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Abstract

Image-text contrastive models such as CLIP001
learn transferable and robust representations for002
zero-shot transfer to a variety of downstream003
tasks. However, to obtain strong downstream004
performances, prompts need to be carefully cu-005
rated, which can be a tedious engineering task.006
To address the issue of manual prompt engi-007
neering, prompt-tuning is used where a set of008
contextual vectors are learned by leveraging in-009
formation from the training data. Despite their010
effectiveness, existing prompt-tuning frame-011
works often lack interpretability, thus limiting012
their ability to understand the compositional013
nature of images. In this work, we first iden-014
tify that incorporating compositional attributes015
(e.g., a “green” tree frog) in the design of man-016
ual prompts can significantly enhance image-017
text alignment scores. Building upon this ob-018
servation, we propose a novel and interpretable019
prompt-tuning method named IntCoOp, which020
learns to jointly align attribute-level inductive021
biases and class embeddings during prompt-022
tuning. To assess the effectiveness of our ap-023
proach, we evaluate IntCoOp across two rep-024
resentative tasks in a few-shot learning setup:025
generalization to novel classes, and unseen do-026
main shifts. Through extensive experiments027
across 10 downstream datasets on CLIP, we028
find that introducing attribute-level inductive029
biases leads to superior performance against030
state-of-art prompt tuning frameworks. No-031
tably, in a 16-shot setup, IntCoOp improves032
CoOp by 7.35% in average performance across033
10 diverse datasets.034

1 Introduction035

Recently, significant advancements have been036

achieved in the field of vision-language models,037

with notable examples like CLIP (Radford et al.,038

2021), Flamingo (Alayrac et al., 2022), ALIGN (Jia039

et al., 2021a), and CoCa (Yu et al., 2022). These040

models have excelled in acquiring transferable and041

robust image representations, a feat accomplished042

through a combination of two fundamental com- 043

ponents: (i) Large-scale paired image-text datasets 044

ranging from 400M to 2B image-text pairs; (ii) A 045

contrastive objective that aligns the image and text 046

embeddings into a common subspace. Leverag- 047

ing these ingredients, vision-language models have 048

obtained strong performances in zero-shot classifi- 049

cation, image-text retrieval, and robustness to distri- 050

bution shifts. For all these tasks, contrastive models 051

such as CLIP enable zero-shot inference: Given an 052

image I and a set of text prompts {ti}Ni=1, the most 053

relevant text-prompt t ∈ {ti}Ni=1 is identified by 054

maximizing the image-text similarity between I 055

and t. 056

Adapting image-text contrastive models for 057

downstream tasks is a complex undertaking. 058

Achieving optimal performance with image-text 059

contrastive models necessitates the manual cre- 060

ation of domain-specific prompts, a process that 061

demands extensive domain knowledge and is ex- 062

ceptionally challenging and time-consuming. Even 063

with considerable prompt engineering, there is lim- 064

ited assurance that the designed prompt is truly op- 065

timal. To address this issue, recent research (Zhou 066

et al., 2022a; Lee et al., 2023; Khattak et al., 2023; 067

Ouali et al., 2023) has turned to prompt-tuning tech- 068

niques, borrowing concepts from the field of NLP 069

and applying them to vision-language models like 070

CLIP to achieve good image recognition perfor- 071

mance on downstream tasks. However these frame- 072

works often lack interpretability and as a result the 073

model struggles to understand the composition of 074

the images. 075

In this study, we address this challenge by learn- 076

ing a method to extract and embed attribute-level 077

information into the prompt-tuning framework dur- 078

ing training. We define an attribute as an inter- 079

pretable concept that is relevant to the image and 080

encapsulates its semantic essence. Although man- 081

ually crafted prompts can vary in their character- 082

istics based on the specific downstream domain, 083
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Figure 1: (a) Importance of learning interpretable concepts in prompts. Left: For each image, we design two prompt
templates: (1) Without any compositional attribute “A photo of a [cls]” and (2) With compositional information “A photo of a [a]
[cls]” where [cls] represents the classname and [a] represents an attribute obtained using a BLIP-2 based VQA model. Right:
The distribution plot highlights the importance of baking attribute information into the prompts. For this analysis, we used a
CLIP model with a ViT-B/16 image encoder and a dataset consisting of 50 images selected randomly from each of 1000 classes
in ImageNet-1k. The x-axis indicates the predicted CLIP score. Clearly, the CLIP model is more confident when the prompts
include information related to the compositionality of the image. (b) Framework for obtaining attribute-level supervision.
We present the overarching architecture for generating attribute labels a for a given training image using BLIP-2 VQA model.

