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ABSTRACT

>105 timestamps

EventGPT LET-US

EventGPT: Apologies, EventGPT curr-
ently does not support Event Streams 
exceeding 100ms.

LET-US: A vehicle is traveling down the 
center of a road, with a guardrail running 
alongside on …

This is an event stream. Please describe the content of this event stream.

Figure 1: Comparison with state-of-the-art models.

Event cameras operate asynchronously with microsecond-level temporal preci-
sion and generate sparse event streams, enabling low-latency visual perception
under high dynamic range conditions. However, current multimodal large lan-
guage models (MLLMs) remain suboptimal when handling such data: they ei-
ther fail to effectively interpret event streams or are limited to very short temporal
sequences. To address this problem, we propose a unified approach for long event-
stream–text understanding. This method employs an adaptive compression mech-
anism that significantly reduces input volume while preserving key motion and
structural cues, thereby supporting long-term cross-modal reasoning. The train-
ing pipeline adopts a two-stage optimization process: the model is first guided
to develop representational capacity for streaming data, followed by cross-modal
alignment to enhance semantic consistency between event and textual modalities.
To handle the substantial temporal information inherent in long event streams, the
model uses text-guided cross-modal queries to select salient features and com-
bines hierarchical clustering with similarity scoring to extract representative event
segments. During training, a large-scale event–text aligned dataset is curated and
constructed, facilitating more effective embedding of event features within the
semantic space of language models. In addition, we establish a comprehensive
benchmark covering a diverse set of tasks including reasoning, captioning, classifi-
cation, temporal localization, and moment retrieval. Experimental results demon-
strate that the proposed approach outperforms existing state-of-the-art MLLMs
in both descriptive accuracy and semantic understanding on long-duration event
streams. All datasets, code, and models will be released publicly.
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1 INTRODUCTION

Event cameras’ extreme sensitivity to illumination changes lets them capture dynamic scenes and
complex lighting conditions (Chakravarthi et al., 2024; Gallego et al., 2020; Gehrig & Scaramuzza,
2024; Kudithipudi et al., 2025; Wang et al., 2024; Zhou et al., 2023). They’ve proven effective in
high-speed motion and challenging lighting, drawing growing interest (Zheng et al., 2024). Key
tasks include object detection (Yang et al., 2025), tracking (Apps et al., 2025), 3D reconstruction
(Feng et al., 2025), and high-level scene understanding (Kong et al., 2024).

Multimodal Large Language Models (MLLMs) (Zhang et al., 2024a) excel at handling both visual
and textual data. To prevent inference degradation with long video inputs, several methods have been
introduced (Song et al., 2024; Wang et al., 2025; Zhang et al., 2024b). Many highlight that videos
contain abundant redundant, information-sparse tokens (Choudhury et al., 2024), which can impede
long-video understanding (Cheng et al., 2024).

However, existing research focuses on RGB video inputs. Multimodal models for event streams
are still emerging and have not addressed the inference performance and efficiency challenges of
long-duration event data. Event streams feature much longer temporal sequences and higher noise
levels: one second can produce about 106 timestamps, so even a few seconds yield extremely
long sequences, which undermining MLLMs’ robustness. From a data perspective, text-annotated
event videos are extremely rare, impeding progress in event understanding. Moreover, current event
datasets are limited to short-span driving scenarios and are insufficient for comprehensive event-
video studies.

To investigate how models learn from feature tokens, we analyze both the training stage (with par-
ticular focus on token-level loss computation) and the inference stage (examining how feature to-
kens participate in inference computations). We evaluate the performance of various token-reduction
strategies and explore their robustness when applied to event data. Our findings reveal that the dis-
tribution of visual information in event streams across the temporal dimension is nonuniform. For
example, in event streams spanning millions or hundreds of millions of time-stamped events, bursts
of information may occur only in a few temporal segments, while in other segments no information
is produced. Fixed-interval sampling or random sampling–based trimming strategies often allocate
excessive attention to information-empty segments, neglecting the crucial segments where informa-
tion is highly concentrated.

