449

strength of the optimal transport (OT) guidance. 450

Each component encourages the model to cap- 451

ture a distinct aspect of compositional structure: 452

Lpair focuses on joint composition classification, 453

Lattr and Lobj supervise disentangled attribute 454

and object recognition, and LOT provides fine- 455

grained alignment signals between visual and tex- 456

tual modalities. This formulation ensures effective 457

generalization to unseen attribute-object composi- 458

tions during inference. 459

Inference with Multi-Branch Logits. During 460

inference, the model predicts compositional con- 461

cepts by combining semantic signals from three 462

branches: pair, attribute, and object. Given the 463

composed visual feature, we first obtain branch- 464

specific logits: logitspair, logitsattr, and logitsobj via 465

cosine similarity with their respective textual pro- 466

totypes, following: 467

logits = τ−1 · ⟨v̂, t̂⟩ = τ−1 · (v̂⊤t̂) (13) 468

where v̂ and t̂ are ℓ2-normalized visual and textual 469

features. To improve compositional consistency, 470

we integrate these predictions using a rule-based 471

fusion strategy. Specifically, the final score for each 472

candidate pair (ai, oi) is computed as a weighted 473

combination of its direct pairwise logit and the 474

product of independent attribute and object proba- 475

bilities: 476

logits(ai,oi)final = α·logits(ai,oi)pair +β ·Pattr(ai)·Pobj(oi)
(14) 477

where Pattr = softmax(logitsattr), Pobj = 478

softmax(logitsobj), and (α, β) are weighting coeffi- 479

cients. This fusion encourages agreement between 480

holistic and factorized predictions, enabling more 481

robust inference over unseen compositions. 482
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4 Experiments483

Table 1: Dataset statistics and descriptions under the CZSL
setting.

Dataset #A #O Seen Unseen Description

UT-
Zappos

16 12 83 33 Fine-grained shoes with
subtle visual attributes.

MIT-
States

115 245 1262 700 Natural images with
diverse state-object

pairs.
CGQA 117 150 16122 5536 GQA-based

compositional set with
rich attributes.

