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Abstract

Discovering regularities from spatiotemporal sys-
tems can benefit various scientific and social
planning. Current spatiotemporal learners usu-
ally train an independent model from a specific
source data that leads to limited transferability
among sources, where even correlated tasks re-
quires new design and training. The key to-
wards increasing cross-domain knowledge is to
enable collective intelligence and model evolu-
tion. In this paper, inspired by neuroscience the-
ories, we theoretically derive the increased in-
formation boundary via learning cross-domain
collective intelligence and propose a Synaptic
EVOlutional spatiotemporal network, SynEVO,
where SynEVO breaks the model independence
and enables cross-domain knowledge to be shared
and aggregated. Specifically, we first re-order the
sample groups to imitate the human curriculum
learning, and devise two complementary learners,
elastic common container and task-independent
extractor to allow model growth and task-wise
commonality and personality disentanglement.
Then an adaptive dynamic coupler with a new
difference metric determines whether the new
sample group should be incorporated into com-
mon container to achieve model evolution un-
der various domains. Experiments show that
SynEVO improves the generalization capacity by
at most 42% under cross-domain scenarios and
SynEVO provides a paradigm of NeuroAI for
knowledge transfer and adaptation. Code avail-
able at https://github.com/Rodger-Lau/SynEVO.
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1. Introduction
Spatiotemporal learning aims to predict future urban evo-
lution, which facilitates urban management and socioeco-
nomic planning. Recently, diverse spatiotemporal forecast-
ing solutions have well resolved data sparsity (Zhou et al.,
2020), temporal shifts (Zhou et al., 2023), as well as unseen
area inferences (Feng et al., 2024). As usual practices, al-
most all spatiotemporal learners train independent models
from specific sources where both models and data are iso-
lated. With the growing of available urban sensors and the
diversity of data sources under the rapid urban expansion,
the task-specific data-driven learning is inevitably faced
with the increased costs of repetitive model designs and
computational resources. To this end, an evolvable data-
adaptive learner that accommodates cross-domain transfer-
ability and adaptivity is highly required to facilitate sus-
tainable urban computing. There have been a number of
efforts that try to improve generalization of spatiotemporal
learning, where it can be classified as two folds, i.e., coun-
tering shifts on the same source domain and across different
source domains. On the same source, the initial step is
the continuous spatiotemporal learning implemented with
experience reply (Chen et al., 2021), and spatiotemporal out-
of-distribution issue (OOD) is raised by capturing causal in-
variance for confronting temporal shifts (Zhou et al., 2023).
After that, a series of models take environments as indicators
to guide generalization (Xia et al., 2024; Wang et al., 2024a;
Yuan et al., 2023). However, even for different kinds of
sources in a same system, these independent models fail to
share common information for task transfer across domains.
For generalization across sources, a prompt-empowered
universal model for adapting various data sources (Yuan
et al., 2024), and a task-level continuous spatiotemporal
learner, which actively capture the stable commonality and
fine-tune with individual personality for new tasks (Yi et al.,
2024) are proposed. Even so, these models still suffer three
critical issues for cross-domain transfer and data adaptive
model evolution. 1) No theoretical guarantee for collective
intelligence facilitating cross-domain transfer. 2) Not all
tasks share common patterns, thus uniformly involving all
tasks inevitably introduces noise. 3) These models are not
elastic to actively evolve when data distribution changes.
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Fortunately, with the progress of Neuro-Artificial Intelli-
gence (NeuroAI), neural networks are designed to imitate
knowledge acquiring for model generalization and coopera-
tion (Wang et al., 2022; 2024b), such as neuro-inspired con-
tinuous learning (Wang et al., 2023b)and complementary-
based (Kumaran et al., 2016) neural architecture. Consid-
ering the similarity between the cross-domain transfer and
the way human acquire new skills from prior knowledge,
NeuroAI holds great potential to overcome effective cross-
domain knowledge transfer. However, given various learn-
ing behaviors in human brain, how to couple neuroscience
with spatiotemporal network tailored for effective transfer
and evolution is still challenging as following aspects, 1)
As the collective intelligence cannot be accomplished in
an action, how to progressively learn tasks from different
domains from easy to difficult, 2) How to imitate human
learning process to disentangle commonality and ensure
common container elastic with continually receiving infor-
mation. 3) How to ensure the common-individual models to
quickly accessible for few-shot generalization.

Actually, classical neuroscience theories and new advance-
ment reveal that, 1) synapse is an important structure con-
necting neurons, which takes the role of message sharing
and cooperation(Van de Ven et al., 2020; Kennedy, 2016;
Benfenati, 2007), 2) neuron and synapse are activated by
neurotransmitters and action potentials, which is analogous
to gradients in artificial neural networks (ANNs), where
larger gradient intensity implies larger inconsistency be-
tween solidified knowledge and new information (Gulledge
et al., 2005; Hussain & Al Alili, 2017; Zenke et al., 2017).
Inspired by observations, we theoretically analyze data-
driven knowledge space within neural network can be in-
creased with commonality via information entropy. To this
end, we propose a Synaptic EVOlutional spatiotemporal
network, SynEVO, to enable easy cross-domain transfer.
Our SynEVO couples three neuro-inspired structures. First,
to learn the tasks progressively, we devise a curriculum-
guided sample group re-ordering to monotone increasing
learning difficulty via task-level gradient relations. Sec-
ond, to disentangle cross-domain commonality, we borrow
the cerebral neocortex and hippocampus structures in brain,
and design complementary dual learners, an Elastic Com-
mon Container with growing capacity as the core synaptic
function to receive cross-domain information for elastically
collecting new regularities, and a Task independent Person-
ality Extractor to characterize individual task features for
adaptation. Finally, an adaptive dynamic coupler with a dif-
ference metric is devised to identify whether the new sample
group should be incorporated into common container for
enabling model evolution and increasing collective intelli-
gence, which reduces the pollution of inappropriate data.
The contributions are three-fold.