Motivated by these observations, we propose LET-US for long event-text understanding of scenes,
which is a framework designed to preserve as much useful input information as possible while elim-
inating redundancy in long event streams, thus adapting to the context-length limits of prevalent
large language models. LET-US leverages semantic cues from a given prompt to guide the model
in selecting the event segments of interest and employs a clustering-based approach to dynamically
identify the most representative tokens. To bridge the substantial gap between the event-stream and
text modalities, we adopt a two-stage fine-tuning paradigm. In the first stage, we pre-train on con-
ventional RGB datasets to enhance the model’s capacity for streaming data. In the second stage, we
fine-tune our model on a public, large-scale event-frame image dataset to boost its semantic under-
standing of event streams, since there are no large-scale public event stream–text alignment datasets
and creating them is costly. We posit that the contour and representation information contained in
event frames facilitate transferring the model’s RGB modality understanding to the event-stream
modality. Consequently, even training solely on datasets composed of event frames effectively en-
ables the model to learn diverse object semantics within the event-stream modality, thereby laying a
robust semantic foundation for subsequent event-stream scene understanding.

Finally, to address the severe scarcity and limited diversity of text-annotated event data, we leveraged
existing models to generate a large-scale, diverse Event-Image-QA-1M (EIQA-1M) dataset compris-
ing over one million question-answer pairs for fine-tuning. To further evaluate our model’s capability
in long-event-stream understanding, we constructed Event-Video-QA-Benchmark (EVQA-Bench),
a benchmark of over 50K question-answer pairs covering classification, reasoning, moment retrieval
and temporal localization, and captioning tasks, with timestamp spans ranging from 105 to 109.
EVQA-Bench fills the current void in datasets for long-event-stream semantic understanding. Em-
pirical experiments demonstrate that LET-US outperforms other mainstream models across these
tasks. We show our demo for understanding a long event stream in Figure ??.
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Cap.

Cl. T&M.

Re. Query: How many collisions happen after 
the cylinder enters the scene?

Answer： There are three collisions occur after 
the cylinder enters the scene.

Query： Observe the event video and notice how 
humans interact with objects. Identify the action 
category that best fits.
Answer： The observed action category in this 
clip is a person steadily riding a bicycle …

Query：Briefly describe the following event video.

Answer：The man in the scene picked up a mirror from 
the table, then looked at his reflection and 
stroked his beard.

Query：What time in the video does the 
man turn his head? Could you 
provide the timestamp?

Answer：The timestamp is 10 to 15 seconds.

Re.: 32%

T&M.: 46%

Cl.: 18%

Cap.: 4%

EVQA-Bench

46%

5%
14% 35%

Timestamps Span of EVQA-Bench

Structure of Dataset

1000k 50k

EIQA-1M EVQA-Bench

10!	～10" 10"	～10# > 10#

*Time Unit: Timestamps, 106 timestamps can approximate a 1-second time scale.

9k 16k 23k 1k

Re. T&M. Cap.Cl.

10$	～10!

Figure 2: Dataset Overview, including EIQA-1M and EVQA-Bench. EVQA-Bench encompasses
classification (CL.), captioning (Cap.), reasoning (Re.), temporal localization and moment retrieval
(T&M) tasks.

Through comprehensive experiments, we demonstrate LET-US outperforms existing approaches
in long-sequence reasoning, question answering, and temporal localization on event streams. Our
contributions are as follows:

• We propose LET-US, the first framework to explore textual alignment and language un-
derstanding for long event streams, which can achieve the comprehension of event streams
lasting up to 109 timestamps.

• We design a sequence reduction approach tailored for long event streams, which selects
salient segments through cross-modal guidance and further condenses event stream infor-
mation via clustering methods. This approach compresses the long event-stream sequence
to reduce the inference cost of the LLM, while preserving as much of the holistic informa-
tion from the segments of interest as possible.

• We construct a large-scale event–text dataset EIQA-1M for training, comprising over 1M
QA samples to facilitate direct alignment of event and text representations. We also de-
velop a benchmark for evaluating long event streams, namely EVQA-Bench, where the
longest stream lasts over 109 timestamps. Based on EVQA-Bench, LET-US outperforms
prior models by a substantial margin.

2 RELATED WORK

Event Understanding. The event modality has recently attracted considerable attention due to its
extremely high temporal resolution and its ability to capture high dynamic range scenes. Some re-
search institutions collected a series of event data using an event camera Gehrig et al. (2021); Rebecq
et al. (2019). In addition, Eventbind Zhou et al. (2024) aligned event, image, and text modalities,
thereby bridging the gap between events and other modalities. EventGPT Liu et al. (2025) extended
multimodal large language models to include the event modality, achieving the understanding of
event stream videos with 105 timestamps (100ms, according to their code1.). However, all of these
methods remain limited by the relatively small amount of event stream information they process.

