
Under review as a conference paper at ICLR 2024

UBERT: UNSUPERVISED ADAPTIVE EARLY EXITS IN
BERT

Anonymous authors
Paper under double-blind review

ABSTRACT

Inference latency is an issue in pre-trained networks like BERT due to their large
size. To overcome this, side branches are attached at the intermediary layers
with provision for early inference instead of inference only at the last layer. This
facilitates the early exit of ’easy’ samples and requires only ’hard’ samples to pass
through all layers, thus reducing inference latency. However, the hardness of the
samples is unknown a priori. This leads to the question of how to exit so that the
accuracy and latency are well balanced. Also, the optimal choice of parameters
involved in deciding exits can depend on the sample domain and hence need to be
adapted. We develop an online learning algorithm named UBERT to decide if a
sample can exit early. The decisions are based on confidence in inference exceeding
a threshold at each exit point, and the algorithm simultaneously learns the optimal
thresholds for all the exits. UBERT learns the optimal threshold for the sample
domain using confidence observed at the intermediary layers without requiring any
ground truth labels. We perform extensive experiments on five datasets with one and
two early exits. We compare the performance against the case with no early exits,
i.e., all samples exit at the last layer. UBERT achieves a 10%-53% reduction in time
with a drop in accuracy in the range of 0.3% - 5.7% with one early exit. For the case
with two exits, the time reduction increases to 32%-70% with only a marginal drop
in accuracy of 0.1%-3.9%. The anonymized source code is available at https:
//anonymous.4open.science/r/UBERT-F2DF/README.md.

1 INTRODUCTION

Inference time is critical in many real-time Natural Language Processing (NLP) applications. Large-
scale pre-trained Neural Nets (NNs) like ELMo Peters et al. (1802), BERT Devlin et al. (2018),
ALBERT Lan et al. (2019) GPT Radford et al. (2019), XLNet Yang et al. (2019) and RoBERTa Liu
et al. (2019) offer high accuracy but suffer from inference latencies due to their large size. This makes
it challenging to deploy them on mobile or other edge devices which are resource-constrained.

Many variants of the BERT, like DeeBERT Xin et al. (2020b) and ElasticBERT Liu et al. (2021b),
facilitate inference at the intermediary layers of NNs through early exits. In this configuration, each
sample must ascertain whether the inference can be completed at intermediary layers or at the last
layer. The decisions of early exit are based on the confidence at the intermediary layers being above a
threshold. Even though it is anticipated that the final layer of the NN can have better accuracy than
the intermediate layer, the cost will be high. In the following, we consider the cost quantified in the
form of inference time (latency). However, depending on the application, the cost can also be present
as other factors like power and computational resources.

The threshold used to compare the confidence levels significantly impacts the amount of latency and
accuracy: with a lower threshold, more samples exit early, but with a lower confidence value, leading
to lower accuracy and lower latency. With a higher threshold, fewer samples exit early, leading to
higher latency but improved accuracy. Hence, one has to set the threshold that optimally trade-off
between latency and accuracy.

The threshold is often determined using a labeled dataset during training and serves as a crucial
reference point for decision-making during inference. However, a significant challenge arises when
deploying pre-trained models that are later deployed on samples whose latent distribution can be
different from the training samples. This scenario, often encountered in real-world applications,

1

https://anonymous.4open.science/r/UBERT-F2DF/README.md
https://anonymous.4open.science/r/UBERT-F2DF/README.md

Under review as a conference paper at ICLR 2024

raises the following question: How can we effectively adapt the threshold of deployed pre-trained
models when the latent distribution of incoming samples is unknown, and ground truth labels are
unavailable?

The optimal threshold value depends on the distribution of confidence levels at the attached exit,
which can vary depending on the data distribution. During inference, since data arrives in sequential
order (online fashion), and ground-truth labels are unavailable, the problem is that of learning the
optimal threshold in an online and unsupervised setting. We propose an online learning algorithm
using the Multi-Armed Bandit Auer et al. (2002b) framework to address this problem.

La
ye

r 1

La
ye

r 2

La
ye

r 3
 (E

xi
t 1

)

La
ye

r 4

La
ye

r 5
 (E

xi
t 2

)

La
ye

r L

Figure 1: Early Exit setup: NNs are attached with
exit layers so that ’easy’ samples could be inferred
without being processed till the final layer.

Our algorithm, named Unsupervised Adaptive
Early Exits in BERT (UBERT), learns a thresh-
old from a set of thresholds that achieves op-
timal tradeoff between accuracy and latency.
We extensively evaluate the performance of
UBERT on five datasets viz. IMDB, MRPC,
SciTail, SNLI, Yelp, and QQP to cover different
types of classification tasks –sentiment, entail-
ment, and question answering. In our evaluation
of the algorithm, ElasticBERT underwent an
initial pre-training phase on a specific dataset
(pre-deployment phase). Subsequently, we as-
sessed its performance by testing it on a dis-
tinct dataset that shares a similar task type but
exhibits a variation in latent data distribution
(post-deployment phase). For instance, we pre-trained ElasticBERT on the SST-2 dataset, which is
primarily a sentiment classification task. Then, to gauge the adaptability of UBERT, we conducted
evaluations on the IMDb and Yelp datasets, both of which involve review classification tasks akin to
SST-2 but with notable differences in data distribution characteristics.

UBERT achieves substantial gains in inference speed, with reductions in inference time ranging from
10% to 53% in single-exit scenarios and from 32% to 72% in the two-exit cases, all while maintaining
minimal loss in accuracy. UBERT decides the threshold on the fly based on the observations made
on the previous samples. This stands in contrast to models like DeeBERT and ElasticBERT, which
rely on fixed thresholds and offer limited insight into the rationale behind their threshold choices.
Furthermore, these models require some degree of labeled data to fine-tune their threshold values.

It is important to highlight that the optimal threshold values can exhibit substantial variation when
applied to different applications, as exemplified in Table 3. Utilizing a fixed threshold consistently
across multiple layers and domains in an unsupervised context, especially when confronted with
different latent data distributions, may yield suboptimal results. Consequently, UBERT sets itself
apart by its capacity to dynamically acquire the optimal threshold values based on confidence metrics
at each layer. This approach ensures peak performance across diverse scenarios and applications.

Our primary contributions can be summarized as follows: 1) We conceptualize the challenge of
determining the optimal threshold for early exits within neural networks as an unsupervised online
learning problem. 2) In Sec 4, we introduce an upper confidence-based algorithm named UBERT for
the case with a single exit and discuss how it uses only the confidence to identify the optimal threshold
and does not require any ground truth labels. 3) In Sec 5, we consider UBERT with multiple exits
necessitating a distinct Multi-Armed Bandit (MAB) framework for each exit layer. 4) We conduct
experiments across five distinct datasets, and substantiate UBERT’s proficiency in discerning the
optimal threshold for early exit decisions, both in scenarios with a single exit layer and two exit
layers. Our experimental validation demonstrates that, with appropriately chosen thresholds, there
may be no necessity for more than two exits when exits are strategically positioned.

2 RELATED WORK

Previous works such as BranchyNet Teerapittayanon et al. (2016) use classification entropy at each
attached exit after each layer to decide whether to infer the sample at the side branch. The decision
is made to exit early at the side branch if the entropy is less than a given fixed threshold. Similar

2

Under review as a conference paper at ICLR 2024

architectures, SPINN Laskaridis et al. (2020) and SEE Wang et al. (2019b) make the decision of
early exiting based on the estimated confidence measure provided by the side branch. They choose
confidence as the probability of most likely class. Besides exiting early, works like FlexDNN Fang
et al. (2020) and Edgent Li et al. (2019) focus mainly on the most appropriate NN depth. Other works
such as Dynexit Wang et al. (2019a) focus on deploying the multi-exit NN in hardware. It trains
and deploys the NN on Field Programmable Gate Array (FPGA) hardware while Paul et al. Kim &
Park (2020) explains that implementing a multi-exit NN on FPGA board reduces inference time and
energy consumption.