• Inspired by neuroscience, we theoretically analyze the

increased generalization capacity with cross-domain
intelligence and the facilitated task convergence from
progressive learning, and a novel NeuroAI framework
is proposed to tackle the cross-domain challenge and
empower model evolution.

• By human-machine analogy, we introduce an ST-
synapse, and couple curriculum and complementary
learning with synapse to realize the progressive learn-
ing and commonality disentanglement. The model evo-
lution is achieved by elastic common container grow-
ing and adaptive sample incorporation.

• Extensive experiments show the collective intelligence
increases the model generalization capacity under both
source and temporal shifts by at 0.5% to 42%, includ-
ing few-shot and zero-shot transfer, and empirically
validate the convergency of progressive curriculum
learning. The extremely reduced memory cost, i.e.,
only 21.75% memory cost against SOTA on iterative
model training and evolution advances urban comput-
ing towards sustainable computing paradigm.

2. Related Works
Spatiotemporal learning and its generalization capacity.
Spatiotemporal learning has been investigated to enable con-
venient urban life (Zhang et al., 2017; 2020; Ye et al., 2019;
Zhou et al., 2020; Wu et al., 2019; Liu et al., 2024; 2025a;b;
Miao et al., 2024; 2025). However, with urban expansion
and economic development, it increases the concerns of
distribution shifts as all previous learning models assume
independent identical distribution. CauSTG devises causal
spatiotemporal learning to explicitly address the temporal
domain shifts (Zhou et al., 2023). Concurrently, continu-
ous spatiotemporal learning becomes a prevalent topic for
model update to counter temporal shifts (Wang et al., 2023a;
Chen et al., 2021). Although prosperity, researchers find
that data from different sources in a same system tend to
share some common patterns. Some pioneering literature
exploits unified multi-task spatiotemporal learning to ac-
commodate diverse modalities where a prompt-empowered
universal model is proposed (Yuan et al., 2024), while Yi,
et,al. investigates the task-level continuous learning to it-
eratively capture the common and individual patterns (Yi
et al., 2024). Even though, these models still ignore three
important issues. 1) Fail to unify the source domain and
temporal domain for transfer in a same learning architecture
where commonality and individuality are well-decoupled.
2) In a same system, how to quantify relations among tasks
and filtering the related ones to facilitate commonality is
not clear. 3) Previous models fail to evolve with distri-
bution changes to realize efficient cross-domain few-shot
generalization. In contrast, we overcome the cross-domain
adaptation through lens of NeuroAI by imitating human
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acquiring new knowledge and skills, to achieve evolutional
spatiotemporal network.

Neuro-inspired Artificial Intelligence (NeuroAI). Neu-
roAI is an emerging research topic which designs ANNs
from the inspiration of neuroscience and the way how hu-
man acquire new knowledge (Luk & Christodoulou, 2024).
ANN is originated from the biological neurons and re-
searchers teach machine learners to learn like humans (Lind-
say, 2020; Zhang & Zhang, 2018). The literature can be
classified as two folds from macroscopic to micro-structures.
In a macro perspective, human brain usually progressively
acquires the knowledge from easy to difficult, which inspires
curriculum learning in machine intelligence (Wang et al.,
2021; Blessing et al., 2024), and complementary learning
scheme with hippocampus and neocortex structures (Ku-
maran et al., 2016; O’Reilly et al., 2014; Arani et al., 2022).
To provide feedback on AI model, reinforcement learning
is proposed, and reinforcement learning from human feed-
back (RLHF) is incorporated into LLMs for thinking like
human (Lee et al., 2023). On the micro aspect, brain neu-
ron is activated by neurotransmitters and action potentials
with a threshold for activation, where the message passing
occurs when there is large potential difference (Zhang &
Zhang, 2018). Analogously, gradients in ANN are similar
to potential difference in brain neurons, and gradient can
be viewed as the knowledge gap between new data and
trained models, thus gradients can be exploited to interpret
the relation between model and sample groups. Synapse is
also an essential structure for bridging the message between
neurons, where pioneering researches have demonstrated
the potential of knowledge transfer by imitating synapse
structure (Zenke et al., 2017; Hussain & Al Alili, 2017).
Actually, unveiling the relations between brain structures
and AI model transfer mechanism can advance the model
evolution. Despite prosperity, on cross-domain transfer
in spatiotemporal learning, how to investigate the specific
mechanism that adapting to brain learning on transfer and
generalization is still under-explored.