our analysis has revealed a noteworthy trend. We084

have observed that prompts containing attribute in-085

formation that describes the objects in the images086

lead to enhanced image-text alignment scores in087

contrastive models such as CLIP. For instance, as088

depicted in Figure 1, we can see that prompts incor-089

porating compositional attributes such as “green”090

tree frog yield higher image-text alignment scores091

than those lacking such descriptors.092

Based on these findings, we present an in-093

terpretable prompt-tuning approach known as094

IntCoOp, which incorporates attribute informa-095

tion into the prompt-tuning procedure thereby gen-096

erating more interpretable prompts. While one097

might initially consider leveraging off-the-shelf098

image captioning models to generate attribute la-099

bels, this approach becomes infeasible during in-100

ference when class labels are unavailable. Conse-101

quently, generating attribute descriptions for im-102

ages emerges as a non-trivial task. To mitigate103

this challenge, we train a compact hypernetwork re-104

sponsible for predicting embeddings corresponding105

to attribute descriptors.106

We test our prompt-tuning method IntCoOp on107

a range of diverse downstream datasets to test for108

generalization to novel classes, and robustness to109

distribution shifts. In Section 5, we show that our110

method IntCoOp has improved robustness to dis-111

tribution shifts, domain generalization, and few-112

shot learning. Notably, in domain generalization113

setup, IntCoOp outperforms PLOT (Chen et al.,114

2023) by 19.32% in average performance across115

4 diverse domains. In summary, our research pro-116

vides compelling empirical support for the substan-117

tial advantages of integrating attribute-level induc-118

tive biases into the prompt-tuning process.119

Overall, our paper makes the following key con-120

tributions: 121

• We introduce a novel prompt-tuning method, 122

named IntCoOp, which concurrently aligns 123

attribute-level inductive biases and class em- 124

beddings during training, thus facilitating the 125

generation of interpretable prompts. 126

• We devise an efficient cross-attention mecha- 127

nism to integrate image information with the 128

learnable prompt tokens seamlessly. 129

• We present comprehensive experiments across 130

a range of tasks, including generalization to 131

unseen classes, and distribution shifts show- 132

ing the efficacy of IntCoOp. Notably, in 133

a 16−shot setup, IntCoOp outperforms the 134

state-of-art framework LFA (Ouali et al., 135

2023) by 1.27% improvement in average per- 136

formance across 10 diverse datasets. 137

2 Related Works 138

Pretrained Vision-Language Models. Recent 139

research (Radford et al., 2021; Yu et al., 2022) 140

has shown that leveraging language to train im- 141

age encoders can result in strong downstream per- 142

formances especially for robustness and few-shot 143

learning. These vision-language models are usu- 144

ally pre-trained on large corpuses of image-text 145

pairs using contrastive objectives that align im- 146

age and text representations into a common sub- 147

space. CLIP (Radford et al., 2021) and ALIGN (Jia 148

et al., 2021b) use only the contrastive objective 149

to align image-text embeddings. CoCa (Yu et al., 150

2022) uses a captioning loss in conjunction with 151

contrastive objectives to further improve image 152

representations. However, in all these vision- 153

language models, inference requires manually cu- 154

rated prompts to extract the best performance, 155

2



which can be a tedious engineering task. To miti-156

gate this issue, recent research has turned to prompt-157

tuning techniques to automatically learn domain158

specific prompts.159

Prompt Tuning. Given a set of text-instructions160

and an image, existing vision-language mod-161

els make their decisions by selecting the text-162

instruction which has the maximum similarity163

between the image and text-embeddings. Re-164

cent advances in this field, such as methods165

like CoOp (Zhou et al., 2022b), CoCoOp (Zhou166

et al., 2022a), ProDA (Lu et al., 2022), VPT (Jia167

et al., 2022), MaPLe (Khattak et al., 2023), Kg-168

CoOp (Yao et al., 2023), ProGrad (Zhu et al., 2022),169

LASP (Bulat and Tzimiropoulos, 2023), RPO (Lee170

et al., 2023), DAPT (Cho et al., 2023), PLOT (Chen171

et al., 2023), and LFA (Ouali et al., 2023) have172

shifted from manually designed prompts to au-173

tomatically learning prompts through fine-tuning174

learnable vectors with image-text pairs from the175

target domain. CoOp fine-tunes CLIP to optimize176

a set of learnable tokens in the input layer of the177

text-encoder. CoCoOp enhances CoOp by incorpo-178

rating conditional image information in the prompt-179

learning process. VPT learns tokens in each layer180

of a given encoder through a fine-tuning objective.181

KgCoOp introduces a regularizer to constrain the182

prompt tuning process such that the representa-183

tions of the learned prompts do not deviate signifi-184

cantly from the manually crafted prompts. PLOT185

applies optimal transport to match the vision and186

text modalities for generating the discriminative187

and visual-aligned local textual prompt tokens. Re-188

fer Liu et al. (2024) for a comprehensive survey189

on prompt-tuning frameworks. Overall, none of190

the existing works aim to understand if augmenting191

certain inductive biases in the prompt-tuning pro-192

cess is beneficial. Our work IntCoOp specifically193

addresses this issue and shows that incorporating194

compositional attributes in the prompt-tuning pro-195

cess can indeed be beneficial for downstream tasks.196

3 Preliminaries197

Contrastive Language-Image Pre-training198

(CLIP) (Radford et al., 2021) is a vision-199

language model trained on a large dataset of200

400 million image-text caption pairs using a201

contrastive loss. CLIP primarily consists of two202

major components:203

(1) Vision Encoder V(·) consists of a ViT (Doso-204

vitskiy et al., 2020) model, which takes an image205

I ∈ RH×W×3 as input and outputs a visual embed-206

ding in the latent space. The vision encoder V con- 207

sists of L transformer blocks {Vi}Li=1. First, the in- 208

put image I is split into R fixed-size patches which 209

are projected into patch embeddings E0 ∈ RR×Dv , 210

where Dv is the constant latent vector size of the 211

image encoder. Patch embeddings Ei are input 212

to the (i + 1)th transformer block (Vi+1) along 213

with a learnable class token xi and is sequentially 214

processed through L transformer blocks: 215

[xi, Ei] = Vi ([xi−1, Ei−1]) i = 1, 2, · · · , L. 216

To obtain the final image representation, the 217

class token xL of the last transformer layer (VL) 218

is projected to a common image-text latent embed- 219

ding space via a linear projection layer. 220

V(I) = Proj (xL) xL ∈ RDvl . 221

where Dvl is the constant vector size of the 222

image-text latent embedding space. 223

(2) Text Encoder T (·) is a transformer-based 224

model that maps the input text captions into text 225

embeddings. 226

For zero-shot inference on a downstream 227

dataset consisting of C classes with class names 228

{[cls]c}Cc=1, CLIP uses hand-crafted prompts to 229

generate the textual class embeddings. Specifically, 230

given a hand-crafted prompt template “A photo of a 231

[cls]”, let sc represent the sequence embedding for 232

the prompt “A photo of a [cls]c” corresponding to 233

the c-th class. Given an input image I, the output 234

probability is given by: 235

P(ŷ = c|I) = exp(cos(V(I), T (sc))/τ)∑C
j=1 exp(cos(V(I), T (sj))/τ)

(1) 236

where cos(·, ·) represents the cosine similarity and 237

τ is the temperature coefficient. 238

Context Optimization (CoOp) (Zhou et al., 239

2022b). Designing hand-crafted prompts in CLIP 240

for every downstream data set is a tedious and 241

time-consuming task. To mitigate this issue of 242

prompt engineering, CoOp (Zhou et al., 2022b) 243

proposed to learn the prompts directly from the 244

data by replacing the hand-crafted prompt with 245

a context vector comprising of M tunable vec- 246

tors. Let the context vector be represented as 247

u = {u1,u2, · · · ,uM}, where ui represents a 248

512-dimensional vector1. Unlike the hand-crafted 249
1The vector ui is of same dimension as the word-

embedding of class names [cls]c. In this study, we primarily
use CLIP-ViTB/16 model where text embeddings are pro-
jected in a 512-dimensional space.
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Figure 2: Framework for learning compositional at-
tributes. The figure elucidates the training framework of
the attribute extractor network A.

