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ABSTRACT

Neural scaling laws underlie many of the recent advances in deep learning, yet
their theoretical understanding remains largely confined to linear models. In this
work, we present a systematic analysis of scaling laws for quadratic and diagonal
neural networks in the feature learning regime. Leveraging connections with ma-
trix compressed sensing and LASSO, we derive a detailed phase diagram for the
scaling exponents of the excess risk as a function of sample complexity and weight
decay. This analysis uncovers crossovers between distinct scaling regimes and
plateau behaviors, mirroring phenomena widely reported in the empirical neural
scaling literature. Furthermore, we establish a precise link between these regimes
and the spectral properties of the trained network weights, which we characterize
in detail. As a consequence, we provide a theoretical validation of recent empiri-
cal observations connecting the emergence of power-law tails in the weight spec-
trum with network generalization performance, yielding an interpretation from
first principles.

1 INTRODUCTION

A central development in modern deep learning has been the recognition that neural network gen-
eralization does not improve unboundedly when training data, model size, or compute are scaled in
isolation. Instead, extensive empirical evidence reveals the presence of performance bottlenecks un-
less these resources are increased together (Kaplan et al., 2020; Brown et al., 2020; Hoffmann et al.,
2022). Characterizing these trade-offs, and in particular predicting the resulting neural scaling laws,
has emerged as a fundamental challenge for deep learning research, with significant implications for
the design of efficient and resource-conscious models.

Our goal in this work is to investigate this question in the context of shallow neural networks. More
precisely, consider the following supervised empirical risk minimization (ERM) problem for the
class of two-layer neural networks f(x;W ,a) = a⊤σ(Wx+ b):

min
W ,a

n∑
µ=1

(yµ − f(xµ;W ,a))
2
+ λ

(
||W ||2F + ||a||22

)
(1)

where W ∈ Rp×d and a ∈ Rp are the first- and second-layer weights, respectively. Although
substantial progress has been achieved in recent years, our current understanding of scaling laws
for the generalization performance of the ERM minimizer in eq. (1) remains largely confined to the
random features regime (Bahri et al., 2024; Maloney et al., 2022; Paquette et al., 2024; Atanasov
et al., 2024; Bordelon et al., 2024; Kunstner & Bach, 2025). In this setting, the problem reduces to
a kernel method, where scaling behavior has been classically studied, and is known as source and
capacity conditions (Caponnetto & De Vito, 2007; Cui et al., 2021; Defilippis et al., 2024).

In this work, we move beyond the random features regime and investigate neural scaling laws for
the ERM minimizer in eq. (1) in the teacher-student setting. That is, we assume that the target task
is generated by a teacher network of the same architecture

yµ = f(xµ;W
⋆,a⋆) +

√
∆ξµ, (2)

where {xµ}nµ=1
i.i.d.∼ N (0, Id) denotes the dataset and {ξµ}nµ=1

i.i.d.∼ N (0, 1) is an additive Gaus-
sian label noise with variance ∆ ≥ 0. The statistics of the target weights W ⋆,a⋆ will be specified

1
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later. Our main goal in this paper is to characterize the scaling-law and bottleneck behaviors of the
excess risk

R(W ,a) = Ex∼N (0,Id)

[
(f(x;W ⋆,a⋆)− f(x;W ,a))2

]
(3)

associated with the minimizers Ŵ , â of eq. (1). We will consider two specific classes of shallow
neural networks. Thanks to exact mappings to classical problems in signal processing, these models
admit a mathematical characterization, enabling an end-to-end analysis of the non-convex optimiza-
tion problem in the feature learning regime.

Diagonal networks and LASSO. The first architecture is a diagonal neural network with p = d,
diagonal first-layer weights W = diag(w), linear activation and no bias (b = 0):

f(x;W ,a) = a⊤ (w ⊙ x)√
d

. (4)

While the expressivity of this architecture is the same as that of a linear model, the reparameter-
ization creates an effective implicit regularization that allows for feature selection and has made
this setting popular among theoreticians. Indeed, adapting an argument by Neyshabur et al. (2015);
Soudry et al. (2018); Pesme & Flammarion (2023) (see Appendix A), the resulting empirical mini-
mization problem is equivalent to the LASSO problem with parameters θi = aiwi/

√
d and objective

θ̂ = argmin
θ∈Rd

1

2

n∑
µ=1

(
yµ − θ⊤xµ

)2
+ λ||θ||1 . (5)

In other words, the ERM problem for a diagonal two-layer linear network trained with ℓ2 weight-
decay can be understood through the performance of LASSO.

Quadratic neural network and matrix compressed sensing. The second architecture is that of
an over-parameterized two-layer network with a (centered) quadratic activation,

f(x;W ,a) =
1√
p

p∑
j=1

(w⊤
j x√
d

)2

− ||wj ||22
d

 = Tr

[
S

xx⊤ − Id√
d

]
, (6)

where S := W⊤W√
pd

∈ Rd×d and the normalization is taken for convenience. In this case, we fix
the second-layer weight a of the model to be an all-one vector, but the target network may have
arbitrary second layer weights. This class of quadratic neural networks have recently gained in
popularity as simple models for non-convex tasks (Sarao Mannelli et al., 2020; Arnaboldi et al.,
2023; Martin et al., 2024; Ben Arous et al., 2025). The ERM problem in eq. (1) for this architecture
can be mapped to a sparse estimation setting (Gunasekar et al., 2017; Maillard & Kunisky, 2024;
Bandeira & Maillard, 2025; Xu et al., 2025; Erba et al., 2025), namely matrix compressed sensing
(or low-rank matrix estimation):

Ŝ = argmin
S⪰0

n∑
µ=1

(yµ − Tr[SZµ])
2
+ λ∥S∥∗ , (7)

where Zµ :=
xµxµ

⊤−Id√
d

and ∥ · ∥∗ denotes the nuclear norm. We refer again to Appendix A for the
explicit mapping. Thus, the performance of a quadratic network trained with weight decay can be
analyzed via low-rank matrix estimation with nuclear norm regularization.

These two equivalences underline the central theme of this work: by mapping neural network train-
ing problems to sparse vector and matrix estimation tasks, we can leverage the rich theoretical tool-
box developed for LASSO and compressed sensing, and in particular approximate message passing
and its high-dimensional state evolution (Donoho et al., 2009; 2013; Javanmard & Montanari, 2013;
Berthier et al., 2020; Erba et al., 2025). This bridge not only enables precise predictions for gen-
eralization error and scaling exponents, but also provides a principled understanding of the weight
spectral distribution in neural networks.

Power-law/quasi-sparse targets. To study scaling behavior, we adopt the classical assumption of
a target with a power-law spectrum, as considered for instance in (Caponnetto & De Vito, 2007;
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Steinwart et al., 2009; Spigler et al., 2020; Cui et al., 2021; Bordelon et al., 2024; Ben Arous et al.,
2025). In the language of compressed sensing, this corresponds to the notion of quasi-sparsity
(Negahban & Wainwright, 2011; Raskutti et al., 2011), where the signal is not exactly sparse but
its coefficients decay according to a heavy-tailed distribution. This makes the setting natural and
relevant to both the machine learning and signal processing communities. Concretely, in the case of
diagonal linear networks we assume effective weights

θ⋆i
i.i.d.∼ N (0, d i−2γ) , θ⋆ := W ⋆a⋆ , (8)

while for quadratic neural networks we assume that

S⋆ :=
1√
pd

p∑
j=1

a⋆j w
⋆
j (w

⋆
j )

T (9)

is rotationally invariant with eigenvalues {
√
d i−γ}di=1. This setting was recently studied as well in

Ben Arous et al. (2025) (who, however, considered noiseless target as opposed to our noisy eq. (2)
and obtain one of our scaling exponents). In both cases we fix γ > 1/2 to ensure square-summability
of θ⋆ and S⋆.

1.1 MAIN RESULTS

1. Phase diagram and complete characterization of excess risk rates for power-law targets.
We provide a sharp characterization of the excess risk achieved by empirical risk minimization (1)
for both diagonal linear networks and quadratic networks in the regime n, d ≫ 1 with p ≥ d, under
a power-law design for the target function and varying regularization strength λ, summarized in
Figure 1. Our results uncover a striking universality between the two settings, including a transition
from benign to harmful overfitting. Exploring the extent of this universality beyond the setting here
is an interesting avenue for future work. We also derive the risk rates under optimal regularization
λ, and show that optimally-regularized ERM achieves the Bayes-optimal rates — previously known
only for the diagonal case (Raskutti et al., 2011). These findings are of independent interest for
sparse vector and low-rank matrix estimation.
2. Spectral behavior of the learned weights. We characterize, across all phases, the spectral prop-
erties of the trained network weights. The learned spectrum reflects the implicit trade-off between
signal, noise, and regularization, and exhibits phenomena directly connected to feature learning.
Remarkably, the resulting spectral behavior mirrors observations in modern deep learning practice
(Martin & Mahoney, 2021a; Thamm et al., 2024).
3. First-principles explanation of spectra–generalization connection. We provide a clear inter-
pretation of the spectrum and its relation to generalization. Building on Result 3, which decomposes
the error into underfitting, overfitting, and approximation terms, we show that each of these com-
ponents is directly connected to the spectral statistics of the weights. In doing so, we provide a
mathematical theory for the empirical observations of Martin et al. (2021) and Wang et al. (2023)
for the spectral statistics of weights in large-scale trained networks.
4. Non-asymptotic validity of state evolution. Our derivations rely on approximate message pass-
ing (AMP) and its state evolution equations, which are rigorously valid only in the proportional
asymptotic regime with fixed ratios n/d (or n/d2) and fixed λ. We extend these equations heuristi-
cally beyond their proven setting, covering arbitrary scalings of n, d, λ. Through extensive numeri-
cal experiments, we demonstrate that state evolution remains accurate down to constants across the
whole parameter space, including far beyond proven guarantees. This surprising robustness, already
established in ridge regression (Cui et al., 2021; Cheng & Montanari, 2024; Misiakiewicz & Saeed,
2024; Defilippis et al., 2024), suggests a broader conjecture: the AMP framework, and related tools
from spin glass theory, may provide predictive power well outside their standard asymptotic as-
sumptions. We hope this will further motivate work on non-asymptotic control of AMP (Rush &
Venkataramanan, 2018; Miolane & Montanari, 2021; Li & Wei, 2022; Reeves, 2025).

Together, these results provide a comprehensive theoretical and empirical understanding of scaling
laws for feature learning in simple network models.

1.2 FURTHER RELEVANT WORK

Scaling laws — A large body of work has studied scaling laws in the lazy regime, where the fea-
tures remain fixed. This includes kernel methods (Caponnetto & De Vito, 2007; Spigler et al., 2020;

3
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Cui et al., 2021), random features (Defilippis et al., 2024; Atanasov et al., 2024; Bahri et al., 2024;
Maloney et al., 2022; Paquette et al., 2024; Kunstner & Bach, 2025), and neural tangent kernels
(NTK) (Bordelon et al., 2020). Bordelon et al. (2024; 2025) analyzed how scaling laws change for
linear networks when both weights are trained, and Worschech & Rosenow (2024) explicitly solves
the dynamics of a linear network to obtain the scalings. Our goal in this work is to go beyond linear
networks and the lazy regime and analyze scaling laws in the presence of genuine feature learning.
Two recent works (Ren et al., 2025; Ben Arous et al., 2025) analyze settings related to ours, but with
important differences. Both consider two-layer networks with sublinear width, orthogonal first-layer
weights, and power-law decaying second-layer weights. Ren et al. (2025) study activation functions
with large information exponents, which is orthogonal to our setting, while Ben Arous et al. (2025)
focus on quadratic activations with a specific SGD dynamics. Both works, additionally, consider
noiseless targets and unregularized training (λ = ∆ = 0). Here, instead, we study empirical risk
minimization with weight decay in the noisy setting (which allows to observe benign and harmful
overfitting).

Spectral properties of learned weights — A growing literature investigates the distribution of
weight spectra in trained neural networks, with particular attention to the emergence of heavy-tailed
eigenvalue distributions in both weights and activations (Mahoney & Martin, 2019; Martin et al.,
2021; Martin & Mahoney, 2021b;a; Thamm et al., 2024; Wang et al., 2023; Zhou et al., 2023;
Hodgkinson et al., 2025). Despite these empirical observations, a precise theoretical characterization
of the learned spectra and their relation to generalization has remained elusive. Recent progress
includes analyses of the spectrum after a single or a few gradient steps (Dandi et al., 2024; Moniri
et al., 2023; Cui et al., 2024; Dandi et al., 2025; Kothapalli et al., 2025), as well as results showing
convergence of SGD in mean-field models to spectral distributions reminiscent of those we obtain
(Olsen et al., 2025). Our description of the spectrum of the trained weight provides an analytic
characterization of this phenomenon, and provides an interpretation of these properties from first
principles.