Pacheco et al. Pacheco et al. (2021) utilize both multi-exit NN and NN partitioning to offload mobile
devices via multi-exit NNs. Similarly, EPNet Dai et al. (2020) learns when to exit considering the
trade-off between overhead and accuracy in an offline fashion. Multi-exit NNs are being conformed
in various other domains such as Image classification, ranking systems and NLP Bapna et al. (2020);
Elbayad et al. (2020); Liu et al. (2021a); Xin et al. (2020a); Zhou et al. (2020). DeeBERT Xin et al.
(2020a), ElasticBERT Liu et al. (2021a) and BERxiT Xin et al. (2021) are based on the transformer-
based Vaswani et al. (2017) BERT model. BERxiT proposes an efficient fine-tuning strategy for the
BERT model with attached exits. DeeBERT is obtained by training the exit points attached before
the last module to the BERT backbone separately, whereas ElasticBERT is obtained by training
all the exit points attached to the BERT backbone jointly. PABEE Zhou et al. (2020) is another
multi-exit model that makes the exit decision based on the stability of the predictions after different
exits. In a parallel vein, the Multiple Exiting (MuE) Tang et al. (2023) model employs a distinctive
approach to determine early exits by assessing the similarity between consecutively learned hidden
representations within the model’s layers. Fei et al. (2022) on the other hand learns an imitation
network to match the performance of deeper exits by learning a smaller network for image captioning.
LEE Ju et al. (2021b), DEE Ju et al. (2021a) and UEE-UCB Hanawal et al. (2022) leverage the MAB
framework to learn the optimal exit in EENNs. LEE and DEE mainly focus on learning optimal
exits in image classification tasks, while UEE-UCB finds optimal exits for NLP tasks employing a
pre-trained ElasticBERT Liu et al. (2021b) model. UEE-UCB does not need any label information but
works under the assumption that the prediction of the intermediary layers follows strong dominance
property Verma et al. (2019).

Our approach differs from past works as follows: 1) Unlike previous studies, our work primarily
concerns determining the optimal threshold. 2) Our work is completely in an unsupervised online
setup. 3) We do not make any structural assumptions like strong dominance property. 4) Using a
single UCB configuration, we generalize adding multiple exits and discover the best thresholds for
each exit simultaneously (in section 5) for two exits. The more general case of multiple exits is given
in Appendix A.1. We compare against different early exiting models in table 2.

3 PROBLEM SETUP

3.1 EARLY-EXIT SETUP WITH ELASTICBERT

We consider classification tasks with a target class C. We use a pre-trained ElasticBERT backbone
with l = 12 transformer layers with classification heads attached to the output of specific layers that
output scores for the target classes. We convert the scores into probability vectors by attaching a
softmax layer. An input in ElasticBERT is processed sequentially through the intermediary layers
outputting probability vectors at layers where classification heads are attached. Processing at an
intermediary layer can stop and the sample can exit without passing through the following layers. We
utilize the information from the side branches to decide if the sample exits at the intermediary level.
More details on how we prepare a pre-trained ElasticBERT model could be found in the Appendix C.

Consider an intermediary layer 1 < p < l. For an input x, let P̂p(c) denote the estimated probability
that x belongs to class c ∈ C and Cp denote the confidence in the estimate at the pth layer. We define
Cp as maximum of the estimated probability class, i.e., Cp := maxc∈C P̂p(c). The decision to exit at
a layer is made based on the value of confidence. For a given threshold, α if Cp ≥ α the sample x

will be assigned a label ŷ = argmaxc∈C(P̂p(c)). In this case, x is not further processed, and exits
the NN with a label ŷ. If Cp < α, then the sample is processed to the next layer. We first consider the
case where the exit is possible only at the pth intermediary layer, i.e., the sample can exit at layer
p with a label predicted by layer p, or it will get processed till the last layer l and exits with label

3

Under review as a conference paper at ICLR 2024

predicted by layer l. We address the issue of exiting from more than one layer in Section 5. We
denote the cost incurred from moving from the pth layer to the lth layer as o. It denotes the latency or
computational cost of processing the sample between the layers p and l.

At the pth layer, the confidence can be compared against one of the k possible thresholds denoted by
set Ap = {α1, α2, . . . , αk}. The goal is to identify the threshold which provides the best trade-off
between loss in accuracy and latency cost. In the following, we define rewards obtained by each
threshold and use the bandit framework to identify the optimal threshold.

3.2 MULTI-ARMED BANDIT SETUP

Algorithm 1 UBERT
Input: o, γ > 2
Initialize: Play each threshold once. Observe r(α) and
set Q(α)← 0, N(α)← 1,∀α ∈ Ap.
for t = |Ap|+ 1, |Ap|+ 2, · · · do

Observe an instance xt

βt ← arg max
α∈Ap

(
Q(α) + γ

√
ln(t)

N(α)

)
Pass xt till layer p, apply threshold βt and observe Cp

if Cp ≥ βt then
Infer at layer p and exit
for α ∈ {β ∈ A : β ≤ βp

t } do
rt(α)← 0, Nt(α)← Nt−1(α) + 1

Qt(α)←
∑t

j=1 rj(αj)1{αj=α}/Nt(α)
end for

else
Process and infer at the last layer. Observe Cl

for α ∈ {β ∈ A : β ≥ βp
t } do

rt(α)← (Cl−Cp−o), Nt(α)← Nt−1(α)+1

Qt(α)←
∑t

j=1 rj(αj)1{αj=α}/Nt(α)
end for

end if
end for

We treat the set of thresholds Ap as
the set of actions. Following the termi-
nology of MAB, we refer to them as
arms. For any arm α ∈ Ap, we define
the reward as follows

r(α) =

{
0 if Cp ≥ α
Cl − Cp − o otherwise.

(1)

For notational convenience, we write
confidence gain in processing the sam-
ple from the pth layer to the lth layer
as ∆C = Cl − Cp, where Cl is the
confidence at the lth layer. Though
confidence and latency are in differ-
ent units, we add them after using a
conversion factor. This factor is not
explicitly shown as it can be absorbed
into o. The reward could be inter-
preted as follows: if the learner de-
cides to use the last layer, the reward
is the gain in confidence minus the
latency cost incurred, otherwise, the
reward is zero. Then mean reward for
arm α ∈ Ap is

E[r(α)] = E[∆C − o|Cp < α] · P [Cp < α] (2)
Our goal is to find an arm with the highest mean reward. Since the setup is completely unsupervised,
we depend on rewards to examine the progress of learning. Let α∗ = argmaxα∈A E[r(α)] denote
the optimal threshold. Consider a policy π that selects threshold αt ∈ Ap in round t based on past
observations. We define cumulative regret of π over T rounds as

R(π, T) =

T∑
t=1

E[r(α∗)− r(αt)], (3)

where the expectation is with respect to the randomness in the selection of thresholds induced by
the past samples. A policy π∗ is said to be sub-linear if average cumulative regret vanishes, i.e.,
R(π∗, T)/T → 0. Our objective is to develop a policy learning algorithm with a sub-linear regret
guarantee.

4 ALGORITHM

We develop an algorithm named Unsupervised adaptive early exits in BERT named UBERT. Its
pseudo-code is given in algorithm 1. The inputs to the algorithm are exploration constant γ and
latency factor o. For the first |Ap| samples, the algorithm plays each arm once. In the subsequent
rounds, it plays the arm with the highest UCB index denoted as βt. UCB indices are obtained by
taking the weighted sum of the empirical average of the rewards Qt(α) and the confidence bonuses

4

Under review as a conference paper at ICLR 2024

with γ as the weight factor. If Cp at the pth layer is larger than αt then sample exits, otherwise, the
sample is processed till the final layer incurring latency. Finally, the algorithm updates the number of
pulls (N(βt)) and empirical mean (Q(βt)) of the played arm and the arms that belong to the set of
side observations of the chosen exit as given in the algorithm. We obtain the set of side observations
by analysing the behaviours of other arms for the given sample. For instance, if a sample exits at pth
layer with confidence then it would have also exited for any arm smaller than the chosen arm.

Following the analysis of UCB1 Auer et al. (2002b), we show that the regret of UBERT is of
O
(∑

α∈Ap\α∗
log(n)
∆α

)
where ∆α = r(α∗) − r(α) denotes the optimality gap. For completeness,

the proof outline is given in the Appendix B.1. Hence, UBERT acheives a sub-linear regret. The
regret bound could be further improved by utilizing the side information. We explain it in the next
section.

5 EXTENSION TO MULTIPLE EXITS

Samples not exiting from the first exit can be expected to have higher confidence in prediction as they
are using more layers. Hence adding more exits is likely to show a gain in accuracy compared to the
single-exit setup. However, now the thresholds need to be learned at all the exit points. We focus on
the case with two exits to bring out the main ideas of the learning algorithm, and the generalization
algorithm is given in the Appendix A.1. Also, in our experiments, we observed that all the samples
exited before the second exit and only a small fraction passed to the next layers further justifying the
restriction to the two-exits case (see figure 6).