3. Preliminaries
Spatiotemporal Cross-Domain Observations. In an ur-
ban system, data can be collected from different sources.
We can model diverse spatiotemporal learning tasks as
spatial-temporal graph prediction, and the deterministic ob-
servations can be defined as (xj

i )c, which is an element in
X = {X1,X2, ...,XC} ∈ RN×T×C . The (xj

i )c indicates
the value on graph node j at timestamp i from c-th data
source, where C represents the number of sources. As the
data distribution can be shifted across temporal steps, then
the task domain can be classified into both different tempo-
ral domains with changed distribution and source domains.

Neuro-Inspired Cross-Domain Learning. We define

neuro-inspired cross-domain spatiotemporal learning model
as an evolution modelM, i.e.,

Ŷ =M(X1,X2, . . . ,Xk;θM) (1)

where θM denotes the learnable parameters of modelM.
When the data from new domain Xk+1 comes, we aim to
quickly adaptM toM′, i.e.,

M′ ←M(Xk+1,θM;θM′) (2)

where θM′ denotes learnable parameters of updatedM′.
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Figure 1. Framework Overview of SynEVO

Proposition 3.1. Increased information with cross-domain
learning. Given spatiotemporal data observations from dif-
ferent sources {X1,X2,X3, ...,Xk} and then there must
be shared commonality among domain data patterns, i.e.,

∀i, j(1 ≤ i < j ≤ k), I(Xi;Xj) > 0 (3)

then the well-learned information from the cross-domain
learning model M is increased by continually receiving
domain knowledge, i.e.,

Info(M(X1, ...,Xk;θM)) > Info(M(X1, ...,Xk−1;θM)) >

... > Info(M(X1;θM))
(4)

where Info is the information encapsulated inM.

The Prop.3.1 delivers that cross-domain learning with dif-
ferent data sources ‘in harmony with diversity’ can increase
the learned information in modelM and it can be proved in
Appendix. A.

4. Methodology
4.1. Framework Overview

SynEVO constructs a neural synaptic spatiotemporal net-
work to share and transfer cross-domain knowledge for
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generalization and adaptation. As illustrated in Fig. 1,
our synaptic neural structure consists of three components,
curriculum-inspired sample group re-ordering to determine
the learning order of sequential samples from easy to diffi-
cult, complementary dual common-individual learners in-
cluding an Elastic Common Container and task-independent
personality extractor 1 to disentangle the task commonal-
ity and personality and an adaptive dynamic coupler to
aggregate the dual learners so as to adapt shared patterns
and preserve the individuality of tasks. It is noted that the
Spatiotemporal learner backbone is implemented by Graph-
WaveNet (GWN) (Wu et al., 2019).

4.2. Curriculum Guided Task Reordering

Learning from easy to difficult is a common practice for
human acquiring knowledge and skills, which is named as
curriculum learning (Bengio et al., 2009), e.g., the teach-
ing process in our class also follows inculcating knowledge
from basic to improved ones. To capture the commonality
of data patterns in different domains, we propose curriculum
guided task re-ordering. From an optimization perspective,
directly confronting a complex task can lead the model to
be caught in poor local optimums with exploding gradients.
In contrast, by starting from a simple task and gradually
increasing the difficulty, the model can be effectively guided
to converge in the direction of global optimum, which en-
ables better exploration in parameter space.

Gradients can characterize the consistency degree between
training model and new sample groups, thus the gradients
are exploited to indicate the difficulty of adapting models
to samples. We then exploit the gradient to compute the
adaptation between new feeding samples and the training
model, and determine the learning order via imitating the
curriculum learning process. Specifically, we apply the
backward of loss to compute the gradient. For each input
sample group Xc from c-th domain, we initial a trainable
modelMc(Xc; θMc

) and trainMc until the loss function
of it converges. Then we backward the final loss to com-
pute the gradients of θM as {∇1,∇2, . . . ,∇n}, where ∇i

denotes the gradient of the i-th layer of θM and n denotes
the the number of the layers of θM. After that, compute the
sum of squares of the gradients by,

sumc =

n∑
i=1

||∇i||22 (5)

where ||∇i||22 denotes the square of the L2 norm of ∇i.
Then, we concatenate the gradient to denote the overall

1As observations in source and temporal domains are organized
into sample groups, which can be viewed as various tasks, here we
interchangeably utilize sample group and tasks in our main text.

consistency between data and model by,

catc = [∇(expand)
1 ||∇(expand)

2 || . . . ||∇(expand)
n ] (6)

where ∇(expand)
i denotes the expanded tensor of ∇i and ||

denotes the concatenation of tensors.

With obtaining all catc for input data Xc, we identify the
minimum value among them by min = argmin

c
sumc,

which is considered as the compared bench. Next, to re-
order other sample groups, we compute the vector difference
between catc and the bench one catmin by,

dc = catc ⊖ catmin (7)

where ⊖ is the element-wise minus for vectors. After that,
we can reorder the input sample groups {X1,X2, . . . ,Xk}
based on the length of dc, i.e., l(dc) in ascending order
and get the ordered sequence S = {Xc1 ,Xc2 , . . . ,Xck},
where k is the number of sample groups. Therefore, we
can capture the inner relation between sample groups by
gradients, which avoids the isolation of information, and
allows the learning process from easy to difficult.