AMP and State Evolution — Our analysis relies on approximate message passing (AMP) and
its state evolution (SE), which has become a central tool for studying high-dimensional inference
problems with structure (Donoho et al., 2013; Bayati & Montanari, 2011; Javanmard & Montanari,
2013; Berthier et al., 2020; Zou & Yang, 2022; Feng et al., 2022; Gerbelot & Berthier, 2023; Dudeja
et al., 2023; Erba et al., 2025). It has also been applied to learning problems beyond sparse recovery,
such as kernel methods and learning rates (Cui et al., 2021; Loureiro et al., 2021). In this work,
we use the state evolution equations of AMP heuristically, to analyze quasi-sparse models beyond
their rigorously proven asymptotic regimes (typically assuming a fixed ratio n/d). While recent
advances in non-asymptotic control (Rush & Venkataramanan, 2018; Miolane & Montanari, 2021;
Li & Wei, 2022; Reeves, 2025) provide reassurance, a finer control of the limit is still required
for a fully rigorous justification. Our experiments nevertheless show excellent agreement between
SE predictions and numerical results across regimes, suggesting that AMP may be predictive well
beyond its standard assumptions.

Compressed sensing — Quasi-sparse settings, where coefficients decay with a power law in
Fourier or wavelet bases, have long been studied in statistics and signal processing. This is natural
since most real-world signals are not exactly sparse but have heavy-tailed coefficient distributions
(Mallat, 1999). Classical work on LASSO and matrix compressed sensing analyzed ℓp-controlled
targets, deriving minimax bounds on error and sample complexity (Raskutti et al., 2011; Negahban
& Wainwright, 2011). Our results extend this line of work by providing the full phase diagram
across all regularization strengths and data scales. For instance, the optimal LASSO rate of Raskutti
et al. (2011) arises from setting λ = Θ̃(

√
n/d) (here Θ̃ is up to logarithmic factors).

2 MAIN RESULTS

2.1 UNIVERSAL ERROR RATES

In this section we discuss the excess risk rates associated to the two problems introduced above. Our
analysis is based on a deterministic characterization of the risk R̂(Ŵ , â) ≃ Rn,d at large n, d ≫ 1,
which is discussed in Section 2.4. In order to highlight the correspondence between the two neural
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network models, we express the results in terms of the effective sample size neff as follows:

neff ≡
{
n for diagonal network
n/d for quadratic network

. (10)

Surprisingly, this definition will be enough to present both cases in a unified manner.
Result 1 (Excess risk rates). Under the setting of Sec. 1 for ∆ > 0 and neff ≫ 1, the excess risk
satisfies

Rneff ,d(λ) =



Θ
(
n
−1+1/(2γ)
eff + ρ (neff/d)

)
if 1 ≪ neff ≪ d and λ ≪

√
neff

d

Θ
(
λ−2/3

)
if neff ∼ d and λ ≪ 1

Θ(d/neff) if neff ≫ d and λ ≪
√

neff

d

Θ
((

λd1/2/neff

)2−1/γ
)

if max
(√

neff

d , neff

dγ+1/2

)
≪ λ ≪ neff

d1/2

Θ
(
λ2d2/n2

eff

)
if
√

neff

d ≪ λ ≪ neff

dγ+1/2

, (11)

and Rneff ,d = Θ(1) otherwise, where ρ(t) = −1/ log(t) in the diagonal network case and ρ(t) =

t2/5 in the quadratic network case. Notice that in both cases the ρ term is monotone increasing with
neff/d, and dominates the error rate when neff → d. Additionally, in the diagonal network case, the
first rate holds up to logarithmic factors that we specify in eq. (91) in Appendix B.4.

These rates are summarized in Figure 1. For small (fixed) regularization λ < 1/
√
d, with d fixed

and neff increasing, the excess error moves from an initial plateau (Phase Ia), driven by data scarcity,
to a fast–decay (Phase IV), where Rneff ,d = Θ(n

−1+1/(2γ)
eff ), matching the minimax rate in (Raskutti

et al., 2011; Donoho et al., 2011). As neff approaches d, the estimator begins to fit the noise, and we
observe a harmful overfitting (Phase V), in which the excess risk is dominated by the non-universal
scale ρ (arising from overfitting the noise as in Result 3). This transition, characteristic of the under-
regularized and under-sampled regime (1 ≪ neff ≪ d, λ ≪

√
neff

d ), happens at

ncross
eff =

{
(log d)

4γ−1
2γ−1 for diagonal network

d
4γ

14γ−5 for quadratic network
. (12)

The excess risk reaches its maximum around neff ∼ d with Rneff ,d ∼ λ−2/3. This non-monotonicity
of the risk at interpolation is reminiscent of the double descent behavior (Belkin et al., 2019; Mei
& Montanari, 2022), and extends previous findings (Bartlett et al., 2020; Wang et al., 2024) to non-
linear models. For neff ≫ d, the excess risk then enters a second fast–decay Phase VIa, with rate
proportional to d/neff ; this is the fastest decay we observe, provided neff ≫ d2γ (Phase VIb). For
larger regularization strength λ > 1/

√
d, the excess risk decay is described by the upper part of the

phase diagram in Figure 1, eventually crossing to the lower part when neff ∼ dλ2. In particular,
if λ ≫ dγ−1/2, we observe that increasing neff , the excess risk is initially in a plateau (Phase Ib),
induced by the strong regularization with respect to the sample size. For n ∼ λd1/2, it crosses into a
slow rate Phase II with Rneff ,d = Θ(λd1/2/neff)

2−1/γ , which transitions to a faster rate (Phase III),
still influenced by the large regularization, for neff ∼ λdγ+1/2, with Rneff ,d = Θ((λd/neff)

2). Phase
II recovers the rate in (Negahban & Wainwright, 2011, Corollary 2). The excess risk eventually
transitions to the fast-decay Phase VIb for neff ∼ λ2d, where the effect of the regularization becomes
negligible due to the large sample size. These cross-overs are reminiscent of the ones observed for
kernel and random feature ridge regression respectively in Cui et al. (2021); Defilippis et al. (2024).

We observe that there are region boundaries along which the rates are discontinuous (red lines in
Figure 1). At the boundary neff = Θ(d), we observe the aforementioned crossover between harmful
overfitting and fast decay, with an interpolation peak emerging. At the boundary d ≪ neff ≪ d2γ

and λ = Θ(
√

neff/d), the excess risk jumps from d/neff to n
−1+1/(2γ)
eff (which is much lower) when

increasing the regularization.

As a corollary of the above results, we can immediately estimate the behavior of the optimal regu-
larization λopt and the associated optimal ERM rates.
Corollary 1 (Optimal regularization and optimality of ERM). The optimal regularization satisfies

λopt(neff , d) =

{
O(
√
neff/d), if ∆ > 0 and

(
1 ≪ neff ≪ ncross

eff or neff ≫ d2γ
)

Θ̃(
√
neff/d), if ∆ > 0 and ncross

eff ≪ neff ≪ d2γ
. (13)
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Effective number of samples neff (n for diagonal, n/d for quadratic)
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n
λ

Θ(d−1) Θ(1) ncross
eff Θ(d) Θ(d2γ)

1
d

λ = neff/d
1/2 λ = neff/d

1/2+γ

λ
= √

n
e
ff
/
d

VIa, VIb: R ≍ d/neff

V: R ≍ ρ(neff/d)

IV: R ≍ n
−1+1/(2γ)
eff

III: R ≍ λ2d2/n2
eff

II: R ≍
(
λd1/2/neff

)2−1/γ

Ia, Ib: R ≍ 1

Figure 1: Excess risk rates of Result 1 as a function of n and λ(n, d), with a sketch of the corre-
sponding spectral properties of the learned weights (Result 2). Red lines represent discontinuous
phase boundaries.

where Θ̃ is up to logarithm factors in the argument. The excess risk rates in the optimally regularized
case matches the large neff , d ≫ 1 Bayesian risk RBO(D) = E[R(W ,a)|D] ≃ RBO

neff,d

1 (for the
diagonal network, up to logarithmic factors), given by

Rneff ,d(λopt) = Θ(RBO
neff

) =

{
Θ(n

−1+1/(2γ)
eff ) if ∆ > 0 and 1 ≪ neff ≪ d2γ

Θ(d/neff) if ∆ > 0 and neff ≫ d2γ
, (14)

and Rneff ,d = Θ(1) otherwise. Again, in the diagonal network case, in the first regime the rate holds
up to logarithmic factors that we specify in eq. (91) in Appendix B.4.

Corollary 1 shows that by appropriately tuning the regularization allows to avoid the harmful
overfitting phase in the noisy case and reach Bayesian optimality. Interestingly, the noisy rate
Θ(n

−1+1/(2γ)
eff ) in the regime 1 ≪ neff ≪ d2γ coincides with the classical minimax rate for

high-dimensional linear regression over an ℓq-ball with q = 1/γ (Raskutti et al., 2011; Donoho
et al., 2011). Corollary 1 not only recovers the well-known result that properly regularized LASSO
achieves this minimax rate, but also extends it to additional regimes and to the matrix case, revealing
a cross-over between the minimax rate and a faster Θ(d/neff) rate.

2.2 SPECTRA OF THE LEARNED WEIGHTS

Our second set of results concerns the structural properties of the learned weights, that are given
by a soft thresholding function applied to a noisy version of the target’s weights. Notice that for
diagonal neural networks, the weights θ can be seen as a diagonal matrix (modulo a sign), hence
they coincide with the eigenvalues of W .
Result 2 (Spectrum of the learned weights). For the diagonal network case, there exists constants
δ(n, d, λ) and ϵ(n, d, λ) (specified in Appendix B.1.2) such that the empirical risk estimator (1)
satisfies (in distribution)

θ̂i ∼ σd(θ
∗
i + δzi; ϵ) , (15)

where zi∼N (0, 1), and σd(x; a)=max(x−a, 0)−max(−x−a, 0) is the soft-thresholding function.
For the quadratic network case, there exists constants δ(n, d, λ) and ϵ(n, d, λ) (that are obtained
from (20)) such that the spectrum ν of the empirical risk estimator (7) satisfies

ν(x) = Fµδ
(λϵ)δ0(x) + µδ(x+ λϵ)1x>0. (16)

δ0 represents a Dirac mass at 0, 1A is the indicator function of the set A and µδ represents the
spectrum of S⋆ + δZ with its cumulative function Fµδ

, where Z ∼ GOE(d) (i.e. a symmetric
matrix with N (0, 1/d) elements up to symmetry).

1See section 2.4 for a formal statement.
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Figure 2: Comparison between spectra from simulations and theory across different training phases.
Blue: eigenvalue histograms after training. Purple/orange: theoretical predictions for bulk and
spikes, respectively (16) (for clarity, spike histograms are shown separately). Notice that our theory
also predicts a spike at zero, which we do not plot for visual clarity. All panels use d=800 except
III, for which we have d=400. Bottom row: λ=1/d with n=100, 1.94 × 104, 1.28 × 106. Top
row: λ=

√
d with n = 800, 6.4× 106, 2× 107. We discuss the phenomenology in Section 2.3.

Result 2 characterizes the learned weights in both settings: they are noisy, soft-thresholded versions
of the target spectrum. The parameter δ quantifies the noise from the label noise and finite sample
estimation of the target weights, while λϵ sets the cutoff below which singular values vanish due to
regularization. For any n, d, λ, the spectrum consists of a spike at zero, possibly a bulk near zero,
and a few outliers aligned with the top eigenvectors of the target.

2.3 INTERPRETABILITY, AND A “UNIVERSAL” ERROR DECOMPOSITION

The spectra depends on n, d, λ only through the functions δ, ϵ, leading to a qualitative structure
shared by both models. Our theory predicts eight distinct spectral phases (Figure 1) which are
closely connected to the risk rates in Result 1. Focusing now on the quadratic network, the result
provides an interpretation of the risk in terms of the weights spectrum.

Result 3 (“Universal” error decomposition of feature learning). Let {si}di=1 of S⋆ be the eigenvalues
of S⋆ in non-increasing order. Consider the following two cases.

(i): Under-regularization. Assume that the constants δ(n, d, λ) and ϵ(n, d, λ) in Result 2 satisfy
λϵ < 2δ and there exists a cutoff K(δ) ≪ d satisfying sK(δ) = δ. Then the excess risk reads

Rn,d= δ2
∫ 2

λϵ/δ

µsc(dx)

(
x− λϵ

δ

)2

+
1

d
δK ′(δ)(2δ − λϵ)2︸ ︷︷ ︸

overfitting
(learned noise)

+
1

d

d∑
i=K(δ)+1

s2i︸ ︷︷ ︸
underfitting

(not learned features)

+
1

d

K(δ)∑
i=1

[(
δ2

si
− λϵ

)2

+
δ2

si

(
si +

δ2

si
− λϵ

)]
︸ ︷︷ ︸

approximation error
for learned features

.