Let p and q be the two intermediate exit layers satisfying 1 < p < q < l. The confidence Cp

and Cq at layers p and q, respectively, are defined as in Sec. 3.1. At each exit layer, there are
k thresholds. We denote set of thresholds at exit layer p and q as Ap := {αp

1, α
p
2, . . . , α

p
k} and

Aq := {αq
1, α

q
2, . . . , α

q
k}, respectively. Note that Ap and Aq need not be the same.

Every sample is processed until the pth layer and the observed confidence Cp is compared against
a threshold αp ∈ Ap. If Cp ≥ αp then it exits at layer p, otherwise the sample is processed
till the qth layer and the confidence Cq is observed. Cq is then compared against a threshold
αq ∈ Aq. If Cq ≥ αq, the sample exits at layer q, otherwise it is processed till the lth layer. If the
sample is not inferred at the first exit layer, a cost denoted as o1 is incurred. o1 is defined as the
latency/computational cost required to process the input from the pth layer till the qth layer. Similarly,
if the sample is not inferred at the second exit layer, an additional cost denoted as o2, is incurred. o2
is the latency/computational cost in processing a sample from the qth layer to the lth layer. The total
latency till the lth layer is o1 + o2 (see Eq. 4).

For any arm (αp, αq) ∈ A, we define the reward as

r(αp, αq) =

{
0 if Cp ≥ αp

Cq − Cp − o1 if Cp < αp, Cq ≥ αq

Cl − Cp − o1 − o2 otherwise.
(4)

For notational convenience we define ∆C1 = Cq − Cp and ∆C2 = Cl − Cp. The mean reward for
arm (αp, αq) ∈ A is then given as

E[r(αp, αq)] = E[∆C1 − o1|Cp < αp, Cq ≥ αq] · P [Cp < αp, Cq ≥ αq]+

E[∆C2 − o1 − o2|Cp < αp, Cq < αq] · P [Cp < αp, Cq < αq], (5)

and the optimal arm is defined as the arm maximizing the mean reward and denoted as (α⋆p, α⋆q).
For any policy π that select the thresholds (αp

t , α
q
t) in round t based on the past observations can be

defined similar to 3 as R(π, T) =
∑T

t=1 E [r(α⋆p, α⋆q)− r(αp
t , α

q
t)] .

We extend UBERT for the case of two exits and refer to it as UBERT2. Its pseudocode is given in 2.
In the two-exit case, the arm space is much larger compared to the case with a single exit, however,
arms means are correlated which can be exploited to speed up the learning.

UBERT2 maintain the UCB index of each threshold pair in A and optimistically plays the one with
the highest index in each round. When a pair (αp, αq) is selected in a round and the sample exits
at layer p, it is clear that the sample would have also exited at layer p if any threshold smaller than

5

Under review as a conference paper at ICLR 2024

αp is selected. Thus we get to observe not only the reward of the arm selected but also that of
the other arms. This side observation is exploited by UBERT2 to improve learning performance.
Though UBERT2 is similar to UCB-N Caron et al. (2012) and UCB-NE Hu et al. (2020) that exploit
side-observations, their regret analysis does not apply to UBERT2 as a set of neighbours is not fixed–
the neighbours of an arm depend on the confidence observed at the exit layers which can change from
one sample to another. The following proposition helps to characterize the number of observations
made for an arm.

Algorithm 2 UBERT-2
1: Input: o1, o2, γ > 2
2: Initialize: Play each threshold once. Observe r(αp, αq), Q(αp, αq)← 0,
3: N(αp, αq)← 1,∀(αp, αq) ∈ A.
4: for t = |A|+ 1, |A|+ 2, · · · do
5: Observe an instance xt

6: (βp
t , β

q
t)← arg max

(αp,αq)∈A

(
Q(αp, αq) + γ

√
ln(t)

N(αp, αq)

)
7: Pass xt till layer p and observe confidence Cp

8: if Cp ≥ βp
t then

9: Infer at layer p and exit
10: for (αp, αq) ∈ {(βp, βq) ∈ A : βp ≤ βp

t and ∀βq ∈ Aq} do
11: rt(α

p, αq)← 0, Nt(α
p, αq)← Nt−1(α

p, αq) + 1

12: Qt(α
p, αq)←

∑t
j=1 rj(α

p
j , α

q
j)1{(αp

j ,α
q
j)=(αp,αq)}/Nt(α

p, αq)

13: end for
14: else if Pass xt till layer q and observe Cq then
15: if Cq ≥ βq

t then
16: Infer at layer q and exit
17: for (αp, αq) ∈ {(βp, βq) ∈ A : βp ≥ βp

t and βq ≤ βq
t } do

18: rt(α
p, αq)← Cq − Cp − o1, Nt(α

p, αq)← Nt−1(α
p, αq) + 1

19: Qt(α
p, αq)←

∑t
j=1 rj(α

p
j , α

q
j)1{(αp

j ,α
q
j)=(αp,αq)}/Nt(α

p, αq)

20: end for
21: end if
22: else
23: Pass xt till the last year and infer. Observe Cl.
24: for (αp, αq) ∈ {(βp, βq) ∈ A : βp ≥ βp

t and βq ≥ βq
t } do

25: rt(α
p, αq)← Cl − Cp − o1 − o2, Nt(α

p, αq)← Nt−1(α
p, αq) + 1

26: Qt(α
p, αq)←

∑t
j=1 rj(α

p
j , α

q
j)1{(αp

j ,α
q
j)=(αp,αq)}/Nt(α

p, αq)

27: end for
28: end if
29: end for

Proposition 5.1 Let (it, jt) denote the index of the threshold pair selected in round t by UBERT2,
and Cp, Cq denote the associated confidence thresholds. Then probability that the reward of arm
(αp, αq) ∈ A is observed in round t, denoted Pt := Pt(α

p, αq), is given by

Pt = P (Cp ≥ αp
it
) itk + P (Cp < αp

it
, Cq ≥ αq

jt
) (k−it)jt

k2 + P (Cp < αp
it
, Cq < αq

jt
) (k−it)(k−jt)

k2 .

Note that the index (it, jt) selected in round t is random as it depends on past observations. For
any α := (αp, αq) ∈ A, let E[Nα(T)] denote the expected number of times α is selected and
E [Oα(T)] = E

[∑T
t=1 Pt

]
denote the expected number of times its reward is observed, where the

expectation is over the distribution of all possible trajectories. It is clear that E[Nα(T)] ≤ E [Oα(T)].

Applying the standard UCB analysis that ignores the side-observation, the regret of UBERT2 over
T rounds is upper bounded by R(UBERT2, T) ≤ O(k2 log T/∆2) where ∆ = r(α⋆p, α⋆q) −

min
(αp,αq)̸=(α⋆p,α⋆q)

r(αp, αq) denotes the sub-optimality gap. However, as UBERT2 exploits the side

observations, its regret upper bound is significantly smaller than this. Unfortunately, establishing the

6

Under review as a conference paper at ICLR 2024

exact bound is non-tractable as the set of neighbouring arms of each arm is not fixed. In the next
section, we demonstrate that UBERT2 performs better compared to the UBERT that considers only
the first exit and ignores the second exit but with added complexity.

6 EXPERIMENTS

In this section, we present the experimental setup, comprising three key phases:

i) Pre-trained Backbone: We utilize the ElasticBERT backbone, pre-trained using Masked Language
Modeling (MLM) and Sentence Order Prediction (SOP) heads attached to each transformer layer of
the BERT-base model. After training, we remove the heads, retaining the pre-trained backbone, as
detailed in Liu et al. (2021b).
ii) Fine-tuning (Pre-deployment): Next, we strategically introduce task-specific exits into the
pre-trained backbone. During this fine-tuning phase, we focus on supervised training to optimize exit
weights. This prepares the model for deployment and testing on diverse datasets with distinct latent
data distributions. Further details on the ElasticBERT training process can be found in Appendix C.
iii) Unsupervised Online Threshold Learning (Post-deployment): In the final stage, we employ
the weights obtained in step (ii) to dynamically learn optimal thresholds in an unsupervised and
online manner for evaluation tasks. This post-deployment step allows the model to autonomously
adapt threshold values based on real-time data, enhancing adaptability in inference.

Datasets: We evaluated UBERT on five datasets covering four types of classification tasks.
The datasets used for evaluation are: (1) IMDb and Yelp: IMDb is a movie review clas-
sification dataset and Yelp consists of reviews from various domains such as hotels, restau-
rants etc. For these two datasets, ElasticBERT was finetuned on SST-2 (Stanford Senti-
ment classification) dataset which is also a sentiment classification dataset. (2) SciTail:
is an entailment classification dataset created from multiple questions from science and ex-
ams and web sentences. To evaluate UBERT on SciTail, ElasticBERT was finetuned on
RTE(Recognizing Textual Entailment) dataset which is also an entailment classification dataset.