4.3. Complementary Dual Common-individual Learners

Inspired by complementary functions in brain memory, we
construct a dual common individual learners to respectively
accommodate two major knowledge based on three insights,
1) Complementary memory where neocortex remembers
long-term and stable skills while hippocampus acquires new
and quick knowledge. 2) More neurons are activated with
knowledge increasing. 3) Distinguished patterns makes
long-standing memory. Overall, our design inherits the com-
plementary learning scheme into respective common con-
tainer and personality pattern extractor. The common con-
tainer is devised accounting for the core synaptic function to
receive cross-domain common information with elastically
increasing collective intelligence, and a task independent
personality extractor is to characterize individual task fea-
tures for quick adaptation. They cooperate with each other
for generalized cross-domain learning.

4.3.1. ELASTIC COMMON CONTAINER

Deep learning models iteratively trained with new samples
can automatically fuse patterns across all samples. Based on
above analysis, the commonality should be expanded when
the acquired knowledge is increasing with iteratively feed-
ing into new samples. With well-organized task sequences,
we are expected to mimic such knowledge expansion in
brains for neural networks. In detail, we borrow a couple of
simple yet effective strategies in deep learning to empower
the model with elastic property. Dropout and L2 Regular-
ization with weight decay control the overall complexity of
model that potentially avoid over-fitting by the number of
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active neurons. For Dropout, every neuron can be set as
zero (dropout) with probability p and each weight decay
coefficient weight λ for L2 controls the importance of L2
item. The smaller probability p and smaller weight decay
λ, the model is more active. Despite promising, how to
quantitatively control the activeness of neurons by prob-
ability p and weight decay λ is still unclear. To address
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Figure 2. The process of elastic growth of common container

such quantitation challenge, we introduce Lemma. 4.1 from
neuroscience (Gulledge et al., 2005).
Lemma 4.1. The probability of presynaptic neuro-
transmitter release can be described by a propagation
model(Bertram et al., 1996; Schneggenburger & Neher,
2000),

Pr = P0(1− e−τ ) (8)

where Pr denotes the probability of neurotransmitter release,
P0 denotes the basic release probability, τ is the successive
activeness difference between a pre-synaptic neuron and
after-synaptic neuron.

Lemma. 4.1 suggests that the neurotransmitter can induce
the activeness of neurons and we can exploit the such elec-
tric potential difference to mimic the process. Fortunately,
earlier we have discussed that gradient can indicate the con-
sistency between model and new samples, thus we take the
second-order difference, the successive gradient variation
|d| based on Eq. 7 as the propagation degree τ .

For dropout, we first define the matrix of all learnable param-
eter in modelM as M , and provide the following definition
of activated model parameters.
Definition 4.2. Activated model parameters. For parameter
matrix [M ], its activeness matrix is defined as,

[A]x,y =

{
0 if [M ]x,y is dropped out,

1 otherwise.
(9)

where [A]x,y, [M ]x,y denotes the element of matrix [A],
[M ] on position (x, y) respectively. Based on the activeness
matrix, the activated model parameters can be updated as,
M = M⊙A, where ⊙ is the Hadamard product.

The larger number of non-zero elements in [A] indicates
more model activeness and capture more information with
decreased probability p.

With above Lemma. 4.1, we further model the dropout factor
pc as,

pc(dc) = p0(1− el(dc)−dmax)(0 < p0 ≤ 1) (10)

where pc denotes the dropout factor for domain c, p0 is a
hyperparameter, dc denotes the vector difference for domain
c against catmin and dmax is the maximum length of all
gradient vectors dc.

Similarly, for the weight decay coefficient of L2 regulariza-
tion that controls the model in the optimizer, we can re-write
the dynamic update of weight decay according the variation
of gradient as below,

λc(dc) = λ0(1− el(dc)−dmax)(0 < λ0 < 1) (11)

In Eq. 11, λc decreases as l(dc) increases, which realize the
elastic growth of the model and improves the generalization
of the model. To this end, we consider that controlling
the dropout value pc and weight decay coefficient λc with
the vector dc can efficiently realize the gradual release of
model activeness, which has been shown in Fig. 2. With our
synapse structure, common patterns are iteratively enhanced.
As new domain arrives, the overall knowledge boundary
and learned parameter space of our common container are
expanding. Then can do quick and light-weight adaptation
from the existing knowledge space to new domain.

4.3.2. TASK INDEPENDENT PERSONALITY EXTRACTOR

Besides commonality, the personalized pattern of each task
especially new task is also vital for domain adaptation. For-
mally, it is expected to derive an additional personality ex-
tractor g, which transforms the input Xc to the output Ec,
i.e., Ec = g(Xc;Wg) = WgXc. Here, we define a new
criterion D(A,B) to measure the difference between ten-
sors A and B, i.e.,

D(A,B) =
√
(A⊖B)2 (12)

Inspired by distinguishing patterns in memory for activat-
ing the neuron activeness, we explore the contrastive learn-
ing (Khosla et al., 2020; Hadsell et al., 2006) to implement
such personality extractor,

R(Ei,Ej ;Wg) = ŷD(Ei,Ej)

+(1− ŷ)max(0,m−D(Ei,Ej))
(13)

where R(Ei,Ej) refers to contrastive objective function
between two representations Ei,Ej . The domain indicator
ŷ = 1 if Xi and Xj come from the same domain while
ŷ = 0 indicates two samples from different domains, and m
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controls the minimum distance between Xi and Xj from
different domains. Since the personality extractor g updates
to approach the minimization objective, the representations
Ei and Ej from the same domain become closer and the
representations Ei and Ej from different domains are away
from each other.