484

In this section, we comprehensively evaluate485

GOTZSL on three widely-used compositional vi-486

sion benchmarks: UT-Zappos, MIT-States, and487

CGQA. These datasets span diverse visual do-488

mains, including fine-grained object classification489

(e.g., shoes in UT-Zappos), state-based recognition490

(e.g., verb-noun compositions in MIT-States), and491

texture-centric scenes (e.g., CGQA). We conduct492

experiments under both closed-world (CW) and493

open-world (OW) settings to assess the generaliza-494

tion ability of GOTZSL to unseen attribute-object495

compositions. A summary of dataset statistics and496

descriptions is provided in Table 1.497

Training Details and Evaluation Metrics We498

fine-tune GOTZSL with ViT-L/14 (Radford499

et al., 2021a) as the CLIP backbone using500

AdamW (Kingma and Ba, 2014) and a step-based501

scheduler. Training runs for 20 epochs per dataset502

with a learning rate of 1 × 10−4; batch size and503

other hyperparameters are dataset-dependent. All504

experiments are performed on a single NVIDIA505

A100 GPU.506

We evaluate GOTZSL and recent CLIP-based507

CZSL baselines—e.g., TsCA (Li et al., 2024) and508

DCDA (Geng et al., 2025)—under both Closed-509

World (CW) and Open-World (OW) settings across510

three benchmarks: UT-Zappos, MIT-States, and511

CGQA. Metrics include Seen Accuracy (S), Un-512

seen Accuracy (U), Harmonic Mean (H), and AUC.513

Results are shown in Table 2 and Table 3.514

We report both quantitative metrics and qualita-515

tive insights on compositional disentanglement and516

generalization.517

Closed-World Evaluation Summary GOTZSL518

consistently achieves strong performance across519

all benchmarks in the Closed-World setting. On520

UT-Zappos, it achieves the best results across all521

metrics, including a harmonic mean (H) of 60.0%522

and an AUC of 46.9%. On CGQA, GOTZSL sets523

a new state-of-the-art with a 34.8% H and 16.4% 524

AUC, significantly outperforming prior methods. 525

On MIT-States, it ranks second in seen accuracy 526

(52.4%) and maintains competitive generalization 527

with a 39.0% H. 528

These results highlight GOTZSL’s effectiveness 529

in compositional reasoning, driven by its ability 530

to align visual and textual primitives across seen 531

and unseen compositions. While DCDA shows 532

strong performance on MIT-States and TsCA re- 533

mains competitive across all datasets, GOTZSL 534

exhibits overall superior balance and generaliza- 535

tion. 536

Open-World Evaluation Summary In the more 537

challenging Open-World setting, GOTZSL contin- 538

ues to perform competitively. On CGQA—the 539

most difficult benchmark—it achieves the best un- 540

seen accuracy (11.4%), harmonic mean (15.6%), 541

and AUC (4.6%), setting a new state-of-the-art. On 542

UT-Zappos, GOTZSL maintains strong generaliza- 543

tion with an H of 51.7% and AUC of 36.6%. On 544

MIT-States, it delivers results comparable to the 545

top-performing baselines. 546

These findings confirm that GOTZSL benefits 547

from structured alignment and disentangled repre- 548

sentations, enabling robust generalization to novel 549

attribute-object compositions under both CW and 550

OW settings. 551

4.1 Ablation Studies 552

To further validate the effectiveness of each mod- 553

ule in GOTZSL, we conduct ablation studies on 554

the UT-Zappos dataset, as reported in Table 4. The 555

results show that removing any individual compo- 556

nent leads to a degradation in overall performance, 557

highlighting the importance of each module. No- 558

tably, removing the Graph Adapter results in the 559

most significant drop in AUC (2.5%), underscoring 560

the effectiveness of our proposed compositional 561

graph structure in enhancing compositional gener- 562

alization. 563

5 Conclusion 564

We present GOTZSL, a unified framework for 565

compositional zero-shot learning that integrates 566

rich semantic text encoding, multi-view visual en- 567

coding, disentangled representation learning, and 568

structured semantic alignment. By leveraging 569

graph-based reasoning and multi-branch prediction, 570

GOTZSL achieves strong generalization to unseen 571
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Table 2: Closed-World CZSL results on UT-Zappos, MIT-States and C-GQA datasets. Evaluation metrics include
Seen Accuracy (S), Unseen Accuracy (U), Harmonic Mean (H), and Area Under the Curve (AUC). The best results
are highlighted in bold, and the second-best results are underlined.

Method MIT-States UT-Zappos C-GQA
S U H AUC S U H AUC S U H AUC

CLIP (Radford et al., 2021b) 30.2 40.0 26.1 11.0 15.8 49.1 15.6 5.0 7.5 25.0 8.6 1.4
COOP (Zhou et al., 2022) 34.4 47.6 29.8 13.5 52.1 49.3 34.6 18.8 20.5 26.8 17.1 4.4
CSP (Nayak et al., 2022a) 46.6 49.9 36.3 19.4 64.2 66.2 46.6 33 28.8 26.8 20.5 6.2
DSFP (Lu et al., 2023) 46.9 52 37.3 20.6 66.7 71.7 47.2 36 38.2 32 27.1 10.5
GIPCOL (Xu et al., 2024) 48.5 49.6 36.6 19.9 65 68.5 48.8 36.2 32 28.4 22.5 7.14
Troica (Nayak et al., 2022a) 49 53 39.3 22.1 66.8 73.8 54.6 41.7 41 35.7 29.4 12.4
CDS-CZSL (Nayak et al., 2022a) 50.3 52.9 39.2 22.4 63.9 74.8 52.7 39.5 38.3 34.2 28.1 11.1
PLID (Bao et al., 2024) 49.7 52.4 39.0 22.1 67.3 68.8 52.4 38.7 38.8 33 27.9 11
MSCI (Wang et al., 2025) 50.2 53.4 39.9 22.8 67.4 75.5 59.2 45.8 42.4 38.2 31.7 14.2
DCDA (Geng et al., 2025) 57.1 55.5 43.1 27.0 69.1 74.1 57.2 44.2 38.5 28.8 25.3 9.4
TsCA (Li et al., 2024) 51.2 52.9 39.9 23 68.7 75.8 58.5 46.1 43.8 38.9 33.1 15.2