Pos-Data #Samples Pre-Data #Samples
IMDb 25K SST-2 68K
Yelp 560K SST-2 68K
SNLI 550K MNLI 433K
QQP 365K MRPC 4K
SciTail 24K RTE 2.5K

Table 1: This table provides some additional infor-
mation for datasets. Pre-Data is the dataset used to
fine-tune the ElasticBERT backbone before deploy-
ment for the corresponding Pos-Data (Dataset used
after deployment) and #Samples is the number of
samples in the dataset.

(3) SNLI(Stanford Natural Language In-
ference:) is a collection of human-written
English sentence pairs manually labelled for
balanced classification with labels entailment,
contradiction and neutral. For evaluation of
this dataset, ElasticBERT was finetuned on
MNLI(Multi-Genre Natural Language In-
ference) which also contains sentence pairs
as premise and hypothesis, the task is the
same as for SNLI. (4) QQP(Quora Ques-
tion Pairs) is a semantic equivalence clas-
sification dataset which contains question
pairs from the community question-answering
website Quora. We finetuned ElasticBERT
on MRPC(Microsoft Research Paraphrase
Corpus) dataset which also has a semantic equivalence task of a sentence pair extracted from online
news sources. Details about the size of these datasets are in table 6. Observe from the table that the
size of the dataset used for fine-tuning is much smaller as compared to the size of the corresponding
evaluation dataset.

Exit selection: In our approach, we strategically position exit points at the 3rd and 6th layers of
the ElasticBERT model, a decision informed by prior studies Scardapane et al. (2020); Bapna et al.
(2020). Beyond the 6th layer, we refrain from incorporating exit points, primarily because confidence
values tend to plateau, resulting in minimal gains (see Figure 2). In some instances, when samples
traverse all the way to the final layer from the 6th layer, they experience a confidence loss (see Figure
5), due to overthinking similar to overfitting during training. Further insights into exit point selection
are available in Appendix D.1.

Choice of the action set: The choice of the action set depends on the total number of output
classes, denoted as C, within a given dataset. To ensure efficiency and avoid redundancy, we observe
that any value in the action set below 1/C is extraneous. Consequently, we adopt a strategy of

7

Under review as a conference paper at ICLR 2024

choosing ten equidistant values ranging from 1/C to 1.0 for the single exit case. For instance, in a
binary classification scenario where the minimum confidence value is 0.5, our action set becomes
Ap = {0.5, 0.55, 0.6, 0.65, . . . , 0.95, 1.0}. Similarly, for the two-exit scenario, the action set choices
areAp,Aq = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We reduced the action set size for two-exit case to enhance
computational efficiency.

Experiments were conducted on an NVIDIA RTX 2070 GPU, which was used for both ElasticBERT
pre-training and obtaining evaluation dataset predictions. Pre-training typically took 6 to 8 hours,
with a maximum of 24 hours for the MNLI dataset. Inference tasks averaged 1 to 2 hours, with
the longest being approximately 6 hours for SNLI. After pre-training and obtaining confidence and
predictions, evaluation tasks for both one and two exits were performed on an Intel Core i7 CPU with
16GB RAM, taking an average of 15 to 20 minutes to run the UBERT and UBERT2 algorithms

Latency cost: The user-defined latency cost, influenced by available computational resources, is a
crucial factor in our approach. Leveraging the capabilities of the NVIDIA RTX 2070, with a peak
FP32 performance of around 7.5 TFLOPS, we align the latency cost within the range of 0.1/TFLOPS
to 1/TFLOPS, ensuring consistency with confidence gain units. Notably, we assume dedicated GPU
usage for this purpose. The choice of latency can be tailored to specific tasks, striking a balance
between accuracy and computational efficiency. Deeper layers incur progressively higher latencies,
accommodating the additional time and resources required for samples to reach the second exit. For a
single exit, we set the latency at o = 0.1, while in the two-exit scenario, we opt for o1 = 0.08 and
o2 = 0.04, resulting in a cumulative latency of 0.12 at the second exit. A detailed latency sensitivity
analysis is available in Appendix D.4.

Baselines: We assess performance degradation by comparing against the baseline accuracy achieved
by the BERT-base model’s Final Exit. For reference, we also include the following models in our
comparative analysis: DeeBERT and ElasticBERT, which utilize fixed confidence thresholds for
early exiting decisions. PABEE employs prediction stability as a criterion for early exits, while MuE
relies on hidden representation similarity for such decisions. To maintain consistency, we apply the
MuE and PABEE approaches to the BERT-base model for comparison purposes. Hyperparameters
for these baseline models remain consistent with their original implementations, and in the post-
deployment phase, we adhere to fixed threshold values as learned by models during fine-tuning.

Metrics: As the measurement of runtime might not be stable even in the same environment, we
utilize a new metric proposed in Tang et al. (2023) to evaluate the efficiency. It is called the expected
time reduction rate which can be defined as:

1−
∑l

i=1 xi × i∑l
i=1 xi × l

where i is the ith layer in the network and l is the total number of layers. xi is the number of samples
exiting from layer i (if an exit is attached). This metric observes the computation reduction ratio.

7 RESULTS

In Table 2, we provide the main results of this paper. We summarize the observations from each
dataset in this section and explain the behaviour. We run each experiment 5- times. Each run includes
an online feed of input samples to UBERT randomly rearranged. We provide average results over
5 runs. From our extensive evaluation in Table 2, it becomes evident that UBERT with two exits
consistently outperforms all previous methods both in terms of accuracy and efficiency, thanks to its
ability to adapt and select different thresholds at various layers of the model. Notably, we observe
that UBERT2 opts for slightly lower thresholds for a deeper exit layer, a strategic choice driven by the
observation that deeper layers exhibit a tendency to produce more accurate results and exit a higher
proportion of samples.

This behaviour aligns with the fact that many samples, as illustrated in the confidence plots in
Appendix (see figure 5), do not exhibit substantial confidence gains from 6th layer until the final layer
(even most of the time confidence decreases). Failing to adjust or lower the threshold values for later
exit layers would result in a majority of samples being processed until the final exit layer, thereby
accumulating excessive inference time without considerable gain in accuracy. This saturation of
confidence values in the deeper layers increases the likelihood of samples either exiting in the initial

8

Under review as a conference paper at ICLR 2024

Model/Data IMDb Yelp SciTail SNLI QQP
Acc Time Acc Time Acc Time Acc Time Acc Time

Final-exit 82.9 100 77.2 100 79.1 100 80.5 100 71.2 100
DeeBERT -6.1 -43.3 -3.9 -58.9 -0.5 -8.3 -2.5 -28.3 -6.7 -50.1
ElasticBERT -4.5 -45.9 -3.4 -62.9 -0.2 -14.7 -2.2 -30.1 -4.7 -52.5
PABEE -4.1 -47.0 -3.3 -60.1 -0.9 -12.1 -2.3 -34.7 -5.9 -49.2
MuE -4.4 -51.3 -3.1 -63.6 -0.3 -20.9 -1.9 -40.5 -4.3 -45.9
UBERT -5.7 -52.5 -4.5 -61.3 -0.2 -9.2 -1.6 -46.0 -1.8 -17.9
UBERT-2 -3.9 -59.5 -3.1 -71.8 -0.1 -51.8 -1.1 -55.2 -0.3 -59.6

Table 2: Main results: The table provides the loss in accuracy (Acc) for different datasets and models
as well as the decrease in inference time(Time). Observe that the reduction in time is in percentage
reduction from the final exit case.

layers or exiting at the final layer. This justifies UBERT’s choice of smaller thresholds for deeper
layers. Previous methods like DeeBERT, ElasticBERT, PABEE, and MuE relied on fixed thresholds
across layers and domains, resulting in either early exits from initial layers, leading to accuracy loss,
or processing until the final layer, incurring higher inference costs. These scenarios were detrimental
to model objectives. When evaluated on datasets with different latent distributions from the training
set, these models often maintained a uniform threshold approach, potentially compromising accuracy
and efficiency.