Therefore, the commonality and personality can be disen-
tangled with the contrastive learning objective. As samples
of a new domain comes, the personality extractor is ca-
pable of extracting the representation of the new domain,
i.e., Ec = g(Xc;Wg), and the commonality patterns are
learned by the common container for commonality growth,
which significantly enhances the ability of the model to
comprehend both previous and new knowledge.

4.4. Adaptive Dynamic Coupler

To achieve cross-domain adaptation while maintaining both
personality and commonality, we construct an adaptive dy-
namic coupler to aggregate the commonality and personality.
When the sample group from a new domain Xk+1 comes,
the task independent personality extractor first extracts the
representation of Xk+1 by Ek+1 = g(Xk+1;Wg). Then
we preserve a list G which contains the distance between
the representation of the new domain and the trained do-
mains based on Eq. 12. To be specific, G is defined as,
G = {D1,D2, . . . ,Dk}, where k is the number of trained
domains in the elastic common container and Di denotes
D(Ek+1,Ei). Let Dmin be the minimum Di in G and if
0 < Dmin < κ (where κ is a threshold which is a hyperpa-
rameter), it indicates that the new domain shares potential
commonality with the trained domains. Then we can put
it into the common container to compute the gradient and
dynamically adjust the dropout factor pk+1 and the weight
decay coefficient λk+1. At last, the common container trains
the new domain based upon the adjusted factors and thus
absorb the knowledge from the new domain to realize elastic
growth. If Dmin ≥ κ, which indicates that the new domain
almost shares no commonality with trained domains, then
we re-instantiate personality extractor by initializing learn-
able parameters with previous extractor for a quick adapta-
tion. The comparison of representations is implemented by
a gate structure h,

h(Dmin, κ) =

{
1 if 0 < Dmin < κ

0 otherwise.
(14)

To conclude, the overall learning objective of our modelM’
to the input Xk+1 can be defined as,

Loss(θM′) = h(Dmin, κ)(L(M′(Xk+1,θM;θM′),Yk+1)

+λk+1||θM′ ||22)
+(1− h(Dmin, κ))L(M′(Xk+1,θinit;θM′),Yk+1)

(15)
where Yk+1 denotes the target value ofM′(Xk+1), λk+1

is computed based on Eq. 10, ||θM′ ||22 denotes the square of

L2 norm of θM′ and θinit denotes the new random initial
learnable parameters ofM′.

5. Experiment
5.1. Datasets

We collect and process four datasets for our experiments:
1) NYC (NewYorkCity, 2016): Include three months of
traffic data consisting of four source domains which are
CrowdIn, CrowdOut, TaxiPick and TaxiDrop collected from
Manhattan in New York City. 2) CHI (CHICAGO, 2023):
Consist of three source domains of traffic status, which are
Risk, TaxiPick and TaxiDrop collected in the second half of
2023 from Chicago. 3) SIP: Includes three months of traffic
data consisting of two source domains which are Flow and
Speed collected from Suzhou Industrial Park. 4) SD (Liu
et al., 2023): Include traffic flow data collected from San
Diego in 2019.

5.2. Evaluation Metrics and Baselines

We apply three evaluation metrics in our experiments, which
are mean absolute error (MAE), root mean square error
(RMSE) and mean absolute percentage error (MAPE). We
exploit seven prevalent baselines for evaluations, includ-
ing STGNNs (STGCN (Yu et al., 2017), STGODE (Fang
et al., 2021), GWN (Wu et al., 2019)), RNN-based models
(AGCRN (Bai et al., 2020)) and attention-based models
(STTN (Xu et al., 2020), ASTGCN (Guo et al., 2019),
CMuST (Yi et al., 2024)).

5.3. Implementation Details

We split the datasets into training, validation and testing
sets with the ratio of 7:1:2. Datasets NYC, CHI and SIP are
utilized for validation on cross-source and cross-temporal
domain tasks, while SD with one attribute but large time
span is for cross-temporal domain evaluation. For the first
three datasets, on cross-domain evaluation, we leave Tax-
iPick, TaxiDrop and Speed as the evaluation domain on
respective NYC/CHI/SIP sets, and let other data sources
to be trained iteratively. For their cross-temporal domain
evaluation, we divide one day into four equal periods, and
leave the last period of a day on all source domains for eval-
uation. Regarding cross-temporal domain validation on SD,
we divide one day into six equal periods and leave the last
period for evaluation of temporal domain adaptation. We
run each baseline three times and report the averaged results
to reduce the influence of randomness issue. For curriculum-
guided task reordering, Adam optimizer (Kingma, 2014)
is applied with initialized learning rate of 0.01 and weight
decay of 0.001 for the initial learnable model Mc. For
complementary dual learners, we use the mean square error
(MSE) as the criterion D of the personality extractor. For
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Table 1. Performance comparison on cross-source adaptation on NYC, CHI, SIP and cross-temporal adaptation on SD. Best results are
bold and the second best results are underlined.