RGB-based long-sequence understanding. Some works focus on channel pruning within Trans-
former architectures, analyzing ViT components and assigning importance scores to determine
which feature dimensions to prune. SAViT (Structure-Sware Vision Transformer) Zheng et al. (2022)
explores dependencies among feature dimensions to guide pruning more effectively. GOHSP (Graph
and Optimization-based Heterogeneous Structured Pruning) Yin et al. (2023) measures head impor-
tance using a Markov chain–based inter-head relationship graph and applies soft-pruning masks to
adjust feature channels during training. While these methods are robust, they require extensive fine-
tuning. Other studies prune the input token sequence: token pruning sparsifies the patch sequence
by removing less important patches or merging tokens, retaining those most attended by the CLS

1https://github.com/XduSyL/EventGPT
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token. ToMe Bolya et al. (2022) merges tokens and shows strong results at inference time. Inspired
by ToMe’s success, some methods use hierarchical clustering for further merging. However, these
efforts focus on short token sequences and a single modality. A series of works also target long-video
understanding: RLT (Run-Length Tokenization) Choudhury et al. (2024) uses run-length positional
encoding to mark and remove ”static” patches, while LongVU (Long Video-Language Understand-
ing) Shen et al. (2024) applies text-guided frame-level filtering to down-sample frames. Though
impressive, these methods are designed for RGB video and struggle with sparse, noisy event data.
Most rely on fixed windows for token reduction. Therefore, we introduce new training techniques
and token-pruning methods to better leverage large-scale event datasets.

3 DATASET GENERATION

Event-based datasets have been widely studied in computer vision tasks. However, large-scale open-
source event-text pair datasets for training multimodal large language models remain scarce. To
address this gap, we developed a pipeline that automatically generates and filters high-quality event-
text data by combining an existing event simulator Hu et al. (2021) with the ChatGPT model, along-
side human-in-the-loop refinement. Using this pipeline, we constructed a dataset of over one million
event-photo and event-stream pairs aligned with text: EIQA-1M and EVQA-Bench. The distribution
of our datasets is shown in Figure 2.

3.1 EIQA-1M

We first annotated text-based QA pairs on an existing event-image dataset. ImageNet Deng et al.
(2009) is the foundational benchmark for visual recognition tasks. N-ImageNet Kim et al. (2021)
was aligned to ImageNet images using an event simulator. We then paired N-ImageNet images with
QA annotations to form N-ImageChat. Please refer to appendix for more details.

3.2 EVQA-BENCH

We develop a suite of leading video datasets and, using our custom-built processing pipeline, gener-
ated a high-quality event–text corpus of over 50K examples. This collection spans content domains
such as autonomous driving, cinematic narratives, and human actions, and supports a variety of tasks,
including classification, captioning, QA, conversational dialogue, temporal localization, and reason-
ing. Specifically, the classification task is subdivided into two parts: (1) human action recognition,
covering over 1000 items; (2) object classification built upon the existing N-Caltech101 Orchard
et al. (2015) dataset, which includes more than 8,000 samples. For the captioning task, to ensure
that evaluation spans event streams of different durations, we define two subcategories: sparse event
streams (approximately 3 × 106 in timestamp span) and dense event streams (timestamp spans ex-
ceeding 108).

4 LET-US

4.1 OVERVIEW

LET-US is an event-based MLLM capable of understanding and generating responses grounded in
event data. We provide an overview in Figure 3. LET-US formulates event-data processing as an
event-driven approach tailored for question-answering and descriptive generation tasks. By leverag-
ing the high temporal resolution and extended dynamic range of event streams, LET-US significantly
enhances the comprehension of scenes traditionally challenging for standard visual models, such as
those under low-light conditions or involving high-speed motion, and extends this capability to event
streams spanning longer timestamps.