UBERT2 outperforms UBERT, which employs a single exit and a simple architecture. It excels on
datasets resembling the training set distribution, where the 3rd exit gains higher confidence, leading to
more early exits. This underscores the significance of exit placement and its impact on performance
and inference time reduction. However, UBERT-2 comes with added complexity, hence not easy
to analyse as comapred to UBERT. Further insights on the importance of UBERT with one exit are
discussed in Appendix D.5

UBERT’s dynamic threshold selection during inference, without requiring full retraining or fine-
tuning, offers a substantial advantage. This adaptability significantly reduces inference time by 51%
to 72%, while preserving accuracy. Notably, UBERT achieves this without relying on labeled data;
instead, it makes real-time threshold decisions based on evolving data distributions. By utilizing
available side information, UBERT and UBERT2 converge to optimal thresholds after just a few
thousand samples, as discussed in Appendix E. Additionally, in Appendix D.3, we empirically
demonstrate that UBERT2 consistently outperforms fixed thresholds, including those chosen by
previous methods.

8 CONCLUSION

In this work, we have introduced an innovative online algorithm designed to determine whether to
terminate the processing of a sample at the intermediate layers of a neural network or at the final
layer. Our algorithm effectively minimizes the inference time of pre-trained ElasticBERT model
while making only minor compromises in terms of accuracy. Notably, our approach operates in an
unsupervised manner, eliminating the need for labeled data to optimize the delicate balance between
accuracy loss and reduced latency.

In this work, we could only argue that UBERT2 exploits side information to give better performance
even though it has to search over a large number of arms to find the optimal arm. It is interesting to
quantify the regret of UBERT2 and how to further exploit the side information to improve its regret
performance. To circumvent the issue of complexity in a dding multiple exits, a strategic placement
of exits is required.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002a.

Peter Auer et al. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47:
235–256, 2002b.

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. Controlling computation versus quality for
neural sequence models. arXiv preprint arXiv:2002.07106, 2020.

Stéphane Caron, Branislav Kveton, Marc Lelarge, and Smriti Bhagat. Leveraging side observations
in stochastic bandits. arXiv preprint arXiv:1210.4839, 2012.

Xin Dai, Xiangnan Kong, and Tian Guo. Epnet: Learning to exit with flexible multi-branch net-
work. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 235–244, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In In Proc.
of ICLR, 2020.

Biyi Fang, Xiao Zeng, Faen Zhang, Hui Xu, and Mi Zhang. Flexdnn: Input-adaptive on-device deep
learning for efficient mobile vision. In 2020 IEEE/ACM Symposium on Edge Computing (SEC),
pp. 84–95. IEEE, 2020.

Zhengcong Fei, Xu Yan, Shuhui Wang, and Qi Tian. Deecap: Dynamic early exiting for efficient
image captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12216–12226, 2022.

Manjesh K Hanawal, Avinash Bhardwaj, et al. Unsupervised early exit in dnns with multiple exits.
arXiv preprint arXiv:2209.09480, 2022.

Bingshan Hu, Nishant A Mehta, and Jianping Pan. Problem-dependent regret bounds for online
learning with feedback graphs. In Uncertainty in Artificial Intelligence, pp. 852–861. PMLR, 2020.

Weiyu Ju, Wei Bao, Liming Ge, and Dong Yuan. Dynamic early exit scheduling for deep neural
network inference through contextual bandits. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 823–832, 2021a.

Weiyu Ju, Wei Bao, Dong Yuan, Liming Ge, and Bing Bing Zhou. Learning early exit for deep
neural network inference on mobile devices through multi-armed bandits. In 2021 IEEE/ACM 21st
International Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 11–20. IEEE,
2021b.

Geonho Kim and Jongsun Park. Low cost early exit decision unit design for cnn accelerator. In 2020
International SoC Design Conference (ISOCC), pp. 127–128. IEEE, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and Nicholas D Lane.
Spinn: synergistic progressive inference of neural networks over device and cloud. In Proceedings
of the 26th annual international conference on mobile computing and networking, pp. 1–15, 2020.

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural network
inference via edge computing. IEEE Transactions on Wireless Communications, 19(1):447–457,
2019.

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao,
Xuanjing Huang, and Xipeng Qiu. Towards efficient NLP: A standard evaluation and A strong
baseline. 2021a. URL https://arxiv.org/abs/2110.07038.

10

https://arxiv.org/abs/2110.07038

Under review as a conference paper at ICLR 2024

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling Wu, Xinyu Zhang, Hao Jiang, Zhao Cao,
Xuanjing Huang, and Xipeng Qiu. Towards efficient nlp: A standard evaluation and a strong
baseline. arXiv preprint arXiv:2110.07038, 2021b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Roberto G Pacheco, Rodrigo S Couto, and Osvaldo Simeone. Calibration-aided edge inference of-
floading via adaptive model partitioning of deep neural networks. In ICC 2021-IEEE International
Conference on Communications, pp. 1–6. IEEE, 2021.

ME Peters, M Neumann, M Iyyer, M Gardner, C Clark, K Lee, and L Zettlemoyer. Deep contextual-
ized word representations. arxiv. arXiv, 1802.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini. Why should we add
early exits to neural networks? Cognitive Computation, 12(5):954–966, 2020.

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang,
Yi Liang, and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for accelerating
unified vision language model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10781–10791, 2023.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pp. 2464–2469. IEEE, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Arun Verma, Manjesh Hanawal, Csaba Szepesvari, and Venkatesh Saligrama. Online algorithm for
unsupervised sensor selection. In Proceedings of the Twenty-Second International Conference on
Artificial Intelligence and Statistics, pp. 3168–3176. PMLR, 2019.

Meiqi Wang, Jianqiao Mo, Jun Lin, Zhongfeng Wang, and Li Du. Dynexit: A dynamic early-exit
strategy for deep residual networks. In 2019 IEEE International Workshop on Signal Processing
Systems (SiPS), pp. 178–183. IEEE, 2019a.

Zizhao Wang, Wei Bao, Dong Yuan, Liming Ge, Nguyen H Tran, and Albert Y Zomaya. See:
Scheduling early exit for mobile dnn inference during service outage. In Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pp. 279–288, 2019b.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 2246–2251. Association for Computational Linguistics, 2020a.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020b.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. Berxit: Early exiting for bert with better
fine-tuning and extension to regression. In Proceedings of the 16th conference of the European
chapter of the association for computational linguistics: Main Volume, pp. 91–104, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience:
Fast and robust inference with early exit. Advances in Neural Information Processing Systems, 33:
18330–18341, 2020.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXTENSION TO MULTIPLE EXITS

In this section, we consider multiple exits and simultaneously learning the optimal thresholds for E
exits for 1 ≤ E < L. Adding multiple exits will surely show a gain in accuracy as compared to one
or two-exit setup. We denote the set {1, 2, . . . E} as [E].
For the intermediate exit l ∈ [E], let Cl be the confidence at exit l and are defined as in Sec. 3.1. We
denote the action set at exit l as Al = {αl

1, α
l
2, . . . , α

l
k}. Since now we are simultaneously choosing

the thresholds for E exits, the action set changes to A = A1 ×A2 × . . .×AE .

The sample is processed till first exit layer and C1 is observed then if C1 ≥ α1 the sample exits the
backbone else it is processed to next exit layer. The sample is processed until Cl ≥ αl for l ∈ [E]
and the sample exits the backbone. Else, the sample is inferred at the final layer with confidence
CL. If the sample is processed till exit l then the total latency occurred is o1 + o2 + . . .+ ol In the
multiple exits case, for any arm α = (α1, α2, . . . , αE) the reward function will be defined as:

r(α) =



0 if C1 ≥ α1

·
·
Cl − C1 − o1 − o2 − o3 . . . ol if C1 < α1, C2 < α2 . . . Cl ≥ αl

·
·
CL − C1 − o1 − o2 − . . . oE if C1 < α1, C2 < α2 . . . CE < αE

(6)

The mean reward for arm α = {α1, α2, . . . , αE} is then given as:

E[r(α)] =
E∑
l=1

E[Cl − C1 − o1 − . . .− ol|C1 < α1, . . . , Cl−1 < αl−1, Cl ≥ αl]

.P [C1 < α1, . . . , Cl−1 < αl−1, Cl ≥ αl] + E[CL − C1 − o1 − . . .− oE |C1 < α1, . . . , CE < αE]

.P [C1 < α1, . . . CE < αE] (7)

A.2 ALGORITHM

In this section, we provide the general algorithm for any number of exits. The algorithms UBERT
and UBERT-2 in the main paper are just the cases when we have one and two exits. Also here
α = (α1, α2, . . . , αE) where lth component of the vector represents the threshold for the lth exit.
The input to the algorithm is the overhead cost ol for processing the input from exit layer l− 1 to exit
layer l and exploration parameter γ. In every iteration, a vector of size E is chosen (line 5) based
on the UCB index and the lth component is compared against the confidence at lth exit point until
the confidence is above the chosen threshold. The reward is then observed based on the layer from
which the sample exited. If the sample’s confidence does not meet the threshold for the intermediate
exits, it is then processed till the final layer which infers the sample with a reward. Suppose there
are K thresholds for every exit layer and there are E exits attached, then the size of the action set
will be |A| = KE . There is an exponential increase in the size of the action set with an increasing
number of exits which in turn requires more samples to saturate to optimal exit. To circumvent this
issue, we utilize the available side information. The algorithm performs multiple updates in a single
iteration by analysing the structure of the reward function as well as the action set. The arms that will
get updated (line 9) in every iteration depend on the exit at which the sample is inferred as well as the
chosen arm. By using side observations, the algorithm learns faster without accumulating significant
regret. The algorithm in the main paper for two exits looks more complex as the while loop in line 7
of UBERT-E algorithm is unrolled in UBERT-2 for better understanding.