METHODS
NYC CHI SIP SD

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

STGCN 6.774 15.853 0.374 1.518 2.804 0.415 0.753 1.492 0.219 12.477 22.055 0.182
STGODE 9.522 22.555 0.481 1.543 2.792 0.433 0.732 1.460 0.211 12.300 20.808 0.180

GWN 10.263 24.535 0.546 1.520 2.873 0.421 0.737 1.473 0.212 18.890 29.220 0.230
STTN 7.962 19.544 0.435 1.494 2.699 0.409 0.732 1.461 0.212 13.092 22.054 0.183

AGCRN 8.254 19.301 0.488 1.543 2.805 0.427 0.743 1.469 0.215 12.225 22.094 0.179
ASTGCN 10.323 25.070 0.519 1.536 2.809 0.413 0.743 1.473 0.215 13.079 22.047 0.185
CMUST 6.576 14.954 0.459 1.498 2.781 0.388 0.737 1.497 0.219 10.940 19.113 0.162
SYNEVO 6.494 14.885 0.358 1.486 2.733 0.361 0.697 1.390 0.205 10.984 18.654 0.157

Table 2. GPU cost comparison between CMuST and SynEVO

METHODS
GPU COST

NYC CHI SIP SD

CMUST 4034MB 4118MB 2450MB 19533MB

SYNEVO 2170MB 2210MB 2044MB 4252MB

Elastic Common Container, the loss criterion is adopted
with widely-used MaskedMAELoss. We run STGODE,
STTN, CMuST on SD on NVIDIA A100-PCIE-40GB and
other experiments on Tesla V100-PCIE-16GB by adapting
the model scale with GPU versions.

5.4. Performance Comparison

1) Comparison among baselines. Comparison results can
be found in Tab. 1, which reports results of cross-source
domain adaptation on the NYC, CHI, SIP and results of
cross-temporal domain adaptation on the SD dataset. In
general, our SynEVO model outperforms other baselines
across most metrics on four datasets. Compared with those
without a commonality extraction mechanism, the overall
adaptation performance of CMuST and SynEVO with com-
monality significantly outperforms them, where SynEVO
outperforms other baselines except CMuST on average by
about 25.0% on NYC, 2.6% on CHI, 5.8% on on SIP and
18.3% on SD. These results indicate the effectiveness of
our elastic common container, which allows our model to
dynamically grow in an appropriate area and capture the
inner relation of different domains. At the same time, our
SynEVO outperforms the vanilla backbone GWN by about
35.6% on average of four datasets. It’s worth noting that
on NYC and SD, GWN seems to be trapped in a local opti-
mum, and it further demonstrates that the adaptive structure
enhances the model’s transfer and adaptation. Although
attention based model CMuST achieves satisfactory per-
formance, CMuST exactly costs much more computing re-
source than our SynEVO as shown in Tab. 2, especially the
4.59 times of computation cost of SynEVO on large dataset
SD. It shows that the the NeuroAI structure can enable light-
weight adaptation which ensures superior performance with

Table 3. Detailed comparison on cross-temporal adaptation and
cross-source adaptation on NYC, CHI and SIP (cross-source results
are from Tab. 1)

NYC CHI SIP

TEMPORAL
SYNEVO MAE 6.278 1.457 0.683

CMUST MAE 6.457 1.472 0.716

SOURCE
SYNEVO MAE 6.494 1.486 0.697

CMUST MAE 6.576 1.498 0.737

less computing resource. 2) Detailed comparison on cross-
temporal domain adaptation and cross-source domain
adaptation against SOTA. We evaluate the performance
of cross-temporal domain adaptation and cross-source do-
main adaptation of SynEVO on NYC, CHI and SIP against
a selected best baseline CMuST, as shown in Tab. 3. Obvi-
ously, our SynEVO can outperform CMuST on almost three
datasets on MAE, and the improvement on source-domain
is more significant than temporal domain, which empiri-
cally verifies our NeuroAI-based synapse solution captures
the complex commonality across domains and expand the
boundary of learning space.

5.5. Ablation Study

In order to uncover the significance of each module to the
success of SynEVO, we perform an ablation study on cross-
temporal domain adaptation via removing each module on
the four datasets. The ablated variants are as follows. 1)
SynEVO-REO: Remove the module of curriculum-guided
sample group reordering. 2) SynEVO-Ela: Remove the
dynamic adjustment of dropout factor p and weight decay
coefficient λ with a static value, e.g., p = 0.1, λ = 0.001.
3) SynEVO-PE: Without relation comparison on individual
and commonality, any domain even unrelated sample groups
can be fed into the model without a judgment gate.

Tab.4 shows the results of ablation studies. In general, re-
moving abovementioned modules leads to the consistent
performance drops. When removing the module of elas-
tic growth, the performance drops the most by 44.2% on
MAE, indicating the most important structure of elastic com-
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Table 4. Ablation studies of SynEVO doing cross-temporal domain adaptation on four datasets

METHODS
NYC CHI SIP SD

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

SYNEVO 6.278 14.570 0.357 1.457 2.696 0.359 0.683 1.369 0.193 10.984 18.654 0.157
SYNEVO-REO 7.032 17.228 0.383 1.785 3.210 0.496 0.712 1.400 0.214 14.604 22.669 0.166
SYNEVO-ELA 8.384 19.142 0.386 1.907 3.414 0.471 0.745 1.418 0.223 17.481 27.204 0.245
SYNEVO-PE 7.451 16.988 0.382 1.711 3.098 0.479 0.732 1.444 0.212 16.382 24.276 0.187

mon container for model evolution and adaptation. More
specifically, when removing sample re-ordering, the perfor-
mance drops by about 18.1%, while personality extractor is
discarded, the performance drops by about 19.1%, which
shows the personality and re-instantiate mechanism is also
critical for ensuring model robustness and consistency.