(17)

where µsc(dx) = (2π)−1
√
4− x21x∈[−2,2]dx denotes the Wigner semi-circle law.

(ii): Over-regularization. Assume that the constants δ(n, d, λ) and ϵ(n, d, λ) in Result 2 satisfy
λϵ ≥ 2δ and there exists a cutoff K(δ, λϵ) ≪ d satisfying sK(δ,λϵ) +

δ2

sK(δ,λϵ)
− λϵ = 0. Then the
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excess risk reads

Rn,d=
1

d

d∑
i=K(δ,λϵ)+1

s2i︸ ︷︷ ︸
underfitting

(not learned features)

+
1

d

K(δ,λϵ)∑
i=1

[(
δ2

si
− λϵ

)2

+
δ2

si

(
si +

δ2

si
− λϵ

)]
︸ ︷︷ ︸

approximation error
for learned features

. (18)

Equations (17) and (18) have clear interpretations. The first component of the overfitting term corre-
sponds to the second moment of the bulk spectrum, representing the power of the learned noise and
thus quantifying the degree of overfitting. The second part of the overfitting term is proportional to
the square of the bulk size, but always remains subdominant compared to the first term. As shown
in Equation (18), the overfitting term diminishes with increasing regularization strength.

The underfitting term measures the mean power of the unlearned spikes, indicating how many fea-
tures are lost due to the cutoff K(δ, λϵ) (which depends on the noise and regularization). The
approximation error term reflects the average error in the learned spikes, which depends on the ef-
fective signal-to-noise ratio si

δ and the effective regularization λϵ. Notably, when the effective noise
δ is zero, the approximation error increases with regularization; conversely, when the regularization
λ is zero, the approximation error increases with noise δ

si
. In general, however, the approximation

error arises from a non-trivial interplay between the effective noise and regularization.

This decomposition is “universal” in that it does not depend on the target spectrum, dataset size, or
regularization, holds for all ∆ ≥ 0 and applies across different spectral phases. While derived here
for quadratic networks, similar expressions hold as well for diagonal networks. See Appendix B.1.2.
Extending it to broader architectures is an interesting direction for future work.

Based on the error decomposition in Result 3, we give an interpretation of the rates in Result 1 in
terms of the weight spectral properties (see Figure 1 for illustrations and Figure 2 for experiments):
the bulk corresponds to learned noise, the spikes hidden by the bulk are the unlearned features, and
the outliers are the learned features. This provides a mathematical theory from first principles for the
observations of (Martin & Mahoney, 2021a; Martin et al., 2021), whose terminology (e.g. “bleed-
out”, “rank collapse”, . . . ) we borrow in the following. We begin by the case of large regularization,
considering an increasing number of samples.

• Ib (Rank collapse): All eigenvalues are zero. Data scarcity and strong regularization imply that
the ERM estimator is zero. Result 3 then gives a trivial risk R = Tr[(S⋆)2]/d.

• II (Outliers): The spectrum contains approximately Nout =
(

4n
λd3/2

)1/γ
outliers, while the

remaining eigenvalues are zero. Spikes are shifted by ≈ λd2

4n . In this regime, some features are
learned with noise, while others are lost due to over-regularization. Result 3 implies that the risk
is determined by the number and shift of the spikes, yielding R = Θ

(
1
d

∑
i≥Nout

(
√
di−γ)2

)
=

Θ
(
(λd3/2/n)2−1/γ

)
, since the error from the shift is of the same order.

• III (Heavy-tail): The spectrum is a perturbed version of the target spectrum with a heavy-tail
ρ(x) ∼ x−1−1/γ . Regularization shifts the bulk leftward by ≈ λd2

4n , yielding R = Θ
(
(λd2/n)2

)
.

As more eigenvalues emerge from the spike at zero, more features are learned and the risk decreases.
Strong regularization suppresses any spurious bulk of small eigenvalues, as well as some of the
smaller spikes. Consider now the case of small regularization.

• Ia (Rank collapse): The spectrum resembles a small portion of a semi-circle law along with many
zero eigenvalues. Perhaps surprisingly, the contribution of the bulk is negligible even for vanishing
regularization. Neither features nor noise are learned, so the risk remains R = Tr[(S⋆)2]/d.

• IV (Bulk + Outliers): The spectrum exhibits Nout = (∆d/4n)
−1/2γ outliers and a bulk with

eigenvalues of order Θ
(
(∆5d2/n)1/10

)
. As in Phase II, the risk decreases as more spikes emerge

from the bulk. Since the bulk contribution is sub-leading, Result 3 implies that the risk scales as
the average power of the unlearned spikes: R = 1

d

∑
i≥Nout

(
√
di−γ)2 = Θ

(
(d/n)1−

1
2γ

)
.

• V (Bulk + Outliers): Similar to Phase IV, but the risk is now dominated by the bulk of eigenvalues
of order Θ

(
(∆5d2/n)1/10

)
. The ERM estimator approaches interpolation and begins to fit noise.
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Although the number of outliers (Nout = ∆d/4n)
−1/2γ continues to increase and the bulk range

shrinks, the bulk’s second moment grows. Altogether, Result 3 implies the risk increases.

• Interpolation peak (Bulk + Outliers): The spectrum is dominated by a large semi-circle bulk
of order Θ(∆2/3λ−1/3). There may still be Θ(∆2/3λ−1/3d−1/2) spikes if λ ≫ d−3/2, but their
contribution is negligible. Even if the model learns features, the noise is overwhelming, and
Result 3 implies the risk is dominated by the bulk second moment R = Θ(λ−2/3).

• VIa (Bulk + Bleed-out + Outliers): The spectrum contains (∆d/4n)
−1/2γ outliers and a bulk of

small eigenvalues of order
√
∆d2/4n. The smallest outliers merge at the bulk boundary, creating

a bleed-out effect. The risk decreases as more outliers emerge. The spikes are perturbed by
Θ(
√
∆d2/n), and Result 3 implies the risk scales as R = Θ(d2/n), since this dominates over the

unlearned features.

• VIb (Heavy-tail): As in Phase III, the spectrum is a perturbed version of the target (a heavy-tailed
bulk) with perturbations of order Θ(

√
∆d2/n). The risk decays with the perturbation strength as

R = Θ(d2/n).

Therefore, for the under-regularized case, as the number of samples is increased, the bulk keeps
shrinking as the spikes pop out. However, as the shape of the bulk and the number of zero eigen-
values changes, the risk changes non-monotonically. In other words, the model learns an increasing
number of features, but the influence of noise leads to a non-monotonic behavior in the risk. Fur-
thermore, Result 3 shows that regularization only affects the first term of eq. (17) and may increase
the last two terms. Thus the optimal regularization strategy is to truncate the bulk, setting the first
term to zero, leaving the second unchanged and minimally increasing the third. If the bulk contribu-
tion is negligible, weaker regularization may be chosen (i.e. in phases IV and VIb). This reasoning
explains Corollary 1.

Finally, we should note that although phases VIa and VIb exhibit similar risk decay rates, only
VIb achieves the Bayes-optimal rate. In the regime d ≪ neff ≪ d2, the optimal performance is
reached in phase II with λ =

√
neff/d. The corresponding spectral density shows a transition from

outlier-dominated (zero eigenvalues+spikes) to heavy-tailed behavior, which supports the argument
of Martin et al. (2021) that heavy-tailed spectra are associated with superior generalization.

2.4 NON-ASYMPTOTIC STATE EVOLUTION

The results of Sections 2.1, 2.2 and 2.3 build on the theory of state evolution and approximate mes-
sage passing algorithms (Donoho et al., 2009; Javanmard & Montanari, 2013; Gerbelot & Berthier,
2023), whose formal guarantees hold in the high-dimensional limit neff , d → ∞ with fixed ratio
neff/d and constant strength λ. In this regime, state evolution allows to characterize the asymptotic
risk and the spectrum of the weights in both the neural networks models under consideration, both
for the empirical risk minimizer and for the Bayes-optimal estimator (see Appendices B and C).

Non-rigorous analyses in the ridge regression literature have employed asymptotic formulas to
estimate excess risk rates under source & capacity conditions, recovering classical results while also
identifying new regimes in striking agreement with finite-size numerical experiments (Bordelon
et al., 2020; Cui et al., 2021; Simon et al., 2023). The validity of these formulas beyond proportional
asymptotics was subsequently established through non-asymptotic multiplicative bounds, thereby
placing these rates on rigorous grounds (Cheng & Montanari, 2024; Misiakiewicz & Saeed, 2024;
Defilippis et al., 2024). Motivated by this line of work, we derive our results under an analogous
assumption: namely, that the state evolution equations for LASSO and matrix compressed sensing
remain valid beyond proportional asymptotics. This assumption is supported both by extensive
numerical evidence, depicted in Figure 3 and Appendices B, E, and by rigorous results on the con-
vergence rates for the LASSO state evolution (Miolane & Montanari, 2021)2. Figure 3 also confirms
the theoretical decay rates of the excess risk across all phases, with state evolution and simulations
in excellent agreement (see Appendix E for details on the implementation). Nonetheless, estab-
lishing non-asymptotic multiplicative bounds for LASSO and matrix compressed sensing remains
a challenging open problem. Our results provide both motivation and supporting evidence for this
direction, which we leave for future work. For conciseness, we only present the conjecture regarding
quadratic networks, and refer to Appendix B for the conjecture concerning diagonal networks.

2However, we need to extend their results to finite sample analysis (Rush & Venkataramanan, 2018)
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Figure 3: Excess risk in simulations (dots, d = 100, 200, 400, 800) versus non-asymptotic state
evolution (solid lines) as a function of neff (neff = n for the diagonal case, neff = n/d for the
quadratic case) with λ = 1/d, 1,

√
d and ∆ = 0.5. We find excellent agreement, despite state

evolution being rigorous only in the asymptotic limit neff/d = Θ(1) with d ≫ 1. Black lines
indicate the decay rates of the excess risk predicted by Result 1, again showing good agreement.

Conjecture 1. Let λ > 0, ∆ ≥ 0 and consider n, d ≫ 1 sufficiently large. Then with a probability
at least 1 − on(1) − od(1), both the excess risk associated to the empirical risk minimizer eq. (7)
and the Bayes-optimal risk (i.e. either RBO or R(Ŵ , â)) satisfy |R−Rn,d| = Rn,d · on,d(1). More
precisely, for the Bayes-optimal case we have RBO

n,d = 1
d Tr[(S

⋆)2]−q with q given by the fixed point
of the following equation

q̂ =
4n/d2

∆+ 2(Q⋆ − q)
, 1− 2α̃+

∆q̂

2
=

4π2

3q̂

∫
µ1/

√
q̂(x)

3dx, (19)

where µ1/
√
q̂ denotes the spectrum of S⋆ + 1√

q̂
Z with Z ∼ GOE(d). For the ERM, Rn,d =

2n
d2 δ

2 − ∆
2 , where δ is given by the fixed point of the following equation{

4 n
d2 δ − δ

ϵ = ∂1J(δ, λϵ),

Q⋆ + ∆
2 + 2 n

d2 δ
2 − δ2

ϵ = (1− λϵ∂2)J(δ, λϵ) ,
J(a, b) :=

∫ +∞

b

µa(x)(x− b)2dx. (20)

with µa denoting the spectrum of S⋆ + aZ with Z ∼ GOE(d).

3 CONCLUSION

We studied a theoretical framework for scaling laws in shallow networks with feature learning by
mapping them to sparse vector and low-rank matrix estimation. This allowed us to derive a com-
prehensive phase diagram for the excess risk scaling laws, uncovering a universality between di-
agonal and quadratic networks. Our analysis provides a first-principles explanation of the weight
spectra–generalization connection: underfitting, overfitting, and approximation errors correspond
directly to distinct spectral features, yielding a firm foundation for empirical observations of heavy-
tailed weight spectra and their link to generalization.