We partition continuous event streams into discrete temporal windows based on timestamp inter-
vals, aggregating each window into a bin. Mathematically, an event bin within a time window can
be represented as a quadruple S = xi, yi, ti, pi, where each event comprises spatial coordinates
(xi, yi), timestamp ti, and polarity pi. Inspired by Cambrian’s Tong et al. (2024) exploration of
integrating SigLIP and DINOv2 to enhance performance on vision tasks, we leverage the feature
extraction capabilities of SigLIP2 Zhai et al. (2023) and DINOv2 Oquab et al. (2023) to initialize
our event encoder. We firstly use an event encoder to extract features from the event data, capturing

4
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Selected
Information

Query: When the man and woman first appear in the scene, what are they doing? Text Embedding

Dense
Information

Step1: Feature extraction Step2: Cross-modal guidance compression Step3: Cluster

𝑇

𝑉!

𝑉!

𝑇		𝑉!·

𝑇		𝑉"·

LET-US:They are having a conversation, and the man is reaching his hand toward …

Tokenizer

Event-Language Adapter Llama3.2-3B

𝑉! 𝑉# 𝑉$ 𝑉%

Event Encoder

𝑠𝑖𝑚

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔	𝑤𝑖𝑛𝑑𝑜𝑤

Filter for target
segments with 𝑠𝑖𝑚 ≥ 𝜏

window diversity cluster
Tower1

Event
Encoder
Tower2

Figure 3: Overview of LET-US. After segmenting the event stream into bins, features are extracted
from each bin and their similarities with the query text are calculated to identify relevant bins. The
remaining bins undergo hierarchical clustering for further reduction. Finally, features from these
reduced event bins are processed through an Event-Language Adapter, concatenated with the query
features, and fed into Llama for answer generation.

local spatiotemporal characteristics, and then generate a more comprehensive representation using
a spatiotemporal encoder. Next, a two-stage projector aligns event and text features, and the re-
sponse is generated through a large language model. The model leverages the query prompt and the
distribution of sequence information to perform compression, providing an efficient method for un-
derstanding event streams. LET-US is a framework suitable for event streams with varying temporal
spans.

4.2 INFORMATION COMPRESSION

Cross-Modal Guided Compression. Drawing inspiration from the work of LongVU Shen et al.
(2024), we adopt siglip2-so400m-patch14-384 as part of our event encoder to encode each temporal
bin Et, obtaining event-encoded features V = {V S

1 , . . . , V S
T } ∈ RT×(HhWh)×Dv where Hh ×Wh

represents the spatial dimensions of the event bin features, and Dv denotes the channel dimension.
Clearly, the obtained features can hardly be considered as closely related to our content of interest.
Therefore, we introduce interactions between textual and event modalities, where the user’s textual
query is input into the model to guide the initial compression of the feature sequence. Specifically,
we calculate the cosine similarity between each bin and the query text vector, selecting bins whose
similarity exceeds the threshold τ . This process can be formulated as:

Ṽ = {V S
t | sim(V S

t , q) ≥ τ, t = 1, 2, . . . , T}, (1)

where q denotes the provided query text, V t represents the features of the event bin, and τ de-
notes the predefined similarity selection threshold. After cross-modal guided filtering, we obtain a
sequence of k bins containing the content of our interest, represented as B = {bin1, . . . ,bink}.
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Temporal Compression. The information represented by event streams is highly non-uniformity.
Simply feeding the entire sequence or selecting segments at fixed intervals is evidently not a wise
choice, particularly when the sequence contains tens of millions of timestamps. We leverage the
powerful feature extraction capability of DINOv2 to compute features for the extracted bins, obtain-
ing V ′ = {V D

1 , . . . , V D
k }. Within each non-overlapping window containing J bins, we treat each

bin as an individual data point and perform a density-driven clustering and aggregation. This process
can be described as follows: Partition V ′ into M =

⌊
k
J

⌋
non-overlapping windows of size J each:

Wm = {V D
(m−1)J+1, . . . , V

D
mJ}, m = 1, . . . ,M. (2)

Within each window Wm, we firstly ℓ2–normalize all vectors, then compute the average pairwise
cosine distance:

Dm =
2

J(J − 1)

∑
1≤i<j≤J

[
1− ⟨Vi, Vj⟩

]
. (3)

Here ⟨Vi, Vj⟩ is the cosine similarity; Dm ∈ [0, 2] quantifies how dense the information in Wm is.

Rather than fixing distance-thresholds, we map the diversity Dm directly to an integer cluster count
Rm ∈ [1, J ]:

Rm = max

(
1, min

(
J, round

(
Dm

2 J
)))

. (4)

Thus when Dm = 0 (all bins nearly identical), Rm = 1; when Dm = 2 (maximally diverse),
Rm = J ; intermediate Dm yields proportional cluster counts.