prompt template, the tunable prompts are now de-250

signed as p = {[u1,u2, · · · ,uM , [cls]c]}Cc=1. To251

allow the exchange of information learned from252

the data, the context vector u is common across253

all the class categories. Finally, the context vector254

u is learned by minimizing the cross-entropy loss255

between the ground-truth and predicted label as256

follows:257

P(ŷ = c|I) = exp(cos(V(I), T (pc))/τ)∑C
j=1 exp(cos(V(I), T (pj))/τ)

(2)

258

LCE = −log P(ŷ = y|I) (3)259

where, y represents the true label for image I and260

pc represents the tunable prompt for class c. Note261

that during training IntCoOp, the vision and text262

encoder in CLIP are completely frozen and the263

optimization framework only updates the context264

vector u.265

4 IntCoOp: Interpretability-Aware266

Prompt Tuning267

In this section, we provide a detailed overview of268

our proposed prompt-tuning approach IntCoOp.269

In Section 4.1, we detail the process of extracting270

attribute information from a given image. Next,271

in Section 4.2, we delve deeper to understand the272

process of generating image-conditioned prompts.273

Finally, we outline our entire training framework274

in Section 4.4, demonstrating the integration of all275

components into the training pipeline. Similar to276

past context optimization approaches (Zhou et al.,277

2022b), IntCoOp can also be easily applied to a278

broad family of CLIP-like vision-language models.279

4.1 Learning Interpretable Image Concepts280

Obtaining Attribute-level Supervision. Given281

an input image I, our goal is to extract an inter-282

pretable attribute (denoted by a) that provides an283

accurate characterization of the image. For exam- 284

ple, given the image of “Tree Frog” in Figure 1(b), 285

we can define the attribute a as “Green”. However, 286

standard image-recognition datasets such as Ima- 287

genet (Deng et al., 2009) only provide true labels 288

for object categories and do not consist of attribute- 289

level supervision. We overcome this problem by 290

using a BLIP-2 (Li et al., 2023) ViT-G FlanT5XXL 291

based VQA model to generate an attribute label 292

(aI) for each image I in the train set. The entire 293

framework is visually represented in Figure 1(b). 294

We refer the reader to the Appendix B for a detailed 295

description and visualization of more representa- 296

tive examples. 297

Learning to extract attribute information dur- 298

ing training. During inference, as class labels are 299

unavailable for test images, direct utilization of off- 300

the-shelf captioning models (Li et al., 2023) is in- 301

feasible. To circumvent this limitation, we propose 302

training a network to learn contextually relevant 303

attributes (see Figure 2). Specifically, we design an 304

attribute extractor network A, which takes as input 305

the image embedding from CLIP’s vision encoder 306

and outputs a 512-dimensional vector representing 307

the embedding of the attribute. This network is 308

trained using supervised attribute labels obtained 309

from the framework in Figure 1(b). 310

Designing the attribute extractor. It is important 311

to note that the attribute extractor network A learns 312

the interpretable concepts directly from the image 313

embedding. Therefore, the embedding vector must 314

effectively encode information regarding the com- 315

positionality of the image to enable proper training 316

of the network. In Table 6, we show that the em- 317

beddings from CLIP’s frozen vision encoder are 318

not expressive enough to essentially capture the at- 319

tribute information. This challenge is compounded 320

by the fact that, in a few-shot setup, there are a 321

limited number of samples available for each class, 322

leading to suboptimal training of the attribute ex- 323

tractor. To generate richer and more informative vi- 324

sual representations, we append a set of n learnable 325

parameters {Zj
i ∈ RDv}nj=1 to each transformer 326

layer Vi of the image encoder up to depth K. 327

[xi, Ei, _] = Vi ([xi−1, Ei−1, Zi−1]) 328

∀i = 1, 2, · · · ,K. 329

330[xj , Ej , Zj ] = Vi ([xj−1, Ej−1, Zj−1]) 331

∀j = K + 1, · · · , L. 332

333
V(I) = Proj (xL) 334

4



In Section 7, we show that this improved design335

choice leads to better performance on downstream336

tasks. Finally, the generated attribute labels can337

be used to train the network A by minimizing the338

following loss:339

Lattr = ||A(V(I))− T (aI)||ff (4)340

where || · ||ff indicates the f -th norm, T (aI) rep-341

resents the 512-dimensional token embedding of342

the attribute aI . In Appendix F, based on ablations343

we find setting f = 2 gives the best performance.344

In this paper, we instantiate the network A with a345

two-layer neural net with ReLU activations.346

4.2 Instance-Conditional Prompts347

In this section, we delve deeper into understand-348

ing how the prompts are generated. Recall from349

Section 3, that for CoOp (Zhou et al., 2022b), the350

context vector u = {u1,u2, · · · ,uM} is shared351

across all classes, and the tunable prompts are de-352

signed as p = {[u1,u2, · · · ,uM , [cls]c]}Cc=1. In353

Table 6, we show that sharing the context vectors354

across all images leads to sub-optimal generaliza-355

tion to novel classes. To address this concern, we356

opt for a strategy that involves generating instance-357

conditional context tokens. However, rather than a358

straightforward addition of the image embedding359

to the context tokens (Zhou et al., 2022a), we em-360

ploy a Multi-head Attention module. This module361

generates context tokens by attending to the image362

embedding. Given an input image I, the image363

attended context vector h(I) is given by:364

h(I) = MultiHead(Query=u,Key=V(I),365

Value=V(I))366

where u represents the context vector, and367

MultiHead indicates a Multi-head attention mod-368

ule. Note that the instance-conditioned context369

vector h(I) has the same shape as u.370

Finally, we can generate the prompts for each371

class by embedding the output of the attribute ex-372

tractor into the instance-conditioned context vector373

h(I). Let p+(I) represent the attribute incorpo-374

rated prompts and is defined as:375

p+(I) = {[h1, · · · ,hM ,A(V(I)), [cls]c]}Cc=1

(5)376

Unlike prior works (Zhou et al., 2022a), our cross-377

attention based image-conditioning mechanism378

incorporates a learned weighted sum of various379

points in the image embedding for a single position 380

in the context vector, thereby providing a stronger 381

conditioning signal. In Section 7, we empirically 382

show that our conditioning mechanism is better 383

suited for few-shot fine-tuning in CLIP. 384

4.3 Regularizing the Prompts 385

Analysis by Yao et al. (2023) reveal that without 386

any regularization, the context vectors may heav- 387

ily overfit the training data. This can lead to poor 388

performance on unseen classes during inference. 389

To mitigate this, they propose adding a knowledge- 390

guided loss that aims to minimize the discrepancy 391

between the learned prompts and the handcrafted 392

template “A photo of a [cls]”. In this paper, we 393

also add an additional loss term to regularize the 394

learned prompts. However, instead of simply using 395

the hand-crafted templates, we generate a set of 396

textual prompts incorporating the compositional 397

information for each image. Given an image I, 398

let {pgen
i (I)}Ni=1 represent the pool of N syntheti- 399

cally generated prompt templates embedded with 400

interpretable concepts aI in image I. In this study, 401

we select N = 80 diverse textual prompts as sug- 402

gested in Radford et al. (2021). Based on this, we 403

define the regularization loss as: 404

Lreg =
1

N

N∑
i=1

||T (p+(I)y)−T (p
gen
i (I))||gg (6) 405

where y represents the true label for the image 406

I, T (·) is the CLIP text encoder and p+(I)y = 407

[h1, · · · ,hM ,A(V(I)), [cls]y] is the learnable 408

prompt for the true class y. Based on ablations 409

in Appendix F, we set g = 1. 410

4.4 Putting it together 411

Let Dtrain = {Ij , yj}Jj=1 represent a training 412

dataset consisting of J samples, where Ij is an 413

image and yj ∈ {1, · · · , C} represents the corre- 414

sponding label. Given the dataset, we first generate 415

the attribute labels (aI) for each image as defined 416

in Section 4.1. Note, to avoid any computational 417

overhead during training, we perform this opera- 418

tion offline. Based on the previous discussions, the 419

training loss is formulated as: 420

L = LCE + λ1Lattr + λ2Lreg (7) 421

422where LCE = 423

− 1

J

J∑
j=1

log
exp(cos(V(Ij), T (p+(Ij)yj ))/τ)∑C
c=1 exp(cos(V(Ij), T (p+(Ij)c))/τ)

424
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where yj represents the true label for the image425