GOTZSL(Ours) 52.4 52.0 39.0 22.9 70.4 75.0 60.0 46.9 45.5 40.7 34.8 16.4

Table 3: Open-World CZSL results on UT-Zappos, MIT-States, and C-GQA datasets. Evaluation metrics include
Seen Accuracy (S), Unseen Accuracy (U), Harmonic Mean (H), and Area Under the Curve (AUC). The best results
are highlighted in bold, and the second-best results are underlined.

Method MIT-States UT-Zappos C-GQA
S U H AUC S U H AUC S U H AUC

CLIP (Radford et al., 2021b) 30.1 14.3 12.8 3.0 15.7 20.6 11.2 2.2 7.5 4.6 4.0 0.27
COOP (Zhou et al., 2022) 34.6 9.3 12.3 2.8 52.1 31.5 28.9 13.2 21.0 4.6 5.5 0.70
CSP (Nayak et al., 2022a) 46.3 15.7 17.4 5.7 64.1 44.1 38.9 22.7 28.7 5.2 6.9 1.20
DSFP (Lu et al., 2023) 47.5 18.5 19.3 6.8 66.8 60 44 30.3 38.3 7.2 10.4 2.4
GIPCOL (Xu et al., 2024) 48.5 16 17.9 6.3 65 45 40.1 23.5 31.6 5.5 7.3 1.3
Troica (Nayak et al., 2022a) 48.8 18.7 20.1 7.2 66.4 61.2 47.8 33 40.8 7.9 10.9 2.7
CDS-CZSL (Nayak et al., 2022a) 49.4 21.8 22.1 8.5 64.7 61.3 48.2 32.3 37.6 8.2 11.6 2.7
PLID (Bao et al., 2024) 49.1 18.7 20 7.3 67.6 55.5 46.6 30.8 39.1 7.5 10.6 2.5
MSCI (Wang et al., 2025) 49.2 20.6 21.2 7.9 67.4 63.0 53.2 37.3 42 10.6 13.7 3.8
DCDA (Geng et al., 2025) 55.0 27.7 26.7 12.0 67.8 62.5 51.4 35.8 35.3 6.4 8.5 1.76
TsCA (Li et al., 2024) 50.8 21.7 22.3 8.7 69.8 63.4 52.2 37.1 44.3 11.4 14.7 4.5

GOTZSL(Ours) 49.8 21.5 21.9 8.5 67.3 62.5 51.7 36.6 44.0 11.4 15.6 4.6

Table 4: Ablation results for GOTZSL on UT-Zappos in
the Close-World setting.

Ablation Experiment S U H AUC

w/o GraphAdapter 68.1 73.0 54.7 44.4
w/o LoRaAdapter 69.5 73.7 59.1 45.8
w/o Text CrossAttention 70.0 73.8 59.0 45.8
w/o Visual Disentanglers 69.0 73.6 58.8 46.4
w/o Visual CrossAttention 71.0 73.9 59.2 46.5

Ours (Full) 70.4 75.0 60.0 46.9

attribute-object compositions across diverse bench-572

marks. Our results demonstrate the effectiveness573

of combining graph-aware structured textual pri-574

ors with fine-grained visual cues in compositional575

settings.576

Limitations 577

Two key limitations are identified in GOTZSL: 578

(1) The current fusion mechanism relies on fixed 579

weights, which may limit adaptability to diverse 580

visual domains; (2) The model assumes clean 581

attribute-object annotations during training, which 582

may not generalize well to noisy or weakly labeled 583

data. Addressing these limitations presents op- 584

portunities for future work in adaptive fusion and 585

weakly supervised compositional learning. 586
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