5.6. Detailed Analysis

Uncovered sample group sequences for curriculum learn-
ing. In curriculum guided task reordering, the reordered
the input group samples are illustrated in Fig. 3(a) based
on the gradients. In our experiments, we find that domains
from the same source are not necessarily next to each other
in the ordered sequence S, which verifies that SynEVO
has successfully uncovered hidden correlation information
between domains. Moreover, it is demonstrated that reorder-
ing our input sample groups can learn certain commonal-
ity, empirically providing evidence for the effectiveness of
cross-domain learning.

Observed quick adaptation via loss behavior. In elastic
common container, the sample groups are periodically fed
into models. We let SynEVO elastically grow to absorb
the commonality by iteratively feeding sample groups, and
visualize the training loss of two consecutive learning cycles
on SD in Fig. 3(b). The blue curve denotes the first training
cycle while the red one denotes the second. These two cycles
share the same training data and order. Every mutation in the
curve represents the input of a new domain. Obviously, the
loss of the second cycle is much lower than the former one
and the loss drops quickly after new domain input, which
shows the quick adaptation by constructing learning tasks
in a cycled and elastic manner.

Effective zero-shot adaptation. To further evaluate the
adaptation performance of SynEVO, we conduct zero-shot
cross-temporal domain adaptation, i.e., testing without train-
ing, and make comparisons with the backbone GWN, where
results are shown in Tab.5. Obviously, SynEVO outperforms
better than GWN by averagely 29.8% on the four datasets,
and it numerically proves that SynEVO has captured the hid-
den commonality of various input data so that it can achieve
effective and even superior performance on zero-shot tasks.

More empirical analysis on task reordering and design
of commonality extraction. We supplement the experi-
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(a) Consecutive learning in cycle with sample groups

on cross-source task of CHI dataset

(b) Learning loss behavior on cross-temporal domain task 

of SD dataset

Figure 3. Training order on CHI and training loss behavior on SD

Table 5. Comparison of zero-shot cross-temporal domain adapta-
tion performance

NYC CHI SIP SD

SYNEVO
MAE 13.420 1.995 0.775 16.981

RMSE 32.059 3.769 1.510 25.197

MAPE 0.668 0.369 0.217 0.214

GWN
MAE 17.091 4.109 1.039 21.446

RMSE 40.802 8.385 2.056 30.736

MAPE 0.856 0.742 0.264 0.271

ments of 1) H2E: reordering tasks from hard to easy to
emphasize the importance of training order. 2) SynEVO-IL:
eliminating iterative learning for commonality, i.e., only
training and testing on one dataset. 3) DER: setting a dif-
ferent neural expansion rate pc, e.g., pc(dc) = p0/l(dc).
Results are shown in Tab.6. The reversed order falls into
inferior performances, which emphasizes the significance
of reordering the tasks from easy to difficult in our design.
Moreover, hard-to-easy performances are better than ran-
dom ordering of SynEVO-REO, which may be attributed
to common relations between neighboring tasks as they are
ordered even the reverse one. Based on the experimental
results, we can conclude our commonality learner and the
setting of p are reasonable and empirically justified.

5.7. Hyperparameter Sensitivity Analysis

We varied Dropout p0 from {0.1, 0.3, 0.5, 0.7, 1}, weight
decay coefficient λ0 from {0.01, 0.03, 0.05, 0.07, 0.1},
and distance threshold κ from {1× 103, 1× 104, 1× 105,
1 × 106}. Results shown in Fig.4-Fig.7 indicate that the
optimal settings are κ = 1 × 103 on all datasets, p0 =
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Table 6. More empirical analysis on task reordering and design of commonality extraction

METHODS
NYC CHI SIP SD

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

H2E 7.217 18.807 0.415 1.632 3.066 0.405 0.705 1.394 0.208 11.636 19.789 0.163
SYNEVO-IL 8.201 19.090 0.423 1.554 2.887 0.385 0.711 1.412 0.216 13.128 20.890 0.220

DER 7.213 16.310 0.422 1.550 2.765 0.367 0.705 1.399 0.207 11.944 19.599 0.168

0.5, λ0 = 0.05 on NYC and SIP, p0 = 1, λ0 = 0.1 on CHI
and p0 = 0.7, λ0 = 0.07 on SD. For κ, if the threshold
is extremely small, it means no new domain is allowed in,
which will violate the principle of ’harmony with diversity
for collective intelligence’ then we can observe that with
increasing and more relaxed condition for fusion, more
noise will be introduced to reduce the performances. Thus
the trade-off between commonality and individual feature
extraction should be obtained during model design.