Ij and C represents the number of seen classes.426

The optimization framework aims to learn the op-427

timal parameters by minimizing the training loss428

as min E(I,y)∼Dtrain [L]. Based on ablations in Ap-429

pendix F, we set λ1 = 4 and λ2 = 4.430

5 Experiments431

Implementation Details: In this study, for all432

experimentation, we use a pretrained CLIP (Rad-433

ford et al., 2021) model with a ViT-B/16 image434

encoder unless otherwise specified. We train the435

model for 50 epochs using a batch size of 4 and436

SGD optimizer with a learning rate of 0.0025. We437

set the context length M = 4. Further, for train-438

ing IntCoOp, we append n = 4 learnable visual439

tokens in each transformer layer upto a depth of440

K = 9. We report results averaged over 3 random441

seeds. All experiments are run using the configura-442

tions listed in Appendix A. The code will be made443

publicly available following paper acceptance.444

Computational Efficiency: In Table 4 (Appendix),445

we compare the computational cost of training446

and inference for IntCoOp compared to baseline447

framework such as CoOp (Zhou et al., 2022b). We448

observe that, due to instance-conditional prompt449

generation, IntCoOp’s per-epoch training time is450

slightly higher compared to CoOp. However, we451

believe this minor increase in training time is justi-452

fied by the significant performance improvements453

shown in Table 1. During inference, as presented454

in Table 4, IntCoOp does not incur any significant455

additional overhead compared to CoOp.456

5.1 Base-to-Novel Class Generalization457

Following existing literature (Zhou et al., 2022b,a;458

Yao et al., 2023), to assess the generalization capa-459

bility of IntCoOp, we employ a zero-shot setting460

that involves partitioning datasets into base and461

novel classes. Our model is exclusively trained on462

the base classes within a few-shot framework, and463

its performance is evaluated across both the base464

and novel categories.465

Datasets: To evaluate on generalization from466

base-to-novel classes, in line with past stud-467

ies (Zhou et al., 2022b), we used 10 diverse im-468

age classification datasets: ImageNet (Deng et al.,469

2009), Caltech101 (Fei-Fei et al., 2004), Oxford-470

Pets (Parkhi et al., 2012), StanfordCars (Krause471

et al., 2013), Flowers102 (Nilsback and Zisserman,472

2008), Food101 (Bossard et al., 2014), FGVCAir-473

craft (Maji et al., 2013), SUN397 (Xiao et al.,474

2010), UCF101 (Soomro et al., 2012), and Eu- 475

roSAT (Helber et al., 2019). We refer the reader to 476

Table 10 (Appendix) for a detailed description of 477

the datasets used in this study. 478

IntCoOp outperforms the state-of-art. In Ta- 479

ble 1, we compare the base-to-new generalization 480

ability of IntCoOp with baselines such as zero- 481

shot CLIP and competitive prompt tuning frame- 482

works such as CoOp (Zhou et al., 2022b), Co- 483

CoOp (Zhou et al., 2022a), MaPLe (Khattak et al., 484

2023), KgCoOp (Yao et al., 2023), ProGrad (Zhu 485

et al., 2022), LASP (Bulat and Tzimiropoulos, 486

2023), RPO (Lee et al., 2023), DAPT (Cho et al., 487

2023), PLOT (Chen et al., 2023), and LFA (Ouali 488

et al., 2023) on a set of 10 diverse datasets. We 489

implemented all methods using a few-shot train- 490

ing approach involving 16 randomly sampled shots 491

for each base class. Recall that for this task, eval- 492

uation involves training the model solely on the 493

base classes and assessing its performance on both 494

base and novel classes, a challenging scenario 495

that tests the model’s generalizability. We em- 496

ploy the harmonic mean (HM) of the base and 497

novel accuracies as the metric for comparison. Our 498

empirical findings reveal two key insights: (1) 499

IntCoOp consistently demonstrates superior few- 500

shot performance in comparison to the state-of- 501

the-art prompt tuning techniques. Moreover, when 502

considering the average mean performance across 503

all 10 datasets, IntCoOp outperforms the current 504

state-of-art (Ouali et al., 2023) by 1.27%. Fur- 505

ther, it also surpasses CoOp (Jia et al., 2022), a 506

baseline prompt tuning framework, by 7.52%. (2) 507

IntCoOp’s strong performance is particularly evi- 508

dent in datasets featuring images with well-defined 509

attributes, such as ImageNet, Flowers102, Oxford- 510

Pets, StanfordCars and Caltech-101. For instance, 511

on the OxfordPets dataset, IntCoOp enhances the 512

novel accuracy by 1.97% and 3.55% compared to 513

LFA and KgCoOp respectively. 514

5.2 Domain Generalization 515

To evaluate domain generalization, we utilized Im- 516