There are many natural extensions of this work, such as exploring additional structures present
in the data (e.g., non-trivial covariances (Wortsman & Loureiro, 2025)), extending beyond two-
layer networks and quadratic activations (Barbier et al., 2025), providing a rigorous proof of the
state evolution conjecture following Miolane & Montanari (2021). Moreover, our current work
only analyzes the global minimum, so we should also look at compute scaling laws of GD/SGD
(Ben Arous et al., 2025) as well as the implicit biases of SGD towards heavy tails and its relation
to generalization (Gurbuzbalaban et al., 2021; Simsekli et al., 2020; Hodgkinson et al., 2022). We
hope these results will motivate further progress toward a systematic theory of neural scaling laws.
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A THE BRIDGE FROM SPARSE ESTIMATION TO NEURAL NETWORKS

A.1 EQUIVALENCE BETWEEN DIAGONAL NETWORKS WITH ℓ2 WEIGHT DECAY AND LASSO

The first equivalence was discussed in a number of papers (Neyshabur et al., 2015; Soudry et al.,
2018; Pesme & Flammarion, 2023). We consider the diagonal two–layer network with parameters
u,w ∈ Rd and effective predictor

θ = u⊙ w, f(x) =

d∑
i=1

θixi,

trained with squared loss and ℓ2 weight decay on both layers:

min
u,w∈Rd

1

2
∥y −X(u⊙ w)∥22 +

λ

2

(
∥u∥22 + ∥w∥22

)
. (21)

Alternatively, one may also consider a diagonal two-layer ReLU network with two branches per
coordinate:

f(x) =

d∑
i=1

(
ui σ(wixi) + ui σ(−wixi)

)
, σ(z) = max{z, 0}.
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Using σ(z) − σ(−z) = z, each pair of branches along coordinate i induces an effective linear
coefficient θi such that

f(x) =

d∑
i=1

θixi.

We know show the reduction of this problem to the LASSO one:

Step 1. Lower bound via AM–GM. For each coordinate i we have

u2
i + w2

i ≥ 2|uiwi| = 2|θi| (by AM–GM, with a = u2
i , b = w2

i ).

Summing over i gives
∥u∥22 + ∥w∥22 ≥ 2∥θ∥1.

Therefore, for any factorization with u⊙ w = θ,

1

2
∥y −Xθ∥22 +

λ

2

(
∥u∥22 + ∥w∥22

)
≥ 1

2
∥y −Xθ∥22 + λ∥θ∥1. (22)

Step 2. Tightness. For any θ, choose a factorization

ui = sign(θi) |θi|1/2, wi = |θi|1/2.
Then u2

i = w2
i = |θi|, so that

u2
i + w2

i = 2|θi|, uiwi = θi.

Hence equality holds in (22), and the regularizer becomes

λ

2
(∥u∥22 + ∥w∥22) = λ∥θ∥1.

Plugging back into (21), we obtain the exact equivalence

min
u,w

1

2
∥y −X(u⊙ w)∥22 +

λ

2

(
∥u∥22 + ∥w∥22

)
≡ min

θ∈Rd

1

2
∥y −Xθ∥22 + λ∥θ∥1,

which is precisely the LASSO loss.

A.2 EQUIVALENCE BETWEEN QUADRATIC NETWORKS WITH ℓ2 WEIGHT DECAY AND
MATRIX COMPRESSED SENSING

Again the equivalance has been discussed in a number of work (Gunasekar et al., 2017; Maillard &
Kunisky, 2024; Erba et al., 2025; Bandeira & Maillard, 2025)

We consider the two-layer quadratic network with centered activations

f(x;W ) =
1√
p

p∑
j=1

[
(w⊤

j x)
2 − E[(w⊤

j x)
2]
]
.

Centering is equivalent to learning (and absorbing) the constant offset via a bias term, and can also
be naturally implemented in practice by batch/layer normalization applied after squaring.

This network can be written as
f(x) = Tr[SZ],

where S := 1√
pWW⊤ ⪰ 0 and Z := xx⊤ −Σx, Σx = E[xx⊤]. Thus the network corresponds

exactly to a PSD matrix sensing model with centered measurements Z. Centering removes only
a constant offset, which in practice would be absorbed by a bias term or handled automatically by
batch/layer normalization. Moreover, weight decay on W induces a trace penalty on S, since

∥W ∥2F =
√
p tr(S),

so that training is equivalent to trace-regularized PSD matrix sensing.
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Following the universality results for matrix sensing (see, e.g., Maillard & Kunisky (2024); Bandeira
& Maillard (2025); Maillard et al. (2024); Xu et al. (2025); Erba et al. (2025)), the analysis can be
simplified by replacing the empirical sensing operators Z by i.i.d. Gaussian symmetric matrices
with matching covariance structure. In particular, for xi ∼ N (0, Id), the centered measurements
are distributed as rank-one Wishart fluctuations, which are asymptotically equivalent, in the sense
of state evolution and AMP analysis, to Gaussian measurements with the same variance. Hence,
without loss of generality, we may study the trace-regularized PSD matrix sensing problem with
Gaussian measurement operators

yµ = Tr[SGµ] + ξµ, Gµ ∼ GOE(d).

B DERIVATION DETAILS - DIAGONAL LINEAR NETWORK

Considering the reparametrization defined in Section 1 and detailed in Appendix A, mapping empir-
ical risk minimization with L2 penalty on a two-layer diagonal linear network to LASSO regression,
in this section we study the supervised learning problem

θ̂ = arg min
θ∈Rd

{
1

2

n∑
µ=1

(
yµ − ⟨xµ,θ⟩√

d

)2

+ λ∥θ∥1
}
, (23)

with xµ ∼ N (0, Id), and

yµ =
⟨xµ,θ

⋆⟩√
d

+
√
∆ξµ, ξµ ∼ N (0, 1), µ = 1, . . . , n (24)

θ⋆ ∼ N (0,Λ), Λij = δijdi
−2γ =: Λi, i = 1, . . . , d (25)

We also define the parameter Q⋆ = d−1 TrΛ
d→∞−−−→ ζ(2γ). The excess risk is defined as

R(θ̂) =
1

d
E[(xT θ̂ − xTθ⋆)2]. (26)

In sections B.1 and B.2 we derive the state evolution equations 45) for the excess risk of the ERM
estimator eq. (23) and (57) for the Bayes-optimal estimator in the high-dimensional limit n, d → ∞
with n/d and λ fixed. Then, in sections B.3 and B.4, assuming the excess risk equations holds for
arbitrary scaling between dimensions and regularization, we derive the Results in Section 2.1.

B.1 GENERALIZED APPROXIMATE MESSAGE PASSING AND STATE EVOLUTION

Our theory is built on the analysis of Generalized Approximate Message Passing (GAMP) algo-
rithms, tailored for Bayes-optimal estimation and (convex) empirical risk minimization. In this
section we provide an overview of the derivation of the expressions for R and the LASSO R in our
setting from the GAMP framework.

Consider the matrix X ∈ Rn×d, with i.i.d. Gaussian components Xij ∼ N (0, 1), the vectors
bt ∈ Rd, ωt ∈ Rn, and the functions (known as denoisers) ft : Rd → Rd and gt : Rn → Rn, with
t ≥ 1. The generic form of GAMP (Donoho et al., 2009; Rangan, 2011) is given by

ωt = Xft(b
t)− vtgt−1(ω

t−1), (27)

bt+1 = XT gt(ω
t) + atft(b

t). (28)

The terms at and vt are known in the statistical physics literature as Onsager terms, and they are
defined as

at = −1

d

n∑
µ=1

∂

∂ωi
gt(ω), vt =

1

d

d∑
i=1

∂

∂bi
ft(b). (29)

For separable denoiser functions3, one can track statistics of the iterated vectors bt, ωt, leveraging
well-known results from Bayati & Montanari (2011); Javanmard & Montanari (2013), through the
so called state evolution.

3f : Rd → Rd is separable if ∀i ∈ {1, . . . , d} : [f(b ∈ Rd)]i = fi(bi), for some scalar function
fi : R → R
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B.1.1 GAMP FOR CONVEX OPTIMIZATION

Consider the problem of minimizing the empirical risk with loss ℓ(y, z) convex in the second argu-
ment and convex penalty r(θ),

arg min
θ∈Rd

n∑
µ=1

ℓ(yµ,θTxµ) +

d∑
i=1

r(θi), (30)

It is possible to design a GAMP algorithm whose fixed points are solutions to the problem defined in
(30). A detailed discussion on this approach can be found in Feng et al. (2022). Define the functions

g(ω, y, v) := proxvℓ(y,·)(ω), g(ω, y, v) =
g(ω, y, v)− ω

v
(31)

f(b, a) := prox 1
a r

(
b

a

)
, (32)

where the proximal operator of a convex function f is defined as

proxf (x) = argmin
z∈R

{
f(z) +

1

2
(z − x)2

}
. (33)

Then, Proposition 4.4 in Feng et al. (2022), guarantees that, given a fixed point (ω, b) of the GAMP
algorithm eq. (27,28) with denoiser functions gt(ω) = g(ω, y, vt) and ft(b) = f(b, at), the vector
θ̂ := ft(b) is the unique minimizer of (30).

As mentioned, in the high-dimensional limit n, d → ∞, with n/d fixed, we can track statistics of
the iterated variables through a set of state evolution equations. We stress that the following result
hold for the considered linear target function y = ⟨(θ⋆)T ,x⟩/

√
d.

Theorem 1 (Bayati & Montanari (2011); Javanmard & Montanari (2013), informal). Define
q̂t = n

dE(z,ωt)[g(ωt, z, vt)
2]

m̂t = n
dE(z,ωt)[∂zg(ωt, z, vt)]

v̂t = −n
dE(z,ωt)[∂ωg(ωt, z, vt)]


qt+1 = 1

dE(ξ,θ⋆)[∥f(
√

q̂tξ + m̂tθ⋆, v̂t)∥2]
mt+1 = 1

dE(ξ,θ⋆)[⟨f(
√

q̂tξ + m̂tθ⋆, v̂t),θ⋆⟩]
vt+1 = 1

dE(ξ,θ⋆)[∇b · f(
√

q̂tξ + m̂tθ⋆,θ⋆, v̂t)]

(34)

where ξ ∼ N (0, Id) and (
z
ωt

)
∼ N

((
0
0

)
,

(
Q⋆ mt

mt qt

))
. (35)

Then the iterated vectors ωt and bt of the GAMP algorithm (27,28), with denoiser functions (31,32),
respectively converge weakly to the Gaussian vectors Ωt =

√
qt −mtw + mtXθ⋆ (with w ∼

N (0, In)) and Bt = m̂tθ⋆ +
√

q̂tξ, in the sense that, for any uniformly pseudo-Lipshitz of order
k, deterministic ϕ : (Rd × Rn)t × Rd → R,

ϕ(b0,ω0, b1,ω1, . . . ,ωt−1, bt)
P≃ Eϕ(B0,Ω0,B1,Ω1, . . . ,Ωt−1,Bt). (36)

The previous theorem readily implies that, in the high-dimensional limit, at ≃ v̂t, and, given θ̂t ≃
f(bt, at),

1

d
⟨θ̂t,θ⋆⟩ ≃ mt,

1

d
∥θ̂∥2 ≃ qt (37)

and the generalization error of the estimator ŷ(x) = f(x, θ̂t) = (⟨θ̂t,x)/
√
d is

R(θ̂t) ≃ Ex

(
⟨θ̂t,x⟩√

d
− ⟨θ̂t,x⟩√

d

)2

= Q⋆ − 2mt + qt. (38)
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LASSO regression In the case of LASSO, with ℓ(y, z) = (y − z)2/2 and r(θ) = λ|θ|, we have
that

g(ω, y, v) =
y − ω

1 + v
, f(b, a) =

1

a
STλ(b), (39)

where STλ(b) = max(b−λ, 0)−max(−b−λ, 0) denotes the soft-thresfolding function. The state
evolution equations in this setting read

q̂t = n(∆+Q⋆−2mt+qt)
d(1+vt)2

m̂t = n
d(1+vt)

v̂t = n
d(1+vt)


mt+1 = 1

d

∑d
i=1 Λk erfc

(
λ√

2((m̂t)2Λi+q̂t)

)
vt+1 = 1

dm̂t

∑d
i=1 erfc

(
λ√

2((m̂t)2Λi+q̂t)

) (40)

and

qt+1 =
1

d(m̂t)2

d∑
i=1

[
((m̂t)2Λi + q̂t + λ2) erfc

(
λ√

2((m̂t)2Λi + q̂t)

)]
(41)

− 1

d(m̂t)2

d∑
i=1

[
2λ√
2π

√
(m̂t)2Λi + q̂te−λ2/(2((m̂t)2Λi+q̂t))

]
. (42)

At convergence, substituting the equation for v into the equation for one for m̂, introducing the pa-
rameter ν = λ

m̂

√
n
2d and leveraging eq. (38), one obtains that the excess risk for LASSO regression

in this setting is given by

R(θ̂) ≃ Rn,d(ν) =
1

n

d∑
i=1

n
d
Λi erf

 ν√
n
dΛi + ∆̂

+
(
∆̂ + 2ν2

)
erfc

 ν√
n
dΛi + ∆̂


− 2ν

n
√
π

d∑
i=1

[√
n

d
Λi + ∆̂ e−ν2/(n

d Λi+∆̂)