On the J normalized vectors in Wm, perform bottom-up average-linkage clustering to partition them
into exactly Rm disjoint clusters:

{Cm,r}Rm
r=1 = HACavg

(
{V D

(m−1)J+1, . . . , V
D
mJ}, Rm

)
, (5)

where HACavg(X,K) denotes performing bottom-up average-linkage hierarchical clustering on the
set X and partitioning it into exactly K disjoint clusters.

For each cluster Cm,r, compute its new-bin feature as the arithmetic mean of its member-bin vectors:

V̂ D
m,r =

1

|Cm,r|
∑

i∈Cm,r

V D
(m−1)J+i, r = 1, . . . , Rm. (6)

Finally, concatenate all aggregates in temporal order to obtain the compressed token sequence as
follow:

{V̂ D
1,1, . . . , V̂

D
1,R1

, . . . , V̂ D
M,1, . . . , V̂

D
M,RM

}. (7)

4.3 TRAINING PIPELINE

Considering the substantial gap between event and textual modalities, we designed a pre-training
strategy to initialize our framework. Our pre-training consists of two phases: visual-language train-
ing and event-language training. This phased approach helps achieve efficient cross-domain modal
alignment, enhancing LET-US’s capability for event comprehension and reasoning.

Visual-language training. Compared to the event–text task, vision–text learning has larger
datasets and more mature alignment methods, so we first align vision and text via two steps: im-
age–language and video–language. This builds foundational scene understanding and enhances the
model’s ability to grasp streaming data.

Event-language training. We fine-tune on our custom EIQA-1M dataset to align event streams
with natural language, thereby enhancing the model’s spatiotemporal reasoning and descriptive ca-
pabilities. We contend that EIQA-1M composed exclusively of event frames can effectively improve
the model’s semantic understanding of distinct objects in the event-stream modality, laying a seman-
tic foundation for subsequent event-stream comprehension.

6
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5 EXPERIMENT

Implementation Details. To balance scene understanding capability with lightweight deploy-
ment, we adopt Llama3.2-3B as our backbone, demonstrating proposed method’s ability to compre-
hend long event streams on a small model. The model is trained on eight NVIDIA A100-SXM4-80
GB GPUs. In the video–language training phase, we employ the LLaVA-OneVision Li et al. (2024)
and VideoChat2-IT Li et al. (2023) datasets in a two-stage procedure for one epoch with a batch
size of 64; the learning rate is set to 10−5 with a warm-up ratio of 0.03. For the event–language
fine-tuning phase, we use our self-constructed EIQA-1M dataset to train for one epoch (batch size
= 64), again with a learning rate of 10−5 and warm-up ratio of 0.03. During this stage, each event
stream is compressed via our proposed adaptive compression method (τ = 0.5, J = 8).

Comparison Methods. To the best of our knowledge, no existing model can process event streams
with timestamp spans beyond 105. EventGPT handles up to 1 × 105 timestamps, corresponding to
event videos no longer than 100 ms. Therefore, to enable comparison, we selected the N-Caltech101
dataset with the fewest timestamps and were forced to truncate it to within 1×105 timestamps to sat-
isfy EventGPT’s input limitation. To enable fair comparison with mainstream video-understanding
models, we generate corresponding RGB videos for all event-based benchmark datasets so that they
meet the input requirements of these models. We use the model’s accuracy in each task as the eval-
uation metric.

5.1 COMPARISON WITH STATE-OF-THE-ART MODELS

Quantitative Results. Table 1 presents our experimental accuracy results across various event
understanding tasks. Our method outperforms all baseline models including Video-ChatGPT Maaz
et al. (2023), Chat-UniVi Jin et al. (2024), Video-LLaVA Lin et al. (2023), LongVU Shen et al.
(2024), VideoLLaMA3 Zhang et al. (2025), Qwen2.5-VL Bai et al. (2025) and EventGPT Liu et al.
(2025). on these benchmarks, despite having fewer parameters. Specifically, in classification tasks,
our model surpasses existing models by at least 3% accuracy in human action recognition. In object
classification (N-Caltech101), it achieves comparable performance to the 8B-parameter VideoL-
LaMA3, while exceeding other models by at least 12% accuracy. Even on the classification task of
the low-timestamp N-Caltech101 dataset, it still outperforms EventGPT. Simultaneously, it achieves
state-of-the-art performance in other tasks. The experiments demonstrate that our model consistently
achieves state-of-the-art performance in classification, reasoning, moment retrieval, and captioning
tasks across event streams of various timestamp spans.