ageNet (Deng et al., 2009) as the source dataset 517

and four of its variants as target datasets. These 518

variants included ImageNetV2 (Recht et al., 2019), 519

ImageNetSketch (Wang et al., 2019), ImageNet- 520

A (Hendrycks et al., 2021b), and ImageNet- 521

R (Hendrycks et al., 2021a), contributing to a com- 522

prehensive examination of domain shift scenarios. 523

Our findings in Table 2 indicate that IntCoOp 524

demonstrates superior performance across all tar- 525
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Dataset Set CLIP CoOp Co-CoOp MaPLe KgCoOp ProGrad LASP RPO DAPT PLOT LFA IntCoOp
(IJCV22) (CVPR22) (CVPR23) (CVPR23) (ICCV23) (ICCV23) (ICCV23) (ICCV23) (ICLR23) (ICCV23) (Ours)

ImageNet
Base 72.43 76.47 75.98 76.66 75.83 77.02 76.20 76.60 76.83 77.30 76.89 75.99
Novel 68.14 67.88 70.43 70.54 69.96 66.66 70.95 71.57 69.27 69.87 69.36 72.67
HM 70.22 71.92 73.10 73.47 72.78 71.46 73.48 74.00 72.85 73.40 72.93 74.29

Caltech101
Base 96.84 98.00 97.96 97.74 97.72 98.02 98.10 96.03 97.83 98.53 98.41 97.80
Novel 94.00 89.91 93.81 94.36 94.39 93.89 94.24 94.37 93.81 92.80 93.93 94.76
HM 95.40 93.73 95.84 96.02 96.03 95.91 96.16 96.03 95.39 95.58 96.13 96.25

OxfordPets
Base 91.17 93.67 95.20 95.43 94.65 95.07 95.90 94.63 95.00 94.50 95.13 95.92
Novel 97.26 95.29 97.69 97.76 94.65 95.07 97.93 97.50 95.83 96.83 96.23 98.20
HM 94.12 94.47 96.43 96.58 96.18 96.33 96.90 96.05 95.41 95.65 95.68 97.04

Stanford Cars
Base 63.37 78.12 70.49 72.94 71.76 77.68 75.17 74.69 75.80 78.57 76.32 77.04
Novel 74.89 60.40 73.59 74.00 75.04 68.63 71.60 75.53 63.93 74.80 74.88 76.32
HM 68.65 68.13 72.01 73.47 73.36 72.88 73.34 74.69 69.36 76.63 75.59 76.67

Flowers102
Base 72.08 97.60 94.87 95.92 95.00 95.54 97.00 94.13 96.97 97.93 97.34 97.82
Novel 77.80 59.67 71.75 72.46 74.73 71.87 73.53 76.67 60.90 74.00 75.44 75.54
HM 74.83 74.06 81.71 82.56 83.65 82.03 83.95 84.50 74.81 83.99 85.00 85.24

Food101
Base 90.10 88.33 90.70 90.71 90.50 90.37 91.20 90.33 90.37 89.80 90.52 91.45
Novel 91.22 82.26 91.29 92.05 91.70 89.59 91.70 90.33 91.30 91.37 91.48 91.99
HM 90.66 85.19 90.99 91.38 91.09 89.98 91.44 90.58 90.83 90.58 91.00 91.72

FGVC Aircraft
Base 27.19 40.44 33.41 37.44 36.21 40.54 34.53 37.33 39.97 42.13 41.48 38.55
Novel 36.29 22.30 23.71 35.61 33.55 27.57 30.57 34.20 29.80 33.73 32.29 35.90
HM 31.09 28.75 27.74 36.50 34.83 32.82 32.43 35.70 34.14 37.46 36.31 37.17

SUN397
Base 69.36 80.60 79.74 79.75 80.29 81.26 80.70 80.60 78.92 77.68 79.59 81.63
Novel 75.35 65.89 76.86 78.70 76.53 74.17 78.60 77.80 76.97 73.63 77.20 79.33
HM 72.23 72.51 78.27 79.75 78.36 77.55 79.63 79.18 78.92 77.68 79.59 80.46

EuroSAT
Base 56.48 92.19 87.49 94.07 85.64 90.11 94.60 86.63 94.73 93.70 93.40 95.26
Novel 64.05 54.74 60.04 73.23 64.34 60.89 77.78 76.79 50.33 62.67 71.24 78.01
HM 60.03 68.69 71.21 82.30 73.48 72.67 85.36 76.79 65.74 75.11 80.83 85.77

UCF101
Base 70.53 84.69 82.33 83.00 82.89 84.33 84.77 83.67 84.30 86.60 86.97 86.76
Novel 77.50 56.05 73.45 78.66 76.67 74.94 78.03 79.34 76.33 75.90 77.48 79.42
HM 73.85 67.46 77.64 80.77 79.65 79.35 81.26 79.34 80.12 80.90 81.95 82.92

Average HM 73.23 73.40 77.98 79.28 78.27 77.53 79.35 78.69 75.75 78.69 79.48 80.75

Table 1: Comparison with state-of-art on base-to-novel generalization. We observe that IntCoOp consistently demonstrates
superior performance over existing prompt-tuning methods. HM represents the harmonic mean of the base and novel accuracies.
We train all methods with 16-shots samples from the base classes.

get datasets. Notably, IntCoOp improves the aver-526

age accuracy by 1.41% and 19.32% compared to527

ProGrad and PLOT respectively. These results un-528

derscore the significance of learning interpretable529

attributes within the prompts.530

In Table 9 (Appendix), we also evaluate the gen-531

eralizability of our proposed method on a 4-shot set-532

ting. Across all datasets considered, IntCoOp out-533

performs all compared methods on average. Over-534

all, we find that IntCoOp leads to strong and im-535

proved performances on a range of downstream536

tasks including novel class generalization, robust-537

ness to distribution shifts and few-shot learning,538

while being more interpretable than other prompt-539

tuning methods.540

6 Discussion541

IntCoOp learns interpretable prompts. In this542

section, we delve deeper into understanding the543

quality of the attributes generated by IntCoOp544

during inference. Given a test image I with true545

label y, we first extract its corresponding learned at-546

tribute embedding A(V(I)). To evaluate the qual-547

Source Target

ImageNet -V2 -Sketch -A -R Avg.