B PROOF FOR PROPOSITION 1

We will complete the proof according to the confidence observed at different exit layers.
If the sample exits at the first exit layer then the set S1 = {(γp, γq) : γp ≤ αp

it
and ∀γq ∈ Aq} will

12

Under review as a conference paper at ICLR 2024

Algorithm 3 UBERT-E
1: Input: oi∀i ∈ [E], γ > 2
2: Initialize: Play each threshold once. Observe r(α), Q(α)← 0, N(α)← 1,∀α ∈ A.
3: for t = |A|+ 1, |A|+ 2, · · · do
4: Observe an instance xt

5: βt ← argmax
α∈A

(
Q(α) + γ

√
ln(t)

N(α)

)
6: l = 1 and o1 = 0
7: while Cl ≥ βl

t, and l ∈ [E] do
8: Infer at layer l and exit
9: for α ∈ {β ∈ A : βp > βp

t ∀p ∈ [l − 1], βl ≤ βl
t and ∀βq where q > l} do

10: rt(α)← Cl − C1 − o1 − o2 − . . .− ol, Nt(α)← Nt−1(α) + 1

11: Qt(α)←
∑t

j=1 rj(αj)1{αj=α}/Nt(α)
12: end for
13: l = l + 1
14: end while
15: if l = L then
16: Pass xt till the last year and infer. Observe CL.
17: for α ∈ {β ∈ A : βp > βp

t ∀p ∈ [L− 1] do
18: rt(α)← CL − C1 − o1 − o2 − . . .− oE , Nt(α)← Nt−1(α) + 1

19: Qt(α)←
∑t

j=1 rj(αj)1{αj=α}/Nt(α
p, αq)

20: end for
21: end if
22: end for

be updated. Now

P ((αp, αq) ∈ S1) = |S1|/k2 = it/k

Hence probability that (αp, αq) will get updated at first intermediate layer is P (Cp ≥ αp
it
) · it/k.

If the sample exits at the second exit layer then the set S2 = {(γp, γq) : γp > αp
it

and γq ≤ αq
jt
}

will get updated. Similarly,

P ((αp, αq) ∈ S2) = |S2|/k2 = (k − it)jt/k
2

Hence probability that (αp, αq) will get updated at second intermediate layer is P (Cp < αp
it
, Cq ≥

αq
jt
) · (k − it)jt/k

2.
Finally, if the sample exits at the final layer, then the set S3 = {(γp, γq) : γp > αp

it
and γq > αq

jt
}

will get updated. So,

P ((αp, αq) ∈ S3) = |S3|/k2 = (k − it)(k − jt)/k
2

Hence the probability that (αp, αq) will be updated at final layer is P (Cp < αp
it
, Cq < αq

jt
) · (k −

it)(k−jt)/k2. Hence probability that the reward of arm (αp, αq) ∈ A is observed in round t, denoted
Pt := Pt(α

p, αq), is given by Pt = P (Cp ≥ αp
jt
) itk + P (Cp < αp

jt
, Cq ≥ αq

jt
) (k−it)jt

k2 + P (Cp <

αp
it
, Cq < αq

jt
) (k−it)(k−jt)

k2

B.1 UPPER BOUND ON REGRET OF UBERT

Theorem B.1 For any γ > 1, the regret of UBERT with K arms in the action set after n rounds is
given as:

R(UBERT, n) ≤ 4γ
∑
α̸=α∗

log(n)

∆α
+ (π2/3 + 1)

∑
α ̸=α∗

∆α (8)

where ∆α = r(α∗)− r(α)

13

Under review as a conference paper at ICLR 2024

The proof is very similar to the classical UCB1 Auer et al. (2002a) and follows the same lines with
noting the regret in round t as

Rt = r(αt)− r(α∗)

r(α) is a bounded quantity by definition and more specifically r(α) ∈ [−1 − o, 1], where o is the
latency cost accumulated over all the exits.

One can provide even better bounds than given in eq. 8, after taking the side observations into account
that are available in each round and using proposition 5.1.

C TRAINING AN ELASTICBERT MODEL

In order to evaluate the performance of UBERT, it is essential to have a pre-trained multi-exit
neural network that aligns with a similar task. This section outlines the procedure for creat-
ing a specific multi-exit deep neural network (DNN) model, which will serve as the bench-
mark for assessing UBERT’s effectiveness. To construct this multi-exit DNN, we start with the
ElasticBERT-base model, which is built upon the BERT-base architecture. We initiate the train-
ing process by attaching an exit after each layer of the BERT-base model and employing a joint
loss function that combines masked language modelling and sentence order prediction across all
exits. This training occurs on a substantial text corpus. Following this training phase, we re-
move the heads of the exits, specifically the Masked Language Modeling and Sentence Order
Prediction components, leaving behind the ElasticBERT-base model’s backbone and the associ-
ated learned weights. This resulting model possesses the capability to generate language repre-
sentations that are particularly well-suited for early-exit scenarios. It forms the foundation for
our evaluation and comparison with UBERT across a range of applications, including sentiment
classification, natural language inference, paraphrasing tasks, and textual entailment classification.

0 2 4 6 8 10
Exit layer

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

MNLI-val
SST-val

Figure 2: The validation set accuracy of the datasets
MNLI and SST-2 that were used to place exits at differ-
ent points in the backbone.

Following the preparation of the Elas-
ticBERT backbone, we proceed to attach
task-specific exits, including classification
heads, after each layer of the backbone.
To provide an overview, let’s consider a
sentence-level task like sentiment classifi-
cation, where we utilize a special token
denoted as [CLS] to facilitate the learn-
ing of sentence-level representations. Each
token’s output representation is then con-
nected to a classification head positioned
after each attention layer. The primary aim
of these classification heads is to generate
representations that can be effectively com-
pared to the task-specific labels. For exam-
ple, in the case of binary textual entailment
classification tasks, where the labels are
binary (positive/negative), we typically em-
ploy the binary cross-entropy loss as our
preferred loss function. This loss function
allows the classification head to generate
scores by transforming the d-dimensional vector representation of the [CLS] token using learnable
weights. Our fine-tuning process involves training the ElasticBERT backbone on datasets that align
with similar task types. As an illustration, we leverage the ElasticBERT model, which was initially
pre-trained on the SST-2 dataset for sentiment classification, to evaluate datasets like IMDb and Yelp,
both of which involve positive/negative review classification tasks.

According to the hyperparameter selections made in ElasticBERT, the ElasticBERT model is fine-
tuned on each dataset for 5 iterations. Every 50 steps, the model is checkpointed. The model with the
highest average accuracy across all exits is the final model.