Models LLM Backbone Params Encoder Classification Rea-
soning T&M Captioning

Action N-Caltech101 Sparse Dense
Span

(order of magnitude) 106 105 106 106 ∼ 109 106 108

Video-ChatGPT Vicuna–v1.5 7B CLIP ViT–L/14 0.25 0.25 0.25 0.18 0.26 0.20
Chat-UniVi-7B Vicuna–7B 7B CLIP ViT–L/14 0.37 0.58 0.31 0.27 0.32 0.20
Video-LLaVA Vicuna–7B 8B CLIP ViT–L/14 0.31 0.31 0.30 0.18 0.29 0.37

LongVU Qwen2–7B 7B DINOv2+SigLIP 0.30 0.36 0.39 0.26 0.27 0.25
VideoLLaMA3 Qwen2.5–7B 8B SigLIP 0.41 0.70 0.41 OOM 0.22 OOM
Qwen2.5-VL Qwen2.5-VL-7B 7B Reengineered ViT 0.30 0.40 0.30 OOM 0.43 OOM

EventGPT Vicuna–v1.5 7B OpenCLIP ViT-L/14 ✗ 0.40 ✗ ✗ ✗ ✗

LET-US (ours) Llama3.2-3B 3B SigLIP2+DINOv2 0.44 0.70 0.42 0.35 0.49 0.40

Table 1: Comparison with State-of-the-Art Models. T&M represents Temporal Localization and
Moment Retrieval. The span is measured in timestamps. OOM indicates the model cannot complete
the task within 80 GB CUDA memory. ✗ indicates the model does not support that input length.

Qualitative Results. To demonstrate the unique advantages of event streams over conventional
RGB video and to highlight our method’s capability in understanding long event streams, we provide
qualitative results in Figure 4 and Figure 5. Figure 4 illustrates examples of LET-US’s performance
across different tasks. In Figure 5, we present examples of performance on real-world event datasets.
The event streams here using red and blue colors to represent positive and negative polarities, re-
spectively. Specifically, Figure 5a employs the DSEC Gehrig et al. (2021) dataset to evaluate the
scene understanding capabilities of LET-US. Figure 5b illustrates that, in scenes with high dynamic

7
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Query: What is the man doing?

LET-US: The man is riding a bicycle, dragging something.

106

(a) Action Recognition

Query: What is the shape of the last object that enters the scene?

LET-US: Cube.

106

(b) Reasoning

Query: At what time does "two people standing in front of three windows 
come into view" occur? Could you provide the timestamp? And What is the 
man doing at the beginning？

LET-US: The timestamp is 15000000 to 20000000. The man is 
writing something at the beginning. 

107

(c) Temporal Localization and Moment Retrieval

Query: Write a concise but informative summary.

LET-US: In the scene, a man is riding a horse across a field, moving 
from the right side of the scene towards the left.

106

(d) Captioning

Figure 4: Examples of LET-US’s performance across different tasks.

range lighting, conventional RGB vision fails to accurately perceive surrounding objects due to sig-
nificant loss of visual information. In contrast, event streams effectively capture information from
regions that are overexposed or underexposed in traditional RGB frames, thus enabling accurate
environmental perception under challenging lighting conditions. Figure 5c compares the perception
capabilities of RGB cameras and event cameras for moving objects. The results clearly indicate that
event streams significantly outperform traditional cameras in dynamic scenes with complex lighting.

5.2 ABLATION STUDIES

To dissect the impact of each architectural component on performance, we first establish a base-
line model that mirrors the LLaMA architecture, undergoes vision–language pre-training and
fine-tuning, and selects information from long event streams via random sampling. Variant A sub-
stitutes this random strategy with fixed-interval sampling that shares all the same parameters with
LET-US; the baseline and Variant A further integrate query-guided cross-modal compression, while
Variant B omits this module. All methods saturate the model’s context window with as much input
as its length permits. As reported in Table 2, our proposed LET-US framework surpasses the base-
line and both variants across all evaluation tasks. In Dense Captioning, where the input sequences
are extremely long, hierarchical clustering demonstrably outperforms sampling schemes that ignore
the distribution of salient events. For Temporal Localization and Moment Retrieval, the anticipated
benefit of query-guided compression is confirmed, yielding markedly higher localization accuracy.
Notably, random and fixed-interval sampling combined with query guidance yield performance close
to or even matching LET-US, implying that, within temporal localization settings, the query-driven
cross-modal guidance contributes more decisively to performance than the specific sampling policy
itself.