]
, (43)

with ∆̂ = ∆+ Rn,d(ν) and

λ

ν

√
n

2d
+

1

d

d∑
i=1

erfc

 ν√
n
dΛi + ∆̂

 =
n

d
. (44)

For our specific choice of covariance Λi = di−2γ , this becomes

R(θ̂) ≃ Rn,d(ν) =
1

n

d∑
i=1

[
ni−2γ erf

(
ν√

ni−2γ + ∆̂

)
+
(
∆̂ + 2ν2

)
erfc

(
ν√

ni−2γ + ∆̂

)]

− 2ν

n
√
π

d∑
i=1

[√
ni−2γ + ∆̂ e−ν2/(ni−2γ+∆̂)

]
, (45)

and

λ

ν

√
n

2d
+

1

d

d∑
i=1

erfc

(
ν√

ni−2γ + ∆̂

)
=

n

d
. (46)

Conjecture 2. Define R(θ̂, λ) the excess risk eq.(26) of the LASSO estimator θ̂ eq. (23) with
regularization strength λ. Then, there exists C > 0 such that, for any n, d > C, with probability
1− on(1)− od(1),

|R(θ̂, λ)− Rn,d(ν(λ))| = Rn,d(ν(λ)) · on,d(1), (47)

with Rn,d(ν) defined in eq. (45) and ν(λ) solution of eq. (46).
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B.1.2 SPECTRAL STRUCTURE OF THE ESTIMATOR

Theorem 1 readily implies Result 2. Given the unique fixed point (ω, b) of GAMP, the minimizer
of eq. (5) is given by θ̂ = 1

m̂STλ(b), which satisfies, in distribution

θ̂i ∼ STϵd(θ
∗
i + δdzi) , (48)

with ϵd := λ/m̂, δd :=
√
q̂/m̂ and zi ∼ N (0, 1). Note that ϵd = ν

√
d/n and

|θ̂i| ∼ max


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣θ

⋆
i + zi

√
∆̂
d

n︸ ︷︷ ︸
=:ui

∣∣∣∣∣∣∣∣− ν

√
2d

n

∣∣∣∣∣∣∣∣ , 0
 . (49)

The random variable variable ui satisfies

ui ∼ N
(
0, di−2γ + ∆̂

d

n

)
=⇒ ui ∼


θ⋆i , i ≪ min

((
N
∆̂

)1/(2γ)
, d

)
zi

√
∆̂ d

n i ≫
(

N
∆̂

)1/(2γ)
, if

(
N
∆̂

)1/(2γ)
≪ d

(50)

Therefore, if
(

n
∆̂

)1/(2γ)
≪ d, the ensemble {ui}i≫(n/∆̂)1/(2γ) constitutes a ”bulk” of i.i.d. Gaussian

variables, representing the combined effect of label noise and the limited number of samples. In fact,
if the sample size is large enough, namely n ≫ d2γ∆̂, the effect of the noise becomes undetectable.
We refer to the remaining {ui}i≪(n/∆̂)1/(2γ) as ”spikes”, representing the components of the true

signal θ⋆ that we want to learn. Therefore, the scale i ∼ (n/∆̂)1/(2γ) represents the number of
”learnable” components. The LASSO estimator is then obtained by soft-thresholding the variables
ui, where the parameter ϵd represents a cutoff that induces sparsity in the estimator, forcing to zero
the smallest components. Note that the cutoff depends on the regularization strength λ only through
ν. At this level, we can distinguish the following scenarios: in terms of number of data,

spikes + bulk only spikes
n ≫ d2γ∆̂ n ≫ d2γ∆̂

not all components can be learned all components can be learned

in terms of thresholding strength,

weak strong extreme
ν2 ≪ max(nd−2γ , ∆̂) max(nd−2γ , ∆̂) ≪ ν2 ≪ n ν2 ≫ n
cutoff above all spikes: cutoff between spikes: cutoff below spikes:

nothing is learned signal is partially learned, noise is filtered all learnable signal is learned

In Section B.4 we observe that these are the relevant scales for computing the leading order terms
of the excess risk and its scaling laws. Moreover, we estimate the values of ν and ∆̂ as functions of
n, d, λ. This result can be incorporated to the scenarios we have derived in this section, which will
lead us to the identification of the phase diagrams regions in fig. 1 and the phases descriptions in
Section 2.2.

B.2 BAYES-OPTIMAL EXCESS RISK

The Bayesian predictor ŷBO is given by the expected value of the target function with respect to the
posterior distribution P(θ|D). Applying Bayes’ theorem, the posterior distribution in this setting
reads.

P(θ|D) =
1

Z(D)

d∏
i=1

N (θi; 0,Λi)

n∏
µ=1

N

yµ;
1√
d

d∑
j=1

Xµjθj ,∆

 (51)

= N (θ; θ̂,V ), (52)
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where, recalling the notation X = (x1, . . . ,xn)
T ∈ Rn×d for the covariate matrix, y =

(y1, . . . , yn)
T for the label vector and Λ = diag(Λ1, ..., λd) for the weights’ covariance,

θ̂ :=
1√
d∆

V XTy, V =

(
Λ−1 +

1

d∆
XTX

)−1

. (53)

Therefore, the Bayesian predictor is ŷBO(x) = θ̂Tx and its excess risk is given by

R = E[(xTθ⋆ − ŷBO(x))2] (54)

= E∥θ − Eθ|D[θ]∥2 (55)

= TrV . (56)

Leveraging a classical result from random matrix theory Silverstein & Bai (1995), we have that, in
the high-dimensional limit n/d → ∞, with fixed ratio n/d,

R =
1

d

d∑
i=1

1

Λ−1
i + d−1q̂

, q̂ =
n

∆+R
(57)

=

d∑
i=1

1

i2γ + q̂
(58)

The same equations can be derived from the state evolution of Bayes-GAMP, i.e. the GAMP algo-
rithm tailored to compute marginals of the posterior distribution and the Bayes-optimal predictor.
The interested reader can find a more detailed discussion in Appendix D of Rangan (2011).

B.3 BAYES-OPTIMAL SCALING LAWS

From eq. (57)

R =
1

q̂

d∑
i=1

1

1 + (q̂−1/(2γ)i)2γ
, q̂ =

n

∆+R
(59)

Our goal is to derive the leading order of R in the asymptotic regime n, d ≫ 1. The crossover scale
at which the leading behavior of the sum’s argument changes is given by q̂−1/(2γ)iq̂ ≈ 1 =⇒ iq̂ =

⌊q̂1/(2γ)⌋. If iq̂ ≪ d, we can split the sum at this relevant scale and retain the leading term for each
part4

R =
1

q̂

⌊q̂1/(2γ)⌋∑
i=1

1

1 + (q̂−1/(2γ)i)2γ
+

d∑
⌊q̂1/(2γ)⌋+1

1

1 + (q̂−1/(2γ)i)2γ

 (60)

≈ 1

q̂

⌊q̂1/(2γ)⌋∑
i=1

1 +

d∑
⌊q̂1/(2γ)⌋+1

q̂i−2γ

 (61)

≈ q̂−1+1/(2γ) +
1

2γ − 1
q̂−1+1/(2γ) (62)

=
2γ

2γ − 1
q̂−1+1/(2γ), (63)

where we approximate∫ (d+1)

iq̂+1

x−2γdx ≤
d∑

iq̂+1

i−2γ ≤ (iq̂ + 1)−2γ +

∫ dq̂−1/(2γ)

iq̂+1

x−2γdx (64)

=⇒

∣∣∣∣∣∣
d∑

iq̂+1

i−2γ − q̂−1+1/(2γ)

2γ − 1

∣∣∣∣∣∣ = oq̂

(
q−1+1/(2γ)

)
. (65)

4We stress that, throughout the manuscript, the notation ≈ denotes equality up to terms that are asymptoti-
cally negligible.
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If instead iq̂ ≫ d

R ≈ 1

q̂

d∑
i=1

1 =
d

q̂
(66)

Scaling laws Since ∆ > 0, assuming R = O(1), the parameter q̂ ≍ n and the Bayes-optimal
generalization error

R =

{
Θ(n−1+1/(2γ)), n ≪ d2γ

Θ(d/n), n ≫ d2γ .
(67)

B.4 LASSO SCALING LAWS

From eq. (45),

R =
1

n

d∑
i=1

[f1(xi) + f2(xi)− f3(xi)], (68)

with xi := in−1/(2γ) and

f1(x) = x−2γ erf

(
ν√

x−2γ + ∆̂

)
(69)

f2(x) = (∆̂ + 2ν2) erfc

(
ν√

x−2γ + ∆̂

)
(70)

f3(x) =
2√
π
ν

√
x−2γ + ∆̂ exp

(
− ν2

x−2γ + ∆̂

)
(71)

We observe that the leading order of the functions changes scale around x ∼ ∆̂−1/(2γ).
For x−2γ ≫ ∆̂

f1(x) ≈ x−2γ erf (νxγ) (72)

f2(x) ≈ (∆̂ + 2ν2) erfc (νxγ) (73)

f3(x) ≈
2√
π
νx−γ exp

(
−ν2x2γ

)
(74)

For x−2γ ≪ ∆̂

f1(x) ≈ x−2γ erf
(
ν∆̂−1/2

)
(75)

f2(x) ≈ (∆̂ + 2ν2) erfc
(
ν∆̂−1/2

)
(76)

f3(x) ≈
2√
π
ν∆̂1/2 exp

(
−ν2∆̂−1

)
. (77)

Note that the scale x−2γ
i ∼ corresponds precisely to the detectability threshold of signal compo-

nents observed in Section B.1.2 for the LASSO estimator and in Section B.3 for the Bayes-optimal
estimator. Following the same procedure of Section B.3, we compute the excess risk R from eq.
(45) at leading order as a function of the parameter ν, by splitting the sums at the crossover scales.
Afterwards, solving the self-consistent eq. (46) for ν, we derive the Results in Section 2.1.
The three main regimes are

ν ≫ xγ
1 =⇒ ν2 ≫ n,√

max(x−2γ
d , ∆̂) ≪ ν ≪ xγ

1 =⇒ max(nd−2γ , ∆̂) ≪ ν2 ≪ n,

ν ≪
√
max(x−2γ

d , ∆̂) =⇒ ν2 ≪ max(nd−2γ , ∆̂),

(78)
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which again correspond to the extreme, strong and weak thresholding phases we have identified in
Section B.1.2.
In what follows we will often use the expansions

erf(x ≪ 1) =
2√
π
x+ o(x), (79)

erfc(x ≫ 1) =
e−x2

x
√
π

(
1− 1

2x2
+

3

4x4
+ o(x−4)

)
. (80)

Extreme thresholding For ν2 ≫ n, the dominant term is

1

n

d∑
i=1

f1(xi) ≈
1

n

d∑
i=1

(xi)
−2γ ≈ ζ(2γ), (81)

while the remaining terms are

1

n

d∑
i=1

f2(xi)− f3(xi) ≈
∆̂

ν
√
nπ

min(d,⌊(∆̂/n)−1/(2γ)⌋)∑
i=1

i−γe−i2γν2/n (82)

≈ ∆̂

ν
√
nπ

exp(−ν2/n), (83)

As expected, in this regime the large effective regularization forces the components of the estimator
to zero, and R ≈ ζ(2γ).

Strong thresholding If instead max(nd−2γ , ∆̂) ≪ ν2 ≪ n, defining iν := ⌊(n/ν2)1/(2γ)⌋ and
i∆̂ := ⌊(n/∆̂)1/(2γ)⌋, we split the sums into four terms

i)
1

n

iν∑
i=1

f1(xi)− f3(xi) ≈
2ν√
nπ

iν∑
i=1

(1− exp(−i2γν2/n))i−γ

≈ 2ν3

n
√
nπ

iν∑
i=1

iγ

≈ 2

(1 + γ)
√
π

( n

ν2

)−1+1/(2γ)

ii)
1

n

d∑
i=iν+1

f1(xi) ≈
d∑

i=iν+1

i−2γ ≈ 1

2γ − 1

( n

ν2

)−1+1/(2γ)

iii)
1

n

iν∑
i=1

f2(xi) ≈
2ν2 + ∆̂

n

iν∑
i=1

[
1− erf(iγν/

√
n)
]

≈2
( n

ν2

)−1+1/(2γ)

+ ∆̂ν−1/γn−1+1/(2γ) +Θ

(( n

ν2

)−1+1/(2γ)
)

iv)
1

n

d∑
i=iν+1

f2(xi)− f3(xi) ≈
∆̂

ν
√
nπ

min(d,i∆̂)∑
i=iν+1

i−γe−i2γν2/n + 1[∆̂>nd−2γ ]

d∆̂5/2

nν3
e−ν2/∆̂

Laplace≈ ∆̂

e
√
γ(2γ − 1)

n−1+1/(2γ)ν−1/γ + 1[∆̂>nd−2γ ]

d∆̂5/2

nν3
exp

(
−ν2

∆̂

)
where in the last step we have approximated the (Riemann) sum by an integral which we solved
using the Laplace’s method, that is (informally)∫ b

a

h(x)eMg(x)dx
M≫1≈

√
2π

M |g′′(x0)|
h(x0)e

Mg(x0), x0 = arg max
x∈[a,b]

g(x), g′′(x) ≤ 0∀x ∈ [a, b].