14

Under review as a conference paper at ICLR 2024

IMDb Yelp SciTail QQP SNLI
Datasets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C p

IMDb Yelp SciTail QQP SNLI
Datasets

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C q

Figure 3: Cp (confidence values at pth exit) and Cq (confidence values at qth exit) for different
datasets

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
IMDb

0

1000

2000

3000

4000

5000

6000

0.4 0.2 0.0 0.2 0.4
QQP

0

20000

40000

60000

80000

100000

120000

0.6 0.4 0.2 0.0 0.2 0.4 0.6
SNLI

0

25000

50000

75000

100000

125000

150000

175000

200000

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
SciTail

0

1000

2000

3000

4000

5000

0.4 0.2 0.0 0.2 0.4
Yelp

0

20000

40000

60000

80000

100000

120000

Figure 4: (y-axis represents number of samples and x-axis is the gain in confidence) Confidence
gain (∆C) from first exit to final layer for UBERT. There is a gain in confidence for most of the
samples across all the datasets (except IMDb which suggests exiting many samples from the first exit)

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
IMDb

0

1000

2000

3000

4000

5000

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
QQP

0

50000

100000

150000

200000

0.4 0.2 0.0 0.2 0.4 0.6
SNLI

0

100000

200000

300000

400000

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
SciTail

0

2000

4000

6000

8000

10000

12000

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Yelp

0

25000

50000

75000

100000

125000

150000

175000

200000

Figure 5: (y-axis represents number of samples and x-axis is the gain in confidence) Confidence
gain (∆C2) from second exit to final layer. Observe that from the second exit to the final exit, many
samples even lose confidence and only a few samples observe a gain confidence (that also a minimal
gain)

15

Under review as a conference paper at ICLR 2024

[0.5, 0.5] [0.6, 0.6] [0.7, 0.7] [0.8, 0.8] [0.9, 0.9] [1.0, 1.0] OPT[0.9, 0.5]
IMDb

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy
Fraction of Early Exits

[0.5, 0.5] [0.6, 0.6] [0.7, 0.7] [0.8, 0.8] [0.9, 0.9] [1.0, 1.0] OPT[1.0, 0.5]
QQP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy
Fraction of Early Exits

[0.5, 0.5] [0.6, 0.6] [0.7, 0.7] [0.8, 0.8] [0.9, 0.9] [1.0, 1.0] OPT[1.0, 0.5]
SciTail

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy
Fraction of Early Exits

[0.4, 0.4] [0.5, 0.5] [0.6, 0.6] [0.7, 0.7] [0.8, 0.8] [0.9, 0.9] [1.0, 1.0]OPT[0.9, 0.4]
SNLI

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy
Fraction of Early Exits

[0.5, 0.5] [0.6, 0.6] [0.7, 0.7] [0.8, 0.8] [0.9, 0.9] [1.0, 1.0] OPT[0.7, 0.5]
Yelp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy
Fraction of Early Exits

Figure 6: Comparison of UBERT-2 with fixed threshold values where OPT means the optimal
thresholds chosen for both exits

D EXPERIMENTS (CONTD..)

D.1 CHOICE OF EXIT LAYERS

In our experimentation, we strategically positioned exit layers at the 3rd and 6th layers of the model
architecture. This decision was informed by an observation made during the fine-tuning process,
specifically when assessing the behavior of accuracy on the validation subset of the dataset used
for fine-tuning. To ensure a robust evaluation, we reserved 20% of the data for validation purposes.
Upon fine-tuning ElasticBERT on the training split of the dataset, we noticed a flattening of the
accuracy curve after the 6th layer, a trend visually represented in Figure 2. For most of the datasets,
we conducted this validation, accuracy tended to stabilize after 6th layer. Also, the 3rd layer also has
a sharp increase in accuracy making it a suitable choice to attach exit. Subsequently, we decided to
place the exit layers at the 3rd and 6th layers, anticipating that this pattern of accuracy improvement
would carry over to evaluation datasets as well.

Also, from an application point of view in an edge-cloud co-inference setup, attaching exits to deeper
layers requires us to incorporate more layers on the edge device making the whole model less efficient.
More details on how to attach exits can be found in Scardapane et al. (2020); Bapna et al. (2020).

D.2 CONFIDENCE ANALYSIS

In Figure 3, we provide an analysis of the confidence levels observed at the first exit layer. Notably,
we find that the optimal threshold for the SciTail dataset is relatively high, at 0.85. This higher
threshold effectively compels most samples to continue to the final layer, primarily because the
confidence levels at the first exit layer tend to be modest, typically falling within the range of 0.55 to
0.65, as depicted in Figure 3. Furthermore, Figure 4 reveals that the gain in confidence from the first
exit layer to the final layer is substantial, providing a compelling rationale for UBERT to exit fewer
samples at the first layer. For other datasets and the one-exit scenario, the threshold is contingent on
the confidence levels observed at the first exit layer. As an illustration, consider the IMDb and Yelp
datasets, where we observe slightly lower optimal thresholds. This observation aligns with the fact
that the gain in confidence is comparatively smaller for these datasets, encouraging UBERT to exit a
larger proportion of samples at the first exit.

Moreover, we notice that for most datasets, all samples exit at the second layer, a phenomenon that
can be elucidated by referring to Figure 3 and Figure 5. These figures clearly demonstrate that,
after progressing from the second exit to the final layer, samples do not exhibit significant gains in
confidence. In fact, for many datasets, confidence levels either remain stagnant or even decrease when
processed until the final layer. This behavior is attributed to overfitting tendencies. Given the high

16

Under review as a conference paper at ICLR 2024

IMDb Yelp SciTail
LatF Acc ExitP Opt Thr Acc ExitP Opt Thr Acc ExitP Opt Thr
0.00 0.821 0.152 0.75 0.742 0.371 0.75 0.778 0.001 0.90
0.05 0.787 0.541 0.65 0.733 0.531 0.70 0.777 0.014 0.95
0.10 0.773 0.705 0.60 0.724 0.668 0.65 0.775 0.041 0.80
0.15 0.758 0.869 0.55 0.716 0.787 0.60 0.766 0.189 0.70
0.20 0.747 1.000 0.50 0.709 0.896 0.55 0.75 0.426 0.65

Table 3: This table compares the values of various latency costs and details how they affect accuracy,
the fraction of early exiting samples, and the related optimal threshold (Opt Thr).

IMDb Yelp SciTail SNLI QQP
Datasets

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy DeeBERT

ElasticBERT
UBERT

IMDb Yelp SciTail SNLI QQP
Datasets

0

10

20

30

40

50

60

Ti
m

e
sa

ve
d

(in
 %

)

Figure 7: The left figure shows the accuracy comparison and the right shows the time saved when
DeeBERT and ElasticBERT are applied in the same setup as UBERT.

confidence and limited confidence gain at the second exit, UBERT-2 efficiently guides all samples to
exit at the second layer.

These observations provide valuable insights into the dynamic behavior of UBERT and UBERT-2
across various datasets and exit layer configurations.

D.3 COMPARISON WITH FIXED THRESHOLDS (UBERT-2)

In Figure 6, we present a comprehensive comparison between the two-exit scenario and various
baseline models, specifically DeeBERT and ElasticBERT. Notably, both of these baseline models
employ fixed thresholds consistently across all exit layers. In this section, we experimentally validate
that for any value of thresholds, if they are fixed across all exit points, UBERT-2 will always
outperform them.

A striking observation is that, across most datasets, our UBERT-2 model outperforms these baselines
in terms of the proportion of samples exiting early, all while maintaining competitive accuracy
levels. Moreover, for certain datasets, UBERT-2 even achieves higher accuracy rates while ensuring a
greater fraction of samples exit early compared to the fixed threshold counter parts. These findings
strongly suggest that the adoption of different threshold values for distinct layers is a crucial strategy.
Deeper layers, characterized by higher confidence and more accurate predictions, benefit from lower
thresholds, enabling them to exit samples early. In contrast, initial exits are better suited with higher
thresholds, ensuring that only highly confident samples exit early, given their lower accuracy levels.

It’s worth noting that this nuanced threshold adaptation is a feature unique to UBERT-2, setting it
apart from previous works, both of which rely on fixed thresholds across all exits. This adaptive
approach contributes to UBERT-2’s superior performance in terms of balancing accuracy and the
fraction of early exits, highlighting its potential as an efficient and accurate early-exit model.

D.4 SENSITIVITY ANALYSIS ON DIFFERENT LATENCY COSTS

In Table 3, we provide a comprehensive overview of our findings regarding the impact of various
latency factors (LatnF) on the optimal thresholds (Opt Thr) for the one-exit case, their corresponding
accuracy (Acc), and the fraction of samples exiting early (ExitP). Our observations consistently reveal
a clear trend across all datasets: as the latency factor increases, there is a simultaneous decrease in

17

Under review as a conference paper at ICLR 2024

accuracy coupled with a rise in the proportion of samples exiting early. This phenomenon can be
attributed to the fact that higher latency costs lead to the derivation of lower optimal thresholds, sub-
sequently compelling more samples to exit early due to diminished confidence, thereby contributing
to lower accuracy.
It is worth highlighting a notable observation: even when the latency factor is set to zero, some
samples still exit before reaching the final layer. This occurrence suggests that certain samples do
not experience a substantial boost in confidence as they progress through the network. Notably, in
the case of the SNLI and Yelp datasets, an intriguing finding emerges, indicating that a substantial
portion (37%) of samples exit early when there is no latency cost. This observation implies that
certain samples may experience a decrease in confidence during processing until the final layer, a
phenomenon that may be indicative of overthinking (analogous to overfitting in training).