CLIP 66.73 60.83 46.15 47.77 73.96 57.18
CoOp 71.51 64.20 47.99 49.71 75.21 59.27
CoCoOp 71.02 64.07 48.75 50.63 76.18 59.90
MaPLe 70.72 64.07 49.15 50.90 76.98 60.28
KgCoOp 71.20 64.10 48.97 50.69 76.70 60.11
ProGrad 72.24 64.73 47.61 49.39 74.58 59.08
LASP 71.10 63.96 49.01 50.70 77.07 60.19
RPO 71.76 65.13 49.27 50.13 76.57 60.27
DAPT 72.20 64.93 48.30 48.74 75.75 59.43
PLOT 63.01 55.11 33.00 21.86 55.61 41.39
LFA 72.65 64.72 48.01 51.50 76.09 60.08

IntCoOp (Ours) 71.85 65.21 49.20 51.55 76.88 60.71

Table 2: IntCoOp leads to improved performances on
domain generalization tasks. The model is trained on Im-
ageNet (Deng et al., 2009) dataset in a few-shot setup with
16 samples per class and evaluated on four domain-shifted
ImageNet datasets.

ity of this embedding, we utilize the BLIP-2 model 548

to produce an attribute label aI . We evaluate two 549

setups: (1) Firstly, to validate the quality of the 550

attributes generated by IntCoOp, in Figure 3, we 551

visualize the cosine similarity of the learned at- 552

tribute embedding A(V(I)) and the BLIP-2 gen- 553

erated label aI . Across all datasets, we observe 554

a high similarity between the generated attribute 555
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Figure 3: We measure the cosine similarity between the
learned attribute embedding A(V(I)) and the BLIP-2
generated label aI . A high cosine similarity indicates
that IntCoOp effectively learns contextually relevant
attributes.

embedding and the BLIP-2-generated label. This556

confirms that IntCoOp effectively learns contextu-557

ally relevant and correct attribute information. (2)558

Secondly, as illustrated in Figure 4 (Appendix), we559

observe that the prompts crafted using the learned560

attribute embedding A(V(I)) closely align with561

the original prompt format “A photo of [a] [cls]”,562

as evidenced by high cosine similarity. On the563

other side, prompts lacking the attribute informa-564

tion exhibit reduced similarity. This analysis high-565

lights that during inference, IntCoOp generates566

prompts with interpretable compositional informa-567

tion, thereby explaining the improved performance.568

Importance of learning meaningful attributes.569

In this section, we further validate the importance570

of learning contextually meaningful attributes dur-571

ing training. To illustrate this, we experiment by572

substituting the original attribute labels generated573

by the BLIP-2 model for each image in the training574

set with irrelevant adjectives. Specifically, we ex-575

change the attribute labels among different classes,576

ensuring each image is paired with an unrelated577

adjective through careful human supervision. For578

instance, in the altered setup, the image labeled as a579

“cheese pizza” in Figure 2 is mislabeled as a “green580

pizza”, where the attribute “green” bears no rele-581

vance to the image. Employing the experimental582

framework as described in Section 5.1, this alter-583

ation results in an HM accuracy of 63.27% on the584

ImageNet-1k dataset— a decline of 11.02% com-585

pared to the performance achieved with IntCoOp.586

This significant drop in accuracy highlights the crit-587

ical role of learning accurate and relevant attributes588

in training.589

Due to space constraints, we refer the reader to590

Appendix E for additional discussion.591

7 Ablations on Design Choice 592

In this section, we delve into a comprehensive ex- 593

ploration of the design choices made in our pro- 594

posed framework. 595

Ablations on Visual Prompting. As illustrated 596

in Section 4.1, to enhance image representa- 597

tions IntCoOp effectively utilizes the deep visual 598

prompting approach. To substantiate our design 599

rationale, we conduct ablation experiments as out- 600

lined in Table 6 (Appendix). From our empirical 601

analysis, we make two key observations: (1) Visual 602

prompting plays a crucial role in training IntCoOp. 603

Specifically, training without any visual prompting, 604

where the frozen CLIP embeddings are used to 605

train the attribute network A, leads to notably in- 606

ferior performance. (2) Appending visual tokens 607

to deeper transformer layers provides a substantial 608

performance boost in average performance com- 609

pared to a shallow prompting strategy. 610

Ablations on Instance Conditioning. To condi- 611

tion the prompts on the input image, prior stud- 612

ies (Zhou et al., 2022a) have proposed the direct 613

addition of the image embedding to the context 614

vector. However, as elaborated in Section 4.2, we 615

employ a multi-head attention module for gener- 616

ating image-conditioned prompts in the training 617

of IntCoOp. In Table 6 (Appendix), we present 618

empirical results that bolster the importance of uti- 619

lizing an attention-based conditioning approach in 620

contrast to additive conditioning. Specifically, we 621

observe a 1.58% improvement in average perfor- 622

mance when using a Multihead attention based 623

conditioning. 624

8 Conclusion 625

In our paper, we initially observe that incorporating 626

relevant attributes into prompts significantly im- 627

proves image-text alignment in CLIP. To achieve 628

this enhancement, we present a novel technique 629

called IntCoOp, which integrates these attributes 630

into learned prompts. This integration is made pos- 631

sible by leveraging a BLIP-2 (Li et al., 2023) model 632

to annotate attributes in few-shot datasets. With the 633

image as a conditioning factor, we devise a hyper- 634

network responsible for predicting embeddings cor- 635

responding to attribute descriptors. Simultaneously, 636

we optimize the other context vectors using CLIP’s 637

contrastive objective. Our comprehensive testing 638

across diverse datasets underscores the significant 639

improvement in zero-shot performance achieved 640

by IntCoOp. 641
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9 Limitations642

Our study, through its extensive evaluation across643

multiple datasets, demonstrates that augmenting644

prompts with attribute information can substan-645

tially enhance CLIP’s effectiveness in various646

downstream applications. However, our approach647

has certain limitations: (1) A notable constraint of648

our approach is that its effectiveness may diminish649

in scenarios where images are devoid of specific650

attribute-level details. Despite this, it is notewor-651

thy that in practical, real-world contexts, such as652

with the ImageNet dataset, IntCoOp consistently653

outperforms its counterparts. (2) The performance654

of IntCoOp is contingent upon the quality of at-655

tributes generated for images in the training set.656

Poorly generated attributes can detrimentally affect657

performance.658

For future work, we plan to investigate improved659

attribute extraction techniques to handle images660

with less discernible attribute-level details and to661

generate attributes with greater diversity.662
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A Software and Hardware845