(84)

For ν2/∆̂ larger than any polylogarithmic function of n, d, the dominant term is R ≍
(n/ν2)−1+1/(2γ); if instead ν2/∆̂ is polylogarithmic in n, d, one should also take into account
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the term d∆̂5/2

nν3 exp
(
−ν2

∆̂

)
. Note that this last contribution comes from the summation over the

”bulk components” i > i∆̂, therefore it represent the noise-fitting contribution to the excess risk,
when the thresholding parameter ϵd = ν

√
d/n is comparable the square root of the bulk variance

δd =

√
∆̂d/n and a non negligible amount of bulk components does not get filtered.

Weak thresholding Finally , if ν2 ≪ max(nd−2γ , ∆̂), we split the sums into the following four
terms

i)
1

n

min(i∆̂,d)∑
i=1

f1(xi)− f3(xi) ≈
2ν3

(1 + γ)
√
nπ

(
1[∆̂>nd−2γ ]

(
n

∆̂

)(1+γ)/(2γ)

+ 1[∆̂<nd−2γ ]d
1+γ

)

ii)
1

n

d∑
i=min(d,i∆̂+1)

f1(xi) ≈1[∆̂>nd−2γ ]

2ν√
∆̂π

d∑
i=i∆̂+1

i−2γ

≈1[∆̂>nd−2γ ]

2ν√
∆̂π

(
n

∆̂

)−1+1/(2γ)

iii)
1

n

d∑
i=1

f2(xi) ≈(2ν2 + ∆̂)min

(
n−1+1/(2γ)∆̂−1/(2γ),

d

n

)
+ 1[∆̂>nd−2γ ]

(
d

n
− n−1+1/(2γ)∆̂−1/(2γ)

)
=(2ν2 + ∆̂)

d

n

iv)
1

n

d∑
i=min(d,i∆̂+1)

−f3(xi) ≈− 1[∆̂>nd−2γ ]

2√
π
ν
√

∆̂ exp(−ν2/∆̂)
d

n

(85)

The dominant term is therefore R ≍ (2ν2 + ∆̂)d/n.
We can now proceed with the solution of the self-consistent equation (46), in order to derive the
closed-form expressions for the excess risk scaling laws.

Scaling Laws Since ∆ > 0, then, provided R = O(1), ∆̂ = Θ(1). Let n ≫ d. Eq. (46) readily
implies that ν ≍ λ

√
d/n, as the second term on the left-hand side is bounded by 1. Therefore, for

n ≫ d,

R =


Θ(1), λ ≫ n/

√
d,

Θ
(

n2

λ2d

)−1+1/(2γ)

, max
(
nd−γ−1/2,

√
n/d

)
≪ λ ≪ n/

√
d

Θ
(

d
n max

(
1, λ2d

n

))
, λ ≪ max

(
nd−γ−1/2,

√
n/d

) (86)

Let instead n ≪ d. The second term on the left-hand side of eq. (46) is

1

d

d∑
i=1

erfc

(
ν√

x−2γ + ∆̂

)
≈


√

n
πν

−1 exp
(
−ν2/n

)
, ν2 ≫ n,

2n1/(2γ)

d

(
ν2−1/γ

)
(1 +O(1)) + erfc

(
ν
∆̂

)
, 1 ≪ ν2 ≪ n,

1, ν ≪ 1.

(87)

For λ ≫
√
n/d, this term is subleading and ν ≍ λ

√
d/n. One can observe that eq. (46) does

not have a positive solution in this regime if ν ≪ 1, therefore we exclude this case. Hence, if
λ ≪

√
n/d,

erfc

(
ν

∆̂

)
≈ n

d
=⇒

√
∆̂

π
ν−1e−ν2/∆̂ ≈ n/d (88)

=⇒ ν2

∆̂
≈ log

d

n
, (89)
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where we used

xex
2

= a =⇒ 2x2e2x
2

= 2a2 =⇒ x2 =
1

2
W0(2a

2)
a≫1≈ 1

2
log(2a2) ≈ log a, (90)

with W0 denoting the principal branch of the Lambert W function. Note that, in the under-
parametrized regime n ≪ d, even a small regularization strength λ leads to large effective
regularization ν of order

√
log d.

We can conclude that, for n ≪ d

R =


Θ(1), λ ≫ n/

√
d,

Θ
(

n2

λ2d

)−1+1/(2γ)

, max
(
nd−γ−1/2,

√
n/d

)
≪ λ ≪ n/

√
d

Θ

((
n

log(d/n)

)−1+1/(2γ)

+ ∆
log(d/n)

)
, λ ≪

√
n/d

(91)

Interpolation peak Around n ∼ d the excess risk exhibits an interpolation peak that diverges as
λ → 0+. In this section we show that in this regime R ≍ λ−2/3.
The self-consistent equation (46) becomes

λ

ν
≈

√
2

d

d∑
i=1

erf

(
ν√

ni−2γ + ∆̂

)
. (92)

As we have done in the previous paragraph, it is easy to verify that a strong effective regularization
ν2 ≫ ∆̂ results in the right-hand side being Θ(1), and to the inconsistent solution ν ∼ λ. Hence,
taking ν2 ≪ ∆̂ (weak thresholding regime),

λ

ν
≈ 2

√
2ν

√
π∆̂

=⇒ ν2 ≈
√
π

2
√
2

λ

∆̂
(93)

ν2 ≍ λ
√

∆̂ and the excess risk becomes, asymptotically,

R ≈ 2ν2 +R+∆− 4√
π
ν
√
R+∆ (94)

=⇒ ν
√
R+∆ ≈

√
π

4
∆ (95)

=⇒ λ2(R+∆)3 ≈ π2

256
∆4 (96)

=⇒ R ∼ ∆4/3

λ2/3
. (97)

B.4.1 ADDITIONAL NUMERICAL SIMULATIONS

In this section, we include additional numerical experiments, visualizing the Results in Sections 2.1
(Fig. 6) and 2.2 (Figs. 4,5). The remarkable correspondence between simulations and all results
derived from state evolution equations further supports our Conjecture 2.
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Figure 4: Comparison between spectra from simulations and theory across different training phases.
Blue: LASSO estimator’s components (in absolute value) histograms after training. Red: theoretical
prediction eq. (48). All panels use d= 200 and λ= d−1/2. The sample size is n = 35 for Phase
IV, n = 150 for Phase V, n = 300 for Phase VIa and n = 3000 for Phase Ib. We discuss the
phenomenology in Section 2.3.

0.4 0.2 0.0 0.2 0.4

100

101

102
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Simulations
Theory

0 1 2 3 4 5 6 7

Phase II

0 2 4 6 8 10 12 14

Phase III

Figure 5: Comparison between spectra from simulations and theory across different training phases.
Blue: LASSO estimator’s components (in absolute value) histograms after training. Red: theoretical
prediction eq. (48). All panels use d=200 and n = 100, λ = 35 for Phase Ib, n = 100, λ = 5.5 for
Phase II, n = 3000. λ = 7 for Phase III. We discuss the phenomenology in Section 2.3.

Figure 6 (left) shows the transitions between phases along the vertical lines of Fig. 1. For example,
for n = 35 the excess risk moves from Phase IV, which is independent of regularization, into Phase II
and soon (λ ≈ 35/

√
200) enters the plateau region of Phase Ib. For n = 300 and n = 500, the

excess risk starts in the fast–decay region IVa, reaches its minimum at λ ≈
√
n/d (when the soft-

thresholding cutoff reaches the edge of the noise bulk, see Section 2.2), then crosses Phase II and
enters the plateau Phase Ib. Finally, for n = 3000, the excess risk begins in Phase IVb, the fastest
decay regime, since the noise bulk is negligible for n ≫ d2γ , then grows as it crosses Phase III
and Phase II before reaching the plateau in Phase Ib. Notably, for n = d = 200, we observe the
interpolation phenomenon when λ <

√
n/d = 1, with a peak that grows as the predicted λ−2/3 in

the limit λ → 0+.
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Figure 6: (Left) Excess risk of the LASSO estimator, as a function of the regularization strength
λ, with d = 200, ∆ = 0.5, γ = 0.75. Dots represent numerical experiments, while lines the
solution Rn,d of state evolution equations 45. The curves correspond to the crossovers between rates
observed in Fig. 1. (Right) Excess risk of the LASSO estimator, as a function of the sample size
n, with d = 100, ∆ = 0.5, γ = 1. The regularization λopt has been chosen as the minimizer of
the theoretical excess risk Rn,d and its value is in accordance with to Corollary 1. Dots represent
numerical experiments, while lines the solution of state evolution equations 45.

C DERIVATION DETAILS - QUADRATIC NEURAL NETWORKS

C.1 BBP SIMPLIFICATION

To derive our results, we make the following assumption, which for the moment we do not control
rigorously. We assume that for the sake of simpliying the equations that S⋆ has sub-extensive rank,
i.e. it has eigenvalues {

√
di−γ}cdi=1 for c ≪ 1, and zero otherwise. This technical assumption allows

for a great simplification of the density µδ (the spectrum of S⋆ + δZ, where Z ∼ GOE(d)), which
can be computed with BBP-like techniques as (Huang, 2018)

µδ(x) =

(
1− K

d

)
(µsc + o(1))(x/δ)/δ +

1

d

K∑
i=1

δ(x− fδ(
√
di−γ)), (98)

We then send c → 1 a posteriori, after finding that the error does not depend explicitly on c. For the
rest of the section, let us define α̃ := n/d2.

C.2 BAYESIAN ESTIMATOR

In this section we solve eq. (19) for ∆ > 0.

Phase I: Large-samples Phase I is n ≫ d2γ+1. The first equation of eq. (19) gives q̂ = Θ(n/d2),
and thus d

1
2−γ ≫ 1√

q̂
, so all the spikes are outside the bulk. We then have

4π2

3q̂

∫
µ1/

√
q̂(x)

3dx ≈
(
1− cd

d

)
4π2

3

∫
µsc(x)

3dx = 1− c (99)

by eq. (98), and thus eq. (19) gives

2α̃− c =
2α̃∆

∆+ 2(Q⋆ − q)
, (100)

which gives RBO := Q⋆ − q = ∆cd2

4n = Θ(d2/n).

Phase II: Under-sampling Phase II is d ≪ n ≪ d2γ+1. We rewrite the integral in eq. (19) as

4π2

3q̂

∫
µ1/

√
q̂(x)

3dx =
4π2

3

∫
ν(x)3dx = 4π2

∫
dxν(x)(H[ν](x))2, (101)
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where ν denotes the spectrum density of Z+
√
q̂Θ∗. The first equality is by change of variables and

the second quality is from (Maillard et al., 2022, Lemma C.1). H[ν] denotes the Hilbert transform
of ν.

We further denote δ :=
√
q̂d. The first equation of eq. (19) suggests that q̂ = Θ(n/d2), and thus

δ = Θ(
√
n/d). For d ≪ n ≪ d2γ+1 we have d−γ+ 1

2 ≪ δ ≪
√
d, so according to eq. (98) ν

is composed of a semicircle part (denoted as ν0 := (1 − K/d)(µsc + ν̃), where ν̃ is calculated in
Appendix C.5) and a discrete part ({xi := f1(δi

−γ)}Ki=1, where K := δ1/γ). Thus we have∫
dxν(x)(H[ν](x))2 =

∫
dxν0(x)H[ν0](x)

2 +
2

d

K∑
i=1

∫
dxν0(x)H[ν0](x)

1

π(x− xi)

+
1

d2

K∑
i,j=1

∫
dxν0(x)

1

π2(x− xi)(x− xj)
+

K∑
j=1

1

d

H[ν0](xj) +

K∑
i=1
i̸=j

1

πd(xj − xi)


2

.