D.5 UBERT’S SIGNIFICANCE

As illustrated in Table 2, UBERT exhibits superior performance in a specific dimension, either
achieving a marginal decrease in accuracy or significantly reducing inference time. This outcome
aligns with the inherent design of UBERT, where an exit is strategically placed at the third layer.
Consequently, each data sample undergoes inference either at this intermediate layer or at the final
layer. The distribution of samples between these exits plays a crucial role: if a substantial proportion
exits at the third layer, UBERT’s accuracy is impacted; conversely, if most exit at the final layer,
inference time is affected. Nevertheless, UBERT distinguishes itself by not conducting inference
after every layer, thereby mitigating the inference cost compared to earlier methodologies.

In Table 2, we refrain from directly reducing the inference cost. Instead, we employ a comparative
evaluation of UBERT against ElasticBERT and DeeBERT under similar conditions, where we equip
DeeBERT and ElasticBERT with a single exit and a fixed threshold determined through validation
data during fine-tuning in Figure 7.

This necessitated an additional exit point at the sixth layer, resulting in the UBERT-2 configuration.
This augmentation has proven to be highly beneficial, leading to improvements in both accuracy
and inference speed. The placement of this deeper exit allows a substantial number of samples to
reach a confidence threshold and undergo inference at an earlier stage in the network. Consequently,
this modification has a positive impact on both accuracy and inference time. Notably, our empirical
observations indicate that, with the exception of the SNLI dataset, all the samples exit the deep neural
network before reaching the final layer when utilizing the UBERT-2 configuration. In the case of
SNLI, only a negligible 0.2% of samples continue to the final layer during the inference process.
Given that all samples exit from either the third or sixth layer, there is no compelling need for the
addition of a third exit to the network backbone.

E REGRET PERFORMANCE

E.1 ONE-EXIT

In figure 8, we compare the cumulative regret of UBERT with different baselines that are DeeBERT
and ElasticBERT as fixed thresholds. Each experiment is run 5 times, and the estimated cumulative
regret is plotted with 95% confidence ranges. Each run includes an online feed of input examples
that are randomly rearranged and fed to the algorithm. We take into account the following threshold
while benchmarking the binary classification task: α = 0.5, 0.8, 0.9 and 1.0. α = 0.5 corresponds
to the case when all instances exit at the intermediate layer. α = 1.0 corresponds to the case when
all instances are processed till the last exit. In the SNLI dataset case, we have also used α = 0.3 for
benchmarking instead of α = 0.5, as now all samples will exit early at α = 0.3. In plots, the x-axis
represents the number of input samples fed to the algorithm sequentially, for large datasets such as
IMDb and Yelp we have every 50th sample respectively on x-axis. We observe that the cumulative
regret saturates with the increasing number of input samples. For the IMDb plot, the cumulative
regret of UBERT is better compared to other baselines except for the case of α = 0.5 on the IMDb
dataset. This could be understood as the α = 0.5 is close to the optimal threshold. Similar to this,
for the datasets QQP and SciTail, UBERT is near one of the many fixed thresholds that are close
to the optimal threshold, so their regret for every sample is very small. UBERT initially explores

18

Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Time horizon

0

5000

10000

15000

20000

25000

Cu
m

ul
at

iv
e

re
gr

et

SNLI
UBERT
alpha = 0.3(Early exit)
alpha = 0.8
alpha = 0.9
alpha = 1.0 (Final-Exit)

0 2000 4000 6000 8000 10000
Time horizon

0

5000

10000

15000

20000

25000

30000

35000

Cu
m

ul
at

iv
e

re
gr

et

Yelp
UBERT
alpha = 0.5(Early exit)
alpha = 0.8
alpha = 0.9
alpha = 1.0 (Final-Exit)

0 100 200 300 400 500
Time horizon

0

200

400

600

800

1000

1200

Cu
m

ul
at

iv
e

re
gr

et

IMDb
UBERT
alpha = 0.5(Early exit)
alpha = 0.8
alpha = 0.9
alpha = 1.0 (Final-Exit)

0 1000 2000 3000 4000 5000 6000 7000
Time horizon

0

5000

10000

15000

20000

Cu
m

ul
at

iv
e

re
gr

et

QQP
UBERT
alpha = 0.5(Early exit)
alpha = 0.8
alpha = 0.9
alpha = 1.0 (Final-Exit)

0 100 200 300 400
Time horizon

0

500

1000

1500

2000

2500

Cu
m

ul
at

iv
e

re
gr

et

SciTail
UBERT
alpha = 0.5(Early exit)
alpha = 0.8
alpha = 0.9
alpha = 1.0 (Final-Exit)

Figure 8: Cumulative regret curves for one exit case

non-optimal thresholds before gradually converging towards the optimal threshold and exploits it
after a few thousand iterations.

Our results indicate that UBERT effectively identifies the optimal threshold for a significant portion
of samples. It’s important to note that UBERT does not rely on dataset ground truth labels for its
threshold decisions; instead, these ground truths are solely employed to assess model performance
and accuracy.

Another noteworthy observation is the substantial difference in dataset sizes between the finetuning
and evaluation phases. Even when the ElasticBERT backbone is fine-tuned on a considerably smaller
dataset with a similar task, UBERT consistently manages to determine an appropriate threshold. This
resilience to dataset size variations and differences between finetuning and evaluation data stems from
UBERT’s ability to find the threshold while solely utilizing confidence values at the intermediate and
final layers.

E.2 TWO-EXIT

In figure 9, we compare the cumulative regret of UBERT-2 with different baselines which are fixed
thresholds.

The experimental setup is the same as the one exit case. Notice that (αp, αq) = (0.5, 0.5) will exit
all the samples at the first exit layer. Also (αp, αq) = (1.0, 1.0) will exit all the samples from the
final layer. Observe that for SNLI and IMDb datasets, the regret for one pair of fixed thresholds is
lower than UBERT-2. This effect appears as the reward for these actions might be very close to the
optimal action. This effect can be removed by increasing the dataset size. Except for these datasets,
the regret for UBERT-2 was lower than the fixed thresholds. The cumulative regret in the two-exit
case takes more rounds to saturate as it has a large action set to choose the optimal action.

19

Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Time horizon

0

10000

20000

30000

40000

50000

Cu
m

ul
at

iv
e

re
gr

et

SNLI
UBERT 2.0
alpha = [0.4, 0.4]
alpha = [0.5, 0.5]
alpha = [0.6,0.6]
alpha = [1.0, 1.0](Final-Exit)

0 2000 4000 6000 8000 10000
Time horizon

0

10000

20000

30000

40000

Cu
m

ul
at

iv
e

re
gr

et

Yelp
UBERT 2.0
alpha = [0.5, 0.5]
alpha = [0.8, 0.8]
alpha = [0.9,0.9]
alpha = [1.0, 1.0](Final-Exit)

0 100 200 300 400 500
Time horizon

0

500

1000

1500

2000

Cu
m

ul
at

iv
e

re
gr

et

IMDb
UBERT 2.0
alpha = [0.5, 0.5]
alpha = [0.8, 0.8]
alpha = [0.9,0.9]
alpha = [1.0, 1.0](Final-Exit)

0 1000 2000 3000 4000 5000 6000 7000
Time horizon

0

5000

10000

15000

20000

Cu
m

ul
at

iv
e

re
gr

et

QQP
UBERT 2.0
alpha = [0.5, 0.5]
alpha = [0.8, 0.8]
alpha = [0.9,0.9]
alpha = [1.0, 1.0](Final-Exit)

0 100 200 300 400
Time horizon

0

500

1000

1500

2000

2500

Cu
m

ul
at

iv
e

re
gr

et

SciTail
UBERT 2.0
alpha = [0.5, 0.5]
alpha = [0.8, 0.8]
alpha = [0.9,0.9]
alpha = [1.0, 1.0](Final-Exit)

Figure 9: Cumulative regret curves for two-exit case

20

	Introduction
	Related work
	Problem setup
	Early-Exit setup with ElasticBERT
	Multi-Armed Bandit Setup

	Algorithm
	Extension to Multiple exits
	Experiments
	Results
	Conclusion
	Appendix
	Extension to multiple exits
	Algorithm

	Proof for Proposition 1
	Upper bound on Regret of UBERT

	Training an ElasticBERT model
	Experiments (Contd..)
	Choice of Exit layers
	Confidence analysis
	Comparison with fixed thresholds (UBERT-2)
	Sensitivity analysis on different latency costs
	UBERT's significance

	Regret Performance
	One-exit
	Two-exit