Mode Type Sampling CMGC Task

T&M DC

Baseline Random ✓ 0.35 0.28
Variant A Interval ✓ 0.33 0.25
Variant B Cluster × 0.29 0.31

LET-US (ours) Cluster ✓ 0.35 0.40

Table 2: Component Analysis. T&M represents Temporal Localization and Moment Retrieval.
CMGC represents Cross-Modal Guidance Copression. DC represents Dense Captioning.
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Query: This is an/a [event stream/video]. Watch it carefully, and based on 
its content, give me the depiction about the [event stream/video] in detail.

LET-US: The event stream showcases a journey along a road, starting 
with a view of lush, green scenery on one side and a dense forest on the 
other, under a clear sky. A vehicle, likely a train, is seen moving along the 
road, with its headlights illuminating the path ahead. As the video 
progresses, the vehicle advances, and the surrounding environment 
remains consistent, with the dense forest and the clear sky overhead. The 
vehicle's movement is steady, and the camera follows its path, capturing 
the changing scenery as it moves.

107

Query: This is an/a [event stream/video]. Watch it carefully, and based on 
its content, give me the depiction about the [event stream/video] in detail.

LET-US: The event stream showcases a busy urban street scene, likely in a 
city, with a focus on the movement of vehicles and pedestrians. The street is 
lined with multi-story buildings, some with visible signage, and the weather 
appears overcast. The camera captures the street from a low angle, emphas-
izing the motion of the vehicles and the activities of the pedestrians. As the 
stream progresses, the camera pans to the right, revealing more of the street 
and its surroundings, including a large building with a flat roof and a row of 
trees. The camera captures the movement of vehicles, including a car and a 
bus, while also showing the continuous flow of pedestrian traffic.

107

EventGPT
Apologies, EventGPT currently does not support Event Streams 
exceeding 100ms. 

Performances of other models Performances of other models

The video features a series of images showcasing different types 
of meat products, each with unique packaging and …LongVU 

qwen2-7B

Apologies, EventGPT currently does not support Event Streams 
exceeding 100ms. 

The video features a series of images showcasing a single indi-
vidual in various poses, all set against a plain, … LongVU 

qwen2-7B

EventGPT

(a) Scene understanding performance on real datasets captured by event cameras. [event stream/video] indicates
that we input the token “event stream” for LET-US and EventGPT, and the token “video” for video understand-
ing models.

Query: Describe what is ahead on the road.

LET-US: There is a car 
ahead on the road.Video-

ChatGPT

The road ahead is empty
and appears to be a long 
straight road.

RGB video input Event input

Over-exposure

(b) Information loss caused by poor lighting.

Query: What is the person holding in his hand?

LET-US: The person is 
holding a smartphone 
in his hand.Chat-

UniVi

The person in the frame 
is holding a video game 
controller, specifically a 
Wii remote, ...

RGB video input Event input

(c) Information loss caused by blurring.

Figure 5: Understanding performance on real-world datasets captured by event cameras.

6 CONCLUSION

In this paper, we introduce LET-US, the first Multimodal Large Language Model (MLLM) to ex-
plore semantic alignment and understanding of long event streams. To this end, we proposed a cross-
modal guidance compression method to select informative segments from event streams, followed by
a clustering-based method to further mitigate token redundancy. This approach enables a significant
reduction in the input volume of event data while maximizing the preservation of relevant semantic
information. To address the modality gap between event data and text, we construct two event-text
alignment datasets: EIQA-1M and EVQA-bench. The EIQA-1M dataset supports model training
and fine-tuning via a two-stage paradigm, while EVQA-benc serves as a dedicated benchmark for
comprehensive evaluation of model capabilities. Experimental results on multiple event understand-
ing benchmark tasks consistently validate the superior performance of our proposed model.

Limitation and future work. Please refer to appendix for limitations and future works.
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