(102)

Denote the right side as I1 − I4. For the first term we have

I1 ≈ 1

3

∫
dxµ3

sc(x)

(
1−Θ

(
1

d

cd∑
i=K

δ2i−2γ

))
(1− 3K/d) ≈ 1

4π2

(
1−Θ(δ1/γd−1

)
), (103)

where we use eq. (171). Then we can estimate the leading orders of the other three terms. For the
second term, we have

I2 ≈ −2

d

∫
dxµsc(x)

x

2π

K∑
i=1

1

xi
= o

(
d−1

K∑
i=1

1

xi

)
= o(δ1/γd−1), (104)

where we use H[µsc] =
x
2π for x ∈ [−2, 2] and the fact that xµsc is an odd function. For the third

term we have

I3 = Θ

d−2
K∑

i,j=1

1

xixj

 = Θ

(d−1
K∑
i=1

1

xi

)2
 = Θ(δ2/γd−2). (105)

I4 is composed of three terms. The first term is

1

d

K∑
j=1

(H[ν0](xj))
2 ≈ 1

d

K∑
j=1

x−2
j ≈ 1

δ2d
K2γ+1

∫ 1

0

x2γ

(1 + x2γ)2
dx = Θ(δ1/γd−1), (106)

where we use the fact that H[µsc](x) ≈ 1
x for x ≫ 1. The second term of I4 is

K∑
i,j=1
i̸=j

2

d2
H[ν0](xj)

1

π(xj − xi)
≈

K∑
i,j=1
i̸=j

2

πd2
1

xj(xj − xi)

=

K∑
i,j=1
i̸=j

1

πd2

(
1

xj(xj − xi)
+

1

xi(xi − xj)

)

=

K∑
i,j=1
i̸=j

1

πd2xixj
=

1

πd2

(
K∑
i=1

1

xi

)2

= Θ(δ2/γd−2).

(107)

The last term of I4 can be written as

1

d3

K∑
i,j,k=1
i̸=j,k

1

(xj − xi)(xk − xi)
≈ 1

δ2d3

K∑
i,j,k=1
i̸=j,k

1

(j−γ − i−γ)(k−γ − i−γ)
≈ 1

δ2d3

K∑
i=1

∑
m,n

i2γ+2

mnγ2

(108)
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where we assuming m,n ≪ i to obtain the leading term. For a fixed i, we sum over m,n =
−(i− 1), · · · ,−1, 1, · · · ,K − i, which gives

K∑
i=1

∑
p,q

i2γ+2

pq
=

K∑
i=1

i2γ+2(HK−i −H2
i−1) ≈ K2γ+3

∫ 1

0

x2γ

(
log

1− x

x

)2

dx, (109)

where we denote Hi =
∑i

p=1
1
p = log i+Θ(1). Thus we have

1

d3

K∑
i,j,k=1
i̸=j,k

1

(xj − xi)(xk − xi)
= Θ(δ−2d−3K2γ+3) = Θ(δ3/γd−3). (110)

For d ≪ n ≪ d2γ+1 and γ > 1
2 we have δ1/γd−1 ≪ 1, and thus

4π2

3

∫
ν(y)3dy = 1 +Θ(d−1δ1/γ). (111)

Taking it back to (19), we have

2α̃∆

∆+ 2(Q⋆ − q)
− 2α̃ = Θ

(
d−1

(
4n

d∆

) 1
2γ

)
, (112)

which gives

RBO := Q⋆ − q = Θ

((
d∆

4n

)1− 1
2γ

)
. (113)

Phase III: Not enough data Phase III is n ≪ d, and thus δ ≪ 1. By eq. (98) and Appendix C.5,
there are no outliers and the first-order correction reads

4π2

3

∫
ν(x)3dx = 1− 1

d

cd∑
i=1

(δi−γ)2 = 1− ζ(2γ)q̂. (114)

Taking it back to eq. (19), we have

2α̃∆

∆+ 2(Q⋆ − q)
− 2α̃ = − 4α̃Q⋆

∆+ 2(Q⋆ − q)
, (115)

and thus RBO := Q⋆ − q = Q⋆, where we use Q⋆ ≈ ζ(2γ).

C.3 ERM

In this section we solve eq. (20) for ∆ > 0.

Phase I: Trivial phase The first case of phase I is δ >
√
d and 0 < 2 − λϵ

δ ≪ 1. In this case the
spikes are covered by the bulk and the cutoff is close to the boundary of the bulk. Thus we have

J(δ, λϵ) ≈
∫ δ

λϵ

µsc(x/δ)/δ(x− λϵ)2dx ≈ δ2
16t7/2

105π
, (116)

where t := 2− λϵ
δ . Then eq. (20) reduces to{

4αδ − δ
ϵ = δ2 16t5/2

15π

Q⋆ + ∆
2 + 2αδ2 − δ2

ϵ = δ2 16t5/2

15π ,
(117)

where we use t ≪ 1 and keep only the leading term. Thus we have

R := 2α̃δ2 − ∆

2
= Q⋆ (118)
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and λϵ ≈ 2δ =
√

1
2α (Q

⋆ +∆/2). Then the condition δ >
√
d gives

n <
1

16
(2Q⋆ +∆)d. (119)

The condition 0 < t ≪ 1 gives λ
2 ≈ δ

ϵ < 4α̃δ, and thus

λ < 8

√
2Q⋆ +∆

4

√
n

d2
. (120)

The second case of phase I is λϵ > 2max(δ,
√
d). In this case both the spikes and the bulk are

below the cutoff, and thus J(δ, λϵ) = 0. Then eq. (20) reduces to{
4αδ − δ

ϵ = 0

Q⋆ + ∆
2 + 2αδ2 − δ2

ϵ = 0
(121)

which gives

R := 2α̃δ2 − ∆

2
= Q⋆ (122)

and ϵ = 1
4α̃ . The condition λϵ > 2max(δ,

√
d) reduces to

λ > max

(
8

√
2Q⋆ +∆

4

√
n

d2
,
4n

d3/2

)
. (123)

To conclude, Phase I is

R = Q⋆, if n <
1

16
(2Q⋆ +∆)d or λ >

4n

d3/2
. (124)

Phase II: Over-regularization phase The second phase is max(δ, d−γ+1/2) ≪ λϵ ≪
√
d. In

this case we only need to consider the spikes outside the cutoff, so we have

J(δ, λϵ) =
1

d

K∑
i=1

(
√
di−γ +

δ2√
di−γ

− λϵ)2, (125)

where K is given by
√
dK−γ + δ2√

dK−γ
− λϵ = 0. Thus we have K ≈ (

√
d/λϵ)1/γ satisfying

1 ≪ K < d. By keeping only the leading terms, we have

J(δ, λϵ) ≈ Q⋆ +

(
γ + 1

γ − 1
− 1

2γ − 1

)(
λϵ√
d

) 2γ−1
γ

− 2λϵ√
d
1γ>1, (126)

where we use
K∑
i=1

i−γ ≈ K1−γ

1− γ
+ ζ(γ)1γ>1 (127)

and thus Q⋆ :=
∑cd

i=1 i
−2γ ≈ ζ(2γ). Taking it into eq. (20), we have 4α̃δ − δ

ϵ = 0

Q⋆ + ∆
2 + 2α̃δ2 − δ2

ϵ = Q⋆ − 2γ
2γ−1

(
λϵ√
d

) 2γ−1
γ

,
(128)

which gives ϵ = 1
4α and

R := 2α̃δ2 − ∆

2
=

2γ

2γ − 1

(
λϵ√
d

) 2γ−1
γ

=
2γ

2γ − 1

(
λ
d3/2

4n

) 2γ−1
γ

. (129)

The condition max(δ, d−γ+1/2) ≪ λϵ ≪
√
d gives

max

(√
n

d2
,

n

dγ+
3
2

)
≪ λ ≪ d3/2

n
. (130)
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Phase III: Intermediate over-regularization phase Phase III is δ ≪ λϵ ≪ d−γ+ 1
2 . In this case

all the spikes are above the cutoff, and all the bulk is below the cutoff. Thus we have

J(δ, λϵ) =
1

d

cd∑
i=1

(
√
di−γ +

δ2√
di−γ

− λϵ)2 ≈ Q⋆ − λϵc(d)min(γ,1)−1 + λ2ϵ2 (131)

by eq. (127). Then eq. (20) simplifies to{
4α̃δ − δ

ϵ = 0

Q⋆ + ∆
2 + 2α̃δ2 − δ2

ϵ = Q⋆ − λ2ϵ2,
(132)

which gives ϵ = 1
4α̃ and

R := 2α̃δ2 − ∆

2
=

λ2d4

16n2
. (133)

The condition δ ≪ λϵ ≪ d−γ+ 1
2 reduces to√

n

d2
≪ λ ≪ n

dγ+3/2
, (134)

which further requires n ≫ d2γ+1.

Phase IV and V: Benign and harmful overfitting phase Phase IV and V are d ≪ n ≪ d2 and
0 < 2− λϵ

δ ≪ 1, d−γ+ 1
2 ≪ δ ≪

√
d. In this case the cutoff is close to the boundary of the bulk and

a part of the spikes are outside the bulk. Thus we have J(δ, λϵ) ≈ J1(δ, λϵ) + J2(δ, λϵ), where

J2(δ, λϵ) :=

∫ δ

λϵ

µsc(x/δ)/δ(x− λϵ)2dx ≈ δ2
16t7/2

105π
+Aδ2t9/2 (135)

with A a constant, t := 2− λϵ
δ and

J1(δ, λϵ) : =
1

d

(δ/
√
d)−1/γ∑
i=1

(
√
di−γ +

δ2√
di−γ

− λϵ)2

≈ Q⋆ +

(
δ√
d

)2− 1
γ
(
− 1

2γ − 1
+ (λϵ/δ)2 + 2− 2

λϵ

δ

1

1− γ
− 2

1 + γ

λϵ

δ
+

1

1 + 2γ

)
− 1γ>1ζ(γ)

2λϵ√
d
,

(136)

where we use δ ≫ d−γ+ 1
2 to obtain the first line and use eq. (127) for the second line. Then eq.

(20) simplifies to

4α̃δ2 − δ2

ϵ = δ2 16t5/2

15π + δ2t7/2( 32
105π + 9A)

+
((

− 1
2γ−1 + 4 + 2− 4

1−γ − 4
1+γ + 1

1+2γ

)
(2− 1/γ) + C ′(γ)

)(
δ√
d

)2− 1
γ

Q⋆ + ∆
2 + 2α̃δ2 − δ2

ϵ = Q⋆ + δ2 16t5/2

15π + δ2t7/2( 16
105π + 9A)

+
(
− 1

2γ−1 + 4 + 2− 4
1−γ − 4

1+γ + 1
1+2γ + C ′(γ)

)(
δ√
d

)2− 1
γ

,

(137)

where we use t ≪ 1 to drop the smaller terms. We also use the shorthand C ′(γ) := −4+ 2
1−γ +

4
1+γ .

The second line subtracted by the first line gives

∆

2
− 2α̃δ2 =

((
6− 1

2γ − 1
− 4

1 + γ
+

1

1 + 2γ

)
1− γ

γ
− 4

γ

)(
δ√
d

)2− 1
γ

− δ2
16t7/2

105π
. (138)
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Therefore, at the leading order we have δ ≈
√

∆
4α̃ and

δ2
16t5/2

15π
≈ 4α̃δ2 − δ2

ϵ
≈ ∆, (139)

where we assume λδ ≪ 1. Then we have

R := 2α̃δ2 − ∆

2
=

24γ3

4γ3 + 4γ2 − γ − 1

(
d∆

4n

)1− 1
2γ

+
∆

7

(
15π

4

)2/5 ( n

d2

)2/5
. (140)

The condition d ≪ n ≪ d2 and λδ ≪ 1, 0 < t ≪ 1, d−γ+ 1
2 ≪ δ ≪

√
d reduces to

λ ≪
√

n

d2
and d ≪ n ≪ d2, (141)

where we use δ2t5/2 ≈ ∆− λδ
2 . Note that under this condition we further have t ≪ 1 as δ ≫ 1.

Interpolation peak The interpolation peak is at α̃ = 1
4 and λ ≪ 1. The first case of the interpo-

lation peak is max(λϵ, d−γ+1/2) ≪ δ ≪
√
d. Then J(δ, λϵ) ≈ J1(δ) + J2(δ, λϵ), where

J1(δ) :=
1

d

cd∑
i=1

ReLU(
√
di−γ +

δ2√
di−γ

)2 ≈ Q⋆ + C(γ)

(
δ√
d

)2− 1
γ

(142)

by eq. (155) and

J2(δ, λϵ) := δ2
∫ 2

λϵ

µsc(x)(x− λϵ/δ)2 ≈ δ2

2
− 8

3π
λϵδ. (143)

Then eq. (19) reduces to 4α̃δ2 − δ2

ϵ = δ2 − 8
3πλϵδ + C(γ)(2− 1/γ)

(
δ√
d

)2− 1
γ

Q⋆ + ∆
2 + 2α̃δ2 − δ2

ϵ = Q⋆ + 1
2δ

2 + C(γ)
(

δ√
d

)2− 1
γ

.
(144)

By using α̃ = 1
4 , we obtain

ϵ =
∆

2
λ−2/3

(
3π

8

)2

, δ =

(
3π∆2

32

)1/3

λ−1/3 (145)

as the leading order solution, where the
(

δ√
d

)2− 1
γ

term is ignored because δ√
d
≪ 1. Then we have

R := 2α̃δ2 − ∆

2
≈ 2

(
3π∆2

32

)2/3

λ−2/3. (146)

The condition max(λϵ, d−γ+1/2) ≪ δ ≪
√
d reduces to

d−3/2 ≪ λ ≪ 1 (147)

The second case of the interpolation peak is max(λϵ,
√
d) ≪ δ, which gives J(δ, λϵ) ≈ δ2

2 − 8
3πλϵδ.