We run all experiments with Python 3.7.4 and Py-846

Torch 1.9.0. For all experimentation, we use two847

Nvidia RTX 2080-Ti and a single A5000 GPU.848

B Extension: Obtaining Attribute-level849

Supervision850

In Section 3.2.1 of the main paper, we demon-851

strated how the generated attribute labels can be852

used for training IntCoOp. In this section, we853

will provide a more detailed explanation of the854

procedure for extracting attribute labels for an im-855

age. In this paper, we leverage a BLIP-2 ViT-856

G FlanT5XXL visual question-answering (VQA)857

model for zero-shot generation of attribute labels.858

Specifically, given an image I with class label859

[cls], we employ the templates shown in Table 5860

to prompt the VQA model to generate 3 captions861

corresponding to each image. To improve caption862

variety, we generate these captions under varying863

random seeds and set repetition_penalty= 100864

to discourage repetitive outputs. Note that the865

prompt templates for each dataset have been man-866

ually tuned with some domain information to im-867

prove performance. Subsequently, we select the868

most suitable caption based on the CLIP score. In869

Figure 5 and Figure 6, we show some representative870

images from various datasets and the correspond-871

ing generated attributes.872

C Note on Attributes Generated by873

BLIP-2874

To understand the effectiveness of BLIP-2 in cor-875

rectly annotating few-shot tasks with their adjec-876

tives - we designed a proxy task with 215 im-877

ages, where each image is labeled with its attribute.878

Given that it is difficult to perform a scalable man-879

ual annotation of attributes, we take advantage of880

first pre-defining captions which contain an adjec-881

tive describing an object, and then generating cor-882

responding images from them. The object list is a883

subset from MS-COCO – namely O ={handbag,884

pizza, suitcase, bottle, firehydrant, cup,885

cake, book, vase, cat }. The attribute list for each886

object o ∈ O is created by prompting ChatGPT887

with prompts such as: ’Describe some of the possi-888

ble shapes of object o in one word’, ’Describe some889

of the possible colors of object o in one word’.....890

These attributes from ChatGPT are then filtered891

and quality-controlled by our team to make sure892

that the attributes from ChatGPT are relevant to the893

Datasets Oracle IntCoOp
ImageNet 74.37 74.29
Caltech101 96.00 96.25
OxfordPets 97.13 97.04
StanfordCars 76.67 76.67
Flowers102 85.32 85.24
Food101 91.66 91.72
FGVCAircraft 36.99 37.17
SUN397 80.50 80.46
EuroSAT 85.80 85.77
UCF101 82.96 82.92
Avg. 80.74 80.75

Table 3: Comparing IntCoOp’s average performance
with oracle setup as described in Appendix E across 10
datasets.

object o ∈ O. Leveraging prompts in the template 894

of “A photo of a [a] [o]”, we then generate 215 im- 895

ages from Stable-Diffusion-v2 (Rombach et al., 896

2022) in total across all the classes, where [a] rep- 897

resents the attribute label and [o] is the object name. 898

Across these generated images, we then prompt 899

BLIP-2 with prompts such as: ’Describe the shape 900

of the object in one word’, ’Describe the color of 901

the object in one word’ .... to predict the attribute. 902

Subsequently, we measured the cosine similarity 903

between BLIP-2’s predictions and the ground truth 904

attribute labels a. Given that there are only 215 905

images in our validation set, in addition to the qual- 906

itative analysis, we also manually compared the 907

BLIP-2 predicted attributes and the ground truth to 908

check the effectiveness of BLIP-2. Our investiga- 909

tion revealed a compelling 85% similarity between 910

BLIP-2 predictions and the ground truth. This high- 911

lights that BLIP-2 is a suitable candidate to gener- 912

ate attributes for annotation of few-shot datasets. 913

D Extension: Results on Few-shot 914

Learning 915

To further evaluate the generalizability of our pro- 916

posed method, we conducted experiments on a 917

4-shot setting. In this case, the model is trained 918

on only 4 samples from each base class. We re- 919

port the average accuracy over base and novel 920

classes in Table 9. We observe that under a 4-shot 921

setup, IntCoOp consistently outperforms state- 922

of-art prompt tuning approaches across multiple 923

datasets. Notably, on OxfordPets, IntCoOp en- 924

hances the average performance by 3.45% and 925

3.83% compared to PLOT (Chen et al., 2023) and 926

DAPT (Cho et al., 2023). Across all datasets con- 927

sidered, IntCoOp outperforms all compared meth- 928
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Methods Train Time (in mins) Inference Time (in mins) HM

CoOp (Zhou et al., 2022b) 1.03 0.032 94.47
IntCoOp 2.15 0.041 97.04 (+2.57)

Table 4: Computational Efficiency of IntCoOp. We compare the training and inference time of IntCoOp with
CoOp (Zhou et al., 2022b). For training time, we report the duration taken to train for one epoch on the Oxford Pets
dataset (Parkhi et al., 2012). Similarly, for inference time, we report the duration taken to infer on a test image from
the Oxford Pets dataset. The numbers reported are averaged for 3 different runs.

Dataset Prompt Template

ImageNet “Describe the appearance of the [cls] image using a one-word adjective.”
Caltech-101 “Describe the appearance of the [cls] image using a one-word adjective.”
OxfordPets “Describe a one-word adjective such as color for the [cls] image”.
Flowers102 “Describe the color of the [cls] flower in one word.”
FGVCAircraft “Describe a one-word adjective for the aircraft image.”
StanfordCars “Describe a one-word adjective for the [cls] car image.”
Food101 “Describe a one-word adjective for the [cls] food image.”
SUN397 "Describe a one-word adjective summarizing the appearance of the [cls] image.”
EuroSAT “Describe a one-word adjective that best describes the natural surroundings in this satellite image of [cls].”
UCF101 “Describe a one-word adjective describing the action of the person in this [cls] image.”