6. Conclusion
In this paper, we propose a novel NeuroAI framework
SynEVO to enable cross-domain spatiotemporal learning for
few-shot domain adaptation. From neuroscience theories,
a curriculum-guided sample group re-ordering, a couple
of complementary dual learners which includes an elastic
common container, and a task independent personality ex-
tractor are proposed to capture commonality in an elastic
manner. The adaptive dynamic coupler determines whether
the new feeding samples can be aggregated into SynEVO
for achieving model evolution. Extensive experiments on
both cross-source and cross-temporal domains validate the
0.5% to 42% improvements against baselines. For future
work, we plan to mine the more inner mechanism of human
brain to facilitate the generalization of general AI models.
Moreover, our model can be generally nested within other
neural networks. In other areas, it is applicable to utilize
our evolvable ‘data-model’ collaboration to decouple the
invariant and variable patterns, and reconstruct the OOD
distribution with new patterns.
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In the Appendix, we provide the necessary proof our proposition and supplementary experiments for model evaluation.

A. Proof of Proposition 3.1
Cross-domain learning can increase the learned information.
Proposition A.1. Increased information with cross-domain learning. Given spatiotemporal data observations from different
sources {X1,X2,X3, ...,Xk} and the there must share commonality among domain data patterns, i.e.,

∀i, j(1 ≤ i < j ≤ k), I(Xi;Xj) > 0 (16)

then the well-learned information from the cross-domain learning modelM is increased by continually receiving domain
knowledge, i.e.,

Info(M(X1, ...,Xk;θM)) > Info(M(X1, ...,Xk−1;θM)) > ... > Info(M(X1;θM)) (17)

where Info is the knowledge information encapsulated in modelM.

Proof. Here we provide the proof from the perspective of information theory. We first define the mutual information I as,

I(X;Y ) =H(X)−H(X|Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )
(18)

where H denotes the information entropy.

In our learning scheme, by denoting the input observations X and predicted output Ŷ , we transfer the learning objective of
MAE into the following equation via the theory of Information Bottleneck (Tishby et al., 2000),

L(X, Ŷ ,Z) = I(X;Z)− βI(Z; Ŷ ) (19)

where β is a hyperparameter controlling the balance between the mutual information I(X,Z) and I(Z, Ŷ ). Minimizing
I(X;Z) aims to reduce the information redundancy of input X while maximizing I(Z; Ŷ ) aims to make sure the
representation Z keeps enough information of output Ŷ .

Considering the relationship between information entropy and mutual information, we have,

I(X;Y ) = H(X)−H(X|Y ) (20)

we can transform above Eq.20 into,
H(X|Y ) = H(X)− I(X;Y ) (21)

Then, ∀i(1 ≤ i < k), we can compute H(Xi|X1,X2, . . . ,Xi−1) as,

H(Xi|X1,X2, . . . ,Xi−1) = H(Xi)− I(Xi;X1,X2, . . . ,Xi−1) (22)

Similarly,
H(Xi+1|X1,X2, . . . ,Xi) = H(Xi+1)− I(Xi+1;X1,X2, . . . ,Xi) (23)

Actually, for any two datasets, the initial learning uncertainties of corresponding datasets are equilibrated, and denoted as,

∀i, j(1 ≤ i < j ≤ k), H(Xi) = H(Xj) (24)

Then we can continue our derivation into,
H(Xi) = H(Xi+1) (25)

Then we have assumed the involved datasets are sharing common patterns, with ∀i, j(1 ≤ i < j ≤ k), I(Xi;Xj) > 0, we
can obtain,

I(Xi;X1,X2, . . . ,Xi−1) < I(Xi+1;X1,X2, . . . ,Xi) (26)

Therefore, based on Eq.22, Eq.23, Eq.25, Eq.26, we can conclude that,

H(Xi|X1,X2, . . . ,Xi−1) > H(Xi+1|X1,X2, . . . ,Xi) (27)

which means the model is expanding the boundary of learning. Moreover, according to Eq.20, we can further derive that,

H(Xi|Xj) < H(Xi) (28)

which means the commonality between input data contributes to reducing the uncertainty of the tasks.
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Figure 4. Hyperparameter sensitivity on NYC

B. Hyperparameter sensitivity visualization
To determine the best hyperparameters of our SynEVO and support the completeness of our experiments, we varied base
Dropout factor p0 in Eq.10 from {0.1, 0.3, 0.5, 0.7, 1}, base weight decay coefficient λ0 in Eq.11 from {0.01, 0.03, 0.05,
0.07, 0.1}, and distance threshold κ from {1× 103, 1× 104, 1× 105, 1× 106}. The experimental results are displayed in
Fig.4-Fig.7. 1) Fig.4 shows that on NYC, the performance of SynEVO firstly increases with the increase of p0 and λ0 while
drops when p0 ≥ 0.5, λ0 ≥ 0.05. This result demonstrates that on NYC, if p0 and λ0 are too small, the model is initially
too complex so that it fails to learn from easy to hard, thus trapped in a local optimum. If p0 and λ0 are too large, the model
will fail to be sufficiently evolved and cannot capture enough commonality of input data. 2) For the distance threshold
κ, if it’s extremely small, it means no new domain is allowed into SynEVO, which will violate the principle of ‘harmony
with diversity for collective intelligence’. If it’s too large, then much noise will be introduced to reduce the performance of
SynEVO, polluting the commonality of the trained data.
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Figure 5. Hyperparameter sensitivity on CHI
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Figure 6. Hyperparameter sensitivity on SIP
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Figure 7. Hyperparameter sensitivity on SD
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