Similarly we can obtain the solution

ϵ =

(
Q⋆ +

∆

2

)
λ−2/3

(
3π

8

)2

, δ =

(
3π

8

)1/3(
Q⋆ +

∆

2

)2/3

λ−1/3 (148)

and thus

R := 2α̃δ2 − ∆

2
≈ 2

(
3π

8

)2/3(
Q⋆ +

∆

2

)4/3

λ−2/3. (149)

The condition max(λϵ,
√
d) ≪ δ reduces to

λ ≪ d−3/2. (150)
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Phase VI: Large-sample phase The first case of Phase VI is n ≫ d2 and λϵ ≪ δ ≪ d−γ+ 1
2 . In

this case the cutoff is almost 0 and all spikes are outside the bulk. Then we have J(δ, λϵ) = Q⋆+ 1
2δ

2,
and thus eq. (20) simplifies to{

4α̃δ − δ
ϵ = δ

Q⋆ + ∆
2 + 2α̃δ2 − δ2

ϵ = Q⋆ + 1
2δ

2,
(151)

which has a solution

δ2 =
∆

4α̃− 1
, ϵ =

1

4α̃− 1
. (152)

Then we have

R := 2α̃δ2 − ∆

2
≈ ∆

8α̃
(153)

for α̃ ≫ 1 and the condition λϵ ≪ δ ≪ d−γ+ 1
2 reduces to

λ ≪
√

n

d2
and n ≫ d2γ+1. (154)

The second case of Phase IV is d2 ≪ n ≪ d2γ+1 and max(λϵ, d−γ+ 1
2 ) ≪ δ ≪

√
d. In this case

the cutoff is almost 0 but only a part of the spikes are outside the bulk. Thus we have J(δ, λϵ) =
J1(δ) +

1
2δ

2, where

J1(δ) : =
1

d

cd∑
i=1

ReLU(
√
di−γ +

δ2√
di−γ

)2

≈ 1

d

(δ/
√
d)−1/γ∑
i=1

(
√
di−γ +

δ2√
di−γ

)2

= Q⋆ + C(γ)

(
δ√
d

)2− 1
γ

,

(155)

where C(γ) is some constant. In the second line we use δ ≫ d−γ+1/2. In the third line we use eq.
(127) and only keep the leading term. Then eq. (20) reduces to 4α̃δ2 − δ2

ϵ = δ2 + C(γ)(2− 1/γ)
(

δ√
d

)2− 1
γ

Q⋆ + ∆
2 + 2α̃δ2 − δ2

ϵ = Q⋆ + 1
2δ

2 + C(γ)
(

δ√
d

)2− 1
γ

(156)

The second equation subtracted by the first equation gives

∆

2
− 2α̃δ2 = −1

2
δ2 − C(γ)(1− 1/γ)

(
δ√
d

)2− 1
γ

. (157)

As n ≫ d2, at the leading order we have δ ≈
√

∆
4α̃ . Then one can verify that if n ≪ d2γ+1 we have(

δ√
d

)2− 1
γ ≪ δ2, which suggests that

R := 2α̃δ2 − ∆

2
≈ 1

2
δ2 ≈ ∆

8α̃
. (158)

In this case we also have ϵ ≈ 1
4α̃ , and thus the condition max(λϵ, d−γ+ 1

2 ) ≪ δ ≪
√
d reduces to

λ ≪
√

n

d2
and d2 ≪ n ≪ d2γ+1. (159)

To conclude, Phase VI is

R ≈ ∆d2

8n
, if n ≫ d2 and λ ≪

√
n

d2
. (160)
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C.4 UNIVERSAL ERROR DECOMPOSITION OF FEATURE LEARNING

In this section we derive Result 3. As a part of the spikes are outside the bulk and a part of the spikes
are inside (e.g., in phases IV and V), we can rewrite the SE as{

4α̃δ2 − δ2

ϵ = δ∂δ(J1(δ, λϵ) + J2(δ, λϵ))

Q⋆ + ∆
2 + 2α̃δ2 − δ2

ϵ = (1− λϵ∂λϵ)(J1(δ, λϵ) + J2(δ, λϵ)),
(161)

where the auxiliary functions are defined as

J1(δ, λϵ) :=
1

d

K(δ)∑
i=1

(si +
δ2

si
− λϵ)2, (162)

and

J2(δ, λϵ) := δ2
∫ 2

λϵ/δ

µsc(x)(x− λϵ/δ)2. (163)

Recall we are considering a general model with si denoting the i−th eigenvalue in a descending
order and K(δ) ≪ d satisfying pK(δ) +

λ2

pK(δ)
− λϵ = 0. The excess risk is given by

R := 2α̃δ2 − ∆

2
= Q⋆ + (δ∂δ + λϵ∂λϵ − 1)(J1(δ, λϵ) + J2(δ, λϵ)). (164)

Then we have

(δ∂δ + λϵ∂λϵ − 1)J1(δ, λϵ) =
2

d

K(δ)∑
i=1

(si +
δ2

si
− λϵ)(

2δ2

si
− λϵ)− 1

d

K(δ)∑
i=1

(si +
δ2

si
− λϵ)2

=
1

d

K(δ)∑
i=1

[
(
δ2

si
− λϵ)2 +

δ2

si
(si +

δ2

si
− λϵ)

]
− 1

d

K(δ)∑
i=1

s2i .

(165)

and

(δ∂δ + λϵ∂λϵ − 1)J2(δ, λϵ) = δ2
∫ 2

λϵ/δ

µsc(x)(x− λϵ/δ)2. (166)

Now we obtain eq. (17) by using Q⋆ := 1
d

∑d
i=1 s

2
i .

C.5 PERTURBATIVE EXPANSION OF THE BULK

In this session we discuss how to obtain the correction of the bulk in eq. (98). Consider H :=

Z +
∑k

i=1 λiviv
T
i with {λi}ki=1 smaller than 1, where Z ∼ GOE(d) and {vi}ki=1 are uniformly

sampled from the unit sphere. Its resolvent can be expanded as

mH(z) : =
1

d
Tr(z −H)−1

≈ mZ(z) +
1

d

k∑
i=1

λiv
T
i (z − Z)−2vi +

1

d

k∑
i,j=1

Tr(z − Z)−1viv
T
i (z − Z)−1vjv

T
J (z − Z)−1.

(167)

For the first-order correction we have 1
d

∑k
i=1 λiv

T
i (z −Z)−2vi ≈

∑k
i=1 λi

d m′
Z(z). For the second-

order correction we have

1

d

k∑
i,j=1

Tr(z − Z)−1viv
T
i (z − Z)−1vjv

T
j (z − Z)−1

≈ Tr(z − Z)−1 Tr(z − Z)−2 +Tr(z − Z)−3

d2(d+ 2)

k∑
i=1

λ2
i

≈ −1

d

k∑
i=1

λ2
imZ(z)m

′
Z(z).

(168)
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This gives a correction on the spectrum ν̃(x) =
∑k

i=1 λi

d µ′
sc(x) −

∑k
i=1 λ2

i

d im(mZ(x + i0)m′
Z(x +

i0)). Note that the first term is an odd function and the second term is an even function, and the
resolvant of GOE is given by

mZ(x+ i0) =
x

2
+ iµsc(x), (169)

so we have

4π2

3

∫
νH(x)3dx ≈ 4π2

3

∫
µsc(x)

3dx+ 4π2

∫
µsc(x)

2ν̃(x)dx

= 1−
(
1

d

k∑
i=1

λ2
i

)
2π2

∫
µsc(x)

2(xµ′
sc(x) + µsc(x))dx

= 1−
(
1

d

k∑
i=1

λ2
i

)
4π2

3

∫
µsc(x)

3dx

= 1− 1

d

k∑
i=1

λ2
i .

(170)

This correction is the leading term only if
∑k

i=1 λ
2
i ≪ ∑k

i=1 λ
2
i . However, if λi = i−γ , all the

higher-order terms are of the same order, but their sum converges for |z| > 3, which gives

4π2

3

∫
νH(x)3dx = 1−Θ

(
1

d

k∑
i=1

λ2
i

)
(171)

instead.

D COMPARISON WITH L2 REGULARIZATION

In this section we compare the scaling laws we have obtained for ERM to the ones of ridge regression
for a linear model, proving in particular their sub-optimality. The ridge estimator is defined as

θ̂ridge = argmin
θ∈Rd

1

n

n∑
µ=1

(yµ − ⟨θ,xµ⟩)2 + λ∥θ∥22. (172)

This can be mapped to both the diagonal network and quadratic network case, depending on the
choice of x. For simplicity, we assume x ∼ N (0, Id).

Cheng & Montanari (2024) readily implies the following.

Theorem 2 (Excess risk rates for ridge regression). . Assume that y = ⟨θ⋆,x⟩ +
√
∆ζ with ζ ∼

N (0, 1) and E[||θ⋆||22] = Θ(1). For n, d ≫ 1, the excess risk associated to the estimator defined in
(172) satisfies

Rn,d = Θ


1, if n ≪ d or λ ≫ 1,

λ2, if n ≫ d and
√
d/n ≪ λ ≪ 1

∆d/n, if n ≫ d and λ ≪
√

d/n

∆λ−1/2, if n = d and λ ≪ 1.

(173)

Proof. The excess risk concentrates with high probability, for n, d ≫ 1, around the following deter-
ministic expression (Cheng & Montanari, 2024)

Rn,d =
nν2

n(1 + ν)2 − d
E[||θ⋆||22] +

d∆

n(1 + ν)2 − d
(174)

with ν the unique non-negative solution of

n

d

(
1− λ

ν

)
=

1

1 + ν
. (175)
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Therefore

ν = Θ


d/n+ λ, if n ≪ d,

λ, if n ≫ d,√
λ, if n = d and λ ≪ 1.

(176)

Substituting into (174), the result follows.

Therefore, we cannot obtain a non-trivial risk for n ≪ d with L2 regularization.

E NUMERICAL DETAILS

The state equations (20) can be iterated in a more numerically convenient form that depends on an
extended set of parameters (q,m,Σ, q̂, m̂, Σ̂) as presented in Erba et al. (2025), Appendix A.4.4.
Then, we can compute δ and ϵ as δ =

√
q̂/m̂ and ϵ = 2/m̂. Since the limiting distribution of S∗ is

not easy to compute exactly as d → ∞, we compute the integral J by a Monte-Carlo procedure. The
overlaps m, q,Σ are computed using finite size samples of matrices and their eigen-decomposition

M =
√
q̂Z + m̂S∗ = O diag(ν1, . . . , νd)O

T (177)

where Z ∼ GOE(d) and S∗ =
√
d∑

i i
−2γ diag(1, 2−γ , · · · , d−γ) can be taken as a diagonal matrix,

since this amounts to a rotation of M , which does not affect the distribution of Z by rotational
invariance. One can then apply the spectral denoiser described in Erba et al. (2025) and compute the
overlaps using the reconstructed matrix M̃ = O diag(ν̃1, . . . , ν̃d)O

T , where ν̃i = 1
Σ̂
ReLu(νi−2λ)

are the denoised eigenvalues. Finally, the order parameters can be computed as
mt+1 = 1

dEM Tr[(S∗)T M̃ ]

qt+1 = 1
dEM Tr[M̃T M̃ ]

Σt+1 = 2
dEM

[∑d
i=1

Θ(νi−2λ)

Σ̂
+
∑

i<j
ν̃i−ν̃j

νi−νj

] (178)

The expectation is taken over nsamples = Θ(10) samples for d = Θ(102), independently for each
order parameter, for a total of 3nsamples sampled matrices per iteration of the state evolution.

Since the ERM problem is convex we resort to using LBFGS with Wolfe line search. We used
the PyTorch implementation of the optimiser, taking care of evaluating the network efficiently at
each pass. For the specifics of the implementation we refer to the code included in the submission.
Convergence is typically achieved with a precision of at least 10−8 in a few hundred iterations. The
main challenge is in storing the dataset in memory. For each run we used up to 1800 gigabytes
of RAM on nodes with 2 Intel Xeon 8360Y CPUs. Our total computing cost (including intial
explorations) is around 200000 CPU hours.
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