Table 5: Templates used for prompting the BLIP-2 model for different datasets. [cls] represents the class name for
the given image.

ods on average.929

E Extension: Additional Discussion930

To further understand the efficiency of the attribute931

extractor, we compare IntCoOp’s performance932

with the following setup: we directly use the933

BLIP-2 embedding T (aI) in Equation 5 to train934

our framework, keeping all other losses the same.935

Specifically, during training, the BLIP-2 generated936

attribute embeddings are directly integrated into937

the prompts instead of using the output from the938

attribute extractor A. However, during inference,939

since the class labels are unavailable, we utilize940

the trained attribute extractor to generate descrip-941

tions for test images. We refer to this setup as942

the oracle setting, as it uses the true labels during943

training. The results for this setup are reported in944

Table 3. Notably, the performance obtained using945

the oracle setting is almost identical to IntCoOp’s946

performance. This indicates that using the true947

attribute labels during training provides no addi-948

tional advantage. Therefore, we can conclude that949

during training, the attribute extractor network A950

successfully learns to mimic the BLIP-2 embed-951

dings, thereby generating interpretable prompts.952

F Extension: Ablation on design choices953

In Table 7, we perform an ablation study on the954

choice of loss functions for training IntCoOp. We955

Visual Prompting Instance Conditioning
HM

Shallow (K=1) Deep (K=9) Additive (Zhou et al., 2022a) Multihead

✓ ✗ ✗ ✗ 75.01
✗ ✓ ✗ ✗ 76.90

✗ ✗ ✓ ✗ 74.31
✗ ✗ ✗ ✓ 75.89

IntCoOp (Ours) ✗ ✓ ✗ ✓ 80.75

Table 6: Ablation on design choices. We perform ablation
experiments to delineate the importance of each component in
our proposed approach.

Lattr

g = 1 g = 2

Lreg
f = 1 79.30/ 70.78/ 74.79 78.25/ 67.90/ 72.70
f = 2 83.82/ 78.21/ 80.75 81.05/ 72.14/ 76.33

Table 7: Ablation on loss functions. We show that setting
f = 2 and g = 1 provides the best performance. We report
the Base/ Novel/ HM accuracies for each setting. Best results
based on HM performance are marked in bold.

find that using a ℓ2 loss (f = 2) for the attribute 956

network and a ℓ1 (g = 1) regularization loss pro- 957

vides the best performance. Further, in Table 8, we 958

show ablation results for λ1 and λ2. Clearly setting 959

λ1 = λ2 = 4 gives the best performance. 960
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Figure 4: IntCoOp generates relevant attributes dur-
ing inference. We measure the cosine similarity between
the prompt embeddings with the attribute information from
IntCoOp and the prompt template “A photo of [a] [cls]”. We
find that prompt embeddings from IntCoOp result in a higher
cosine similarity with hand-crafted prompt template.

λ2 = 1 λ2 = 2 λ2 = 4 λ2 = 8

λ1 = 1 75.79 75.92 76.90 76.92

λ1 = 2 75.12 75.39 76.80 76.78

λ1 = 4 75.56 76.88 80.75 77.29

λ1 = 8 75.97 76.11 77.31 77.30

Table 8: Ablation results on λ1 and λ2. Setting λ1 = 4
and λ2 = 4 gives the best results. We report the HM
accuracies averaged across 10 datasets for each setting.
Best results based on HM performance are marked in
bold.
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Datasets CoOp CoCoOp ProGrad KgCoOp MaPLe DAPT PLOT IntCoOp
ImageNet 69.38 70.55 70.21 70.19 70.67 70.80 70.40 70.81
Caltech101 94.44 94.98 94.93 94.65 94.30 94.23 95.13 95.59
OxfordPets 91.30 93.01 93.21 93.20 92.05 92.17 92.55 96.00
StanfordCars 72.73 69.10 71.75 71.98 68.70 74.40 74.93 74.93
Flowers102 91.14 82.56 89.98 90.69 80.80 92.37 91.31 92.54
Food101 82.58 86.64 85.77 86.59 86.90 83.60 86.46 90.60
FGVCAircraft 33.18 30.87 32.93 32.47 29.03 32.47 35.29 33.50
SUN397 70.13 70.5 71.17 71.79 71.47 72.20 70.42 76.95
EuroSAT 68.62 63.83 70.84 71.06 54.87 72.73 80.70 81.21
UCF101 77.41 74.99 77.82 78.40 73.70 79.40 79.76 78.05
Avg. 75.09 73.69 75.86 76.10 72.25 76.38 77.68 79.01 (+1.34)

Table 9: IntCoOp leads to strong few-shot classification performance. We compare IntCoOp with competitive
prompt tuning approaches on a few shot learning task with 4 samples from each class. The reported values are
average performance over base and novel classes as reported by harmonic mean. We observe a 1.34% improvement
in average performance across 10 datasets compared to state-of-art framework PLOT (Chen et al., 2023). Best
results are marked in bold.

Dataset Classes Train Val Test Description

ImageNet-1k 1000 1.28M N/A 50,000 Contains images covering a wide range of diverse objects, scenes, and concepts.
Caltech-101 101 4,128 1,649 2,465 Consists of images of everyday objects commonly found in indoor and outdoor environments.
OxfordPets 37 2,944 736 3,669 Comprises images of pets covering various breeds of cats and dogs in different poses.
StanfordCars 196 6,509 1,635 8,041 Contains images of cars from various viewpoints, brands, and models.
Flowers102 102 4,093 1,633 2,463 Consists of images of flowers belonging captured under varying lighting conditions and backgrounds.
Food101 101 50,500 20,200 30,300 Consists of images depicting different types of food items from various cuisines.
FGVCAircraft 100 3,334 3,333 3,333 Contains images of different airplane models captured from various viewpoints.
SUN397 397 15,880 3,970 19,850 Includes images depicting various indoor and outdoor scenes such as bedrooms, beaches, forests, and more.
UCF101 101 7,639 1,898 3,783 Contains images of human actions, categorized into 101 action classes.
EuroSAT 10 13,500 5,400 8,100 Contains satellite images capturing various land cover types including urban areas, forests, farmland, and more.

Table 10: Detailed description of datasets used for this study.
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Figure 5: We visualize BLIP-2 generated attribute labels for few representative images from OxfordPets, Flowers102,
Caltech-101 and SUN397 dataset.
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Class: Annual Crop Land

Attr Label: Arid

Class: Cessna 172 
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Figure 6: We visualize BLIP-2 generated attribute labels for few representative images from EuroSAT, FGVC
Aircraft, Food-101 and Stanford Cars dataset.
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